! ! $Id: lmdz1d.F90 3540 2019-06-25 14:50:13Z fairhead $ ! SUBROUTINE old_lmdz1d USE ioipsl, only: ju2ymds, ymds2ju, ioconf_calendar,getin USE phys_state_var_mod, ONLY : phys_state_var_init, phys_state_var_end, & clwcon, detr_therm, & qsol, fevap, z0m, z0h, agesno, & du_gwd_rando, du_gwd_front, entr_therm, f0, fm_therm, & falb_dir, falb_dif, & ftsol, pbl_tke, pctsrf, radsol, rain_fall, snow_fall, ratqs, & rnebcon, rugoro, sig1, w01, solaire_etat0, sollw, sollwdown, & solsw, t_ancien, q_ancien, u_ancien, v_ancien, wake_cstar, & wake_delta_pbl_TKE, delta_tsurf, wake_fip, wake_pe, & wake_deltaq, wake_deltat, wake_s, wake_dens, & zgam, zmax0, zmea, zpic, zsig, & zstd, zthe, zval, ale_bl, ale_bl_trig, alp_bl, ql_ancien, qs_ancien, & prlw_ancien, prsw_ancien, prw_ancien USE dimphy USE surface_data, only : type_ocean,ok_veget USE pbl_surface_mod, only : ftsoil, pbl_surface_init, & pbl_surface_final USE fonte_neige_mod, only : fonte_neige_init, fonte_neige_final USE infotrac ! new USE control_mod USE indice_sol_mod USE phyaqua_mod ! USE mod_1D_cases_read USE mod_1D_cases_read2 USE mod_1D_amma_read USE print_control_mod, ONLY: lunout, prt_level USE iniphysiq_mod, ONLY: iniphysiq USE mod_const_mpi, ONLY: comm_lmdz USE physiq_mod, ONLY: physiq USE comvert_mod, ONLY: presnivs, ap, bp, dpres,nivsig, nivsigs, pa, & preff, aps, bps, pseudoalt, scaleheight USE temps_mod, ONLY: annee_ref, calend, day_end, day_ini, day_ref, & itau_dyn, itau_phy, start_time, year_len USE phys_cal_mod, ONLY : year_len_phys_cal_mod => year_len implicit none #include "dimensions.h" #include "YOMCST.h" !!#include "control.h" #include "clesphys.h" #include "dimsoil.h" !#include "indicesol.h" #include "compar1d.h" #include "flux_arp.h" #include "date_cas.h" #include "tsoilnudge.h" #include "fcg_gcssold.h" !!!#include "fbforcing.h" #include "compbl.h" !===================================================================== ! DECLARATIONS !===================================================================== !--------------------------------------------------------------------- ! Externals !--------------------------------------------------------------------- external fq_sat real fq_sat !--------------------------------------------------------------------- ! Arguments d' initialisations de la physique (USER DEFINE) !--------------------------------------------------------------------- integer, parameter :: ngrid=1 real :: zcufi = 1. real :: zcvfi = 1. !- real :: nat_surf !- logical :: ok_flux_surf !- real :: fsens !- real :: flat !- real :: tsurf !- real :: rugos !- real :: qsol(1:2) !- real :: qsurf !- real :: psurf !- real :: zsurf !- real :: albedo !- !- real :: time = 0. !- real :: time_ini !- real :: xlat !- real :: xlon !- real :: wtsurf !- real :: wqsurf !- real :: restart_runoff !- real :: xagesno !- real :: qsolinp !- real :: zpicinp !- real :: fnday real :: day, daytime real :: day1 real :: heure integer :: jour integer :: mois integer :: an !--------------------------------------------------------------------- ! Declarations related to forcing and initial profiles !--------------------------------------------------------------------- integer :: kmax = llm integer llm700,nq1,nq2 INTEGER, PARAMETER :: nlev_max=1000, nqmx=1000 real timestep, frac real height(nlev_max),tttprof(nlev_max),qtprof(nlev_max) real uprof(nlev_max),vprof(nlev_max),e12prof(nlev_max) real ugprof(nlev_max),vgprof(nlev_max),wfls(nlev_max) real dqtdxls(nlev_max),dqtdyls(nlev_max) real dqtdtls(nlev_max),thlpcar(nlev_max) real qprof(nlev_max,nqmx) ! integer :: forcing_type logical :: forcing_les = .false. logical :: forcing_armcu = .false. logical :: forcing_rico = .false. logical :: forcing_radconv = .false. logical :: forcing_toga = .false. logical :: forcing_twpice = .false. logical :: forcing_amma = .false. logical :: forcing_dice = .false. logical :: forcing_gabls4 = .false. logical :: forcing_GCM2SCM = .false. logical :: forcing_GCSSold = .false. logical :: forcing_sandu = .false. logical :: forcing_astex = .false. logical :: forcing_fire = .false. logical :: forcing_case = .false. logical :: forcing_case2 = .false. logical :: forcing_SCM = .false. integer :: type_ts_forcing ! 0 = SST constant; 1 = SST read from a file ! (cf read_tsurf1d.F) real wwww !vertical advection computation ! real d_t_z(llm), d_q_z(llm) ! real d_t_dyn_z(llm), dq_dyn_z(llm) ! real zz(llm) ! real zfact !flag forcings logical :: nudge_wind=.true. logical :: nudge_thermo=.false. logical :: cptadvw=.true. !===================================================================== ! DECLARATIONS FOR EACH CASE !===================================================================== ! #include "1D_decl_cases.h" ! !--------------------------------------------------------------------- ! Declarations related to nudging !--------------------------------------------------------------------- integer :: nudge_max parameter (nudge_max=9) integer :: inudge_RHT=1 integer :: inudge_UV=2 logical :: nudge(nudge_max) real :: t_targ(llm) real :: rh_targ(llm) real :: u_targ(llm) real :: v_targ(llm) ! !--------------------------------------------------------------------- ! Declarations related to vertical discretization: !