! $Header$ ! ================================================================================ SUBROUTINE clouds_gno(klon, nd, r, rs, qsub, ptconv, ratqsc, cldf) IMPLICIT NONE ! -------------------------------------------------------------------------------- ! Inputs: ! ND----------: Number of vertical levels ! R--------ND-: Domain-averaged mixing ratio of total water ! RS-------ND-: Mean saturation humidity mixing ratio within the gridbox ! QSUB-----ND-: Mixing ratio of condensed water within clouds associated ! with SUBGRID-SCALE condensation processes (here, it is ! predicted by the convection scheme) ! Outputs: ! PTCONV-----ND-: Point convectif = TRUE ! RATQSC-----ND-: Largeur normalisee de la distribution ! CLDF-----ND-: Fraction nuageuse ! -------------------------------------------------------------------------------- INTEGER klon, nd REAL r(klon, nd), rs(klon, nd), qsub(klon, nd) LOGICAL ptconv(klon, nd) REAL ratqsc(klon, nd) REAL cldf(klon, nd) ! -- parameters controlling the iteration: ! -- nmax : maximum nb of iterations (hopefully never reached) ! -- epsilon : accuracy of the numerical resolution ! -- vmax : v-value above which we use an asymptotic expression for ! ERF(v) INTEGER nmax PARAMETER (nmax=10) REAL epsilon, vmax0, vmax(klon) PARAMETER (epsilon=0.02, vmax0=2.0) REAL min_mu, min_q PARAMETER (min_mu=1.E-12, min_q=1.E-12) INTEGER i, k, n, m REAL mu(klon), qsat, delta(klon), beta(klon) REAL zu2, zv2 REAL xx(klon), aux(klon), coeff, block REAL dist, fprime, det REAL pi, u, v, erfcu, erfcv REAL xx1, xx2 REAL erf, hsqrtlog_2, v2 REAL sqrtpi, sqrt2, zx1, zx2, exdel ! lconv = true si le calcul a converge (entre autre si qsub < min_q) LOGICAL lconv(klon) ! cdir arraycomb cldf(1:klon, 1:nd) = 0.0 ! cym ratqsc(1:klon, 1:nd) = 0.0 ptconv(1:klon, 1:nd) = .FALSE. ! cdir end arraycomb pi = acos(-1.) sqrtpi = sqrt(pi) sqrt2 = sqrt(2.) hsqrtlog_2 = 0.5*sqrt(log(2.)) DO k = 1, nd DO i = 1, klon ! vector mu(i) = r(i, k) mu(i) = max(mu(i), min_mu) qsat = rs(i, k) qsat = max(qsat, min_mu) delta(i) = log(mu(i)/qsat) ! enddo ! vector ! *** There is no subgrid-scale condensation; *** ! *** the scheme becomes equivalent to an "all-or-nothing" *** ! *** large-scale condensation scheme. *** ! *** Some condensation is produced at the subgrid-scale *** ! *** *** ! *** PDF = generalized log-normal distribution (GNO) *** ! *** (k<0 because a lower bound is considered for the PDF) *** ! *** *** ! *** -> Determine x (the parameter k of the GNO PDF) such *** ! *** that the contribution of subgrid-scale processes to *** ! *** the in-cloud water content is equal to QSUB(K) *** ! *** (equations (13), (14), (15) + Appendix B of the paper) *** ! *** *** ! *** Here, an iterative method is used for this purpose *** ! *** (other numerical methods might be more efficient) *** ! *** *** ! *** NB: the "error function" is called ERF *** ! *** (ERF in double precision) *** ! On commence par eliminer les cas pour lesquels on n'a pas ! suffisamment d'eau nuageuse. ! do i=1,klon ! vector IF (qsub(i,k) vmax: det = delta(i) + vmax(i)*vmax(i) IF (det<=0.0) vmax(i) = vmax0 + 1.0 det = delta(i) + vmax(i)*vmax(i) IF (det<=0.) THEN xx(i) = -0.0001 ELSE zx1 = -sqrt2*vmax(i) zx2 = sqrt(1.0+delta(i)/(vmax(i)*vmax(i))) xx1 = zx1*(1.0-zx2) xx2 = zx1*(1.0+zx2) xx(i) = 1.01*xx1 IF (xx1>=0.0) xx(i) = 0.5*xx2 END IF IF (delta(i)<0.) xx(i) = -hsqrtlog_2 END IF END DO ! vector ! ---------------------------------------------------------------------- ! Debut des nmax iterations pour trouver la solution. ! ---------------------------------------------------------------------- DO n = 1, nmax DO i = 1, klon ! vector IF (.NOT. lconv(i)) THEN u = delta(i)/(xx(i)*sqrt2) + xx(i)/(2.*sqrt2) v = delta(i)/(xx(i)*sqrt2) - xx(i)/(2.*sqrt2) v2 = v*v IF (v>vmax(i)) THEN IF (abs(u)>vmax(i) .AND. delta(i)<0.) THEN ! -- use asymptotic expression of erf for u and v large: ! ( -> analytic solution for xx ) exdel = beta(i)*exp(delta(i)) aux(i) = 2.0*delta(i)*(1.-exdel)/(1.+exdel) IF (aux(i)<0.) THEN ! print*,'AUX(',i,',',k,')<0',aux(i),delta(i),beta(i) aux(i) = 0. END IF xx(i) = -sqrt(aux(i)) block = exp(-v*v)/v/sqrtpi dist = 0.0 fprime = 1.0 ELSE ! -- erfv -> 1.0, use an asymptotic expression of erfv for v ! large: erfcu = 1.0 - erf(u) ! !!! ATTENTION : rajout d'un seuil pour l'exponentiel aux(i) = sqrtpi*erfcu*exp(min(v2,100.)) coeff = 1.0 - 0.5/(v2) + 0.75/(v2*v2) block = coeff*exp(-v2)/v/sqrtpi dist = v*aux(i)/coeff - beta(i) fprime = 2.0/xx(i)*(v2)*(exp(-delta(i))-u*aux(i)/coeff)/coeff END IF ! ABS(u) ELSE ! -- general case: erfcu = 1.0 - erf(u) erfcv = 1.0 - erf(v) block = erfcv dist = erfcu/erfcv - beta(i) zu2 = u*u zv2 = v2 IF (zu2>20. .OR. zv2>20.) THEN ! print*,'ATTENTION !!! xx(',i,') =', xx(i) ! print*,'ATTENTION !!! klon,ND,R,RS,QSUB,PTCONV,RATQSC,CLDF', ! .klon,ND,R(i,k),RS(i,k),QSUB(i,k),PTCONV(i,k),RATQSC(i,k), ! .CLDF(i,k) ! print*,'ATTENTION !!! zu2 zv2 =',zu2(i),zv2(i) zu2 = 20. zv2 = 20. fprime = 0. ELSE fprime = 2./sqrtpi/xx(i)/(erfcv*erfcv)* & (erfcv*v*exp(-zu2)-erfcu*u*exp(-zv2)) END IF END IF ! x ! -- test numerical convergence: ! if (beta(i).lt.1.e-10) then ! print*,'avant test ',i,k,lconv(i),u(i),v(i),beta(i) ! stop ! endif IF (abs(fprime)<1.E-11) THEN ! print*,'avant test fprime<.e-11 ' ! s ,i,k,lconv(i),u(i),v(i),beta(i),fprime(i) ! print*,'klon,ND,R,RS,QSUB', ! s klon,ND,R(i,k),rs(i,k),qsub(i,k) fprime = sign(1.E-11, fprime) END IF IF (abs(dist/beta(i))