! ! $Id: fxhyp.F 1999 2014-03-20 09:57:19Z asima $ ! c c SUBROUTINE fxhyp ( xzoomdeg,grossism,dzooma,tau , , rlonm025,xprimm025,rlonv,xprimv,rlonu,xprimu,rlonp025,xprimp025, , champmin,champmax ) c Auteur : P. Le Van IMPLICIT NONE c Calcule les longitudes et derivees dans la grille du GCM pour une c fonction f(x) a tangente hyperbolique . c c grossism etant le grossissement ( = 2 si 2 fois, = 3 si 3 fois,etc.) c dzoom etant la distance totale de la zone du zoom c tau la raideur de la transition de l'interieur a l'exterieur du zoom c c On doit avoir grossism x dzoom < pi ( radians ) , en longitude. c ******************************************************************** INTEGER nmax, nmax2 PARAMETER ( nmax = 30000, nmax2 = 2*nmax ) c LOGICAL scal180 PARAMETER ( scal180 = .TRUE. ) c scal180 = .TRUE. si on veut avoir le premier point scalaire pour c une grille reguliere ( grossism = 1.,tau=0.,clon=0. ) a -180. degres. c sinon scal180 = .FALSE. #include "dimensions.h" #include "paramet.h" c ...... arguments d'entree ....... c REAL xzoomdeg,dzooma,tau,grossism c ...... arguments de sortie ...... REAL rlonm025(iip1),xprimm025(iip1),rlonv(iip1),xprimv(iip1), , rlonu(iip1),xprimu(iip1),rlonp025(iip1),xprimp025(iip1) c .... variables locales .... c REAL dzoom REAL(KIND=8) xlon(iip1),xprimm(iip1),xuv REAL(KIND=8) xtild(0:nmax2) REAL(KIND=8) fhyp(0:nmax2),ffdx,beta,Xprimt(0:nmax2) REAL(KIND=8) Xf(0:nmax2),xxpr(0:nmax2) REAL(KIND=8) xvrai(iip1),xxprim(iip1) REAL(KIND=8) pi,depi,epsilon,xzoom,fa,fb REAL(KIND=8) Xf1, Xfi , a0,a1,a2,a3,xi2 INTEGER i,it,ik,iter,ii,idif,ii1,ii2 REAL(KIND=8) xi,xo1,xmoy,xlon2,fxm,Xprimin REAL(KIND=8) champmin,champmax,decalx INTEGER is2 SAVE is2 REAL(KIND=8) heavyside pi = 2. * ASIN(1.) depi = 2. * pi epsilon = 1.e-3 xzoom = xzoomdeg * pi/180. c if (iim==1) then rlonm025(1)=-pi/2. rlonv(1)=0. rlonu(1)=pi rlonp025(1)=pi/2. rlonm025(2)=rlonm025(1)+depi rlonv(2)=rlonv(1)+depi rlonu(2)=rlonu(1)+depi rlonp025(2)=rlonp025(1)+depi xprimm025(:)=1. xprimv(:)=1. xprimu(:)=1. xprimp025(:)=1. champmin=depi champmax=depi return endif decalx = .75 IF( grossism.EQ.1..AND.scal180 ) THEN decalx = 1. ENDIF WRITE(6,*) 'FXHYP scal180,decalx', scal180,decalx c IF( dzooma.LT.1.) THEN dzoom = dzooma * depi ELSEIF( dzooma.LT. 25. ) THEN WRITE(6,*) ' Le param. dzoomx pour fxhyp est trop petit ! L aug ,menter et relancer ! ' STOP 1 ELSE dzoom = dzooma * pi/180. ENDIF WRITE(6,*) ' xzoom( rad.),grossism,tau,dzoom (radians)' WRITE(6,24) xzoom,grossism,tau,dzoom DO i = 0, nmax2 xtild(i) = - pi + REAL(i) * depi /nmax2 ENDDO DO i = nmax, nmax2 fa = tau* ( dzoom/2. - xtild(i) ) fb = xtild(i) * ( pi - xtild(i) ) IF( 200.* fb .LT. - fa ) THEN fhyp ( i) = - 1. ELSEIF( 200. * fb .LT. fa ) THEN fhyp ( i) = 1. ELSE IF( ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN IF( 200.*fb + fa.LT.1.e-10 ) THEN fhyp ( i ) = - 1. ELSEIF( 200.