--------------------------------------------------------------------- real :: pzero=1.e5 real :: play (llm),zlay (llm),sig_s(llm),plev(llm+1) real :: playd(llm),zlayd(llm),ap_amma(llm+1),bp_amma(llm+1) !--------------------------------------------------------------------- ! Declarations related to variables !--------------------------------------------------------------------- real :: phi(llm) real :: teta(llm),tetal(llm),temp(llm),u(llm),v(llm),w(llm) REAL rot(1, llm) ! relative vorticity, in s-1 real :: rlat_rad(1),rlon_rad(1) real :: omega(llm+1),omega2(llm),rho(llm+1) real :: ug(llm),vg(llm),fcoriolis real :: sfdt, cfdt real :: du_phys(llm),dv_phys(llm),dt_phys(llm) real :: dt_dyn(llm) real :: dt_cooling(llm),d_t_adv(llm),d_t_nudge(llm) real :: d_u_nudge(llm),d_v_nudge(llm) real :: du_adv(llm),dv_adv(llm) real :: du_age(llm),dv_age(llm) real :: alpha real :: ttt REAL, ALLOCATABLE, DIMENSION(:,:):: q REAL, ALLOCATABLE, DIMENSION(:,:):: dq REAL, ALLOCATABLE, DIMENSION(:,:):: dq_dyn REAL, ALLOCATABLE, DIMENSION(:,:):: d_q_adv REAL, ALLOCATABLE, DIMENSION(:,:):: d_q_nudge ! REAL, ALLOCATABLE, DIMENSION(:):: d_th_adv !--------------------------------------------------------------------- ! Initialization of surface variables !--------------------------------------------------------------------- real :: run_off_lic_0(1) real :: fder(1),snsrf(1,nbsrf),qsurfsrf(1,nbsrf) real :: tsoil(1,nsoilmx,nbsrf) ! real :: agesno(1,nbsrf) !--------------------------------------------------------------------- ! Call to phyredem !--------------------------------------------------------------------- logical :: ok_writedem =.true. real :: sollw_in = 0. real :: solsw_in = 0. !--------------------------------------------------------------------- ! Call to physiq !--------------------------------------------------------------------- logical :: firstcall=.true. logical :: lastcall=.false. real :: phis(1) = 0.0 real :: dpsrf(1) !--------------------------------------------------------------------- ! Initializations of boundary conditions !--------------------------------------------------------------------- real, allocatable :: phy_nat (:) ! 0=ocean libre,1=land,2=glacier,3=banquise real, allocatable :: phy_alb (:) ! Albedo land only (old value condsurf_jyg=0.3) real, allocatable :: phy_sst (:) ! SST (will not be used; cf read_tsurf1d.F) real, allocatable :: phy_bil (:) ! Ne sert que pour les slab_ocean real, allocatable :: phy_rug (:) ! Longueur rugosite utilisee sur land only real, allocatable :: phy_ice (:) ! Fraction de glace real, allocatable :: phy_fter(:) ! Fraction de terre real, allocatable :: phy_foce(:) ! Fraction de ocean real, allocatable :: phy_fsic(:) ! Fraction de glace real, allocatable :: phy_flic(:) ! Fraction de glace !--------------------------------------------------------------------- ! Fichiers et d'autres variables !--------------------------------------------------------------------- integer :: k,l,i,it=1,mxcalc integer :: nsrf integer jcode INTEGER read_climoz ! integer :: it_end ! iteration number of the last call !Al1 integer ecrit_slab_oc !1=ecrit,-1=lit,0=no file data ecrit_slab_oc/-1/ ! ! if flag_inhib_forcing = 0, tendencies of forcing are added ! <> 0, tendencies of forcing are not added INTEGER :: flag_inhib_forcing = 0 !===================================================================== ! INITIALIZATIONS !===================================================================== du_phys(:)=0. dv_phys(:)=0. dt_phys(:)=0. dt_dyn(:)=0. dt_cooling(:)=0. d_t_adv(:)=0. d_t_nudge(:)=0. d_u_nudge(:)=0. d_v_nudge(:)=0. du_adv(:)=0. dv_adv(:)=0. du_age(:)=0. dv_age(:)=0. ! Initialization of Common turb_forcing dtime_frcg = 0. Turb_fcg_gcssold=.false. hthturb_gcssold = 0. hqturb_gcssold = 0. !--------------------------------------------------------------------- ! OPTIONS OF THE 1D SIMULATION (lmdz1d.def => unicol.def) !--------------------------------------------------------------------- !Al1 call conf_unicol !Al1 moves this gcssold var from common fcg_gcssold to Turb_fcg_gcssold = xTurb_fcg_gcssold ! -------------------------------------------------------------------- close(1) !Al1 write(*,*) 'lmdz1d.def lu => unicol.def' ! forcing_type defines the way the SCM is forced: !forcing_type = 0 ==> forcing_les = .true. ! initial profiles from file prof.inp.001 ! no forcing by LS convergence ; ! surface temperature imposed ; ! radiative cooling may be imposed (iflag_radia=0 in physiq.def) !forcing_type = 1 ==> forcing_radconv = .true. ! idem forcing_type = 0, but the imposed radiative cooling ! is set to 0 (hence, if iflag_radia=0 in physiq.def, ! then there is no radiative cooling at all) !forcing_type = 2 ==> forcing_toga = .true. ! initial profiles from TOGA-COARE IFA files ! LS convergence and SST imposed from TOGA-COARE IFA files !forcing_type = 3 ==> forcing_GCM2SCM = .true. ! initial profiles from the GCM output ! LS convergence imposed from the GCM output !forcing_type = 4 ==> forcing_twpice = .true. ! initial profiles from TWP-ICE cdf file ! LS convergence, omega and SST imposed from TWP-ICE files !forcing_type = 5 ==> forcing_rico = .true. ! initial profiles from RICO files ! LS convergence imposed from RICO files !forcing_type = 6 ==> forcing_amma = .true. ! initial profiles from AMMA nc file ! LS convergence, omega and surface fluxes imposed from AMMA file !forcing_type = 7 ==> forcing_dice = .true. ! initial profiles and large scale forcings in dice_driver.nc ! Different stages: soil model alone, atm. model alone ! then both models coupled !forcing_type = 8 ==> forcing_gabls4 = .true. ! initial profiles and large scale forcings in gabls4_driver.nc !forcing_type >= 100 ==> forcing_case = .true. ! initial profiles and large scale forcings in cas.nc ! LS convergence, omega and SST imposed from CINDY-DYNAMO files ! 