! $Id: newmicro.F 1347 2010-04-13 15:12:56Z jyg $ ! SUBROUTINE newmicro (paprs, pplay,ok_newmicro, . t, pqlwp, pclc, pcltau, pclemi, . pch, pcl, pcm, pct, pctlwp, s xflwp, xfiwp, xflwc, xfiwc, e ok_aie, e mass_solu_aero, mass_solu_aero_pi, e bl95_b0, bl95_b1, s cldtaupi, re, fl, reliq, reice) USE dimphy USE phys_local_var_mod, only: scdnc,cldncl,reffclwtop,lcc, . reffclws,reffclwc,cldnvi,lcc3d, . lcc3dcon,lcc3dstra USE phys_state_var_mod, only: rnebcon,clwcon IMPLICIT none c====================================================================== c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 c Objet: Calculer epaisseur optique et emmissivite des nuages c====================================================================== c Arguments: c t-------input-R-temperature c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) c c ok_aie--input-L-apply aerosol indirect effect or not c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] c mass_solu_aero_pi--input-R-dito, pre-industrial value c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) c c cldtaupi-output-R-pre-industrial value of cloud optical thickness, c needed for the diagnostics of the aerosol indirect c radiative forcing (see radlwsw) c re------output-R-Cloud droplet effective radius multiplied by fl [um] c fl------output-R-Denominator to re, introduced to avoid problems in c the averaging of the output. fl is the fraction of liquid c water clouds within a grid cell c pcltau--output-R-epaisseur optique des nuages c pclemi--output-R-emissivite des nuages (0 a 1) c====================================================================== C #include "YOMCST.h" c cym#include "dimensions.h" cym#include "dimphy.h" #include "nuage.h" cIM cf. CR: include pour NOVLP et ZEPSEC #include "radepsi.h" #include "radopt.h" c choix de l'hypothese de recouvrememnt nuageuse LOGICAL RANDOM,MAXIMUM_RANDOM,MAXIMUM,FIRST parameter (RANDOM=.FALSE., MAXIMUM_RANDOM=.TRUE., MAXIMUM=.FALSE.) c Hypoyhese de recouvrement : MAXIMUM_RANDOM INTEGER flag_max REAL phase3d(klon, klev),dh(klon, klev),pdel(klon, klev), . zrho(klon, klev) REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) REAL thres_tau,thres_neb PARAMETER (thres_tau=0.3, thres_neb=0.001) REAL t_tmp REAL gravit PARAMETER (gravit=9.80616) !m/s2 REAL pqlwpcon(klon, klev), pqlwpstra(klon, klev) c REAL paprs(klon,klev+1), pplay(klon,klev) REAL t(klon,klev) c REAL pclc(klon,klev) REAL pqlwp(klon,klev) REAL pcltau(klon,klev), pclemi(klon,klev) c REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) c LOGICAL lo c REAL cetahb, cetamb PARAMETER (cetahb = 0.45, cetamb = 0.80) C INTEGER i, k cIM: 091003 REAL zflwp, zradef, zfice, zmsac REAL zflwp(klon), zradef, zfice, zmsac cIM: 091003 rajout REAL xflwp(klon), xfiwp(klon) REAL xflwc(klon,klev), xfiwc(klon,klev) c REAL radius, rad_chaud cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) REAL coef, coef_froi, coef_chau PARAMETER (coef_chau=0.13, coef_froi=0.09) REAL seuil_neb PARAMETER (seuil_neb=0.001) INTEGER nexpo ! exponentiel pour glace/eau PARAMETER (nexpo=6) ccc PARAMETER (nexpo=1) c -- sb: logical ok_newmicro c parameter (ok_newmicro=.FALSE.) cIM: 091003 real rel, tc, rei, zfiwp real rel, tc, rei, zfiwp(klon) real k_liq, k_ice0, k_ice, DF parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g parameter (DF=1.66) ! diffusivity