! ! $Id: recmwf_aero.F90 3605 2019-11-21 15:43:45Z lmdz-user $ ! !OPTIONS XOPT(NOEVAL) SUBROUTINE RECMWF_AERO (KST, KEND, KPROMA, KTDIA , KLEV,& & KMODE,& & PALBD , PALBP , PAPRS , PAPRSF , PCCO2 , PCLFR,& & PQO3 , PAER , PDP , PEMIS , PMU0,& & PQ , PQS , PQIWP , PQLWP , PSLM , PT , PTS,& & PREF_LIQ, PREF_ICE,& !--OB & PREF_LIQ_PI, PREF_ICE_PI,& !--fin & PEMTD , PEMTU , PTRSO,& & PTH , PCTRSO, PCEMTR, PTRSOD,& & PLWFC, PLWFT, PSWFC, PSWFT, PSFSWDIR, PSFSWDIF,& & PFSDNN, PFSDNV,& & PPIZA_TOT,PCGA_TOT,PTAU_TOT, & !--OB & PPIZA_NAT,PCGA_NAT,PTAU_NAT, & !--fin OB !--C.Kleinschmitt & PTAU_LW_TOT, PTAU_LW_NAT, & !--end & PFLUX,PFLUC,& & PFSDN ,PFSUP , PFSCDN , PFSCUP, PFSCCDN, PFSCCUP, PFLCCDN, PFLCCUP,& !--OB diagnostics & PTOPSWADAERO,PSOLSWADAERO,& & PTOPSWAD0AERO,PSOLSWAD0AERO,& & PTOPSWAIAERO,PSOLSWAIAERO,& & PTOPSWCFAERO,PSOLSWCFAERO,& & PSWADAERO,& !--NL !--LW diagnostics CK & PTOPLWADAERO,PSOLLWADAERO,& & PTOPLWAD0AERO,PSOLLWAD0AERO,& & PTOPLWAIAERO,PSOLLWAIAERO,& & PLWADAERO,& !--NL !..end & ok_ade, ok_aie, ok_volcan, flag_aerosol,flag_aerosol_strat,& & flag_aer_feedback) !--fin !**** *RECMWF* - METEO-FRANCE RADIATION INTERFACE TO ECMWF RADIATION SCHEME ! PURPOSE. ! -------- ! SIMPLE INTERFACE TO RADLSW (NO INTERPOLATION) !** INTERFACE. ! ---------- ! EXPLICIT ARGUMENTS : ! -------------------- ! KST : START INDEX OF DATA IN KPROMA-LONG VECTOR ! KEND : END INDEX OF DATA IN KPROMA-LONG VECTOR ! KPROMA : VECTOR LENGTH ! KTDIA : INDEX OF TOP LEVEL FROM WHICH COMPUTATIONS ARE ACTIVE ! KLEV : NUMBER OF LEVELS ! PAER : (KPROMA,KLEV ,6) ; OPTICAL THICKNESS OF THE AEROSOLS ! PALBD : (KPROMA,NSW) ; DIFFUSE ALBEDO IN THE 2 SW INTERVALS ! PALBP : (KPROMA,NSW) ; PARALLEL ALBEDO IN THE 2 SW INTERVALS ! PAPRS : (KPROMA,KLEV+1) ; HALF LEVEL PRESSURE ! PAPRSF : (KPROMA,KLEV ) ; FULL LEVEL PRESSURE ! PCCO2 : ; CONCENTRATION IN CO2 (PA/PA) ! PCLFR : (KPROMA,KLEV ) ; CLOUD FRACTIONAL COVER ! PQO3 : (KPROMA,KLEV ) ; OZONE MIXING RATIO (MASS) ! PDP : (KPROMA,KLEV) ; LAYER PRESSURE THICKNESS ! PEMIS : (KPROMA) ; SURFACE EMISSIVITY ! PMU0 : (KPROMA) ; SOLAR ANGLE ! PQ : (KPROMA,KLEV ) ; SPECIFIC HUMIDITY PA/PA ! PQS : (KPROMA,KLEV ) ; SATURATION SPECIFIC HUMIDITY PA/PA ! PQIWP : (KPROMA,KLEV ) ; ICE WATER KG/KG ! PQLWP : (KPROMA,KLEV ) ; LIQUID WATER KG/KG ! PSLM : (KPROMA) ; LAND-SEA MASK ! PT : (KPROMA,KLEV) ; FULL LEVEL TEMPERATURE ! PTS : (KPROMA) ; SURFACE TEMPERATURE ! PPIZA_TOT : (KPROMA,KLEV,NSW); Single scattering albedo of total aerosol ! PCGA_TOT : (KPROMA,KLEV,NSW); Assymetry factor for total aerosol ! PTAU_TOT: (KPROMA,KLEV,NSW) ; Optical depth of total aerosol ! PREF_LIQ (KPROMA,KLEV) ; Liquid droplet radius (um) - present-day ! PREF_ICE (KPROMA,KLEV) ; Ice crystal radius (um) - present-day !--OB ! PREF_LIQ_PI (KPROMA,KLEV) ; Liquid droplet radius (um) - pre-industrial ! PREF_ICE_PI (KPROMA,KLEV) ; Ice crystal radius (um) - pre-industrial ! ok_ade---input-L- apply the Aerosol Direct Effect or not? ! ok_aie---input-L- apply the Aerosol Indirect Effect or not? ! ok_volcan-input-L- activate volcanic diags (SW heat & LW cool rate, SW & LW flux) ! flag_aerosol-input-I- aerosol flag from 0 to 7 ! flag_aerosol_strat-input-I- use stratospheric aerosols flag (T/F) ! flag_aer_feedback-input-I- use aerosols radiative effect flag (T/F) ! PPIZA_NAT : (KPROMA,KLEV,NSW); Single scattering albedo of natural aerosol ! PCGA_NAT : (KPROMA,KLEV,NSW); Assymetry factor for natural aerosol ! PTAU_NAT: (KPROMA,KLEV,NSW) ; Optical depth of natural aerosol ! PTAU_LW_TOT (KPROMA,KLEV,NLW); LW Optical depth of total aerosols ! PTAU_LW_NAT (KPROMA,KLEV,NLW); LW Optical depth of natural aerosols !