MODULE grid_noro_m ! !******************************************************************************* USE print_control_mod, ONLY: lunout USE assert_eq_m, ONLY: assert_eq PRIVATE PUBLIC :: grid_noro, grid_noro0 CONTAINS !------------------------------------------------------------------------------- ! SUBROUTINE grid_noro(xd,yd,zd,x,y,zphi,zmea,zstd,zsig,zgam,zthe,zpic,zval,mask) ! !------------------------------------------------------------------------------- ! Author: F. Lott (see also Z.X. Li, A. Harzallah et L. Fairhead) !------------------------------------------------------------------------------- ! Purpose: Compute the Parameters of the SSO scheme as described in LOTT &MILLER ! (1997) and LOTT(1999). !------------------------------------------------------------------------------- ! Comments: ! * Target points are on a rectangular grid: ! iim+1 latitudes including North and South Poles; ! jjm+1 longitudes, with periodicity jjm+1=1. ! * At the poles, the fields value is repeated jjm+1 time. ! * The parameters a,b,c,d represent the limits of the target gridpoint region. ! The means over this region are calculated from USN data, ponderated by a ! weight proportional to the surface occupated by the data inside the model ! gridpoint area. In most circumstances, this weight is the ratio between the ! surfaces of the USN gridpoint area and the model gridpoint area. ! ! (c) ! ----d----- ! | . . . .| ! | | ! (b)a . * . .b(a) ! | | ! | . . . .| ! ----c----- ! (d) ! * Hard-coded US Navy dataset dimensions (imdp=2160 ; jmdp=1080) have been ! removed (ALLOCATABLE used). ! * iext (currently 10% of imdp) represents the margin to ensure output cells ! on the edge are contained in input cells. !=============================================================================== IMPLICIT NONE !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(IN) :: xd(:), yd(:) !--- INPUT COORDINATES (imdp) (jmdp) REAL, INTENT(IN) :: zd(:,:) !--- INPUT FIELD (imdp,jmdp) REAL, INTENT(IN) :: x(:), y(:) !--- OUTPUT COORDINATES (imar+1) (jmar) REAL, INTENT(OUT) :: zphi(:,:) !--- GEOPOTENTIAL (imar+1,jmar) REAL, INTENT(OUT) :: zmea(:,:) !--- MEAN OROGRAPHY (imar+1,jmar) REAL, INTENT(OUT) :: zstd(:,:) !--- STANDARD DEVIATION (imar+1,jmar) REAL, INTENT(OUT) :: zsig(:,:) !--- SLOPE (imar+1,jmar) REAL, INTENT(OUT) :: zgam(:,:) !--- ANISOTROPY (imar+1,jmar) REAL, INTENT(OUT) :: zthe(:,:) !--- SMALL AXIS ORIENTATION (imar+1,jmar) REAL, INTENT(OUT) :: zpic(:,:) !--- MAXIMUM ALTITITUDE (imar+1,jmar) REAL, INTENT(OUT) :: zval(:,:) !--- MINIMUM ALTITITUDE (imar+1,jmar) REAL, INTENT(OUT) :: mask(:,:) !--- MASK (imar+1,jmar) !