factor c sb -- cjq for the aerosol indirect effect cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 cjq LOGICAL ok_aie ! Apply AIE or not? LOGICAL ok_a1lwpdep ! a1 LWP dependent? REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] REAL re(klon, klev) ! cloud droplet effective radius [um] REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag cjq-end cIM cf. CR:parametres supplementaires REAL zclear(klon) REAL zcloud(klon) c ************************** c * * c * DEBUT PARTIE OPTIMISEE * c * * c ************************** REAL diff_paprs(klon, klev), zfice1, zfice2(klon, klev) REAL rad_chaud_tab(klon, klev), zflwp_var, zfiwp_var ! Abderrahmane oct 2009 Real reliq(klon, klev), reice(klon, klev) c c Calculer l'epaisseur optique et l'emmissivite des nuages c c IM inversion des DO xflwp = 0.d0 xfiwp = 0.d0 xflwc = 0.d0 xfiwc = 0.d0 ! Initialisation reliq=0. reice=0. DO k = 1, klev DO i = 1, klon diff_paprs(i,k) = (paprs(i,k)-paprs(i,k+1))/RG ENDDO ENDDO IF (ok_newmicro) THEN DO k = 1, klev DO i = 1, klon c zfice2(i,k) = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) zfice2(i,k) = 1.0 - (t(i,k)-t_glace_min) / & (t_glace_max-t_glace_min) zfice2(i,k) = MIN(MAX(zfice2(i,k),0.0),1.0) c IM Total Liquid/Ice water content xflwc(i,k) = (1.-zfice2(i,k))*pqlwp(i,k) xfiwc(i,k) = zfice2(i,k)*pqlwp(i,k) c IM In-Cloud Liquid/Ice water content c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) ENDDO ENDDO IF (ok_aie) THEN DO k = 1, klev DO i = 1, klon ! Formula "D" of Boucher and Lohmann, Tellus, 1995 ! cdnc(i,k) = 10.**(bl95_b0+bl95_b1* & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 ! Cloud droplet number concentration (CDNC) is restricted ! to be within [20, 1000 cm^3] ! cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) ! ! cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.)) & *1.e6 !-m-3 cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) ENDDO ENDDO DO k = 1, klev DO i = 1, klon ! rad_chaud_tab(i,k) = ! & MAX(1.1e6 ! & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) ! & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.),5.) rad_chaud_tab(i,k) = & 1.1 & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) rad_chaud_tab(i,k) = MAX(rad_chaud_tab(i,k) * 1e6, 5.) ENDDO ENDDO ELSE DO k = 1, MIN(3,klev) DO i = 1, klon rad_chaud_tab(i,k) = rad_chau2 ENDDO ENDDO DO k = MIN(3,klev)+1, klev DO i = 1, klon rad_chaud_tab(i,k) = rad_chau1 ENDDO ENDDO ENDIF DO k = 1, klev ! IF(.not.ok_aie) THEN rad_chaud = rad_chau1 IF (k.LE.3) rad_chaud = rad_chau2 ! ENDIF DO i = 1, klon IF (pclc(i,k) .LE. seuil_neb) THEN c -- effective cloud droplet radius (microns): c for liquid water clouds: ! For output diagnostics ! ! Cloud droplet effective radius [um] ! ! we multiply here with f * xl (fraction of liquid water ! clouds in the grid cell) to avoid problems in the ! averaging of the output. ! In the output of IOIPSL, derive the real cloud droplet ! effective radius as re/fl ! fl(i,k) = seuil_neb*(1.-zfice2(i,k)) re(i,k) = rad_chaud_tab(i,k)*fl(i,k) rel = 0. rei = 0. pclc(i,k) = 0.0 pcltau(i,k) = 0.0 pclemi(i,k) = 0.0 cldtaupi(i,k) = 0.0 ELSE c -- liquid/ice cloud water paths: zflwp_var= 1000.*(1.-zfice2(i,k))*pqlwp(i,k)/pclc(i,k) & *diff_paprs(i,k) zfiwp_var= 1000.