--fin OB ! ==== OUTPUTS === ! PEMTD (KPROMA,KLEV+1) ; TOTAL DOWNWARD LONGWAVE EMISSIVITY ! PEMTU (KPROMA,KLEV+1) ; TOTAL UPWARD LONGWAVE EMISSIVITY ! PTRSO (KPROMA,KLEV+1) ; TOTAL SHORTWAVE TRANSMISSIVITY ! PTH (KPROMA,KLEV+1) ; HALF LEVEL TEMPERATURE ! PCTRSO(KPROMA,2) ; CLEAR-SKY SHORTWAVE TRANSMISSIVITY ! PCEMTR(KPROMA,2) ; CLEAR-SKY NET LONGWAVE EMISSIVITY ! PTRSOD(KPROMA) ; TOTAL-SKY SURFACE SW TRANSMISSITY ! PLWFC (KPROMA,2) ; CLEAR-SKY LONGWAVE FLUXES ! PLWFT (KPROMA,KLEV+1) ; TOTAL-SKY LONGWAVE FLUXES ! PSWFC (KPROMA,2) ; CLEAR-SKY SHORTWAVE FLUXES ! PSWFT (KPROMA,KLEV+1) ; TOTAL-SKY SHORTWAVE FLUXES ! Ajout flux LW et SW montants et descendants, et ciel clair (MPL 19.12.08) ! PFLUX (KPROMA,2,KLEV+1) ; LW total sky flux (1=up, 2=down) ! PFLUC (KPROMA,2,KLEV+1) ; LW clear sky flux (1=up, 2=down) ! PFSDN(KPROMA,KLEV+1) ; SW total sky flux down ! PFSUP(KPROMA,KLEV+1) ; SW total sky flux up ! PFSCDN(KPROMA,KLEV+1) ; SW clear sky flux down ! PFSCUP(KPROMA,KLEV+1) ; SW clear sky flux up ! PFSCCDN(KPROMA,KLEV+1) ; SW clear sky clean (no aerosol) flux down ! PFSCCUP(KPROMA,KLEV+1) ; SW clear sky clean (no aerosol) flux up ! PFLCCDN(KPROMA,KLEV+1) ; LW clear sky clean (no aerosol) flux down ! PFLCCUP(KPROMA,KLEV+1) ; LW clear sky clean (no aerosol) flux up ! IMPLICIT ARGUMENTS : NONE ! -------------------- ! METHOD. ! ------- ! SEE DOCUMENTATION ! EXTERNALS. ! ---------- ! REFERENCE. ! ---------- ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS ! AUTHORS. ! -------- ! ORIGINAL BY B. RITTER *ECMWF* 83-10-13 ! REWRITING FOR IFS BY J.-J. MORCRETTE 94-11-15 ! 96-11: Ph. Dandin. Meteo-France ! REWRITING FOR DM BY J.PH. PIEDELIEVRE 1998-07 ! Duplication of RFMR to use present (cy25) ECMWF radiation scheme : Y. Bouteloup 09-2003 ! Use of 6 aerosols & introduce NSW : F. Bouyssel 09-2004 ! 04-11-18 : 4 New arguments for AROME : Y. Seity ! 2005-10-10 Y. Seity : 3 optional arguments for dust optical properties ! JJMorcrette 20060721 PP of clear-sky PAR and TOA incident solar radiation (ECMWF) ! Olivier Boucher: added LMD radiation diagnostics 2014-03 !----------------------------------------------------------------------- USE PARKIND1 ,ONLY : JPIM ,JPRB USE YOMHOOK ,ONLY : LHOOK, DR_HOOK USE YOEAERD , ONLY : RCAEROS USE YOMCST , ONLY : RMD ,RMO3 USE YOMPHY3 , ONLY : RII0 USE YOERAD , ONLY : NLW, NAER, RCCNLND ,RCCNSEA USE YOERAD , ONLY : NAER, RCCNLND ,RCCNSEA USE YOERDU , ONLY : REPSCQ USE YOMGEM , ONLY : NGPTOT USE YOERDI , ONLY : RRAE ,REPCLC ,REPH2O USE YOMARPHY , ONLY : LRDUST USE phys_output_mod, ONLY : swaerofree_diag, swaero_diag !----------------------------------------------------------------------- !* 0.1 ARGUMENTS. ! ---------- IMPLICIT NONE INCLUDE "clesphys.h" INTEGER(KIND=JPIM),INTENT(IN) :: KPROMA INTEGER(KIND=JPIM),INTENT(IN) :: KLEV INTEGER(KIND=JPIM),INTENT(IN) :: KST INTEGER(KIND=JPIM),INTENT(IN) :: KEND INTEGER(KIND=JPIM) :: KTDIA ! Argument NOT used INTEGER(KIND=JPIM),INTENT(IN) :: KMODE REAL(KIND=JPRB) ,INTENT(IN) :: PALBD(KPROMA,NSW) REAL(KIND=JPRB) ,INTENT(IN) :: PALBP(KPROMA,NSW) REAL(KIND=JPRB) ,INTENT(IN) :: PAPRS(KPROMA,KLEV+1) REAL(KIND=JPRB) ,INTENT(IN) :: PAPRSF(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PCCO2 REAL(KIND=JPRB) ,INTENT(IN) :: PCLFR(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PQO3(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PAER(KPROMA,KLEV,6) REAL(KIND=JPRB) ,INTENT(IN) :: PDP(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PEMIS(KPROMA) REAL(KIND=JPRB) ,INTENT(IN) :: PMU0(KPROMA) REAL(KIND=JPRB) ,INTENT(IN) :: PQ(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PQS(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PQIWP(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PQLWP(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PSLM(KPROMA) REAL(KIND=JPRB) ,INTENT(IN) :: PT(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PTS(KPROMA) REAL(KIND=JPRB) ,INTENT(IN) :: PPIZA_TOT(KPROMA,KLEV,NSW) REAL(KIND=JPRB) ,INTENT(IN) :: PCGA_TOT(KPROMA,KLEV,NSW) REAL(KIND=JPRB) ,INTENT(IN) :: PTAU_TOT(KPROMA,KLEV,NSW) !--OB REAL(KIND=JPRB) ,INTENT(IN) :: PPIZA_NAT(KPROMA,KLEV,NSW) REAL(KIND=JPRB) ,INTENT(IN) :: PCGA_NAT(KPROMA,KLEV,NSW) REAL(KIND=JPRB) ,INTENT(IN) :: PTAU_NAT(KPROMA,KLEV,NSW) REAL(KIND=JPRB) :: PPIZA_ZERO(KPROMA,KLEV,NSW) REAL(KIND=JPRB) :: PCGA_ZERO(KPROMA,KLEV,NSW) REAL(KIND=JPRB) :: PTAU_ZERO(KPROMA,KLEV,NSW) !--fin !--C.Kleinschmitt REAL(KIND=JPRB) :: PTAU_LW_ZERO(KPROMA,KLEV,NLW) REAL(KIND=JPRB) ,INTENT(IN) :: PTAU_LW_TOT(KPROMA,KLEV,NLW) REAL(KIND=JPRB) ,INTENT(IN) :: PTAU_LW_NAT(KPROMA,KLEV,NLW) !--end REAL(KIND=JPRB) ,INTENT(IN) :: PREF_LIQ(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PREF_ICE(KPROMA,KLEV) !