------------------------------------------------------------------------------- ! Local variables: CHARACTER(LEN=256) :: modname="grid_noro" REAL, ALLOCATABLE :: xusn(:), yusn(:) ! dim (imdp+2*iext) (jmdp+2) REAL, ALLOCATABLE :: zusn(:,:) ! dim (imdp+2*iext,jmdp+2) ! CORRELATIONS OF OROGRAPHY GRADIENT ! dim (imar+1,jmar) REAL, ALLOCATABLE :: ztz(:,:), zxtzx(:,:), zytzy(:,:), zxtzy(:,:), weight(:,:) ! CORRELATIONS OF USN OROGRAPHY GRADIENTS ! dim (imar+2*iext,jmdp+2) REAL, ALLOCATABLE :: zxtzxusn(:,:), zytzyusn(:,:), zxtzyusn(:,:) REAL, ALLOCATABLE :: mask_tmp(:,:), zmea0(:,:) ! dim (imar+1,jmar) REAL, ALLOCATABLE :: num_tot(:,:), num_lan(:,:) ! dim (imax,jmax) REAL, ALLOCATABLE :: a(:), b(:) ! dim (imax) REAL, ALLOCATABLE :: c(:), d(:) ! dim (jmax) LOGICAL :: masque_lu INTEGER :: i, ii, imdp, imar, iext INTEGER :: j, jj, jmdp, jmar, nn REAL :: xpi, zdeltax, zlenx, weighx, xincr, zmeanor0 REAL :: rad, zdeltay, zleny, weighy, masque, zmeasud0 REAL :: zbordnor, zmeanor, zstdnor, zsignor, zweinor, zpicnor, zvalnor REAL :: zbordsud, zmeasud, zstdsud, zsigsud, zweisud, zpicsud, zvalsud REAL :: zbordest, zbordoue, xk, xl, xm, xp, xq, xw !------------------------------------------------------------------------------- imdp=assert_eq(SIZE(xd),SIZE(zd,1),TRIM(modname)//" imdp") jmdp=assert_eq(SIZE(yd),SIZE(zd,2),TRIM(modname)//" jmdp") imar=assert_eq([SIZE(x),SIZE(zphi,1),SIZE(zmea,1),SIZE(zstd,1),SIZE(zsig,1), & SIZE(zgam,1),SIZE(zthe,1),SIZE(zpic,1),SIZE(zval,1), & SIZE(mask,1)],TRIM(modname)//" imar")-1 jmar=assert_eq([SIZE(y),SIZE(zphi,2),SIZE(zmea,2),SIZE(zstd,2),SIZE(zsig,2), & SIZE(zgam,2),SIZE(zthe,2),SIZE(zpic,2),SIZE(zval,2), & SIZE(mask,2)],TRIM(modname)//" jmar") ! IF(imar/=iim) CALL abort_physic(TRIM(modname),'imar/=iim' ,1) ! IF(jmar/=jjm+1) CALL abort_physic(TRIM(modname),'jmar/=jjm+1',1) iext=imdp/10 !--- OK up to 36 degrees cell xpi = ACOS(-1.) rad = 6371229. zdeltay=2.*xpi/REAL(jmdp)*rad WRITE(lunout,*)"*** Orography parameters at sub-cell scale ***" !--- ARE WE USING A READ MASK ? masque_lu=ANY(mask/=-99999.); IF(.NOT.masque_lu) mask=0.0 WRITE(lunout,*)'Masque lu: ',masque_lu !--- EXTENSION OF THE INPUT DATABASE TO PROCEED COMPUTATIONS AT BOUNDARIES: ALLOCATE(xusn(imdp+2*iext)) xusn(1 +iext:imdp +iext)=xd(:) xusn(1 : iext)=xd(1+imdp-iext:imdp)-2.*xpi xusn(1+imdp+iext:imdp+2*iext)=xd(1 :iext)+2.