101=cindynamo ! 102=bomex !forcing_type >= 100 ==> forcing_case2 = .true. ! temporary flag while all the 1D cases are not whith the same cas.nc forcing file ! 103=arm_cu2 ie arm_cu with new forcing format ! 104=rico2 ie rico with new forcing format !forcing_type = 40 ==> forcing_GCSSold = .true. ! initial profile from GCSS file ! LS convergence imposed from GCSS file !forcing_type = 50 ==> forcing_fire = .true. ! forcing from fire.nc !forcing_type = 59 ==> forcing_sandu = .true. ! initial profiles from sanduref file: see prof.inp.001 ! SST varying with time and divergence constante: see ifa_sanduref.txt file ! Radiation has to be computed interactively !forcing_type = 60 ==> forcing_astex = .true. ! initial profiles from file: see prof.inp.001 ! SST,divergence,ug,vg,ufa,vfa varying with time : see ifa_astex.txt file ! Radiation has to be computed interactively !forcing_type = 61 ==> forcing_armcu = .true. ! initial profiles from file: see prof.inp.001 ! sensible and latent heat flux imposed: see ifa_arm_cu_1.txt ! large scale advective forcing & radiative tendencies applied below 1000m: see ifa_arm_cu_2.txt ! use geostrophic wind ug=10m/s vg=0m/s. Duration of the case 53100s ! Radiation to be switched off ! if (forcing_type <=0) THEN forcing_les = .true. elseif (forcing_type .eq.1) THEN forcing_radconv = .true. elseif (forcing_type .eq.2) THEN forcing_toga = .true. elseif (forcing_type .eq.3) THEN forcing_GCM2SCM = .true. elseif (forcing_type .eq.4) THEN forcing_twpice = .true. elseif (forcing_type .eq.5) THEN forcing_rico = .true. elseif (forcing_type .eq.6) THEN forcing_amma = .true. elseif (forcing_type .eq.7) THEN forcing_dice = .true. elseif (forcing_type .eq.8) THEN forcing_gabls4 = .true. elseif (forcing_type .eq.101) THEN ! Cindynamo starts 1-10-2011 0h forcing_case = .true. year_ini_cas=2011 mth_ini_cas=10 day_deb=1 heure_ini_cas=0. pdt_cas=3*3600. ! forcing frequency elseif (forcing_type .eq.102) THEN ! Bomex starts 24-6-1969 0h forcing_case = .true. year_ini_cas=1969 mth_ini_cas=6 day_deb=24 heure_ini_cas=0. pdt_cas=1800. ! forcing frequency elseif (forcing_type .eq.103) THEN ! Arm_cu starts 21-6-1997 11h30 forcing_case2 = .true. year_ini_cas=1997 mth_ini_cas=6 day_deb=21 heure_ini_cas=11.5 pdt_cas=1800. ! forcing frequency elseif (forcing_type .eq.104) THEN ! rico starts 16-12-2004 0h forcing_case2 = .true. year_ini_cas=2004 mth_ini_cas=12 day_deb=16 heure_ini_cas=0. pdt_cas=1800. ! forcing frequency elseif (forcing_type .eq.105) THEN ! bomex starts 16-12-2004 0h forcing_case2 = .true. year_ini_cas=1969 mth_ini_cas=6 day_deb=24 heure_ini_cas=0. pdt_cas=1800. ! forcing frequency elseif (forcing_type .eq.106) THEN ! ayotte_24SC starts 6-11-1992 0h forcing_case2 = .true. year_ini_cas=1992 mth_ini_cas=11 day_deb=6 heure_ini_cas=10. pdt_cas=86400. ! forcing frequency elseif (forcing_type .eq.113) THEN ! Arm_cu starts 21-6-1997 11h30 forcing_SCM = .true. year_ini_cas=1997 ! It is possible that those parameters are run twice. call getin('anneeref',year_ini_cas) call getin('dayref',day_deb) mth_ini_cas=1 ! pour le moment on compte depuis le debut de l'annee call getin('time_ini',heure_ini_cas) elseif (forcing_type .eq.40) THEN forcing_GCSSold = .true. elseif (forcing_type .eq.50) THEN forcing_fire = .true. elseif (forcing_type .eq.59) THEN forcing_sandu = .true. elseif (forcing_type .eq.60) THEN forcing_astex = .true. elseif (forcing_type .eq.61) THEN forcing_armcu = .true. IF(llm.NE.19.AND.llm.NE.40) stop 'Erreur nombre de niveaux !!' else write (*,*) 'ERROR : unknown forcing_type ', forcing_type stop 'Forcing_type should be 0,1,2,3,4,5,6 or 40,59,60,61' ENDIF print*,"forcing type=",forcing_type ! if type_ts_forcing=0, the surface temp of 1D simulation is constant in time ! (specified by tsurf in lmdz1d.def); if type_ts_forcing=1, the surface temperature ! varies in time according to a forcing (e.g. forcing_toga) and is passed to read_tsurf1d.F ! through the common sst_forcing. type_ts_forcing = 0 if (forcing_toga.or.forcing_sandu.or.forcing_astex .or. forcing_dice) & & type_ts_forcing = 1 ! ! Initialization of the logical switch for nudging jcode = iflag_nudge do i = 1,nudge_max nudge(i) = mod(jcode,10) .ge. 1 jcode = jcode/10 enddo !--------------------------------------------------------------------- ! Definition of the run !--------------------------------------------------------------------- call conf_gcm( 99, .TRUE. ) !----------------------------------------------------------------------- allocate( phy_nat (year_len)) ! 