--OB REAL(KIND=JPRB) ,INTENT(IN) :: PREF_LIQ_PI(KPROMA,KLEV) REAL(KIND=JPRB) ,INTENT(IN) :: PREF_ICE_PI(KPROMA,KLEV) LOGICAL, INTENT(in) :: ok_ade, ok_aie ! switches whether to use aerosol direct (indirect) effects or not LOGICAL, INTENT(in) :: ok_volcan ! produce volcanic diags (SW/LW heat flux and rate) INTEGER, INTENT(in) :: flag_aerosol ! takes value 0 (no aerosol) or 1 to 6 (aerosols) LOGICAL, INTENT(in) :: flag_aerosol_strat ! use stratospheric aerosols LOGICAL, INTENT(in) :: flag_aer_feedback ! use aerosols radiative feedback REAL(KIND=JPRB) ,INTENT(out) :: PTOPSWADAERO(KPROMA), PSOLSWADAERO(KPROMA) ! Aerosol direct forcing at TOA and surface REAL(KIND=JPRB) ,INTENT(OUT) :: PTOPSWAD0AERO(KPROMA), PSOLSWAD0AERO(KPROMA) ! Aerosol direct forcing at TOA and surface REAL(KIND=JPRB) ,INTENT(OUT) :: PTOPSWAIAERO(KPROMA), PSOLSWAIAERO(KPROMA) ! ditto, indirect REAL(KIND=JPRB) ,INTENT(OUT) :: PTOPSWCFAERO(KPROMA,3), PSOLSWCFAERO(KPROMA,3) !--do we keep this ? !--fin !--NL REAL(KIND=JPRB) ,INTENT(OUT) :: PSWADAERO(KPROMA, KLEV+1) ! SW Aerosol direct forcing REAL(KIND=JPRB) ,INTENT(OUT) :: PLWADAERO(KPROMA, KLEV+1) ! LW Aerosol direct forcing !--CK REAL(KIND=JPRB) ,INTENT(out) :: PTOPLWADAERO(KPROMA), PSOLLWADAERO(KPROMA) ! LW Aerosol direct forcing at TOA + surface REAL(KIND=JPRB) ,INTENT(OUT) :: PTOPLWAD0AERO(KPROMA), PSOLLWAD0AERO(KPROMA) ! LW Aerosol direct forcing at TOA + surface REAL(KIND=JPRB) ,INTENT(OUT) :: PTOPLWAIAERO(KPROMA), PSOLLWAIAERO(KPROMA) ! LW Aer. indirect forcing at TOA + surface !--end REAL(KIND=JPRB) ,INTENT(OUT) :: PEMTD(KPROMA,KLEV+1) REAL(KIND=JPRB) ,INTENT(OUT) :: PEMTU(KPROMA,KLEV+1) REAL(KIND=JPRB) ,INTENT(OUT) :: PTRSO(KPROMA,KLEV+1) REAL(KIND=JPRB) ,INTENT(INOUT) :: PTH(KPROMA,KLEV+1) REAL(KIND=JPRB) ,INTENT(OUT) :: PCTRSO(KPROMA,2) REAL(KIND=JPRB) ,INTENT(OUT) :: PCEMTR(KPROMA,2) REAL(KIND=JPRB) ,INTENT(OUT) :: PTRSOD(KPROMA) REAL(KIND=JPRB) ,INTENT(OUT) :: PLWFC(KPROMA,2) REAL(KIND=JPRB) ,INTENT(OUT) :: PLWFT(KPROMA,KLEV+1) REAL(KIND=JPRB) ,INTENT(OUT) :: PSWFC(KPROMA,2) REAL(KIND=JPRB) ,INTENT(OUT) :: PSWFT(KPROMA,KLEV+1) REAL(KIND=JPRB) ,INTENT(OUT) :: PSFSWDIR(KPROMA,NSW) REAL(KIND=JPRB) ,INTENT(OUT) :: PSFSWDIF(KPROMA,NSW) REAL(KIND=JPRB) ,INTENT(OUT) :: PFSDNN(KPROMA) REAL(KIND=JPRB) ,INTENT(OUT) :: PFSDNV(KPROMA) REAL(KIND=JPRB) ,INTENT(OUT) :: PFLUX(KPROMA,2,KLEV+1) ! LW total sky flux (1=up, 2=down) REAL(KIND=JPRB) ,INTENT(OUT) :: PFLUC(KPROMA,2,KLEV+1) ! LW clear sky flux (1=up, 2=down) REAL(KIND=JPRB) ,INTENT(OUT) :: PFSDN(KPROMA,KLEV+1) ! SW total sky flux down REAL(KIND=JPRB) ,INTENT(OUT) :: PFSUP(KPROMA,KLEV+1) ! SW total sky flux up REAL(KIND=JPRB) ,INTENT(OUT) :: PFSCDN(KPROMA,KLEV+1) ! SW clear sky flux down REAL(KIND=JPRB) ,INTENT(OUT) :: PFSCUP(KPROMA,KLEV+1) ! SW clear sky flux up REAL(KIND=JPRB) ,INTENT(OUT) :: PFSCCDN(KPROMA,KLEV+1) ! SW clear sky clean (no aerosol) flux down REAL(KIND=JPRB) ,INTENT(OUT) :: PFSCCUP(KPROMA,KLEV+1) ! SW clear sky clean (no aerosol) flux up REAL(KIND=JPRB) ,INTENT(OUT) :: PFLCCDN(KPROMA,KLEV+1) ! LW clear sky clean (no aerosol) flux down REAL(KIND=JPRB) ,INTENT(OUT) :: PFLCCUP(KPROMA,KLEV+1) ! LW clear sky clean (no aerosol) flux up ! ==== COMPUTED IN RADITE === ! ------------------------------------------------------------------ !* 0.2 LOCAL ARRAYS. ! ------------- REAL(KIND=JPRB) :: ZRAER (KPROMA,6,KLEV) REAL(KIND=JPRB) :: ZRCLC (KPROMA,KLEV) REAL(KIND=JPRB) :: ZRMU0 (KPROMA) REAL(KIND=JPRB) :: ZRPR (KPROMA,KLEV) REAL(KIND=JPRB) :: ZRTI (KPROMA,KLEV) REAL(KIND=JPRB) :: ZQLWP (KPROMA,KLEV ) , ZQIWP (KPROMA,KLEV ) REAL(KIND=JPRB) :: ZPQO3 (KPROMA,KLEV) REAL(KIND=JPRB) :: ZQOZ (NGPTOT,KLEV) REAL(KIND=JPRB) :: ZQS (KPROMA,KLEV) REAL(KIND=JPRB) :: ZQ (KPROMA,KLEV) REAL(KIND=JPRB) :: ZEMTD (KPROMA,KLEV+1) REAL(KIND=JPRB) :: ZEMTU (KPROMA,KLEV+1) REAL(KIND=JPRB) :: ZTRSOC (KPROMA,2) REAL(KIND=JPRB) :: ZEMTC (KPROMA,2) REAL(KIND=JPRB) :: ZNBAS (KPROMA) REAL(KIND=JPRB) :: ZNTOP (KPROMA) REAL(KIND=JPRB) :: ZQRAIN (KPROMA,KLEV) REAL(KIND=JPRB) :: ZQRAINT(KPROMA,KLEV) REAL(KIND=JPRB) :: ZCCNL (KPROMA) REAL(KIND=JPRB) :: ZCCNO (KPROMA) ! output of radlsw REAL(KIND=JPRB) :: ZEMIT (KPROMA) REAL(KIND=JPRB) :: ZFCT (KPROMA,KLEV+1) REAL(KIND=JPRB) :: ZFLT (KPROMA,KLEV+1) REAL(KIND=JPRB) :: ZFCS (KPROMA,KLEV+1) REAL(KIND=JPRB) :: ZFLS (KPROMA,KLEV+1) REAL(KIND=JPRB) :: ZFRSOD (KPROMA),ZSUDU(KPROMA) REAL(KIND=JPRB) :: ZPARF (KPROMA),ZUVDF(KPROMA),ZPARCF(KPROMA),ZTINCF(KPROMA) INTEGER(KIND=JPIM) :: IBEG, IEND, JK, JL REAL(KIND=JPRB) :: ZCRAE, ZRII0, ZEMIW(KPROMA) REAL(KIND=JPRB) :: ZHOOK_HANDLE !