*xpi ALLOCATE(yusn(jmdp+2)) yusn(1 )=yd(1) +(yd(1) -yd(2)) yusn(2:jmdp+1)=yd(:) yusn( jmdp+2)=yd(jmdp)+(yd(jmdp)-yd(jmdp-1)) ALLOCATE(zusn(imdp+2*iext,jmdp+2)) zusn(1 +iext:imdp +iext,2:jmdp+1)=zd (: , :) zusn(1 : iext,2:jmdp+1)=zd (imdp-iext+1:imdp , :) zusn(1+imdp +iext:imdp+2*iext,2:jmdp+1)=zd (1:iext , :) zusn(1 :imdp/2+iext, 1)=zusn(1+imdp/2:imdp +iext, 2) zusn(1+imdp/2+iext:imdp+2*iext, 1)=zusn(1 :imdp/2+iext, 2) zusn(1 :imdp/2+iext, jmdp+2)=zusn(1+imdp/2:imdp +iext,jmdp+1) zusn(1+imdp/2+iext:imdp+2*iext, jmdp+2)=zusn(1 :imdp/2+iext,jmdp+1) !--- COMPUTE LIMITS OF MODEL GRIDPOINT AREA (REGULAR GRID) ALLOCATE(a(imar+1),b(imar+1)) b(1:imar)=(x(1:imar )+ x(2:imar+1))/2.0 b(imar+1)= x( imar+1)+(x( imar+1)-x(imar))/2.0 a(1)=x(1)-(x(2)-x(1))/2.0 a(2:imar+1)= b(1:imar) ALLOCATE(c(jmar),d(jmar)) d(1:jmar-1)=(y(1:jmar-1)+ y(2:jmar))/2.0 d( jmar )= y( jmar )+(y( jmar)-y(jmar-1))/2.0 c(1)=y(1)-(y(2)-y(1))/2.0 c(2:jmar)=d(1:jmar-1) !--- INITIALIZATIONS: ALLOCATE(weight(imar+1,jmar)); weight(:,:)= 0.0 ALLOCATE(zxtzx (imar+1,jmar)); zxtzx (:,:)= 0.0 ALLOCATE(zytzy (imar+1,jmar)); zytzy (:,:)= 0.0 ALLOCATE(zxtzy (imar+1,jmar)); zxtzy (:,:)= 0.0 ALLOCATE(ztz (imar+1,jmar)); ztz (:,:)= 0.0 zmea(:,:)= 0.0 zpic(:,:)=-1.E+10 zval(:,:)= 1.E+10 !--- COMPUTE SLOPES CORRELATIONS ON USN GRID ! CORRELATIONS OF USN OROGRAPHY GRADIENTS ! dim (imdp+2*iext,jmdp+2) ALLOCATE(zytzyusn(imdp+2*iext,jmdp+2)); zytzyusn(:,:)=0.0 ALLOCATE(zxtzxusn(imdp+2*iext,jmdp+2)); zxtzxusn(:,:)=0.0 ALLOCATE(zxtzyusn(imdp+2*iext,jmdp+2)); zxtzyusn(:,:)=0.0 DO j = 2, jmdp+1 zdeltax=zdeltay*cos(yusn(j)) DO i = 2, imdp+2*iext-1 zytzyusn(i,j)=(zusn(i,j+1)-zusn(i,j-1))**2/zdeltay**2 zxtzxusn(i,j)=(zusn(i+1,j)-zusn(i-1,j))**2/zdeltax**2 zxtzyusn(i,j)=(zusn(i,j+1)-zusn(i,j-1)) /zdeltay & & *(zusn(i+1,j)-zusn(i-1,j)) /zdeltax END DO END DO !--- SUMMATION OVER GRIDPOINT AREA zleny=xpi/REAL(jmdp)*rad xincr=xpi/REAL(jmdp)/2. ALLOCATE(num_tot(imar+1,jmar)); num_tot(:,:)=0. ALLOCATE(num_lan(imar+1,jmar)); num_lan(:,:)=0. DO ii = 1, imar+1 DO jj = 1, jmar DO j = 2,jmdp+1 zlenx =zleny *COS(yusn(j)) zdeltax=zdeltay*COS(yusn(j)) zbordnor=(xincr+c(jj)-yusn(j))*rad zbordsud=(xincr-d(jj)+yusn(j))*rad weighy=AMAX1(0.,AMIN1(zbordnor,zbordsud,zleny)) IF(weighy==0.) CYCLE DO i = 2, imdp+2*iext-1 zbordest=(xusn(i)-a(ii)+xincr)*rad*COS(yusn(j)) zbordoue=(b(ii)+xincr-xusn(i))*rad*COS(yusn(j)) weighx=AMAX1(0.,AMIN1(zbordest,zbordoue,zlenx)) IF(weighx==0.) CYCLE num_tot(ii,jj)=num_tot(ii,jj)+1.0 IF(zusn(i,j)>=1.)num_lan(ii,jj)=num_lan(ii,jj)+1.0 weight(ii,jj)=weight(ii,jj)+weighx*weighy zxtzx(ii,jj)=zxtzx(ii,jj)+zxtzxusn(i,j)*weighx*weighy zytzy(ii,jj)=zytzy(ii,jj)+zytzyusn(i,j)*weighx*weighy zxtzy(ii,jj)=zxtzy(ii,jj)+zxtzyusn(i,j)*weighx*weighy ztz (ii,jj)= ztz(ii,jj)+zusn(i,j)*zusn(i,j)*weighx*weighy zmea (ii,jj)= zmea(ii,jj)+zusn(i,j)*weighx*weighy !--- MEAN zpic (ii,jj)=AMAX1(zpic(ii,jj),zusn(i,j)) !