0=ocean libre,1=land,2=glacier,3=banquise phy_nat(:)=0.0 allocate( phy_alb (year_len)) ! Albedo land only (old value condsurf_jyg=0.3) allocate( phy_sst (year_len)) ! SST (will not be used; cf read_tsurf1d.F) allocate( phy_bil (year_len)) ! Ne sert que pour les slab_ocean phy_bil(:)=1.0 allocate( phy_rug (year_len)) ! Longueur rugosite utilisee sur land only allocate( phy_ice (year_len)) ! Fraction de glace phy_ice(:)=0.0 allocate( phy_fter(year_len)) ! Fraction de terre phy_fter(:)=0.0 allocate( phy_foce(year_len)) ! Fraction de ocean phy_foce(:)=0.0 allocate( phy_fsic(year_len)) ! Fraction de glace phy_fsic(:)=0.0 allocate( phy_flic(year_len)) ! Fraction de glace phy_flic(:)=0.0 !----------------------------------------------------------------------- ! Choix du calendrier ! ------------------- ! calend = 'earth_365d' if (calend == 'earth_360d') then call ioconf_calendar('360d') write(*,*)'CALENDRIER CHOISI: Terrestre a 360 jours/an' else if (calend == 'earth_365d') then call ioconf_calendar('noleap') write(*,*)'CALENDRIER CHOISI: Terrestre a 365 jours/an' else if (calend == 'earth_366d') then call ioconf_calendar('all_leap') write(*,*)'CALENDRIER CHOISI: Terrestre bissextile' else if (calend == 'gregorian') then stop 'gregorian calend should not be used by normal user' call ioconf_calendar('gregorian') ! not to be used by normal users write(*,*)'CALENDRIER CHOISI: Gregorien' else write (*,*) 'ERROR : unknown calendar ', calend stop 'calend should be 360d,earth_365d,earth_366d,gregorian' endif !----------------------------------------------------------------------- ! !c Date : ! La date est supposee donnee sous la forme [annee, numero du jour dans ! l annee] ; l heure est donnee dans time_ini, lu dans lmdz1d.def. ! On appelle ymds2ju pour convertir [annee, jour] en [jour Julien]. ! Le numero du jour est dans "day". L heure est traitee separement. ! La date complete est dans "daytime" (l'unite est le jour). if (nday>0) then fnday=nday else fnday=-nday/float(day_step) endif print *,'fnday=',fnday ! start_time doit etre en FRACTION DE JOUR start_time=time_ini/24. ! Special case for arm_cu which lasts less than one day : 53100s !! (MPL 20111026) IF(forcing_type .EQ. 61) fnday=53100./86400. IF(forcing_type .EQ. 103) fnday=53100./86400. ! Special case for amma which lasts less than one day : 64800s !! (MPL 20120216) IF(forcing_type .EQ. 6) fnday=64800./86400. ! IF(forcing_type .EQ. 6) fnday=50400./86400. IF(forcing_type .EQ. 8 ) fnday=129600./86400. annee_ref = anneeref mois = 1 day_ref = dayref heure = 0. itau_dyn = 0 itau_phy = 0 call ymds2ju(annee_ref,mois,day_ref,heure,day) day_ini = int(day) day_end = day_ini + int(fnday) IF (forcing_type .eq.2) THEN ! Convert the initial date of Toga-Coare to Julian day call ymds2ju & & (year_ini_toga,mth_ini_toga,day_ini_toga,heure,day_ju_ini_toga) ELSEIF (forcing_type .eq.4) THEN ! Convert the initial date of TWPICE to Julian day call ymds2ju & & (year_ini_twpi,mth_ini_twpi,day_ini_twpi,heure_ini_twpi & & ,day_ju_ini_twpi) ELSEIF (forcing_type .eq.6) THEN ! Convert the initial date of AMMA to Julian day call ymds2ju & & (year_ini_amma,mth_ini_amma,day_ini_amma,heure_ini_amma & & ,day_ju_ini_amma) ELSEIF (forcing_type .eq.7) THEN ! Convert the initial date of DICE to Julian day call ymds2ju & & (year_ini_dice,mth_ini_dice,day_ini_dice,heure_ini_dice & & ,day_ju_ini_dice) ELSEIF (forcing_type .eq.8 ) THEN ! Convert the initial date of GABLS4 to Julian day call ymds2ju & & (year_ini_gabls4,mth_ini_gabls4,day_ini_gabls4,heure_ini_gabls4 & & ,day_ju_ini_gabls4) ELSEIF (forcing_type .gt.100) THEN ! Convert the initial date to Julian day day_ini_cas=day_deb print*,'time case',year_ini_cas,mth_ini_cas,day_ini_cas call ymds2ju & & (year_ini_cas,mth_ini_cas,day_ini_cas,heure_ini_cas*3600 & & ,day_ju_ini_cas) print*,'time case 2',day_ini_cas,day_ju_ini_cas ELSEIF (forcing_type .eq.59) THEN ! Convert the initial date of Sandu case to Julian day call ymds2ju & & (year_ini_sandu,mth_ini_sandu,day_ini_sandu, & & time_ini*3600.,day_ju_ini_sandu) ELSEIF (forcing_type .eq.60) THEN ! Convert the initial date of Astex case to Julian day call ymds2ju & & (year_ini_astex,mth_ini_astex,day_ini_astex, & & time_ini*3600.,day_ju_ini_astex) ELSEIF (forcing_type .eq.61) THEN ! Convert the initial date of Arm_cu case to Julian day call ymds2ju & & (year_ini_armcu,mth_ini_armcu,day_ini_armcu,heure_ini_armcu & & ,day_ju_ini_armcu) ENDIF IF (forcing_type .gt.100) THEN daytime = day + heure_ini_cas/24. ! 1st day and initial time of the simulation ELSE daytime = day + time_ini/24. ! 1st day and initial time of the simulation ENDIF ! Print out the actual date of the beginning of the simulation : call ju2ymds(daytime,year_print, month_print,day_print,sec_print) print *,' Time of beginning : ', & & year_print, month_print, day_print, sec_print !--------------------------------------------------------------------- ! Initialization of dimensions, geometry and initial state !