*fb - fa.LT.1.e-10 ) THEN fhyp ( i ) = 1. ENDIF ELSE fhyp ( i ) = TANH ( fa/fb ) ENDIF ENDIF IF ( xtild(i).EQ. 0. ) fhyp(i) = 1. IF ( xtild(i).EQ. pi ) fhyp(i) = -1. ENDDO cc .... Calcul de beta .... ffdx = 0. DO i = nmax +1,nmax2 xmoy = 0.5 * ( xtild(i-1) + xtild( i ) ) fa = tau* ( dzoom/2. - xmoy ) fb = xmoy * ( pi - xmoy ) IF( 200.* fb .LT. - fa ) THEN fxm = - 1. ELSEIF( 200. * fb .LT. fa ) THEN fxm = 1. ELSE IF( ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN IF( 200.*fb + fa.LT.1.e-10 ) THEN fxm = - 1. ELSEIF( 200.*fb - fa.LT.1.e-10 ) THEN fxm = 1. ENDIF ELSE fxm = TANH ( fa/fb ) ENDIF ENDIF IF ( xmoy.EQ. 0. ) fxm = 1. IF ( xmoy.EQ. pi ) fxm = -1. ffdx = ffdx + fxm * ( xtild(i) - xtild(i-1) ) ENDDO beta = ( grossism * ffdx - pi ) / ( ffdx - pi ) IF( 2.*beta - grossism.LE. 0.) THEN WRITE(6,*) ' ** Attention ! La valeur beta calculee dans la rou ,tine fxhyp est mauvaise ! ' WRITE(6,*)'Modifier les valeurs de grossismx ,tau ou dzoomx ', , ' et relancer ! *** ' CALL ABORT_GCM("FXHYP", "", 1) ENDIF c c ..... calcul de Xprimt ..... c DO i = nmax, nmax2 Xprimt(i) = beta + ( grossism - beta ) * fhyp(i) ENDDO c DO i = nmax+1, nmax2 Xprimt( nmax2 - i ) = Xprimt( i ) ENDDO c c ..... Calcul de Xf ........ Xf(0) = - pi DO i = nmax +1, nmax2 xmoy = 0.5 * ( xtild(i-1) + xtild( i ) ) fa = tau* ( dzoom/2. - xmoy ) fb = xmoy * ( pi - xmoy ) IF( 200.* fb .LT. - fa ) THEN fxm = - 1. ELSEIF( 200. * fb .LT. fa ) THEN fxm = 1. ELSE fxm = TANH ( fa/fb ) ENDIF IF ( xmoy.EQ. 0. ) fxm = 1. IF ( xmoy.EQ. pi ) fxm = -1. xxpr(i) = beta + ( grossism - beta ) * fxm ENDDO DO i = nmax+1, nmax2 xxpr(nmax2-i+1) = xxpr(i) ENDDO DO i=1,nmax2 Xf(i) = Xf(i-1) + xxpr(i) * ( xtild(i) - xtild(i-1) ) ENDDO c ***************************************************************** c c ..... xuv = 0. si calcul aux pts scalaires ........ c ..... xuv = 0.5 si calcul aux pts U ........ c WRITE(6,18) c DO 5000 ik = 1, 4 IF( ik.EQ.1 ) THEN xuv = -0.25 ELSE IF ( ik.EQ.2 ) THEN xuv = 0. ELSE IF ( ik.EQ.3 ) THEN xuv = 0.50 ELSE IF ( ik.EQ.4 ) THEN xuv = 0.25 ENDIF xo1 = 0. ii1=1 ii2=iim IF(ik.EQ.1.and.grossism.EQ.1.) THEN ii1 = 2 ii2 = iim+1 ENDIF DO 1500 i = ii1, ii2 xlon2 = - pi + (REAL(i) + xuv - decalx) * depi / REAL(iim) Xfi = xlon2 c DO 250 it = nmax2,0,-1 IF( Xfi.GE.Xf(it)) GO TO 350 250 CONTINUE it = 0 350 CONTINUE c ...... Calcul de Xf(xi) ...... c xi = xtild(it) IF(it.EQ.nmax2) THEN it = nmax2 -1 Xf(it+1) = pi ENDIF c ..................................................................... c c Appel de la routine qui calcule les coefficients a0,a1,a2,a3 d'un c polynome de degre 3 qui passe par les points (Xf(it),xtild(it) ) c et (Xf(it+1),xtild(it+1) ) CALL coefpoly ( Xf(it),Xf(it+1),Xprimt(it),Xprimt(it+1), , xtild(it),xtild(it+1), a0, a1, a2, a3 ) Xf1 = Xf(it) Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi DO 500 iter = 1,300 xi = xi - ( Xf1 - Xfi )/ Xprimin IF( ABS(xi-xo1).LE.epsilon) GO TO 550 xo1 = xi xi2 = xi * xi Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 500 CONTINUE WRITE(6,*) ' Pas de solution ***** ',i,xlon2,iter STOP 6 550 CONTINUE xxprim(i) = depi/ ( REAL(iim) * Xprimin ) xvrai(i) = xi + xzoom 1500 CONTINUE IF(ik.EQ.1.and.grossism.EQ.1.) THEN xvrai(1) = xvrai(iip1)-depi xxprim(1) = xxprim(iip1) ENDIF DO i = 1 , iim xlon(i) = xvrai(i) xprimm(i) = xxprim(i) ENDDO DO i = 1, iim -1 IF( xvrai(i+1). LT. xvrai(i) ) THEN WRITE(6,*) ' PBS. avec rlonu(',i+1,') plus petit que rlonu(',i, , ')' STOP 7 ENDIF ENDDO c c ... Reorganisation des longitudes pour les avoir entre - pi et pi .. c ........................................................................ champmin = 1.e12 champmax = -1.e12 DO i = 1, iim champmin = MIN( champmin,xvrai(i) ) champmax = MAX( champmax,xvrai(i) ) ENDDO IF(champmin .GE.-pi-0.10.and.champmax.LE.pi+0.10 ) THEN GO TO 1600 ELSE WRITE(6,*) 'Reorganisation des longitudes pour avoir entre - pi', , ' et pi ' c IF( xzoom.LE.0.) THEN IF( ik.EQ. 1 ) THEN DO i = 1, iim IF( xvrai(i).GE. - pi ) GO TO 80 ENDDO WRITE(6,*) ' PBS. 1 ! Xvrai plus petit que - pi ! ' STOP 8 80 CONTINUE is2 = i ENDIF IF( is2.NE. 1 ) THEN DO ii = is2 , iim xlon (ii-is2+1) = xvrai(ii) xprimm(ii-is2+1) = xxprim(ii) ENDDO DO ii = 1 , is2 -1 xlon (ii+iim-is2+1) = xvrai(ii) + depi xprimm(ii+iim-is2+1) = xxprim(ii) ENDDO ENDIF ELSE IF( ik.EQ.1 ) THEN DO i = iim,1,-1 IF( xvrai(i).LE. pi ) GO TO 90 ENDDO WRITE(6,*) ' PBS. 2 ! Xvrai plus grand que pi ! ' STOP 9 90 CONTINUE is2 = i ENDIF idif = iim -is2 DO ii = 1, is2 xlon (ii+idif) = xvrai(ii) xprimm(ii+idif) = xxprim(ii) ENDDO DO ii = 1, idif xlon (ii) = xvrai (ii+is2) - depi xprimm(ii) = xxprim(ii+is2) ENDDO ENDIF ENDIF c c ......... Fin de la reorganisation ............................ 1600 CONTINUE xlon ( iip1) = xlon(1) + depi xprimm( iip1 ) = xprimm (1 ) DO i = 1, iim+1 xvrai(i) = xlon(i)*180./pi ENDDO IF( ik.EQ.1 ) THEN c WRITE(6,*) ' XLON aux pts. V-0.25 apres ( en deg. ) ' c WRITE(6,18) c WRITE(6,68) xvrai c WRITE(6,*) ' XPRIM k ',ik c WRITE(6,566) xprimm DO i = 1,iim +1 rlonm025(i) = xlon( i ) xprimm025(i) = xprimm(i) ENDDO ELSE IF( ik.EQ.2 ) THEN c WRITE(6,18) c WRITE(6,*) ' XLON aux pts. V apres ( en deg. ) ' c WRITE(6,68) xvrai c WRITE(6,*) ' XPRIM k ',ik c WRITE(6,566) xprimm DO i = 1,iim + 1 rlonv(i) = xlon( i ) xprimv(i) = xprimm(i) ENDDO ELSE IF( ik.EQ.3) THEN c WRITE(6,18) c WRITE(6,*) ' XLON aux pts. U apres ( en deg. ) ' c WRITE(6,68) xvrai c WRITE(6,*) ' XPRIM ik ',ik c WRITE(6,566) xprimm DO i = 1,iim + 1 rlonu(i) = xlon( i ) xprimu(i) = xprimm(i) ENDDO ELSE IF( ik.EQ.4 ) THEN c WRITE(6,18) c WRITE(6,*) ' XLON aux pts. V+0.25 apres ( en deg. ) ' c WRITE(6,68) xvrai c WRITE(6,*) ' XPRIM ik ',ik c WRITE(6,566) xprimm DO i = 1,iim + 1 rlonp025(i) = xlon( i ) xprimp025(i) = xprimm(i) ENDDO ENDIF 5000 CONTINUE c WRITE(6,18) c c ........... fin de la boucle do 5000 ............ DO i = 1, iim xlon(i) = rlonv(i+1) - rlonv(i) ENDDO champmin = 1.e12 champmax = -1.e12 DO i = 1, iim champmin = MIN( champmin, xlon(i) ) champmax = MAX( champmax, xlon(i) ) ENDDO champmin = champmin * 180./pi champmax = champmax * 180./pi 18 FORMAT(/) 24 FORMAT(2x,'Parametres xzoom,gross,tau ,dzoom pour fxhyp ',4f8.3) 68 FORMAT(1x,7f9.2) 566 FORMAT(1x,7f9.4) RETURN END