--- PEAKS zval (ii,jj)=AMIN1(zval(ii,jj),zusn(i,j)) !--- VALLEYS END DO END DO END DO END DO !--- COMPUTE PARAMETERS NEEDED BY LOTT & MILLER (1997) AND LOTT (1999) SSO SCHEME IF(.NOT.masque_lu) THEN WHERE(weight(:,1:jmar-1)/=0.0) mask=num_lan(:,:)/num_tot(:,:) END IF nn=COUNT(weight(:,1:jmar-1)==0.0) IF(nn/=0) WRITE(lunout,*)'Problem with weight ; vanishing occurrences: ',nn WHERE(weight(:,:)/=0.0) zmea (:,:)=zmea (:,:)/weight(:,:) zxtzx(:,:)=zxtzx(:,:)/weight(:,:) zytzy(:,:)=zytzy(:,:)/weight(:,:) zxtzy(:,:)=zxtzy(:,:)/weight(:,:) ztz (:,:)=ztz (:,:)/weight(:,:) zstd (:,:)=ztz (:,:)-zmea(:,:)**2 END WHERE WHERE(zstd(:,:)<0) zstd(:,:)=0. zstd (:,:)=SQRT(zstd(:,:)) !--- CORRECT VALUES OF HORIZONTAL SLOPE NEAR THE POLES: zxtzx(:, 1)=zxtzx(:, 2) zxtzx(:,jmar)=zxtzx(:,jmar-1) zxtzy(:, 1)=zxtzy(:, 2) zxtzy(:,jmar)=zxtzy(:,jmar-1) zytzy(:, 1)=zytzy(:, 2) zytzy(:,jmar)=zytzy(:,jmar-1) !=== FILTERS TO SMOOTH OUT FIELDS FOR INPUT INTO SSO SCHEME. !--- FIRST FILTER, MOVING AVERAGE OVER 9 POINTS. !------------------------------------------------------------------------------- ALLOCATE(zmea0(imar+1,jmar)) zmea0(:,:)=zmea(:,:) ! GK211005 (CG) UNSMOOTHED TOPO CALL MVA9(zmea); CALL MVA9(zstd); CALL MVA9(zpic); CALL MVA9(zval) CALL MVA9(zxtzx); CALL MVA9(zxtzy); CALL MVA9(zytzy) !--- MASK BASED ON GROUND MAXIMUM, 10% THRESHOLD. (SURFACE PARAMS MEANINGLESS) ALLOCATE(mask_tmp(imar+1,jmar)); mask_tmp(:,:)=0.0 WHERE(mask>=0.1) mask_tmp = 1. WHERE(weight(:,:)/=0.0) ! zphi (:,:)= mask_tmp(:,:)*zmea (:,:) ! GK211005 (CG) not necessarly smoothed zphi (:,:)= mask_tmp(:,:)*zmea0(:,:) zmea0(:,:)= mask_tmp(:,:)*zmea0(:,:) zmea (:,:)= mask_tmp(:,:)*zmea (:,:) zpic (:,:)= mask_tmp(:,:)*zpic (:,:) zval (:,:)= mask_tmp(:,:)*zval (:,:) zstd (:,:)= mask_tmp(:,:)*zstd (:,:) END WHERE DO ii = 1, imar DO jj = 1, jmar IF (weight(ii,jj)/=0.0) THEN !--- Coefficients K, L et M: xk=(zxtzx(ii,jj)+zytzy(ii,jj))/2. xl=(zxtzx(ii,jj)-zytzy(ii,jj))/2. xm=zxtzy(ii,jj) xp=xk-SQRT(xl**2+xm**2) xq=xk+SQRT(xl**2+xm**2) xw=1.e-8 IF(xp<=xw) xp=0. IF(xq<=xw) xq=xw IF(ABS(xm)<=xw) xm=xw*SIGN(1.,xm) !--- SLOPE zsig(ii,jj)=SQRT(xq)*mask_tmp(ii,jj) !---ISOTROPY zgam(ii,jj)=xp/xq*mask_tmp(ii,jj) !--- THETA ANGLE zthe(ii,jj)=57.29577951*ATAN2(xm,xl)/2.*mask_tmp(ii,jj) END IF END DO END DO WRITE(lunout,*)' MEAN ORO:' ,MAXVAL(zmea) WRITE(lunout,*)' ST. DEV.:' ,MAXVAL(zstd) WRITE(lunout,*)' PENTE:' ,MAXVAL(zsig) WRITE(lunout,*)' ANISOTROP:',MAXVAL(zgam) WRITE(lunout,*)' ANGLE:' ,MINVAL(zthe),MAXVAL(zthe) WRITE(lunout,*)' pic:' ,MAXVAL(zpic) WRITE(lunout,*)' val:' ,MAXVAL(zval) !