*zfice2(i,k)*pqlwp(i,k)/pclc(i,k) & *diff_paprs(i,k) c -- effective cloud droplet radius (microns): c for liquid water clouds: IF (ok_aie) THEN radius = & 1.1 & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) radius = MAX(radius*1e6, 5.) tc = t(i,k)-273.15 rei = 0.71*tc + 61.29 if (tc.le.-81.4) rei = 3.5 if (zflwp_var.eq.0.) radius = 1. if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. cldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius & + zfiwp_var * (3.448e-03 + 2.431/rei) ENDIF ! ok_aie ! For output diagnostics ! ! Cloud droplet effective radius [um] ! ! we multiply here with f * xl (fraction of liquid water ! clouds in the grid cell) to avoid problems in the ! averaging of the output. ! In the output of IOIPSL, derive the real cloud droplet ! effective radius as re/fl ! fl(i,k) = pclc(i,k)*(1.-zfice2(i,k)) re(i,k) = rad_chaud_tab(i,k)*fl(i,k) rel = rad_chaud_tab(i,k) c for ice clouds: as a function of the ambiant temperature c [formula used by Iacobellis and Somerville (2000), with an c asymptotical value of 3.5 microns at T<-81.4 C added to be c consistent with observations of Heymsfield et al. 1986]: tc = t(i,k)-273.15 rei = 0.71*tc + 61.29 if (tc.le.-81.4) rei = 3.5 c -- cloud optical thickness : c [for liquid clouds, traditional formula, c for ice clouds, Ebert & Curry (1992)] if (zflwp_var.eq.0.) rel = 1. if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) & + zfiwp_var * (3.448e-03 + 2.431/rei) c -- cloud infrared emissivity: c [the broadband infrared absorption coefficient is parameterized c as a function of the effective cld droplet radius] c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): k_ice = k_ice0 + 1.0/rei pclemi(i,k) = 1.0 & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) ENDIF reliq(i,k)=rel reice(i,k)=rei ! if (i.eq.1) then ! print*,'Dans newmicro rel, rei :',rel, rei ! print*,'Dans newmicro reliq, reice :', ! $ reliq(i,k),reice(i,k) ! endif ENDDO ENDDO DO k = 1, klev DO i = 1, klon xflwp(i) = xflwp(i)+ xflwc(i,k) * diff_paprs(i,k) xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * diff_paprs(i,k) ENDDO ENDDO ELSE DO k = 1, klev rad_chaud = rad_chau1 IF (k.LE.3) rad_chaud = rad_chau2 DO i = 1, klon IF (pclc(i,k) .LE. seuil_neb) THEN pclc(i,k) = 0.0 pcltau(i,k) = 0.0 pclemi(i,k) = 0.0 cldtaupi(i,k) = 0.0 ELSE zflwp_var = 1000.*pqlwp(i,k)*diff_paprs(i,k) & /pclc(i,k) zfice1 = MIN( & MAX( 1.0 - (t(i,k)-t_glace_min) / & (t_glace_max-t_glace_min),0.0),1.0)**nexpo radius = rad_chaud * (1.-zfice1) + rad_froid * zfice1 coef = coef_chau * (1.-zfice1) + coef_froi * zfice1 pcltau(i,k) = 3.0 * zflwp_var / (2.0 * radius) pclemi(i,k) = 1.0 - EXP( - coef * zflwp_var) ENDIF ENDDO ENDDO ENDIF IF (.NOT.ok_aie) THEN DO k = 1, klev DO i = 1, klon cldtaupi(i,k)=pcltau(i,k) ENDDO ENDDO ENDIF ccc DO k = 1, klev ccc DO i = 1, klon ccc t(i,k) = t(i,k) ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) ccc lo = pclc(i,k) .GT. (2.*1.e-5) ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) ccc . /(rg*pclc(i,k)) ccc zradef = 10.0 + (1.