--------------------------------------------------------------------- ! call init_phys_lmdz(1,1,llm,1,(/1/)) ! job now done via iniphysiq ! but we still need to initialize dimphy module (klon,klev,etc.) here. call init_dimphy1D(1,llm) call suphel call infotrac_init if (nqtot>nqmx) STOP 'Augmenter nqmx dans lmdz1d.F' allocate(q(llm,nqtot)) ; q(:,:)=0. allocate(dq(llm,nqtot)) allocate(dq_dyn(llm,nqtot)) allocate(d_q_adv(llm,nqtot)) allocate(d_q_nudge(llm,nqtot)) ! allocate(d_th_adv(llm)) q(:,:) = 0. dq(:,:) = 0. dq_dyn(:,:) = 0. d_q_adv(:,:) = 0. d_q_nudge(:,:) = 0. ! ! No ozone climatology need be read in this pre-initialization ! (phys_state_var_init is called again in physiq) read_climoz = 0 ! call phys_state_var_init(read_climoz) if (ngrid.ne.klon) then print*,'stop in inifis' print*,'Probleme de dimensions :' print*,'ngrid = ',ngrid print*,'klon = ',klon stop endif !!!===================================================================== !!! Feedback forcing values for Gateaux differentiation (al1) !!!===================================================================== !!! Surface Planck forcing bracketing call radiation !! surf_Planck = 0. !! surf_Conv = 0. !! write(*,*) 'Gateaux-dif Planck,Conv:',surf_Planck,surf_Conv !!! a mettre dans le lmdz1d.def ou autre !! !! qsol = qsolinp qsurf = fq_sat(tsurf,psurf/100.) day1= day_ini time=daytime-day ts_toga(1)=tsurf ! needed by read_tsurf1d.F rho(1)=psurf/(rd*tsurf*(1.+(rv/rd-1.)*qsurf)) ! !! mpl et jyg le 22/08/2012 : !! pour que les cas a flux de surface imposes marchent IF(.NOT.ok_flux_surf.or.max(abs(wtsurf),abs(wqsurf))>0.) THEN fsens=-wtsurf*rcpd*rho(1) flat=-wqsurf*rlvtt*rho(1) print *,'Flux: ok_flux wtsurf wqsurf',ok_flux_surf,wtsurf,wqsurf ENDIF print*,'Flux sol ',fsens,flat !! ok_flux_surf=.false. !! fsens=-wtsurf*rcpd*rho(1) !! flat=-wqsurf*rlvtt*rho(1) !!!! ! Vertical discretization and pressure levels at half and mid levels: pa = 5e4 !! preff= 1.01325e5 preff = psurf IF (ok_old_disvert) THEN call disvert0(pa,preff,ap,bp,dpres,presnivs,nivsigs,nivsig) print *,'On utilise disvert0' aps(1:llm)=0.5*(ap(1:llm)+ap(2:llm+1)) bps(1:llm)=0.5*(bp(1:llm)+bp(2:llm+1)) scaleheight=8. pseudoalt(1:llm)=-scaleheight*log(presnivs(1:llm)/preff) ELSE call disvert() print *,'On utilise disvert' ! Nouvelle version disvert permettant d imposer ap,bp (modif L.Guez) MPL 18092012 ! Dans ce cas, on lit ap,bp dans le fichier hybrid.txt ENDIF sig_s=presnivs/preff plev =ap+bp*psurf play = 0.5*(plev(1:llm)+plev(2:llm+1)) zlay=-rd*300.*log(play/psurf)/rg ! moved after reading profiles IF (forcing_type .eq. 59) THEN ! pour forcing_sandu, on cherche l'indice le plus proche de 700hpa#3000m write(*,*) '***********************' do l = 1, llm write(*,*) 'l,play(l),presnivs(l): ',l,play(l),presnivs(l) if (trouve_700 .and. play(l).le.70000) then llm700=l print *,'llm700,play=',llm700,play(l)/100. trouve_700= .false. endif enddo write(*,*) '***********************' ENDIF ! !===================================================================== ! EVENTUALLY, READ FORCING DATA : !===================================================================== #include "old_1D_read_forc_cases.h" if (forcing_GCM2SCM) then write (*,*) 'forcing_GCM2SCM not yet implemented' stop 'in initialization' endif ! forcing_GCM2SCM print*,'mxcalc=',mxcalc ! print*,'zlay=',zlay(mxcalc) print*,'play=',play(mxcalc) !Al1 pour SST forced, appell?? depuis ocean_forced_noice ts_cur = tsurf ! SST used in read_tsurf1d !===================================================================== ! Initialisation de la physique : !===================================================================== ! Rq: conf_phys.F90 lit tous les flags de physiq.def; conf_phys appele depuis physiq.F ! ! day_step, iphysiq lus dans gcm.def ci-dessus ! timestep: calcule ci-dessous from rday et day_step ! ngrid=1 ! llm: defini dans .../modipsl/modeles/LMDZ4/libf/grid/dimension ! rday: defini dans suphel.F (86400.) ! day_ini: lu dans run.def (dayref) ! rlat_rad,rlon-rad: transformes en radian de rlat,rlon lus dans lmdz1d.def (en degres) ! airefi,zcufi,zcvfi initialises au debut de ce programme ! rday,ra,rg,rd,rcpd declares dans YOMCST.h et calcules dans suphel.F day_step = float(nsplit_phys)*day_step/float(iphysiq) write (*,*) 'Time step divided by nsplit_phys (=',nsplit_phys,')' timestep =rday/day_step dtime_frcg = timestep ! zcufi=airefi zcvfi=airefi ! rlat_rad(1)=xlat*rpi/180. rlon_rad(1)=xlon*rpi/180. ! iniphysiq will call iniaqua who needs year_len from phys_cal_mod year_len_phys_cal_mod=year_len ! Ehouarn: iniphysiq requires arrays related to (3D) dynamics grid, ! e.g. for cell boundaries, which are meaningless in 1D; so pad these ! with '0.' when necessary call iniphysiq(iim,jjm,llm, & 1,comm_lmdz, & rday,day_ini,timestep, & (/rlat_rad(1),0./),(/0./), & (/0.,0./),(/rlon_rad(1),0./), & (/ (/airefi,0./),(/0.,0./) /), & (/zcufi,0.,0.,0./), & (/zcvfi,0./), & ra,rg,rd,rcpd,1) print*,'apres iniphysiq' ! 2 PARAMETRES QUI DEVRAIENT ETRE LUS DANS run.def MAIS NE LE SONT PAS ICI: co2_ppm= 330.0 solaire=1370.0 ! Ecriture du startphy avant le premier appel a la physique. ! On le met juste avant pour avoir acces a tous les champs if (ok_writedem) then !-------------------------------------------------------------------------- ! pbl_surface_init (called here) and pbl_surface_final (called by phyredem) ! need : qsol fder snow qsurf evap rugos agesno ftsoil !-------------------------------------------------------------------------- type_ocean = "force" run_off_lic_0(1) = restart_runoff call fonte_neige_init(run_off_lic_0) fder=0. snsrf(1,:)=snowmass ! masse de neige des sous surface qsurfsrf(1,:)=qsurf ! humidite de l'air des sous surface fevap=0. z0m(1,:)=rugos ! couverture de neige des sous surface z0h(1,:)=rugosh ! couverture de neige des sous surface agesno = xagesno tsoil(:,:,:)=tsurf !