--- Values at poles zmea0(imar+1,:)=zmea0(1,:) zmea (imar+1,:)=zmea (1,:) zphi (imar+1,:)=zphi (1,:) zpic (imar+1,:)=zpic (1,:) zval (imar+1,:)=zval (1,:) zstd (imar+1,:)=zstd (1,:) zsig (imar+1,:)=zsig (1,:) zgam (imar+1,:)=zgam (1,:) zthe (imar+1,:)=zthe (1,:) zweinor =SUM(weight(1:imar, 1),DIM=1) zweisud =SUM(weight(1:imar,jmar),DIM=1) zmeanor0=SUM(weight(1:imar, 1)*zmea0(1:imar, 1),DIM=1) zmeasud0=SUM(weight(1:imar,jmar)*zmea0(1:imar,jmar),DIM=1) zmeanor =SUM(weight(1:imar, 1)*zmea (1:imar, 1),DIM=1) zmeasud =SUM(weight(1:imar,jmar)*zmea (1:imar,jmar),DIM=1) zstdnor =SUM(weight(1:imar, 1)*zstd (1:imar, 1),DIM=1) zstdsud =SUM(weight(1:imar,jmar)*zstd (1:imar,jmar),DIM=1) zsignor =SUM(weight(1:imar, 1)*zsig (1:imar, 1),DIM=1) zsigsud =SUM(weight(1:imar,jmar)*zsig (1:imar,jmar),DIM=1) zpicnor =SUM(weight(1:imar, 1)*zpic (1:imar, 1),DIM=1) zpicsud =SUM(weight(1:imar,jmar)*zpic (1:imar,jmar),DIM=1) zvalnor =SUM(weight(1:imar, 1)*zval (1:imar, 1),DIM=1) zvalsud =SUM(weight(1:imar,jmar)*zval (1:imar,jmar),DIM=1) zmea(:,1)=zmeanor /zweinor; zmea(:,jmar)=zmeasud /zweisud ! zphi(:,1)=zmeanor0/zweinor; zphi(:,jmar)=zmeasud0/zweisud TO COMMIT zphi(:,1)=zmeanor /zweinor; zphi(:,jmar)=zmeasud /zweisud zpic(:,1)=zpicnor /zweinor; zpic(:,jmar)=zpicsud /zweisud zval(:,1)=zvalnor /zweinor; zval(:,jmar)=zvalsud /zweisud zstd(:,1)=zstdnor /zweinor; zstd(:,jmar)=zstdsud /zweisud zsig(:,1)=zsignor /zweinor; zsig(:,jmar)=zsigsud /zweisud zgam(:,1)=1.; zgam(:,jmar)=1. zthe(:,1)=0.; zthe(:,jmar)=0. END SUBROUTINE grid_noro ! !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- ! SUBROUTINE grid_noro0(xd,yd,zd,x,y,zphi,mask) ! !=============================================================================== ! Purpose: Extracted from grid_noro to provide geopotential height for dynamics ! without any call to physics subroutines. !=============================================================================== IMPLICIT NONE !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(IN) :: xd(:), yd(:) !--- INPUT COORDINATES (imdp) (jmdp) REAL, INTENT(IN) :: zd(:,:) !--- INPUT FIELD (imdp,jmdp) REAL, INTENT(IN) :: x(:), y(:) !--- OUTPUT COORDINATES (imar+1) (jmar) REAL, INTENT(OUT) :: zphi(:,:) !--- GEOPOTENTIAL (imar+1,jmar) REAL, INTENT(INOUT):: mask(:,:) !--- MASK (imar+1,jmar) !------------------------------------------------------------------------------- ! Local variables: CHARACTER(LEN=256) :: modname="grid_noro0" REAL, ALLOCATABLE :: xusn(:), yusn(:) ! dim (imdp+2*iext) (jmdp+2) REAL, ALLOCATABLE :: zusn(:,:) ! dim (imdp+2*iext,jmdp+2) REAL, ALLOCATABLE :: weight(:,:) ! dim (imar+1,jmar) REAL, ALLOCATABLE :: mask_tmp(:,:), zmea(:,:) ! dim (imar+1,jmar) REAL, ALLOCATABLE :: num_tot(:,:), num_lan(:,:) ! dim (imax,jmax) REAL, ALLOCATABLE :: a(:), b(:) ! dim (imax) REAL, ALLOCATABLE :: c(:), d(:) ! dim (jmax) LOGICAL :: masque_lu INTEGER :: i, ii, imdp, imar, iext INTEGER :: j, jj, jmdp, jmar, nn REAL :: xpi, zlenx, weighx, xincr, zbordnor, zmeanor, zweinor, zbordest REAL :: rad, zleny, weighy, masque, zbordsud, zmeasud, zweisud, zbordoue !