! $Id: regr1_step_av_m.F90 3065 2017-11-10 13:25:09Z acaubel $ module regr1_step_av_m ! Author: Lionel GUEZ implicit none interface regr1_step_av ! Each procedure regrids a step function by averaging it. ! The regridding operation is done on the first dimension of the ! input array. ! Source grid contains edges of steps. ! Target grid contains positions of cell edges. ! The target grid should be included in the source grid: no ! extrapolation is allowed. ! The difference between the procedures is the rank of the first argument. module procedure regr11_step_av, regr12_step_av, regr13_step_av, & regr14_step_av end interface private public regr1_step_av contains function regr11_step_av(vs, xs, xt) result(vt) ! "vs" has rank 1. use assert_eq_m, only: assert_eq use assert_m, only: assert use interpolation, only: locate real, intent(in):: vs(:) ! values of steps on the source grid ! (Step "is" is between "xs(is)" and "xs(is + 1)".) real, intent(in):: xs(:) ! (edges of of steps on the source grid, in strictly increasing order) real, intent(in):: xt(:) ! (edges of cells of the target grid, in strictly increasing order) real vt(size(xt) - 1) ! average values on the target grid ! (Cell "it" is between "xt(it)" and "xt(it + 1)".) ! Variables local to the procedure: integer is, it, ns, nt real left_edge !--------------------------------------------- ns = assert_eq(size(vs), size(xs) - 1, "regr11_step_av ns") nt = size(xt) - 1 ! Quick check on sort order: call assert(xs(1) < xs(2), "regr11_step_av xs bad order") call assert(xt(1) < xt(2), "regr11_step_av xt bad order") call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & "regr11_step_av extrapolation") is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation do it = 1, nt ! 1 <= is <= ns ! xs(is) <= xt(it) < xs(is + 1) ! Compute "vt(it)": left_edge = xt(it) vt(it) = 0. do while (xs(is + 1) < xt(it + 1)) ! 1 <= is <= ns - 1 vt(it) = vt(it) + (xs(is + 1) - left_edge) * vs(is) is = is + 1 left_edge = xs(is) end do ! 1 <= is <= ns vt(it) = (vt(it) + (xt(it + 1) - left_edge) * vs(is)) & / (xt(it + 1) - xt(it)) if (xs(is + 1) == xt(it + 1)) is = is + 1 ! 1 <= is <= ns .or. it == nt end do end function regr11_step_av !******************************************** function regr12_step_av(vs, xs, xt) result(vt) ! "vs" has rank 2. use assert_eq_m, only: assert_eq use assert_m, only: assert use interpolation, only: locate real, intent(in):: vs(:, :) ! values of steps on the source grid ! (Step "is" is between "xs(is)" and "xs(is + 1)".) real, intent(in):: xs(:) ! (edges of steps on the source grid, in strictly increasing order) real, intent(in):: xt(:) ! (edges of cells of the target grid, in strictly increasing order) real vt(size(xt) - 1, size(vs, 2)) ! average values on the target grid ! (Cell "it" is between "xt(it)" and "xt(it + 1)".) ! Variables local to the procedure: integer is, it, ns, nt real left_edge !--------------------------------------------- ns = assert_eq(size(vs, 1), size(xs) - 1, "regr12_step_av ns") nt = size(xt) - 1 ! Quick check on sort order: call assert(xs(1) < xs(2), "regr12_step_av xs bad order") call assert(xt(1) < xt(2), "regr12_step_av xt bad order") call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & "regr12_step_av extrapolation") is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation do it = 1, nt ! 1 <= is <= ns ! xs(is) <= xt(it) < xs(is + 1) ! Compute "vt(it, :)": left_edge = xt(it) vt(it, :) = 0. do while (xs(is + 1) < xt(it + 1)) ! 1 <= is <= ns - 1 vt(it, :) = vt(it, :) + (xs(is + 1) - left_edge) * vs(is, :) is = is + 1 left_edge = xs(is) end do ! 