-sigs(k))*45.0 ccc pcltau(i,k) = 1.5 * zflwp / zradef ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) ccc if (.NOT.lo) pclc(i,k) = 0.0 ccc if (.NOT.lo) pcltau(i,k) = 0.0 ccc if (.NOT.lo) pclemi(i,k) = 0.0 ccc ENDDO ccc ENDDO ccccc print*, 'pas de nuage dans le rayonnement' ccccc DO k = 1, klev ccccc DO i = 1, klon ccccc pclc(i,k) = 0.0 ccccc pcltau(i,k) = 0.0 ccccc pclemi(i,k) = 0.0 ccccc ENDDO ccccc ENDDO C C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS C c IM cf. CR:test: calcul prenant ou non en compte le recouvrement c initialisations DO i=1,klon zclear(i)=1. zcloud(i)=0. pch(i)=1.0 pcm(i) = 1.0 pcl(i) = 1.0 pctlwp(i) = 0.0 ENDDO C cIM cf CR DO k=1,klev DO k = klev, 1, -1 DO i = 1, klon pctlwp(i) = pctlwp(i) & + pqlwp(i,k)*diff_paprs(i,k) ENDDO ENDDO c IM cf. CR IF (NOVLP.EQ.1) THEN DO k = klev, 1, -1 DO i = 1, klon zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) pct(i)=1.-zclear(i) IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloud(i))) & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. & pplay(i,k).LE.cetamb*paprs(i,1)) THEN pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloud(i))) & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloud(i))) & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) endif zcloud(i)=pclc(i,k) ENDDO ENDDO ELSE IF (NOVLP.EQ.2) THEN DO k = klev, 1, -1 DO i = 1, klon zcloud(i)=MAX(pclc(i,k),zcloud(i)) pct(i)=zcloud(i) IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN pch(i) = MIN(pclc(i,k),pch(i)) ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. & pplay(i,k).LE.cetamb*paprs(i,1)) THEN pcm(i) = MIN(pclc(i,k),pcm(i)) ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN pcl(i) = MIN(pclc(i,k),pcl(i)) endif ENDDO ENDDO ELSE IF (NOVLP.EQ.3) THEN DO k = klev, 1, -1 DO i = 1, klon zclear(i)=zclear(i)*(1.-pclc(i,k)) pct(i)=1-zclear(i) IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN pch(i) = pch(i)*(1.0-pclc(i,k)) ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. & pplay(i,k).LE.cetamb*paprs(i,1)) THEN pcm(i) = pcm(i)*(1.0-pclc(i,k)) ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN pcl(i) = pcl(i)*(1.0-pclc(i,k)) endif ENDDO ENDDO ENDIF C DO i = 1, klon c IM cf. CR pct(i)=1.-pct(i) pch(i)=1.-pch(i) pcm(i)=1.-pcm(i) pcl(i)=1.-pcl(i) ENDDO c ======================================================== ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL c ======================================================== !! change by Nicolas Yan (LSCE) !! Cloud Droplet Number Concentration (CDNC) : 3D variable !! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable !! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable !! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable !! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable IF (ok_newmicro) THEN IF (ok_aie) THEN DO k = 1, klev DO i = 1, klon phase3d(i,k)=1-zfice2(i,k) IF (pclc(i,k) .LE. seuil_neb) THEN lcc3d(i,k)=seuil_neb*phase3d(i,k) ELSE lcc3d(i,k)=pclc(i,k)*phase3d(i,k) ENDIF scdnc(i,k)=lcc3d(i,k)*cdnc(i,k) ! m-3 ENDDO ENDDO DO i=1,klon lcc(i)=0. reffclwtop(i)=0. cldncl(i)=0. IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i) = 1. IF(MAXIMUM) tcc(i) = 0. ENDDO FIRST=.TRUE. DO i=1,klon DO k=klev-1,1,-1 !From TOA down ! Test, if the cloud optical depth exceeds the necessary ! threshold: IF (pcltau(i,k).GT.thres_tau .AND. pclc(i,k).GT.thres_neb) . THEN ! To calculate the right Temperature at cloud top, ! interpolate it between layers: t_tmp = t(i,k) + . (paprs(i,k+1)-pplay(i,k))/(pplay(i,k+1)-pplay(i,k)) . * ( t(i,k+1) - t(i,k) ) IF(MAXIMUM) THEN IF(FIRST) THEN write(*,*)'Hypothese de recouvrement: MAXIMUM' FIRST=.FALSE. ENDIF flag_max= -1. ftmp(i) = MAX(tcc(i),pclc(i,k)) ENDIF IF(RANDOM) THEN IF(FIRST) THEN write(*,*)'Hypothese de recouvrement: RANDOM' FIRST=.FALSE. ENDIF flag_max= 1. ftmp(i) = tcc(i) * (1-pclc(i,k)) ENDIF IF(MAXIMUM_RANDOM) THEN IF(FIRST) THEN write(*,*)'Hypothese de recouvrement: MAXIMUM_ . RANDOM' FIRST=.FALSE. ENDIF flag_max= 1. ftmp(i) = tcc(i) * . (1. - MAX(pclc(i,k),pclc(i,k+1))) / . (1. - MIN(pclc(i,k+1),1.