SUBROUTINE LWB & &( KIDIA, KFDIA, KLON , KLEV , KMODE & &, PDT0 , PTAVE, PTL & &, PB , PBINT, PBSUR , PBTOP , PDBSL & &, PGA , PGB , PGASUR, PGBSUR, PGATOP, PGBTOP & &) !**** *LWB* - COMPUTES BLACK-BODY FUNCTIONS FOR LONGWAVE CALCULATIONS ! PURPOSE. ! -------- ! COMPUTES PLANCK FUNCTIONS !** INTERFACE. ! ---------- ! EXPLICIT ARGUMENTS : ! -------------------- ! ==== INPUTS === ! PDT0 : (KLON) ; SURFACE TEMPERATURE DISCONTINUITY ! PTAVE : (KLON,KLEV) ; TEMPERATURE ! PTL : (KLON,KLEV+1) ; HALF LEVEL TEMPERATURE ! ==== OUTPUTS === ! PB : (KLON,NSIL,KLEV+1); SPECTRAL HALF LEVEL PLANCK FUNCTION ! PBINT : (KLON,KLEV+1) ; HALF LEVEL PLANCK FUNCTION ! PBSUR : (KLON,NSIL) ; SURFACE SPECTRAL PLANCK FUNCTION ! PBTOP : (KLON,NSIL) ; TOP SPECTRAL PLANCK FUNCTION ! PDBSL : (KLON,NSIL,KLEV*2); SUB-LAYER PLANCK FUNCTION GRADIENT ! PGA : (KLON,8,2,KLEV) ; dB/dT-weighted LAYER PADE APPROXIMANTS ! PGB : (KLON,8,2,KLEV) ; dB/dT-weighted LAYER PADE APPROXIMANTS ! PGASUR, PGBSUR (KLON,8,2) ; SURFACE PADE APPROXIMANTS ! PGATOP, PGBTOP (KLON,8,2) ; T.O.A. PADE APPROXIMANTS ! IMPLICIT ARGUMENTS : NONE ! -------------------- ! METHOD. ! ------- ! 1. COMPUTES THE PLANCK FUNCTION ON ALL LEVELS AND HALF LEVELS ! FROM A POLYNOMIAL DEVELOPMENT OF PLANCK FUNCTION ! EXTERNALS. ! ---------- ! NONE ! REFERENCE. ! ---------- ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS " ! AUTHOR. ! ------- ! JEAN-JACQUES MORCRETTE *ECMWF* ! MODIFICATIONS. ! -------------- ! ORIGINAL : 89-07-14 ! MODIFIED : 99-06-14 D.SALMOND Optimisation !----------------------------------------------------------------------- #include "tsmbkind.h" USE YOELW , ONLY : MXIXT ,NSIL ,NIPD ,PDGA ,& &PDGB ,TINTP ,TSTAND ,TSTP ,XP IMPLICIT NONE ! DUMMY INTEGER SCALARS INTEGER_M :: KFDIA INTEGER_M :: KIDIA INTEGER_M :: KLEV INTEGER_M :: KLON INTEGER_M :: KMODE !----------------------------------------------------------------------- !* 0.1 ARGUMENTS ! --------- REAL_B :: PDT0(KLON),PTAVE(KLON,KLEV),PTL(KLON,KLEV+1) REAL_B :: PB(KLON,NSIL,KLEV+1) , PBINT(KLON,KLEV+1)& &, PBSUR(KLON,NSIL) , PBTOP(KLON,NSIL) & &, PDBSL(KLON,NSIL,KLEV*2)& &, PGA(KLON,NIPD,2,KLEV) , PGB(KLON,NIPD,2,KLEV)& &, PGASUR(KLON,NIPD,2) , PGBSUR(KLON,NIPD,2)& &, PGATOP(KLON,NIPD,2) , PGBTOP(KLON,NIPD,2) !------------------------------------------------------------------------- !* 0.2 LOCAL ARRAYS ! ------------ INTEGER_M :: INDB(KLON) , INDS(KLON) REAL_B :: ZBLAY(KLON,KLEV), ZBLEV(KLON,KLEV+1)& &, ZRES(KLON) , ZRES2(KLON)& &, ZTI(KLON) , ZTI2(KLON) ! LOCAL INTEGER SCALARS INTEGER_M :: ILEV2, INDSU, INDT, INDTO, INDTP, INUE, INUS,& &IXTOX, IXTX, JF, JG, JK, JK1, JK2, JL, JNU ! LOCAL REAL SCALARS REAL_B :: ZDST1, ZDSTO1, ZDSTOX, ZDSTX ! ------------------------------------------------------------------ !