---aerosol radiative diagnostics ! Key to define the aerosol effect acting on climate ! OB: AEROSOLFEEDBACK_ACTIVE is now a LOGICAL ! TRUE: fluxes use natural and/or anthropogenic aerosols according to ok_ade and ok_aie, DEFAULT ! FALSE: fluxes use no aerosols (case 1) ! to be used only for maintaining bit reproducibility with aerosol diagnostics activated LOGICAL :: AEROSOLFEEDBACK_ACTIVE ! now externalized from .def files !OB - Fluxes including aerosol effects ! | direct effect !ind effect | no aerosol NATural TOTal !standard | 5 !natural (PI) | 1 3 !total (PD) | 2 4 ! so we need which case when ? ! if flag_aerosol is on ! ok_ade and ok_aie = 4-2, 4-3 and 4 to proceed ! ok_ade and not ok_aie = 3-1 and 3 to proceed ! not ok_ade and ok_aie = 2-1 and 2 to proceed ! not ok_ade and not ok_aie = 1 to proceed ! therefore the cases have the following corresponding switches ! 1 = not ok_ade and not ok_aie OR not ok_ade and ok_aie and swaero_diag OR ok_ade and not ok_aie and swaero_diag ! 2 = not ok_ade and ok_aie OR ok_aie and ok_ade and swaero_diag ! 3 = ok_ade and not ok_aie OR ok_aie and ok_ade and swaero_diag ! 4 = ok_ade and ok_aie ! 5 = no aerosol feedback wanted or no aerosol at all ! if they are called in this order then the correct call is used to proceed REAL(KIND=JPRB) :: ZFSUP_AERO(KPROMA,KLEV+1,5) REAL(KIND=JPRB) :: ZFSDN_AERO(KPROMA,KLEV+1,5) REAL(KIND=JPRB) :: ZFSUP0_AERO(KPROMA,KLEV+1,5) REAL(KIND=JPRB) :: ZFSDN0_AERO(KPROMA,KLEV+1,5) !--LW (CK): REAL(KIND=JPRB) :: LWUP_AERO(KPROMA,KLEV+1,5) REAL(KIND=JPRB) :: LWDN_AERO(KPROMA,KLEV+1,5) REAL(KIND=JPRB) :: LWUP0_AERO(KPROMA,KLEV+1,5) REAL(KIND=JPRB) :: LWDN0_AERO(KPROMA,KLEV+1,5) #include "radlsw.intfb.h" IF (LHOOK) CALL DR_HOOK('RECMWF_AERO',0,ZHOOK_HANDLE) IBEG=KST IEND=KEND AEROSOLFEEDBACK_ACTIVE = flag_aer_feedback !NL: externalize aer feedback !* 1. PREPARATORY WORK ! ---------------- !--OB ! 1.0 INITIALIZATIONS ! -------------- ZFSUP_AERO (:,:,:)=0. ZFSDN_AERO (:,:,:)=0. ZFSUP0_AERO(:,:,:)=0. ZFSDN0_AERO(:,:,:)=0. LWUP_AERO (:,:,:)=0. LWDN_AERO (:,:,:)=0. LWUP0_AERO(:,:,:)=0. LWDN0_AERO(:,:,:)=0. PTAU_ZERO(:,:,:) =1.e-15 PPIZA_ZERO(:,:,:)=1.0 PCGA_ZERO(:,:,:) =0.0 PTAU_LW_ZERO(:,:,:) =1.e-15 !* 1.1 LOCAL CONSTANTS ! --------------- ZRII0=RII0 ZCRAE=RRAE*(RRAE+2.0_JPRB) !* 2.1 FULL-LEVEL QUANTITIES ZRPR =PAPRSF DO JK=1,KLEV DO JL=IBEG,IEND ! ZPQO3(JL,JK)=PQO3(JL,JK)*PDP(JL,JK)*RMD/RMO3 ZPQO3(JL,JK)=PQO3(JL,JK)*PDP(JL,JK) ZRCLC(JL,JK)=MAX( 0.0_JPRB ,MIN( 1.0_JPRB ,PCLFR(JL,JK))) IF (ZRCLC(JL,JK) > REPCLC) THEN ZQLWP(JL,JK)=PQLWP(JL,JK) ZQIWP(JL,JK)=PQIWP(JL,JK) ELSE ZQLWP(JL,JK)=REPH2O*ZRCLC(JL,JK) ZQIWP(JL,JK)=REPH2O*ZRCLC(JL,JK) ENDIF ZQRAIN(JL,JK)=0. ZQRAINT(JL,JK)=0. ZRTI(JL,JK) =PT(JL,JK) ZQS (JL,JK)=MAX(2.0_JPRB*REPH2O,PQS(JL,JK)) ZQ (JL,JK)=MAX(REPH2O,MIN(PQ(JL,JK),ZQS(JL,JK)*(1.0_JPRB-REPH2O))) ZEMIW(JL)=PEMIS(JL) ENDDO ENDDO IF (NAER == 0) THEN ZRAER=RCAEROS ELSE DO JK=1,KLEV DO JL=IBEG,IEND ZRAER(JL,1,JK)=PAER(JL,JK,1) ZRAER(JL,2,JK)=PAER(JL,JK,2) ZRAER(JL,3,JK)=PAER(JL,JK,3) ZRAER(JL,4,JK)=PAER(JL,JK,4) ZRAER(JL,5,JK)=RCAEROS ZRAER(JL,6,JK)=PAER(JL,JK,6) ENDDO ENDDO ENDIF !* 2.2 HALF-LEVEL QUANTITIES DO JK=2,KLEV DO JL=IBEG,IEND PTH(JL,JK)=& & (PT(JL,JK-1)*PAPRSF(JL,JK-1)*(PAPRSF(JL,JK)-PAPRS(JL,JK))& & +PT(JL,JK)*PAPRSF(JL,JK)*(PAPRS(JL,JK)-PAPRSF(JL,JK-1)))& & *(1.0_JPRB/(PAPRS(JL,JK)*(PAPRSF(JL,JK)-PAPRSF(JL,JK-1)))) ENDDO ENDDO !* 2.3 QUANTITIES AT BOUNDARIES DO JL=IBEG,IEND PTH(JL,KLEV+1)=PTS(JL) PTH(JL,1)=PT(JL,1)-PAPRSF(JL,1)*(PT(JL,1)-PTH(JL,2))& & /(PAPRSF(JL,1)-PAPRS(JL,2)) ZNBAS(JL)=1. ZNTOP(JL)=1. ZCCNL(JL)=RCCNLND ZCCNO(JL)=RCCNSEA ENDDO !* 3.1 SOLAR ZENITH ANGLE IS EARTH'S CURVATURE ! CORRECTED ! CCMVAL: on impose ZRMU0=PMU0 MPL 25032010 ! 2eme essai en 3D MPL 20052010 !DO JL=IBEG,IEND ! ZRMU0(JL)=PMU0(JL) !ENDDO !!!!! A REVOIR MPL 20091201: enleve cette correction pour comparer a AR4 DO JL=IBEG,IEND IF (PMU0(JL) > 1.E-10_JPRB) THEN ZRMU0(JL)=RRAE/(SQRT(PMU0(JL)**2+ZCRAE)-PMU0(JL)) ELSE ZRMU0(JL)= RRAE/SQRT(ZCRAE) ENDIF ENDDO !* 4.1 CALL TO ACTUAL RADIATION SCHEME ! !