------ AMMA 2e run avec modele sol et rayonnement actif (MPL 23052012) ! tsoil(1,1,1)=299.18 ! tsoil(1,2,1)=300.08 ! tsoil(1,3,1)=301.88 ! tsoil(1,4,1)=305.48 ! tsoil(1,5,1)=308.00 ! tsoil(1,6,1)=308.00 ! tsoil(1,7,1)=308.00 ! tsoil(1,8,1)=308.00 ! tsoil(1,9,1)=308.00 ! tsoil(1,10,1)=308.00 ! tsoil(1,11,1)=308.00 !----------------------------------------------------------------------- call pbl_surface_init(fder, snsrf, qsurfsrf, tsoil) !------------------ prepare limit conditions for limit.nc ----------------- !-- Ocean force print*,'avant phyredem' pctsrf(1,:)=0. if (nat_surf.eq.0.) then pctsrf(1,is_oce)=1. pctsrf(1,is_ter)=0. pctsrf(1,is_lic)=0. pctsrf(1,is_sic)=0. else if (nat_surf .eq. 1) then pctsrf(1,is_oce)=0. pctsrf(1,is_ter)=1. pctsrf(1,is_lic)=0. pctsrf(1,is_sic)=0. else if (nat_surf .eq. 2) then pctsrf(1,is_oce)=0. pctsrf(1,is_ter)=0. pctsrf(1,is_lic)=1. pctsrf(1,is_sic)=0. else if (nat_surf .eq. 3) then pctsrf(1,is_oce)=0. pctsrf(1,is_ter)=0. pctsrf(1,is_lic)=0. pctsrf(1,is_sic)=1. end if print*,'nat_surf,pctsrf(1,is_oce),pctsrf(1,is_ter)',nat_surf & & ,pctsrf(1,is_oce),pctsrf(1,is_ter) zmasq=pctsrf(1,is_ter)+pctsrf(1,is_lic) zpic = zpicinp ftsol=tsurf nsw=6 ! on met le nb de bandes SW=6, pour initialiser ! 6 albedo, mais on peut quand meme tourner avec ! moins. Seules les 2 ou 4 premiers seront lus falb_dir=albedo falb_dif=albedo rugoro=rugos t_ancien(1,:)=temp(:) q_ancien(1,:)=q(:,1) ql_ancien = 0. qs_ancien = 0. prlw_ancien = 0. prsw_ancien = 0. prw_ancien = 0. !jyg< !! pbl_tke(:,:,:)=1.e-8 pbl_tke(:,:,:)=0. pbl_tke(:,2,:)=1.e-2 PRINT *, ' pbl_tke dans lmdz1d ' if (prt_level .ge. 5) then DO nsrf = 1,4 PRINT *,'pbl_tke(1,:,',nsrf,') ',pbl_tke(1,:,nsrf) ENDDO end if !>jyg rain_fall=0. snow_fall=0. solsw=0. sollw=0. sollwdown=rsigma*tsurf**4 radsol=0. rnebcon=0. ratqs=0. clwcon=0. zmax0 = 0. zmea=0. zstd=0. zsig=0. zgam=0. zval=0. zthe=0. sig1=0. w01=0. wake_cstar = 0. wake_deltaq = 0. wake_deltat = 0. wake_delta_pbl_TKE(:,:,:) = 0. delta_tsurf = 0. wake_fip = 0. wake_pe = 0. wake_s = 0. wake_dens = 0. ale_bl = 0. ale_bl_trig = 0. alp_bl = 0. IF (ALLOCATED(du_gwd_rando)) du_gwd_rando = 0. IF (ALLOCATED(du_gwd_front)) du_gwd_front = 0. entr_therm = 0. detr_therm = 0. f0 = 0. fm_therm = 0. u_ancien(1,:)=u(:) v_ancien(1,:)=v(:) !------------------------------------------------------------------------ ! Make file containing restart for the physics (startphy.nc) ! ! NB: List of the variables to be written by phyredem (via put_field): ! rlon,rlat,zmasq,pctsrf(:,is_ter),pctsrf(:,is_lic),pctsrf(:,is_oce) ! pctsrf(:,is_sic),ftsol(:,nsrf),tsoil(:,isoil,nsrf),qsurf(:,nsrf) ! qsol,falb_dir(:,nsrf),falb_dif(:,nsrf),evap(:,nsrf),snow(:,nsrf) ! radsol,solsw,sollw, sollwdown,fder,rain_fall,snow_fall,frugs(:,nsrf) ! agesno(:,nsrf),zmea,zstd,zsig,zgam,zthe,zpic,zval,rugoro ! t_ancien,q_ancien,,frugs(:,is_oce),clwcon(:,1),rnebcon(:,1),ratqs(:,1) ! run_off_lic_0,pbl_tke(:,1:klev,nsrf), zmax0,f0,sig1,w01 ! wake_deltat,wake_deltaq,wake_s,wake_dens,wake_cstar, ! wake_fip,wake_delta_pbl_tke(:,1:klev,nsrf) ! ! NB2: The content of the startphy.nc file depends on some flags defined in ! the ".def" files. However, since conf_phys is not called in lmdz1d.F90, these flags have ! to be set at some arbitratry convenient values. !------------------------------------------------------------------------ !Al1 =============== restart option ========================== if (.not.restart) then iflag_pbl = 5 call phyredem ("startphy.nc") else ! (desallocations) print*,'callin surf final' call pbl_surface_final( fder, snsrf, qsurfsrf, tsoil) print*,'after surf final' CALL fonte_neige_final(run_off_lic_0) endif ok_writedem=.false. print*,'apres phyredem' endif ! ok_writedem !------------------------------------------------------------------------ ! Make file containing boundary conditions (limit.nc) **Al1->restartdyn*** ! -------------------------------------------------- ! NB: List of the variables to be written in limit.nc ! (by writelim.F, subroutine of 1DUTILS.h): ! phy_nat,phy_alb,phy_sst,phy_bil,phy_rug,phy_ice, ! phy_fter,phy_foce,phy_flic,phy_fsic) !------------------------------------------------------------------------ do i=1,year_len phy_nat(i) = nat_surf phy_alb(i) = albedo phy_sst(i) = tsurf ! read_tsurf1d will be used instead phy_rug(i) = rugos phy_fter(i) = pctsrf(1,is_ter) phy_foce(i) = pctsrf(1,is_oce) phy_fsic(i) = pctsrf(1,is_sic) phy_flic(i) = pctsrf(1,is_lic) enddo ! fabrication de limit.nc call writelim (1,phy_nat,phy_alb,phy_sst,phy_bil,phy_rug, & & phy_ice,phy_fter,phy_foce,phy_flic,phy_fsic) call phys_state_var_end !Al1 if (restart) then print*,'call to restart dyn 1d' Call dyn1deta0("start1dyn.nc",plev,play,phi,phis,presnivs, & & u,v,temp,q,omega2) print*,'fnday,annee_ref,day_ref,day_ini', & & fnday,annee_ref,day_ref,day_ini !** call ymds2ju(annee_ref,mois,day_ini,heure,day) day = day_ini day_end = day_ini + nday daytime = day + time_ini/24. ! 