* 1.0 PLANCK FUNCTIONS AND GRADIENTS ! ------------------------------ ILEV2=2*KLEV INUS=1 INUE=NSIL IF (KMODE == 2) THEN INUS=3 INUE=4 ENDIF DO JK = 1 , KLEV+1 DO JL = KIDIA,KFDIA PBINT(JL,JK) = _ZERO_ ENDDO ENDDO DO JNU=1,NSIL DO JL=KIDIA,KFDIA PBSUR(JL,JNU)=_ZERO_ PBTOP(JL,JNU)=_ZERO_ ENDDO DO JK=1,KLEV DO JL=KIDIA,KFDIA PB(JL,JNU,JK)=_ZERO_ ENDDO ENDDO DO JK=1,ILEV2 DO JL=KIDIA,KFDIA PDBSL(JL,JNU,JK)=_ZERO_ ENDDO ENDDO ENDDO DO JNU=INUS,INUE !* 1.1 LEVELS FROM SURFACE TO KLEV ! ---------------------------- DO JK = 1 , KLEV DO JL = KIDIA,KFDIA ZTI(JL)=(PTL(JL,JK)-TSTAND)/TSTAND ZRES(JL) = XP(1,JNU)+ZTI(JL)*(XP(2,JNU)+ZTI(JL)*(XP(3,JNU)& &+ZTI(JL)*(XP(4,JNU)+ZTI(JL)*(XP(5,JNU)+ZTI(JL)*(XP(6,JNU)& &))))) PBINT(JL,JK)=PBINT(JL,JK)+ZRES(JL) PB(JL,JNU,JK)= ZRES(JL) ZBLEV(JL,JK) = ZRES(JL) ZTI2(JL)=(PTAVE(JL,JK)-TSTAND)/TSTAND ZRES2(JL)=XP(1,JNU)+ZTI2(JL)*(XP(2,JNU)+ZTI2(JL)*(XP(3,JNU)& &+ZTI2(JL)*(XP(4,JNU)+ZTI2(JL)*(XP(5,JNU)+ZTI2(JL)*(XP(6,& &JNU)& &))))) ZBLAY(JL,JK) = ZRES2(JL) ENDDO ENDDO !* 1.2 TOP OF THE ATMOSPHERE AND SURFACE ! --------------------------------- DO JL = KIDIA,KFDIA ZTI(JL)=(PTL(JL,KLEV+1)-TSTAND)/TSTAND ZTI2(JL) = (PTL(JL,1) + PDT0(JL) - TSTAND) / TSTAND ZRES(JL) = XP(1,JNU)+ZTI(JL)*(XP(2,JNU)+ZTI(JL)*(XP(3,JNU)& &+ZTI(JL)*(XP(4,JNU)+ZTI(JL)*(XP(5,JNU)+ZTI(JL)*(XP(6,JNU)& &))))) ZRES2(JL) = XP(1,JNU)+ZTI2(JL)*(XP(2,JNU)+ZTI2(JL)*(XP(3,JNU)& &+ZTI2(JL)*(XP(4,JNU)+ZTI2(JL)*(XP(5,JNU)+ZTI2(JL)*(XP(6,JNU)& &))))) PBINT(JL,KLEV+1) = PBINT(JL,KLEV+1)+ZRES(JL) PB(JL,JNU,KLEV+1)= ZRES(JL) ZBLEV(JL,KLEV+1) = ZRES(JL) PBTOP(JL,JNU) = ZRES(JL) PBSUR(JL,JNU) = ZRES2(JL) ENDDO !* 1.3 GRADIENTS IN SUB-LAYERS ! ----------------------- DO JK = 1 , KLEV JK2 = 2 * JK JK1 = JK2 - 1 DO JL = KIDIA,KFDIA PDBSL(JL,JNU,JK1) = ZBLAY(JL,JK ) - ZBLEV(JL,JK) PDBSL(JL,JNU,JK2) = ZBLEV(JL,JK+1) - ZBLAY(JL,JK) ENDDO ENDDO ENDDO !* 2.0 CHOOSE THE RELEVANT SETS OF PADE APPROXIMANTS ! --------------------------------------------- DO JL=KIDIA,KFDIA ZDSTO1 = (PTL(JL,KLEV+1)-TINTP(1)) / TSTP IXTOX = MAX( 1, MIN( INT(MXIXT), INT( ZDSTO1 + _ONE_ ) ) ) ZDSTOX = (PTL(JL,KLEV+1)-TINTP(IXTOX))/TSTP IF (ZDSTOX < _HALF_) THEN INDTO=IXTOX ELSE INDTO=IXTOX+1 ENDIF INDB(JL)=INDTO ZDST1 = (PTL(JL,1)-TINTP(1)) / TSTP IXTX = MAX( 1, MIN( INT(MXIXT), INT( ZDST1 + _ONE_ ) ) ) ZDSTX = (PTL(JL,1)-TINTP(IXTX))/TSTP IF (ZDSTX < _HALF_) THEN INDT=IXTX ELSE INDT=IXTX+1 ENDIF INDS(JL)=INDT ENDDO DO JF=1,2 DO JG=1,NIPD DO JL=KIDIA,KFDIA INDSU=INDS(JL) PGASUR(JL,JG,JF)=PDGA(INDSU,2*JG-1,JF) PGBSUR(JL,JG,JF)=PDGB(INDSU,2*JG-1,JF) INDTP=INDB(JL) PGATOP(JL,JG,JF)=PDGA(INDTP,2*JG-1,JF) PGBTOP(JL,JG,JF)=PDGB(INDTP,2*JG-1,JF) ENDDO ENDDO ENDDO DO JK=1,KLEV DO JL=KIDIA,KFDIA ZDST1 = (PTAVE(JL,JK)-TINTP(1)) / TSTP IXTX = MAX( 1, MIN( INT(MXIXT), INT( ZDST1 + _ONE_ ) ) ) ZDSTX = (PTAVE(JL,JK)-TINTP(IXTX))/TSTP IF (ZDSTX < _HALF_) THEN INDT=IXTX ELSE INDT=IXTX+1 ENDIF INDB(JL)=INDT ENDDO DO JF=1,2 DO JL=KIDIA,KFDIA INDT=INDB(JL) DO JG=1,NIPD PGA(JL,JG,JF,JK)=PDGA(INDT,2*JG,JF) PGB(JL,JG,JF,JK)=PDGB(INDT,2*JG,JF) ENDDO ENDDO ENDDO ENDDO ! ------------------------------------------------------------------ RETURN END SUBROUTINE LWB