----now we make multiple calls to the radiation according to which !----aerosol flags are on IF (flag_aerosol .GT. 0 .OR. flag_aerosol_strat) THEN !--Case 1 IF ( ( .not. ok_ade .AND. .not. ok_aie ) .OR. & & ( .not. ok_ade .AND. ok_aie .AND. swaero_diag ) .OR. & & ( ok_ade .AND. .not. ok_aie .AND. swaero_diag ) ) THEN ! natural aerosols for direct and indirect effect ! PI cloud optical properties ! use PREF_LIQ_PI and PREF_ICE_PI ! use NAT aerosol optical properties ! store fluxes in index 1 CALL RADLSW (& & IBEG , IEND , KPROMA , KLEV , KMODE , NAER,& & ZRII0 ,& & ZRAER , PALBD , PALBP , PAPRS , ZRPR ,& & ZCCNL , ZCCNO ,& & PCCO2 , ZRCLC , PDP , PEMIS , ZEMIW ,PSLM , ZRMU0 , ZPQO3,& & ZQ , ZQIWP , ZQLWP , ZQS , ZQRAIN,ZQRAINT ,& & PTH , ZRTI , PTS , ZNBAS , ZNTOP ,& & PREF_LIQ_PI, PREF_ICE_PI,& & ZEMIT , ZFCT , ZFLT , ZFCS , ZFLS ,& & ZFRSOD, ZSUDU , ZUVDF , ZPARF , ZPARCF, ZTINCF, PSFSWDIR,& & PSFSWDIF,PFSDNN, PFSDNV ,& & LRDUST,PPIZA_NAT,PCGA_NAT,PTAU_NAT,PTAU_LW_NAT,PFLUX,PFLUC,& & PFSDN , PFSUP , PFSCDN , PFSCUP ) !* SAVE VARIABLES IN INTERIM VARIABLES A LA SW_AEROAR4 ZFSUP0_AERO(:,:,1) = PFSCUP(:,:) ZFSDN0_AERO(:,:,1) = PFSCDN(:,:) ZFSUP_AERO(:,:,1) = PFSUP(:,:) ZFSDN_AERO(:,:,1) = PFSDN(:,:) LWUP0_AERO(:,:,1) = PFLUC(:,1,:) LWDN0_AERO(:,:,1) = PFLUC(:,2,:) LWUP_AERO(:,:,1) = PFLUX(:,1,:) LWDN_AERO(:,:,1) = PFLUX(:,2,:) ENDIF !--Case 2 IF ( ( .not. ok_ade .AND. ok_aie ) .OR. & & ( ok_ade .AND. ok_aie .AND. swaero_diag ) ) THEN ! natural aerosols for direct indirect effect ! use NAT aerosol optical properties ! PD cloud optical properties ! use PREF_LIQ and PREF_ICE ! store fluxes in index 2 CALL RADLSW (& & IBEG , IEND , KPROMA , KLEV , KMODE , NAER,& & ZRII0 ,& & ZRAER , PALBD , PALBP , PAPRS , ZRPR ,& & ZCCNL , ZCCNO ,& & PCCO2 , ZRCLC , PDP , PEMIS , ZEMIW ,PSLM , ZRMU0 , ZPQO3,& & ZQ , ZQIWP , ZQLWP , ZQS , ZQRAIN,ZQRAINT ,& & PTH , ZRTI , PTS , ZNBAS , ZNTOP ,& & PREF_LIQ, PREF_ICE,& & ZEMIT , ZFCT , ZFLT , ZFCS , ZFLS ,& & ZFRSOD, ZSUDU , ZUVDF , ZPARF , ZPARCF, ZTINCF, PSFSWDIR,& & PSFSWDIF,PFSDNN, PFSDNV ,& & LRDUST,PPIZA_NAT,PCGA_NAT,PTAU_NAT,PTAU_LW_NAT,PFLUX,PFLUC,& & PFSDN , PFSUP , PFSCDN , PFSCUP ) !* SAVE VARIABLES IN INTERIM VARIABLES A LA SW_AEROAR4 ZFSUP0_AERO(:,:,2) = PFSCUP(:,:) ZFSDN0_AERO(:,:,2) = PFSCDN(:,:) ZFSUP_AERO(:,:,2) = PFSUP(:,:) ZFSDN_AERO(:,:,2) = PFSDN(:,:) LWUP0_AERO(:,:,2) = PFLUC(:,1,:) LWDN0_AERO(:,:,2) = PFLUC(:,2,:) LWUP_AERO(:,:,2) = PFLUX(:,1,:) LWDN_AERO(:,:,2) = PFLUX(:,2,:) ENDIF ! ok_aie !--Case 3 IF ( ( ok_ade .AND. .not. ok_aie ) .OR. & & ( ok_ade .AND. ok_aie .AND. swaero_diag ) ) THEN ! direct effect of total aerosol activated ! TOT aerosols for direct effect ! PI cloud optical properties ! use PREF_LIQ_PI and PREF_ICE_PI ! STORE fluxes in index 3 CALL RADLSW (& & IBEG , IEND , KPROMA , KLEV , KMODE , NAER,& & ZRII0 ,& & ZRAER , PALBD , PALBP , PAPRS , ZRPR ,& & ZCCNL , ZCCNO ,& & PCCO2 , ZRCLC , PDP , PEMIS , ZEMIW ,PSLM , ZRMU0 , ZPQO3,& & ZQ , ZQIWP , ZQLWP , ZQS , ZQRAIN,ZQRAINT ,& & PTH , ZRTI , PTS , ZNBAS , ZNTOP ,& & PREF_LIQ_PI, PREF_ICE_PI,& & ZEMIT , ZFCT , ZFLT , ZFCS , ZFLS ,& & ZFRSOD, ZSUDU , ZUVDF , ZPARF , ZPARCF, ZTINCF, PSFSWDIR,& & PSFSWDIF,PFSDNN, PFSDNV ,& & LRDUST,PPIZA_TOT,PCGA_TOT,PTAU_TOT,PTAU_LW_TOT,PFLUX,PFLUC,& & PFSDN , PFSUP , PFSCDN , PFSCUP ) !* SAVE VARIABLES IN INTERIM VARIABLES A LA SW_AEROAR4 ZFSUP0_AERO(:,:,3) = PFSCUP(:,:) ZFSDN0_AERO(:,:,3) = PFSCDN(:,:) ZFSUP_AERO(:,:,3) = PFSUP(:,:) ZFSDN_AERO(:,:,3) = PFSDN(:,:) LWUP0_AERO(:,:,3) = PFLUC(:,1,:) LWDN0_AERO(:,:,3) = PFLUC(:,2,:) LWUP_AERO(:,:,3) = PFLUX(:,1,:) LWDN_AERO(:,:,3) = PFLUX(:,2,:) ENDIF !-end ok_ade !--Case 4 IF (ok_ade .and. ok_aie) THEN ! total aerosols for direct indirect effect ! use TOT aerosol optical properties ! PD cloud optical properties ! use PREF_LIQ and PREF_ICE ! store fluxes in index 4 CALL RADLSW (& & IBEG , IEND , KPROMA , KLEV , KMODE , NAER,& & ZRII0 ,& & ZRAER , PALBD , PALBP , PAPRS , ZRPR ,& & ZCCNL , ZCCNO ,& & PCCO2 , ZRCLC , PDP , PEMIS , ZEMIW ,PSLM , ZRMU0 , ZPQO3,& & ZQ , ZQIWP , ZQLWP , ZQS , ZQRAIN,ZQRAINT ,& & PTH , ZRTI , PTS , ZNBAS , ZNTOP ,& & PREF_LIQ, PREF_ICE,& & ZEMIT , ZFCT , ZFLT , ZFCS , ZFLS ,& & ZFRSOD, ZSUDU , ZUVDF , ZPARF , ZPARCF, ZTINCF, PSFSWDIR,& & PSFSWDIF,PFSDNN, PFSDNV ,& & LRDUST,PPIZA_TOT,PCGA_TOT,PTAU_TOT,PTAU_LW_TOT,PFLUX,PFLUC,& & PFSDN , PFSUP , PFSCDN , PFSCUP ) !