1 <= is <= ns vt(it, :) = (vt(it, :) + (xt(it + 1) - left_edge) * vs(is, :)) & / (xt(it + 1) - xt(it)) if (xs(is + 1) == xt(it + 1)) is = is + 1 ! 1 <= is <= ns .or. it == nt end do end function regr12_step_av !******************************************** function regr13_step_av(vs, xs, xt) result(vt) ! "vs" has rank 3. use assert_eq_m, only: assert_eq use assert_m, only: assert use interpolation, only: locate real, intent(in):: vs(:, :, :) ! values of steps on the source grid ! (Step "is" is between "xs(is)" and "xs(is + 1)".) real, intent(in):: xs(:) ! (edges of steps on the source grid, in strictly increasing order) real, intent(in):: xt(:) ! (edges of cells of the target grid, in strictly increasing order) real vt(size(xt) - 1, size(vs, 2), size(vs, 3)) ! (average values on the target grid) ! (Cell "it" is between "xt(it)" and "xt(it + 1)".) ! Variables local to the procedure: integer is, it, ns, nt real left_edge !--------------------------------------------- ns = assert_eq(size(vs, 1), size(xs) - 1, "regr13_step_av ns") nt = size(xt) - 1 ! Quick check on sort order: call assert(xs(1) < xs(2), "regr13_step_av xs bad order") call assert(xt(1) < xt(2), "regr13_step_av xt bad order") call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & "regr13_step_av extrapolation") is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation do it = 1, nt ! 1 <= is <= ns ! xs(is) <= xt(it) < xs(is + 1) ! Compute "vt(it, :, :)": left_edge = xt(it) vt(it, :, :) = 0. do while (xs(is + 1) < xt(it + 1)) ! 1 <= is <= ns - 1 vt(it, :, :) = vt(it, :, :) + (xs(is + 1) - left_edge) * vs(is, :, :) is = is + 1 left_edge = xs(is) end do ! 1 <= is <= ns vt(it, :, :) = (vt(it, :, :) & + (xt(it + 1) - left_edge) * vs(is, :, :)) / (xt(it + 1) - xt(it)) if (xs(is + 1) == xt(it + 1)) is = is + 1 ! 1 <= is <= ns .or. it == nt end do end function regr13_step_av !******************************************** function regr14_step_av(vs, xs, xt) result(vt) ! "vs" has rank 4. use assert_eq_m, only: assert_eq use assert_m, only: assert use interpolation, only: locate real, intent(in):: vs(:, :, :, :) ! values of steps on the source grid ! (Step "is" is between "xs(is)" and "xs(is + 1)".) real, intent(in):: xs(:) ! (edges of steps on the source grid, in strictly increasing order) real, intent(in):: xt(:) ! (edges of cells of the target grid, in strictly increasing order) real vt(size(xt) - 1, size(vs, 2), size(vs, 3), size(vs, 4)) ! (average values on the target grid) ! (Cell "it" is between "xt(it)" and "xt(it + 1)".) ! Variables local to the procedure: integer is, it, ns, nt real left_edge !--------------------------------------------- ns = assert_eq(size(vs, 1), size(xs) - 1, "regr14_step_av ns") nt = size(xt) - 1 ! Quick check on sort order: call assert(xs(1) < xs(2), "regr14_step_av xs bad order") call assert(xt(1) < xt(2), "regr14_step_av xt bad order") call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & "regr14_step_av extrapolation") is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation do it = 1, nt ! 1 <= is <= ns ! xs(is) <= xt(it) < xs(is + 1) ! Compute "vt(it, :, :, :)": left_edge = xt(it) vt(it, :, :, :) = 0. do while (xs(is + 1) < xt(it + 1)) ! 1 <= is <= ns - 1 vt(it, :, :, :) = vt(it, :, :, :) + (xs(is + 1) - left_edge) & * vs(is, :, :, :) is = is + 1 left_edge = xs(is) end do ! 1 <= is <= ns vt(it, :, :, :) = (vt(it, :, :, :) + (xt(it + 1) - left_edge) & * vs(is, :, :, :)) / (xt(it + 1) - xt(it)) if (xs(is + 1) == xt(it + 1)) is = is + 1 ! 1 <= is <= ns .or. it == nt end do end function regr14_step_av end module regr1_step_av_m