-thres_neb)) ENDIF c Effective radius of cloud droplet at top of cloud (m) reffclwtop(i) = reffclwtop(i) + rad_chaud_tab(i,k) * . 1.0E-06 * phase3d(i,k) * ( tcc(i) - ftmp(i))*flag_max c CDNC at top of cloud (m-3) cldncl(i) = cldncl(i) + cdnc(i,k) * phase3d(i,k) * . (tcc(i) - ftmp(i))*flag_max c Liquid Cloud Content at top of cloud lcc(i) = lcc(i) + phase3d(i,k) * (tcc(i)-ftmp(i))* . flag_max c Total Cloud Content at top of cloud tcc(i)=ftmp(i) ENDIF ! is there a visible, not-too-small cloud? ENDDO ! loop over k IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i)=1.-tcc(i) ENDDO ! loop over i !! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC REFFCLWS) DO i = 1, klon DO k = 1, klev pqlwpcon(i,k)=rnebcon(i,k)*clwcon(i,k) ! fraction eau liquide convective pqlwpstra(i,k)=pclc(i,k)*phase3d(i,k)-pqlwpcon(i,k) ! fraction eau liquide stratiforme IF (pqlwpstra(i,k) .LE. 0.0) pqlwpstra(i,k)=0.0 ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D reffclwc(i,k)=1.1 & *((pqlwpcon(i,k)*pplay(i,k)/(RD * T(i,k))) & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) reffclwc(i,k) = MAX(reffclwc(i,k) * 1e6, 5.) ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D IF ((pclc(i,k)-rnebcon(i,k)) .LE. seuil_neb) THEN ! tout sous la forme convective reffclws(i,k)=0.0 lcc3dstra(i,k)= 0.0 ELSE reffclws(i,k) = (pclc(i,k)*phase3d(i,k)* & rad_chaud_tab(i,k)- & pqlwpcon(i,k)*reffclwc(i,k)) IF(reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 lcc3dstra(i,k)=pqlwpstra(i,k) ENDIF !Convertion from um to m IF(rnebcon(i,k). LE. seuil_neb) THEN reffclwc(i,k) = reffclwc(i,k)*seuil_neb*clwcon(i,k) & *1.0E-06 lcc3dcon(i,k)= seuil_neb*clwcon(i,k) ELSE reffclwc(i,k) = reffclwc(i,k)*pqlwpcon(i,k) & *1.0E-06 lcc3dcon(i,k) = pqlwpcon(i,k) ENDIF reffclws(i,k) = reffclws(i,k)*1.0E-06 ENDDO !klev ENDDO !klon !! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D DO k = 1, klev DO i = 1, klon pdel(i,k) = paprs(i,k)-paprs(i,k+1) zrho(i,k)=pplay(i,k)/t(i,k)/RD ! kg/m3 dh(i,k)=pdel(i,k)/(gravit*zrho(i,k)) ! hauteur de chaque boite (m) ENDDO ENDDO c DO i = 1, klon cldnvi(i)=0. lcc_integrat(i)=0. height(i)=0. DO k = 1, klev cldnvi(i)=cldnvi(i)+cdnc(i,k)*lcc3d(i,k)*dh(i,k) lcc_integrat(i)=lcc_integrat(i)+lcc3d(i,k)*dh(i,k) height(i)=height(i)+dh(i,k) ENDDO ! klev lcc_integrat(i)=lcc_integrat(i)/height(i) IF (lcc_integrat(i) .LE. 1.0E-03) THEN cldnvi(i)=cldnvi(i)*lcc(i)/seuil_neb ELSE cldnvi(i)=cldnvi(i)*lcc(i)/lcc_integrat(i) ENDIF ENDDO ! klon DO i = 1, klon DO k = 1, klev IF (scdnc(i,k) .LE. 0.0) scdnc(i,k)=0.0 IF (reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 IF (reffclwc(i,k) .LE. 0.0) reffclwc(i,k)=0.0 IF (lcc3d(i,k) .LE. 0.0) lcc3d(i,k)=0.0 IF (lcc3dcon(i,k) .LE. 0.0) lcc3dcon(i,k)=0.0 IF (lcc3dstra(i,k) .LE. 0.0) lcc3dstra(i,k)=0.0 ENDDO IF (reffclwtop(i) .LE. 0.0) reffclwtop(i)=0.0 IF (cldncl(i) .LE. 0.0) cldncl(i)=0.0 IF (cldnvi(i) .LE. 0.0) cldnvi(i)=0.0 IF (lcc(i) .LE. 0.0) lcc(i)=0.0 ENDDO ENDIF !ok_aie ENDIF !ok newmicro c C RETURN END