------------------------------------------------------------------------------- imdp=assert_eq(SIZE(xd),SIZE(zd,1),TRIM(modname)//" imdp") jmdp=assert_eq(SIZE(yd),SIZE(zd,2),TRIM(modname)//" jmdp") imar=assert_eq(SIZE(x),SIZE(zphi,1),SIZE(mask,1),TRIM(modname)//" imar")-1 jmar=assert_eq(SIZE(y),SIZE(zphi,2),SIZE(mask,2),TRIM(modname)//" jmar") ! IF(imar/=iim) CALL abort_gcm(TRIM(modname),'imar/=iim' ,1) ! IF(jmar/=jjm+1) CALL abort_gcm(TRIM(modname),'jmar/=jjm+1',1) iext=imdp/10 xpi = ACOS(-1.) rad = 6371229. !--- ARE WE USING A READ MASK ? masque_lu=ANY(mask/=-99999.); IF(.NOT.masque_lu) mask=0.0 WRITE(lunout,*)'Masque lu: ',masque_lu !--- EXTENSION OF THE INPUT DATABASE TO PROCEED COMPUTATIONS AT BOUNDARIES: ALLOCATE(xusn(imdp+2*iext)) xusn(1 +iext:imdp +iext)=xd(:) xusn(1 : iext)=xd(1+imdp-iext:imdp)-2.*xpi xusn(1+imdp+iext:imdp+2*iext)=xd(1 :iext)+2.*xpi ALLOCATE(yusn(jmdp+2)) yusn(1 )=yd(1) +(yd(1) -yd(2)) yusn(2:jmdp+1)=yd(:) yusn( jmdp+2)=yd(jmdp)+(yd(jmdp)-yd(jmdp-1)) ALLOCATE(zusn(imdp+2*iext,jmdp+2)) zusn(1 +iext:imdp +iext,2:jmdp+1)=zd (: , :) zusn(1 : iext,2:jmdp+1)=zd (imdp-iext+1:imdp , :) zusn(1+imdp +iext:imdp+2*iext,2:jmdp+1)=zd (1:iext , :) zusn(1 :imdp/2+iext, 1)=zusn(1+imdp/2:imdp +iext, 2) zusn(1+imdp/2+iext:imdp+2*iext, 1)=zusn(1 :imdp/2+iext, 2) zusn(1 :imdp/2+iext, jmdp+2)=zusn(1+imdp/2:imdp +iext,jmdp+1) zusn(1+imdp/2+iext:imdp+2*iext, jmdp+2)=zusn(1 :imdp/2+iext,jmdp+1) !--- COMPUTE LIMITS OF MODEL GRIDPOINT AREA (REGULAR GRID) ALLOCATE(a(imar+1),b(imar+1)) b(1:imar)=(x(1:imar )+ x(2:imar+1))/2.0 b(imar+1)= x( imar+1)+(x( imar+1)-x(imar))/2.0 a(1)=x(1)-(x(2)-x(1))/2.0 a(2:imar+1)= b(1:imar) ALLOCATE(c(jmar),d(jmar)) d(1:jmar-1)=(y(1:jmar-1)+ y(2:jmar))/2.0 d( jmar )= y( jmar )+(y( jmar)-y(jmar-1))/2.0 c(1)=y(1)-(y(2)-y(1))/2.0 c(2:jmar)=d(1:jmar-1) !--- INITIALIZATIONS: ALLOCATE(weight(imar+1,jmar)); weight(:,:)= 0.0 ALLOCATE(zmea (imar+1,jmar)); zmea (:,:)= 0.0 !