* SAVE VARIABLES IN INTERIM VARIABLES A LA SW_AEROAR4 ZFSUP0_AERO(:,:,4) = PFSCUP(:,:) ZFSDN0_AERO(:,:,4) = PFSCDN(:,:) ZFSUP_AERO(:,:,4) = PFSUP(:,:) ZFSDN_AERO(:,:,4) = PFSDN(:,:) LWUP0_AERO(:,:,4) = PFLUC(:,1,:) LWDN0_AERO(:,:,4) = PFLUC(:,2,:) LWUP_AERO(:,:,4) = PFLUX(:,1,:) LWDN_AERO(:,:,4) = PFLUX(:,2,:) ENDIF ! ok_ade .and. ok_aie ENDIF !--if flag_aerosol GT 0 OR flag_aerosol_strat ! case with no aerosols at all is also computed IF ACTIVEFEEDBACK_ACTIVE is false IF (.not. AEROSOLFEEDBACK_ACTIVE .OR. flag_aerosol .EQ. 0 .OR. swaerofree_diag) THEN ! ZERO aerosol effect ! ZERO aerosol optical depth ! STANDARD cloud optical properties ! STORE fluxes in index 5 CALL RADLSW (& & IBEG , IEND , KPROMA , KLEV , KMODE , NAER,& & ZRII0 ,& & ZRAER , PALBD , PALBP , PAPRS , ZRPR ,& & ZCCNL , ZCCNO ,& & PCCO2 , ZRCLC , PDP , PEMIS , ZEMIW ,PSLM , ZRMU0 , ZPQO3,& & ZQ , ZQIWP , ZQLWP , ZQS , ZQRAIN,ZQRAINT ,& & PTH , ZRTI , PTS , ZNBAS , ZNTOP ,& !--this needs to be changed to fixed cloud optical properties & PREF_LIQ_PI, PREF_ICE_PI,& & ZEMIT , ZFCT , ZFLT , ZFCS , ZFLS ,& & ZFRSOD, ZSUDU , ZUVDF , ZPARF , ZPARCF, ZTINCF, PSFSWDIR,& & PSFSWDIF,PFSDNN, PFSDNV ,& & LRDUST,PPIZA_ZERO,PCGA_ZERO,PTAU_ZERO, PTAU_LW_ZERO,PFLUX,PFLUC,& & PFSDN , PFSUP , PFSCDN , PFSCUP ) !* SAVE VARIABLES IN INTERIM VARIABLES A LA SW_AEROAR4 ZFSUP0_AERO(:,:,5) = PFSCUP(:,:) ZFSDN0_AERO(:,:,5) = PFSCDN(:,:) ZFSUP_AERO(:,:,5) = PFSUP(:,:) ZFSDN_AERO(:,:,5) = PFSDN(:,:) LWUP0_AERO(:,:,5) = PFLUC(:,1,:) LWDN0_AERO(:,:,5) = PFLUC(:,2,:) LWUP_AERO(:,:,5) = PFLUX(:,1,:) LWDN_AERO(:,:,5) = PFLUX(:,2,:) ENDIF ! .not. AEROSOLFEEDBACK_ACTIVE !* 4.2 TRANSFORM FLUXES TO MODEL HISTORICAL VARIABLES DO JK=1,KLEV+1 DO JL=IBEG,IEND PSWFT(JL,JK)=ZFLS(JL,JK)/(ZRII0*ZRMU0(JL)) PLWFT(JL,JK)=ZFLT(JL,JK) ENDDO ENDDO ZEMTD=PLWFT ZEMTU=PLWFT DO JL=IBEG,IEND ZTRSOC(JL, 1)=ZFCS(JL, 1)/(ZRII0*ZRMU0(JL)) ZTRSOC(JL, 2)=ZFCS(JL,KLEV+1)/(ZRII0*ZRMU0(JL)) ZEMTC (JL, 1)=ZFCT(JL, 1) ZEMTC (JL, 2)=ZFCT(JL,KLEV+1) ENDDO ! ------------ -- ------- -- ---- ----- !* 5.1 STORAGE OF TRANSMISSIVITY AND EMISSIVITIES !* IN KPROMA-LONG ARRAYS DO JK=1,KLEV+1 DO JL=IBEG,IEND PEMTD(JL,JK)=ZEMTD(JL,JK) PEMTU(JL,JK)=ZEMTU(JL,JK) PTRSO(JL,JK)=MAX(0.0_JPRB,MIN(1.0_JPRB,PSWFT(JL,JK))) ENDDO ENDDO DO JK=1,2 DO JL=IBEG,IEND PCEMTR(JL,JK)=ZEMTC (JL,JK) PCTRSO(JL,JK)=MAX( 0.0_JPRB,MIN(1.0_JPRB,ZTRSOC(JL,JK))) ENDDO ENDDO DO JL=IBEG,IEND PTRSOD(JL)=MAX(0.0_JPRB,MIN(1.0_JPRB,ZFRSOD(JL)/(ZRII0*ZRMU0(JL)))) ENDDO !* 7.3 RECONSTRUCT FLUXES FOR DIAGNOSTICS DO JL=IBEG,IEND IF (PMU0(JL) < 1.E-10_JPRB) ZRMU0(JL)=0.0_JPRB ENDDO DO JK=1,KLEV+1 DO JL=IBEG,IEND PLWFT(JL,JK)=PEMTD(JL,JK) PSWFT(JL,JK)=ZRMU0(JL)*ZRII0*PTRSO(JL,JK) ENDDO ENDDO DO JK=1,2 DO JL=IBEG,IEND PSWFC(JL,JK)=ZRMU0(JL)*ZRII0*PCTRSO(JL,JK) PLWFC(JL,JK)=PCEMTR(JL,JK) ENDDO ENDDO !* 8.0 DIAGNOSTICS !---Now we copy back the correct fields to proceed to the next timestep IF ( AEROSOLFEEDBACK_ACTIVE .AND. (flag_aerosol .GT. 0 .OR. flag_aerosol_strat) ) THEN IF ( ok_ade .and. ok_aie ) THEN PFSUP(:,:) = ZFSUP_AERO(:,:,4) PFSDN(:,:) = ZFSDN_AERO(:,:,4) PFSCUP(:,:) = ZFSUP0_AERO(:,:,4) PFSCDN(:,:) = ZFSDN0_AERO(:,:,4) PFLUX(:,1,:) = LWUP_AERO(:,:,4) PFLUX(:,2,:) = LWDN_AERO(:,:,4) PFLUC(:,1,:) = LWUP0_AERO(:,:,4) PFLUC(:,2,:) = LWDN0_AERO(:,:,4) ENDIF IF ( ok_ade .and. (.not. ok_aie) ) THEN PFSUP(:,:) = ZFSUP_AERO(:,:,3) PFSDN(:,:) = ZFSDN_AERO(:,:,3) PFSCUP(:,:) = ZFSUP0_AERO(:,:,3) PFSCDN(:,:) = ZFSDN0_AERO(:,:,3) PFLUX(:,1,:) = LWUP_AERO(:,:,3) PFLUX(:,2,:) = LWDN_AERO(:,:,3) PFLUC(:,1,:) = LWUP0_AERO(:,:,3) PFLUC(:,2,:) = LWDN0_AERO(:,:,3) ENDIF IF ( (.not. ok_ade) .and. ok_aie ) THEN PFSUP(:,:) = ZFSUP_AERO(:,:,2) PFSDN(:,:) = ZFSDN_AERO(:,:,2) PFSCUP(:,:) = ZFSUP0_AERO(:,:,2) PFSCDN(:,:) = ZFSDN0_AERO(:,:,2) PFLUX(:,1,:) = LWUP_AERO(:,:,2) PFLUX(:,2,:) = LWDN_AERO(:,:,2) PFLUC(:,1,:) = LWUP0_AERO(:,:,2) PFLUC(:,2,:) = LWDN0_AERO(:,:,2) ENDiF IF ((.not. ok_ade) .and. (.not. ok_aie)) THEN PFSUP(:,:) = ZFSUP_AERO(:,:,1) PFSDN(:,:) = ZFSDN_AERO(:,:,1) PFSCUP(:,:) = ZFSUP0_AERO(:,:,1) PFSCDN(:,:) = ZFSDN0_AERO(:,:,1) PFLUX(:,1,:) = LWUP_AERO(:,:,1) PFLUX(:,2,:) = LWDN_AERO(:,:,1) PFLUC(:,1,:) = LWUP0_AERO(:,:,1) PFLUC(:,2,:) = LWDN0_AERO(:,:,1) ENDIF ! The following allows to compute the forcing diagostics without ! letting the aerosol forcing act on the meteorology ! SEE logic above ELSE !