1st day and initial time of the simulation ! Print out the actual date of the beginning of the simulation : call ju2ymds(daytime, an, mois, jour, heure) print *,' Time of beginning : y m d h',an, mois,jour,heure/3600. day = int(daytime) time=daytime-day print*,'****** intialised fields from restart1dyn *******' print*,'plev,play,phi,phis,presnivs,u,v,temp,q,omega2' print*,'temp(1),q(1,1),u(1),v(1),plev(1),phis :' print*,temp(1),q(1,1),u(1),v(1),plev(1),phis ! raz for safety do l=1,llm dq_dyn(l,1) = 0. enddo endif !Al1 ================ end restart ================================= IF (ecrit_slab_oc.eq.1) then open(97,file='div_slab.dat',STATUS='UNKNOWN') elseif (ecrit_slab_oc.eq.0) then open(97,file='div_slab.dat',STATUS='OLD') endif ! !--------------------------------------------------------------------- ! Initialize target profile for RHT nudging if needed !--------------------------------------------------------------------- if (nudge(inudge_RHT)) then call nudge_RHT_init(plev,play,temp,q(:,1),t_targ,rh_targ) endif if (nudge(inudge_UV)) then call nudge_UV_init(plev,play,u,v,u_targ,v_targ) endif ! !===================================================================== CALL iophys_ini ! START OF THE TEMPORAL LOOP : !===================================================================== it_end = nint(fnday*day_step) !test JLD it_end = 10 do while(it.le.it_end) if (prt_level.ge.1) then print*,'XXXXXXXXXXXXXXXXXXX ITAP,day,time=', & & it,day,time,it_end,day_step print*,'PAS DE TEMPS ',timestep endif !Al1 demande de restartphy.nc if (it.eq.it_end) lastcall=.True. !--------------------------------------------------------------------- ! Interpolation of forcings in time and onto model levels !--------------------------------------------------------------------- #include "old_1D_interp_cases.h" if (forcing_GCM2SCM) then write (*,*) 'forcing_GCM2SCM not yet implemented' stop 'in time loop' endif ! forcing_GCM2SCM !--------------------------------------------------------------------- ! Geopotential : !--------------------------------------------------------------------- phi(1)=RD*temp(1)*(plev(1)-play(1))/(.5*(plev(1)+play(1))) do l = 1, llm-1 phi(l+1)=phi(l)+RD*(temp(l)+temp(l+1))* & & (play(l)-play(l+1))/(play(l)+play(l+1)) enddo !--------------------------------------------------------------------- ! Listing output for debug prt_level>=1 !--------------------------------------------------------------------- if (prt_level>=1) then print *,' avant physiq : -------- day time ',day,time write(*,*) 'firstcall,lastcall,phis', & & firstcall,lastcall,phis end if if (prt_level>=5) then write(*,'(a10,2a4,4a13)') 'BEFOR1 IT=','it','l', & & 'presniv','plev','play','phi' write(*,'(a10,2i4,4f13.2)') ('BEFOR1 IT= ',it,l, & & presnivs(l),plev(l),play(l),phi(l),l=1,llm) write(*,'(a11,2a4,a11,6a8)') 'BEFOR2','it','l', & & 'presniv','u','v','temp','q1','q2','omega2' write(*,'(a11,2i4,f11.2,5f8.2,e10.2)') ('BEFOR2 IT= ',it,l, & & presnivs(l),u(l),v(l),temp(l),q(l,1),q(l,2),omega2(l),l=1,llm) endif !--------------------------------------------------------------------- ! Call physiq : !--------------------------------------------------------------------- call physiq(ngrid,llm, & firstcall,lastcall,timestep, & plev,play,phi,phis,presnivs, & u,v, rot, temp,q,omega2, & du_phys,dv_phys,dt_phys,dq,dpsrf) firstcall=.false. !--------------------------------------------------------------------- ! Listing output for debug !--------------------------------------------------------------------- if (prt_level>=5) then write(*,'(a11,2a4,4a13)') 'AFTER1 IT=','it','l', & & 'presniv','plev','play','phi' write(*,'(a11,2i4,4f13.2)') ('AFTER1 it= ',it,l, & & presnivs(l),plev(l),play(l),phi(l),l=1,llm) write(*,'(a11,2a4,a11,6a8)') 'AFTER2','it','l', & & 'presniv','u','v','temp','q1','q2','omega2' write(*,'(a11,2i4,f11.2,5f8.2,e10.2)') ('AFTER2 it= ',it,l, & & presnivs(l),u(l),v(l),temp(l),q(l,1),q(l,2),omega2(l),l=1,llm) write(*,'(a11,2a4,a11,5a8)') 'AFTER3','it','l', & & 'presniv','du_phys','dv_phys','dt_phys','dq1','dq2' write(*,'(a11,2i4,f11.2,5f8.2)') ('AFTER3 it= ',it,l, & & presnivs(l),86400*du_phys(l),86400*dv_phys(l), & & 86400*dt_phys(l),86400*dq(l,1),dq(l,2),l=1,llm) write(*,*) 'dpsrf',dpsrf endif !--------------------------------------------------------------------- ! Add physical tendencies : !--------------------------------------------------------------------- fcoriolis=2.*sin(rpi*xlat/180.)*romega if (forcing_radconv .or. forcing_fire) then fcoriolis=0.0 dt_cooling=0.0 d_t_adv=0.0 d_q_adv=0.0 endif ! print*, 'calcul de fcoriolis ', fcoriolis if (forcing_toga .or. forcing_GCSSold .or. forcing_twpice & & .or.forcing_amma .or. forcing_type.eq.101) then fcoriolis=0.0 ; ug=0. ; vg=0. endif if(forcing_rico) then dt_cooling=0. endif !CRio:Attention modif sp??cifique cas de Caroline if (forcing_type==-1) then fcoriolis=0. !Nudging !on calcule dt_cooling do l=1,llm if (play(l).ge.20000.) then dt_cooling(l)=-1.5/86400. elseif ((play(l).ge.10000.).and.((play(l).lt.20000.))) then dt_cooling(l)=-1.5/86400.*(play(l)-10000.)/(10000.)-1./86400.*(20000.-play(l))/10000.*(temp(l)-200.) else dt_cooling(l)=-1.*(temp(l)-200.)