module Microlayer_m Implicit none contains subroutine Microlayer(dter, dser, tkt, tks, hlb, tau, s_subskin, al, & xlv, taur, rf, rain, qcol) ! H. Bellenger 2016 use const, only: beta, cpw, grav, rhow use fv_m, only: fv real, intent(out):: dter(:) ! Temperature variation in the diffusive microlayer, that is ! ocean-air interface temperature minus subskin temperature. In K. real, intent(out):: dser(:) ! Salinity variation in the diffusive microlayer, that is ocean-air ! interface salinity minus subskin salinity. In ppt. real, intent(inout):: tkt(:) ! thickness of cool skin (microlayer), in m real, intent(inout):: tks(:) ! thickness of mass diffusion layer (microlayer), in m real, intent(in):: hlb(:) ! latent heat flux at the surface, positive upward (W m-2) real, intent(in):: tau(:) ! wind stress, turbulent part only, in Pa real, intent(in):: s_subskin(:) ! subskin salinity, in ppt real, intent(in):: al(:) ! water thermal expansion coefficient (in K-1) real, intent(in):: xlv(:) ! latent heat of evaporation (J/kg) real, intent(in):: taur(:) ! momentum flux due to rainfall, in Pa real, intent(in):: rf(:) ! sensible heat flux at the surface due to rainfall, in W m-2 real, intent(in):: rain(:) ! rain mass flux, in kg m-2 s-1 real, intent(in):: qcol(:) ! net flux at the surface, without sensible heat flux due to rain, in W m-2 ! Local: real, dimension(size(qcol)):: usrk, usrct, usrcs, alq real xlamx(size(qcol)) ! Saunders coefficient real, parameter:: visw = 1e-6 real, parameter:: tcw = 0.6 ! thermal conductivity of water real, parameter:: mu = 0.0129e-7 ! in m2 / s ! molecular salinity diffusivity, Kraus and Businger, page 47 real, parameter:: kappa = 1.49e-7 ! thermal diffusivity, in m2 / s real, parameter:: afk = 4e-4 real, parameter:: bfk = 1.3 ! a and b coefficient for the power function fitting the TKE flux ! carried by rain: Fk = a * R**b, derived form the exact solution ! of Soloviev and Lukas 2006 (Schlussel et al 1997, Craeye and ! Schlussel 1998) !-------------------------------------------------------------------------- alq = al * (qcol + rf * (1 - fV(tkt, rain))) - beta * s_subskin * cpw & * (hlb / xlv - rain * (1 - fV(tks, rain))) usrk = (afk / rhow)**(1. / 3.) * (rain * 3600.)**(bfk / 3.) ! Equivalent friction velocity due to the TKE input by the penetrating ! raindrops Fk ! Friction velocities in the air: usrct = sqrt((tau + (1. - fV(tkt, rain)) * taur) / rhow & + (fV(0., rain) - fV(tkt, rain)) * usrk**2) usrcs = sqrt((tau + (1. - fV(tks, rain)) * taur) / rhow & + (fV(0., rain) - fV(tks, rain)) * usrk**2) where (alq > 0.) ! Fairall 1996 982, equation (14): xlamx = 6. * (1. + (16. * grav * cpw * rhow * visw**3 * alq & / (tcw**2 * usrct**4 ))**0.75)**(- 1. / 3.) ! Fairall 1996 982, equation (12): tkt = xlamx * visw / usrct tks = xlamx * mu * (kappa / mu)**(2. / 3.) & * visw * cpw * rhow / ( tcw * usrcs) ! From Saunders 1967 (4) elsewhere xlamx = 6. ! prevent excessive warm skins tkt = min(.01, xlamx * visw / usrct) ! Limit tkt tks = min(.001, xlamx * mu * (kappa / mu)**(2. / 3.) * visw * cpw & * rhow / (tcw * usrcs)) end where ! Fairall 1996 982, equation (13): dter = - (qcol + rf * (1 - fV(tkt, rain))) * tkt / tcw dser = s_subskin * (hlb / xlv - rain * (1 - fV(tks, rain))) * tks & / (rhow * mu) ! eq. fresh skin end subroutine Microlayer end module Microlayer_m