--not AEROSOLFEEDBACK_ACTIVE PFSUP(:,:) = ZFSUP_AERO(:,:,5) PFSDN(:,:) = ZFSDN_AERO(:,:,5) PFSCUP(:,:) = ZFSUP0_AERO(:,:,5) PFSCDN(:,:) = ZFSDN0_AERO(:,:,5) PFLUX(:,1,:) = LWUP_AERO(:,:,5) PFLUX(:,2,:) = LWDN_AERO(:,:,5) PFLUC(:,1,:) = LWUP0_AERO(:,:,5) PFLUC(:,2,:) = LWDN0_AERO(:,:,5) ENDIF IF (swaerofree_diag) THEN ! copy shortwave clear-sky clean (no aerosol) case PFSCCUP(:,:) = ZFSUP0_AERO(:,:,5) PFSCCDN(:,:) = ZFSDN0_AERO(:,:,5) ! copy longwave clear-sky clean (no aerosol) case PFLCCUP(:,:) = LWUP0_AERO(:,:,5) PFLCCDN(:,:) = LWDN0_AERO(:,:,5) ENDIF !OB- HERE CHECK WITH MP IF BOTTOM AND TOP INDICES ARE OK !!!!!!!!!!!!!!!!!! ! net anthropogenic forcing direct and 1st indirect effect diagnostics ! requires a natural aerosol field read and used ! Difference of net fluxes from double call to radiation ! Will need to be extended to LW radiation -> done by CK (2014-05-23) IF (flag_aerosol .GT. 0 .OR. flag_aerosol_strat) THEN IF (ok_ade.AND.ok_aie) THEN ! direct anthropogenic forcing PSOLSWADAERO(:) = (ZFSDN_AERO(:,1,4) -ZFSUP_AERO(:,1,4)) -(ZFSDN_AERO(:,1,2) -ZFSUP_AERO(:,1,2)) PTOPSWADAERO(:) = (ZFSDN_AERO(:,KLEV+1,4) -ZFSUP_AERO(:,KLEV+1,4)) -(ZFSDN_AERO(:,KLEV+1,2) -ZFSUP_AERO(:,KLEV+1,2)) PSOLSWAD0AERO(:) = (ZFSDN0_AERO(:,1,4) -ZFSUP0_AERO(:,1,4)) -(ZFSDN0_AERO(:,1,2) -ZFSUP0_AERO(:,1,2)) PTOPSWAD0AERO(:) = (ZFSDN0_AERO(:,KLEV+1,4)-ZFSUP0_AERO(:,KLEV+1,4))-(ZFSDN0_AERO(:,KLEV+1,2)-ZFSUP0_AERO(:,KLEV+1,2)) IF(ok_volcan) THEN PSWADAERO(:,:) = (ZFSDN_AERO(:,:,4) -ZFSUP_AERO(:,:,4)) -(ZFSDN_AERO(:,:,2) -ZFSUP_AERO(:,:,2)) !--NL ENDIF ! indirect anthropogenic forcing PSOLSWAIAERO(:) = (ZFSDN_AERO(:,1,4) -ZFSUP_AERO(:,1,4)) -(ZFSDN_AERO(:,1,3) -ZFSUP_AERO(:,1,3)) PTOPSWAIAERO(:) = (ZFSDN_AERO(:,KLEV+1,4)-ZFSUP_AERO(:,KLEV+1,4))-(ZFSDN_AERO(:,KLEV+1,3)-ZFSUP_AERO(:,KLEV+1,3)) ! Cloud radiative forcing with natural aerosol for direct effect PSOLSWCFAERO(:,1) = (ZFSDN_AERO(:,1,2) -ZFSUP_AERO(:,1,2)) -(ZFSDN0_AERO(:,1,2) -ZFSUP0_AERO(:,1,2)) PTOPSWCFAERO(:,1) = (ZFSDN_AERO(:,KLEV+1,2)-ZFSUP_AERO(:,KLEV+1,2))-(ZFSDN0_AERO(:,KLEV+1,2)-ZFSUP0_AERO(:,KLEV+1,2)) ! Cloud radiative forcing with anthropogenic aerosol for direct effect PSOLSWCFAERO(:,2) = (ZFSDN_AERO(:,1,4) -ZFSUP_AERO(:,1,4)) -(ZFSDN0_AERO(:,1,4) -ZFSUP0_AERO(:,1,4)) PTOPSWCFAERO(:,2) = (ZFSDN_AERO(:,KLEV+1,4)-ZFSUP_AERO(:,KLEV+1,4))-(ZFSDN0_AERO(:,KLEV+1,4)-ZFSUP0_AERO(:,KLEV+1,4)) ! Cloud radiative forcing with no direct effect at all PSOLSWCFAERO(:,3) = 0.0 PTOPSWCFAERO(:,3) = 0.0 ! LW direct anthropogenic forcing PSOLLWADAERO(:) = (-LWDN_AERO(:,1,4) -LWUP_AERO(:,1,4)) -(-LWDN_AERO(:,1,2) -LWUP_AERO(:,1,2)) PTOPLWADAERO(:) = (-LWDN_AERO(:,KLEV+1,4) -LWUP_AERO(:,KLEV+1,4)) -(-LWDN_AERO(:,KLEV+1,2) -LWUP_AERO(:,KLEV+1,2)) PSOLLWAD0AERO(:) = (-LWDN0_AERO(:,1,4) -LWUP0_AERO(:,1,4)) -(-LWDN0_AERO(:,1,2) -LWUP0_AERO(:,1,2)) PTOPLWAD0AERO(:) = (-LWDN0_AERO(:,KLEV+1,4)-LWUP0_AERO(:,KLEV+1,4))-(-LWDN0_AERO(:,KLEV+1,2)-LWUP0_AERO(:,KLEV+1,2)) IF(ok_volcan) THEN PLWADAERO(:,:) = (-LWDN_AERO(:,:,4) -LWUP_AERO(:,:,4)) -(-LWDN_AERO(:,:,2) -LWUP_AERO(:,:,2)) !--NL ENDIF ! LW indirect anthropogenic forcing PSOLLWAIAERO(:) = (-LWDN_AERO(:,1,4) -LWUP_AERO(:,1,4)) -(-LWDN_AERO(:,1,3) -LWUP_AERO(:,1,3)) PTOPLWAIAERO(:) = (-LWDN_AERO(:,KLEV+1,4)-LWUP_AERO(:,KLEV+1,4))-(-LWDN_AERO(:,KLEV+1,3)-LWUP_AERO(:,KLEV+1,3)) ENDIF IF (ok_ade.AND..NOT.ok_aie) THEN ! direct anthropogenic forcing PSOLSWADAERO(:) = (ZFSDN_AERO(:,1,3) -ZFSUP_AERO(:,1,3)) -(ZFSDN_AERO(:,1,1) -ZFSUP_AERO(:,1,1)) PTOPSWADAERO(:) = (ZFSDN_AERO(:,KLEV+1,3) -ZFSUP_AERO(:,KLEV+1,3)) -(ZFSDN_AERO(:,KLEV+1,1) -ZFSUP_AERO(:,KLEV+1,1)) PSOLSWAD0AERO(:) = (ZFSDN0_AERO(:,1,3) -ZFSUP0_AERO(:,1,3)) -(ZFSDN0_AERO(:,1,1) -ZFSUP0_AERO(:,1,1)) PTOPSWAD0AERO(:) = (ZFSDN0_AERO(:,KLEV+1,3)-ZFSUP0_AERO(:,KLEV+1,3))-(ZFSDN0_AERO(:,KLEV+1,1)-ZFSUP0_AERO(:,KLEV+1,1)) IF(ok_volcan) THEN PSWADAERO(:,:) = (ZFSDN_AERO(:,:,3) -ZFSUP_AERO(:,:,3)) -(ZFSDN_AERO(:,:,1) -ZFSUP_AERO(:,:,1)) !