/86400. endif enddo endif !RC if (forcing_sandu) then ug(1:llm)=u_mod(1:llm) vg(1:llm)=v_mod(1:llm) endif IF (prt_level >= 5) print*, 'fcoriolis, xlat,mxcalc ', & fcoriolis, xlat,mxcalc ! print *,'u-ug=',u-ug !!!!!!!!!!!!!!!!!!!!!!!! ! Geostrophic wind ! Le calcul ci dessous est insuffisamment precis ! du_age(1:mxcalc)=fcoriolis*(v(1:mxcalc)-vg(1:mxcalc)) ! dv_age(1:mxcalc)=-fcoriolis*(u(1:mxcalc)-ug(1:mxcalc)) !!!!!!!!!!!!!!!!!!!!!!!! sfdt = sin(0.5*fcoriolis*timestep) cfdt = cos(0.5*fcoriolis*timestep) ! print *,'fcoriolis,sfdt,cfdt,timestep',fcoriolis,sfdt,cfdt,timestep ! du_age(1:mxcalc)= -2.*sfdt/timestep* & & (sfdt*(u(1:mxcalc)-ug(1:mxcalc)) - & & cfdt*(v(1:mxcalc)-vg(1:mxcalc)) ) !! : fcoriolis*(v(1:mxcalc)-vg(1:mxcalc)) ! dv_age(1:mxcalc)= -2.*sfdt/timestep* & & (cfdt*(u(1:mxcalc)-ug(1:mxcalc)) + & & sfdt*(v(1:mxcalc)-vg(1:mxcalc)) ) !! : -fcoriolis*(u(1:mxcalc)-ug(1:mxcalc)) ! !!!!!!!!!!!!!!!!!!!!!!!! ! Nudging !!!!!!!!!!!!!!!!!!!!!!!! d_t_nudge(:) = 0. d_q_nudge(:,:) = 0. d_u_nudge(:) = 0. d_v_nudge(:) = 0. if (nudge(inudge_RHT)) then call nudge_RHT(timestep,plev,play,t_targ,rh_targ,temp,q(:,1), & & d_t_nudge,d_q_nudge(:,1)) endif if (nudge(inudge_UV)) then call nudge_UV(timestep,plev,play,u_targ,v_targ,u,v, & & d_u_nudge,d_v_nudge) endif ! if (forcing_fire) THEN !let ww=if ( alt le 1100 ) then alt*-0.00001 else 0 !let wt=if ( alt le 1100 ) then min( -3.75e-5 , -7.5e-8*alt) else 0 !let wq=if ( alt le 1100 ) then max( 1.5e-8 , 3e-11*alt) else 0 d_t_adv=0. d_q_adv=0. teta=temp*(pzero/play)**rkappa d_t_adv=0. d_q_adv=0. do l=2,llm-1 if (zlay(l)<=1100) then wwww=-0.00001*zlay(l) d_t_adv(l)=-wwww*(teta(l)-teta(l+1))/(zlay(l)-zlay(l+1)) /(pzero/play(l))**rkappa d_q_adv(l,1:2)=-wwww*(q(l,1:2)-q(l+1,1:2))/(zlay(l)-zlay(l+1)) d_t_adv(l)=d_t_adv(l)+min(-3.75e-5 , -7.5e-8*zlay(l)) d_q_adv(l,1)=d_q_adv(l,1)+max( 1.5e-8 , 3e-11*zlay(l)) endif enddo endif !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! call writefield_phy('dv_age' ,dv_age,llm) ! call writefield_phy('du_age' ,du_age,llm) ! call writefield_phy('du_phys' ,du_phys,llm) ! call writefield_phy('u_tend' ,u,llm) ! call writefield_phy('u_g' ,ug,llm) ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Increment state variables !!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF (flag_inhib_forcing == 0) then ! if tendency of forcings should be added ! pour les cas sandu et astex, on reclacule u,v,q,temp et teta dans 1D_nudge_sandu_astex.h ! au dessus de 700hpa, on relaxe vers les profils initiaux if (forcing_sandu .OR. forcing_astex) then #include "1D_nudge_sandu_astex.h" else u(1:mxcalc)=u(1:mxcalc) + timestep*( & & du_phys(1:mxcalc) & & +du_age(1:mxcalc)+du_adv(1:mxcalc) & & +d_u_nudge(1:mxcalc) ) v(1:mxcalc)=v(1:mxcalc) + timestep*( & & dv_phys(1:mxcalc) & & +dv_age(1:mxcalc)+dv_adv(1:mxcalc) & & +d_v_nudge(1:mxcalc) ) q(1:mxcalc,:)=q(1:mxcalc,:)+timestep*( & & dq(1:mxcalc,:) & & +d_q_adv(1:mxcalc,:) & & +d_q_nudge(1:mxcalc,:) ) if (prt_level.ge.3) then print *, & & 'physiq-> temp(1),dt_phys(1),d_t_adv(1),dt_cooling(1) ', & & temp(1),dt_phys(1),d_t_adv(1),dt_cooling(1) print* ,'dv_phys=',dv_phys print* ,'dv_age=',dv_age print* ,'dv_adv=',dv_adv print* ,'d_v_nudge=',d_v_nudge print*, v print*, vg endif temp(1:mxcalc)=temp(1:mxcalc)+timestep*( & & dt_phys(1:mxcalc) & & +d_t_adv(1:mxcalc) & & +d_t_nudge(1:mxcalc) & & +dt_cooling(1:mxcalc)) ! Taux de chauffage ou refroid. endif ! forcing_sandu or forcing_astex teta=temp*(pzero/play)**rkappa ! !--------------------------------------------------------------------- ! Nudge soil temperature if requested !--------------------------------------------------------------------- IF (nudge_tsoil .AND. .NOT. lastcall) THEN ftsoil(1,isoil_nudge,:) = ftsoil(1,isoil_nudge,:) & & -timestep/tau_soil_nudge*(ftsoil(1,isoil_nudge,:)-Tsoil_nudge) ENDIF !--------------------------------------------------------------------- ! Add large-scale tendencies (advection, etc) : !--------------------------------------------------------------------- !cc nrlmd !cc tmpvar=teta !cc call advect_vert(llm,omega,timestep,tmpvar,plev) !cc !cc teta(1:mxcalc)=tmpvar(1:mxcalc) !cc tmpvar(:)=q(:,1) !cc call advect_vert(llm,omega,timestep,tmpvar,plev) !cc q(1:mxcalc,1)=tmpvar(1:mxcalc) !cc tmpvar(:)=q(:,2) !cc call advect_vert(llm,omega,timestep,tmpvar,plev) !cc q(1:mxcalc,2)=tmpvar(1:mxcalc) END IF ! end if tendency of tendency should be added !--------------------------------------------------------------------- ! Air temperature : !--------------------------------------------------------------------- if (lastcall) then print*,'Pas de temps final ',it call ju2ymds(daytime, an, mois, jour, heure) print*,'a la date : a m j h',an, mois, jour ,heure/3600. endif ! incremente day time ! print*,'daytime bef',daytime,1./day_step daytime = daytime+1./day_step !Al1dbg day = int(daytime+0.1/day_step) ! time = max(daytime-day,0.0) !Al1&jyg: correction de bug !cc time = real(mod(it,day_step))/day_step time = time_ini/24.+real(mod(it,day_step))/day_step ! print*,'daytime nxt time',daytime,time it=it+1 enddo !Al1 if (ecrit_slab_oc.ne.-1) close(97) !Al1 Call to 1D equivalent of dynredem (an,mois,jour,heure ?) ! ------------------------------------- call dyn1dredem("restart1dyn.nc", & & plev,play,phi,phis,presnivs, & & u,v,temp,q,omega2) CALL abort_gcm ('lmdz1d ','The End ',0) END SUBROUTINE old_lmdz1d #include "old_1DUTILS_read_interp.h"