--- SUMMATION OVER GRIDPOINT AREA zleny=xpi/REAL(jmdp)*rad xincr=xpi/REAL(jmdp)/2. ALLOCATE(num_tot(imar+1,jmar)); num_tot(:,:)=0. ALLOCATE(num_lan(imar+1,jmar)); num_lan(:,:)=0. DO ii = 1, imar+1 DO jj = 1, jmar DO j = 2,jmdp+1 zlenx =zleny *COS(yusn(j)) zbordnor=(xincr+c(jj)-yusn(j))*rad zbordsud=(xincr-d(jj)+yusn(j))*rad weighy=AMAX1(0.,AMIN1(zbordnor,zbordsud,zleny)) IF(weighy/=0) THEN DO i = 2, imdp+2*iext-1 zbordest=(xusn(i)-a(ii)+xincr)*rad*COS(yusn(j)) zbordoue=(b(ii)+xincr-xusn(i))*rad*COS(yusn(j)) weighx=AMAX1(0.,AMIN1(zbordest,zbordoue,zlenx)) IF(weighx/=0)THEN num_tot(ii,jj)=num_tot(ii,jj)+1.0 IF(zusn(i,j)>=1.)num_lan(ii,jj)=num_lan(ii,jj)+1.0 weight(ii,jj)=weight(ii,jj)+weighx*weighy zmea (ii,jj)=zmea (ii,jj)+zusn(i,j)*weighx*weighy !--- MEAN END IF END DO END IF END DO END DO END DO !--- COMPUTE PARAMETERS NEEDED BY LOTT & MILLER (1997) AND LOTT (1999) SSO SCHEME IF(.NOT.masque_lu) THEN WHERE(weight(:,1:jmar-1)/=0.0) mask=num_lan(:,:)/num_tot(:,:) END IF nn=COUNT(weight(:,1:jmar-1)==0.0) IF(nn/=0) WRITE(lunout,*)'Problem with weight ; vanishing occurrences: ',nn WHERE(weight/=0.0) zmea(:,:)=zmea(:,:)/weight(:,:) !--- MASK BASED ON GROUND MAXIMUM, 10% THRESHOLD (<10%: SURF PARAMS MEANINGLESS) ALLOCATE(mask_tmp(imar+1,jmar)); mask_tmp(:,:)=0.0 WHERE(mask>=0.1) mask_tmp = 1. WHERE(weight(:,:)/=0.0) zphi(:,:)=mask_tmp(:,:)*zmea(:,:) zmea(:,:)=mask_tmp(:,:)*zmea(:,:) END WHERE WRITE(lunout,*)' MEAN ORO:' ,MAXVAL(zmea) !--- Values at poles zphi(imar+1,:)=zphi(1,:) zweinor=SUM(weight(1:imar, 1),DIM=1) zweisud=SUM(weight(1:imar,jmar),DIM=1) zmeanor=SUM(weight(1:imar, 1)*zmea(1:imar, 1),DIM=1) zmeasud=SUM(weight(1:imar,jmar)*zmea(1:imar,jmar),DIM=1) zphi(:,1)=zmeanor/zweinor; zphi(:,jmar)=zmeasud/zweisud END SUBROUTINE grid_noro0 ! !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- ! SUBROUTINE MVA9(x) ! !------------------------------------------------------------------------------- IMPLICIT NONE ! MAKE A MOVING AVERAGE OVER 9 GRIDPOINTS OF THE X FIELDS !------------------------------------------------------------------------------- ! Arguments: REAL, INTENT(INOUT) :: x(:,:) !------------------------------------------------------------------------------- ! Local variables: REAL :: xf(SIZE(x,DIM=1),SIZE(x,DIM=2)), WEIGHTpb(-1:1,-1:1) INTEGER :: i, j, imar, jmar !------------------------------------------------------------------------------- WEIGHTpb=RESHAPE([((1./REAL((1+i**2)*(1+j**2)),i=-1,1),j=-1,1)],SHAPE=[3,3]) WEIGHTpb=WEIGHTpb/SUM(WEIGHTpb) imar=SIZE(X,DIM=1); jmar=SIZE(X,DIM=2) DO j=2,jmar-1 DO i=2,imar-1 xf(i,j)=SUM(x(i-1:i+1,j-1:j+1)*WEIGHTpb(:,:)) END DO END DO DO j=2,jmar-1 xf(1,j)=SUM(x(imar-1,j-1:j+1)*WEIGHTpb(-1,:)) xf(1,j)=xf(1,j)+SUM(x(1:2,j-1:j+1)*WEIGHTpb(0:1,-1:1)) xf(imar,j)=xf(1,j) END DO xf(:, 1)=xf(:, 2) xf(:,jmar)=xf(:,jmar-1) x(:,:)=xf(:,:) END SUBROUTINE MVA9 ! !------------------------------------------------------------------------------- END MODULE grid_noro_m