--NL ENDIF ! indirect anthropogenic forcing PSOLSWAIAERO(:) = 0.0 PTOPSWAIAERO(:) = 0.0 ! Cloud radiative forcing with natural aerosol for direct effect PSOLSWCFAERO(:,1) = (ZFSDN_AERO(:,1,1) -ZFSUP_AERO(:,1,1)) -(ZFSDN0_AERO(:,1,1) -ZFSUP0_AERO(:,1,1)) PTOPSWCFAERO(:,1) = (ZFSDN_AERO(:,KLEV+1,1)-ZFSUP_AERO(:,KLEV+1,1))-(ZFSDN0_AERO(:,KLEV+1,1)-ZFSUP0_AERO(:,KLEV+1,1)) ! Cloud radiative forcing with anthropogenic aerosol for direct effect PSOLSWCFAERO(:,2) = (ZFSDN_AERO(:,1,3) -ZFSUP_AERO(:,1,3)) -(ZFSDN0_AERO(:,1,3) -ZFSUP0_AERO(:,1,3)) PTOPSWCFAERO(:,2) = (ZFSDN_AERO(:,KLEV+1,3)-ZFSUP_AERO(:,KLEV+1,3))-(ZFSDN0_AERO(:,KLEV+1,3)-ZFSUP0_AERO(:,KLEV+1,3)) ! Cloud radiative forcing with no direct effect at all PSOLSWCFAERO(:,3) = 0.0 PTOPSWCFAERO(:,3) = 0.0 ! LW direct anthropogenic forcing PSOLLWADAERO(:) = (-LWDN_AERO(:,1,3) -LWUP_AERO(:,1,3)) -(-LWDN_AERO(:,1,1) -LWUP_AERO(:,1,1)) PTOPLWADAERO(:) = (-LWDN_AERO(:,KLEV+1,3) -LWUP_AERO(:,KLEV+1,3)) -(-LWDN_AERO(:,KLEV+1,1) -LWUP_AERO(:,KLEV+1,1)) PSOLLWAD0AERO(:) = (-LWDN0_AERO(:,1,3) -LWUP0_AERO(:,1,3)) -(-LWDN0_AERO(:,1,1) -LWUP0_AERO(:,1,1)) PTOPLWAD0AERO(:) = (-LWDN0_AERO(:,KLEV+1,3)-LWUP0_AERO(:,KLEV+1,3))-(-LWDN0_AERO(:,KLEV+1,1)-LWUP0_AERO(:,KLEV+1,1)) IF(ok_volcan) THEN PLWADAERO(:,:) = (-LWDN_AERO(:,:,3) -LWUP_AERO(:,:,3)) -(-LWDN_AERO(:,:,1) -LWUP_AERO(:,:,1)) !--NL ENDIF ! LW indirect anthropogenic forcing PSOLLWAIAERO(:) = 0.0 PTOPLWAIAERO(:) = 0.0 ENDIF IF (.NOT.ok_ade.AND.ok_aie) THEN ! direct anthropogenic forcing PSOLSWADAERO(:) = 0.0 PTOPSWADAERO(:) = 0.0 PSOLSWAD0AERO(:) = 0.0 PTOPSWAD0AERO(:) = 0.0 IF(ok_volcan) THEN PSWADAERO(:,:) = 0.0 !--NL ENDIF ! indirect anthropogenic forcing PSOLSWAIAERO(:) = (ZFSDN_AERO(:,1,2) -ZFSUP_AERO(:,1,2)) -(ZFSDN_AERO(:,1,1) -ZFSUP_AERO(:,1,1)) PTOPSWAIAERO(:) = (ZFSDN_AERO(:,KLEV+1,2)-ZFSUP_AERO(:,KLEV+1,2))-(ZFSDN_AERO(:,KLEV+1,1)-ZFSUP_AERO(:,KLEV+1,1)) ! Cloud radiative forcing with natural aerosol for direct effect PSOLSWCFAERO(:,1) = (ZFSDN_AERO(:,1,2) -ZFSUP_AERO(:,1,2)) -(ZFSDN0_AERO(:,1,2) -ZFSUP0_AERO(:,1,2)) PTOPSWCFAERO(:,1) = (ZFSDN_AERO(:,KLEV+1,2)-ZFSUP_AERO(:,KLEV+1,2))-(ZFSDN0_AERO(:,KLEV+1,2)-ZFSUP0_AERO(:,KLEV+1,2)) ! Cloud radiative forcing with anthropogenic aerosol for direct effect PSOLSWCFAERO(:,2) = 0.0 PTOPSWCFAERO(:,2) = 0.0 ! Cloud radiative forcing with no direct effect at all PSOLSWCFAERO(:,3) = 0.0 PTOPSWCFAERO(:,3) = 0.0 ! LW direct anthropogenic forcing PSOLLWADAERO(:) = 0.0 PTOPLWADAERO(:) = 0.0 PSOLLWAD0AERO(:) = 0.0 PTOPLWAD0AERO(:) = 0.0 IF(ok_volcan) THEN PLWADAERO(:,:) = 0.0 !--NL ENDIF ! LW indirect anthropogenic forcing PSOLLWAIAERO(:) = (-LWDN_AERO(:,1,2) -LWUP_AERO(:,1,2)) -(-LWDN_AERO(:,1,1) -LWUP_AERO(:,1,1)) PTOPLWAIAERO(:) = (-LWDN_AERO(:,KLEV+1,2)-LWUP_AERO(:,KLEV+1,2))-(-LWDN_AERO(:,KLEV+1,1)-LWUP_AERO(:,KLEV+1,1)) ENDIF IF (.NOT.ok_ade.AND..NOT.ok_aie) THEN ! direct anthropogenic forcing PSOLSWADAERO(:) = 0.0 PTOPSWADAERO(:) = 0.0 PSOLSWAD0AERO(:) = 0.0 PTOPSWAD0AERO(:) = 0.0 IF(ok_volcan) THEN PSWADAERO(:,:) = 0.0 !--NL ENDIF ! indirect anthropogenic forcing PSOLSWAIAERO(:) = 0.0 PTOPSWAIAERO(:) = 0.0 ! Cloud radiative forcing with natural aerosol for direct effect PSOLSWCFAERO(:,1) = (ZFSDN_AERO(:,1,1) -ZFSUP_AERO(:,1,1)) -(ZFSDN0_AERO(:,1,1) -ZFSUP0_AERO(:,1,1)) PTOPSWCFAERO(:,1) = (ZFSDN_AERO(:,KLEV+1,1)-ZFSUP_AERO(:,KLEV+1,1))-(ZFSDN0_AERO(:,KLEV+1,1)-ZFSUP0_AERO(:,KLEV+1,1)) ! Cloud radiative forcing with anthropogenic aerosol for direct effect PSOLSWCFAERO(:,2) = 0.0 PTOPSWCFAERO(:,2) = 0.0 ! Cloud radiative forcing with no direct effect at all PSOLSWCFAERO(:,3) = 0.0 PTOPSWCFAERO(:,3) = 0.0 ! LW direct anthropogenic forcing PSOLLWADAERO(:) = 0.0 PTOPLWADAERO(:) = 0.0 PSOLLWAD0AERO(:) = 0.0 PTOPLWAD0AERO(:) = 0.0 IF(ok_volcan) THEN PLWADAERO(:,:) = 0.0 !--NL ENDIF ! LW indirect anthropogenic forcing PSOLLWAIAERO(:) = 0.0 PTOPLWAIAERO(:) = 0.0 ENDIF ENDIF !IF (swaero_diag .OR. .NOT. AEROSOLFEEDBACK_ACTIVE) THEN IF (.NOT. AEROSOLFEEDBACK_ACTIVE) THEN ! Cloudforcing without aerosol at all PSOLSWCFAERO(:,3) = (ZFSDN_AERO(:,1,5) -ZFSUP_AERO(:,1,5)) -(ZFSDN0_AERO(:,1,5) -ZFSUP0_AERO(:,1,5)) PTOPSWCFAERO(:,3) = (ZFSDN_AERO(:,KLEV+1,5)-ZFSUP_AERO(:,KLEV+1,5))-(ZFSDN0_AERO(:,KLEV+1,5)-ZFSUP0_AERO(:,KLEV+1,5)) ENDIF IF (LHOOK) CALL DR_HOOK('RECMWF_AERO',1,ZHOOK_HANDLE) END SUBROUTINE RECMWF_AERO