SUBROUTINE concvl(iflag_clos, & dtime, paprs, pplay, k_upper_cv, & t, q, t_wake, q_wake, s_wake, u, v, tra, ntra, & Ale, Alp, sig1, w01, & d_t, d_q, d_u, d_v, d_tra, & rain, snow, kbas, ktop, sigd, & cbmf, plcl, plfc, wbeff, convoccur, & upwd, dnwd, dnwdbis, & Ma, mip, Vprecip, & cape, cin, tvp, Tconv, iflag, & pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, & qcondc, wd, pmflxr, pmflxs, & !RomP >>> !! . da,phi,mp,dd_t,dd_q,lalim_conv,wght_th) da, phi, mp, phii, d1a, dam, sij, clw, elij, & ! RomP dd_t, dd_q, lalim_conv, wght_th, & ! RomP evap, ep, epmlmMm, eplaMm, & ! RomP wdtrainA, wdtrainM, wght, qtc, sigt, & tau_cld_cv, coefw_cld_cv, & ! RomP+RL, AJ !RomP <<< epmax_diag) ! epmax_cape ! ************************************************************** ! * ! CONCVL * ! * ! * ! written by : Sandrine Bony-Lena, 17/05/2003, 11.16.04 * ! modified by : * ! ************************************************************** USE dimphy USE infotrac_phy, ONLY: nbtr USE phys_local_var_mod, ONLY: omega USE print_control_mod, ONLY: prt_level, lunout IMPLICIT NONE ! ====================================================================== ! Auteur(s): S. Bony-Lena (LMD/CNRS) date: ??? ! Objet: schema de convection de Emanuel (1991) interface ! ====================================================================== ! Arguments: ! dtime--input-R-pas d'integration (s) ! s-------input-R-la vAleur "s" pour chaque couche ! sigs----input-R-la vAleur "sigma" de chaque couche ! sig-----input-R-la vAleur de "sigma" pour chaque niveau ! psolpa--input-R-la pression au sol (en Pa) ! pskapa--input-R-exponentiel kappa de psolpa ! h-------input-R-enthAlpie potentielle (Cp*T/P**kappa) ! q-------input-R-vapeur d'eau (en kg/kg) ! work*: input et output: deux variables de travail, ! on peut les mettre a 0 au debut ! ALE--------input-R-energie disponible pour soulevement ! ALP--------input-R-puissance disponible pour soulevement ! d_h--------output-R-increment de l'enthAlpie potentielle (h) ! d_q--------output-R-increment de la vapeur d'eau ! rain-------output-R-la pluie (mm/s) ! snow-------output-R-la neige (mm/s) ! upwd-------output-R-saturated updraft mass flux (kg/m**2/s) ! dnwd-------output-R-saturated downdraft mass flux (kg/m**2/s) ! dnwd0------output-R-unsaturated downdraft mass flux (kg/m**2/s) ! Ma---------output-R-adiabatic ascent mass flux (kg/m2/s) ! mip--------output-R-mass flux shed by adiabatic ascent (kg/m2/s) ! Vprecip----output-R-vertical profile of total precipitation (kg/m2/s) ! Tconv------output-R-environment temperature seen by convective scheme (K) ! Cape-------output-R-CAPE (J/kg) ! Cin -------output-R-CIN (J/kg) ! Tvp--------output-R-Temperature virtuelle d'une parcelle soulevee ! adiabatiquement a partir du niveau 1 (K) ! deltapb----output-R-distance entre LCL et base de la colonne (<0 ; Pa) ! Ice_flag---input-L-TRUE->prise en compte de la thermodynamique de la glace ! dd_t-------output-R-increment de la temperature du aux descentes precipitantes ! dd_q-------output-R-increment de la vapeur d'eau du aux desc precip ! lalim_conv- ! wght_th---- ! evap-------output-R ! ep---------output-R ! epmlmMm----output-R ! eplaMm-----output-R ! wdtrainA---output-R ! wdtrainM---output-R ! wght-------output-R ! ====================================================================== include "clesphys.h" INTEGER, INTENT(IN) :: iflag_clos REAL, INTENT(IN) :: dtime REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs INTEGER, INTENT(IN) :: k_upper_cv REAL, DIMENSION(klon,klev), INTENT(IN) :: t, q, u, v REAL, DIMENSION(klon,klev), INTENT(IN) :: t_wake, q_wake REAL, DIMENSION(klon), INTENT(IN) :: s_wake REAL, DIMENSION(klon,klev, nbtr),INTENT(IN) :: tra INTEGER, INTENT(IN) :: ntra REAL, DIMENSION(klon), INTENT(IN) :: Ale, Alp !CR:test: on passe lentr et alim_star des thermiques INTEGER, DIMENSION(klon), INTENT(IN) :: lalim_conv REAL, DIMENSION(klon,klev), INTENT(IN) :: wght_th REAL, DIMENSION(klon,klev), INTENT(INOUT) :: sig1, w01 REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t, d_q, d_u, d_v REAL, DIMENSION(klon,klev, nbtr),INTENT(OUT) :: d_tra REAL, DIMENSION(klon), INTENT(OUT) :: rain, snow INTEGER, DIMENSION(klon), INTENT(OUT) :: kbas, ktop REAL, DIMENSION(klon), INTENT(OUT) :: sigd REAL, DIMENSION(klon), INTENT(OUT) :: cbmf, plcl, plfc, wbeff REAL, DIMENSION(klon), INTENT(OUT) :: convoccur REAL, DIMENSION(klon,klev), INTENT(OUT) :: upwd, dnwd, dnwdbis !! REAL Ma(klon,klev), mip(klon,klev),Vprecip(klon,klev) !jyg REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ma, mip REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: Vprecip !jyg REAL, DIMENSION(klon), INTENT(OUT) :: cape, cin REAL, DIMENSION(klon,klev), INTENT(OUT) :: tvp REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tconv INTEGER, DIMENSION(klon), INTENT(OUT) :: iflag REAL, DIMENSION(klon), INTENT(OUT) :: pbase, bbase REAL, DIMENSION(klon,klev), INTENT(OUT) :: dtvpdt1, dtvpdq1 REAL, DIMENSION(klon), INTENT(OUT) :: dplcldt, dplcldr REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcondc REAL, DIMENSION(klon), INTENT(OUT) :: wd REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: pmflxr, pmflxs REAL, DIMENSION(klon,klev), INTENT(OUT) :: da, mp REAL, DIMENSION(klon,klev,klev),INTENT(OUT) :: phi ! RomP >>> REAL, DIMENSION(klon,klev,klev),INTENT(OUT) :: phii REAL, DIMENSION(klon,klev), INTENT(OUT) :: d1a, dam REAL, DIMENSION(klon,klev,klev),INTENT(OUT) :: sij, elij REAL, DIMENSION(klon,klev), INTENT(OUT) :: clw REAL, DIMENSION(klon,klev), INTENT(OUT) :: dd_t, dd_q REAL, DIMENSION(klon,klev), INTENT(OUT) :: evap, ep REAL, DIMENSION(klon,klev), INTENT(OUT) :: eplaMm REAL, DIMENSION(klon,klev,klev), INTENT(OUT) :: epmlmMm REAL, DIMENSION(klon,klev), INTENT(OUT) :: wdtrainA, wdtrainM ! RomP <<< REAL, DIMENSION(klon,klev), INTENT(OUT) :: wght !RL REAL, DIMENSION(klon,klev), INTENT(OUT) :: qtc REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigt REAL, INTENT(OUT) :: tau_cld_cv, coefw_cld_cv REAL, DIMENSION(klon), INTENT(OUT) :: epmax_diag ! epmax_cape ! ! Local ! ---- REAL, DIMENSION(klon,klev) :: em_p REAL, DIMENSION(klon,klev+1) :: em_ph REAL :: em_sig1feed ! sigma at lower bound of feeding layer REAL :: em_sig2feed ! sigma at upper bound of feeding layer REAL, DIMENSION(klev) :: em_wght ! weight density determining the feeding mixture REAL, DIMENSION(klon,klev+1) :: Vprecipi !jyg !on enleve le save ! SAVE em_sig1feed,em_sig2feed,em_wght REAL, DIMENSION(klon) :: rflag REAL, DIMENSION(klon) :: plim1, plim2 REAL, DIMENSION(klon) :: ptop2 REAL, DIMENSION(klon,klev) :: asupmax REAL, DIMENSION(klon) :: supmax0, asupmaxmin REAL :: zx_t, zdelta, zx_qs, zcor ! ! INTEGER iflag_mix ! SAVE iflag_mix INTEGER :: noff, minorig INTEGER :: i,j, k, itra REAL, DIMENSION(klon,klev) :: qs, qs_wake !LF SAVE cbmf !IM/JYG REAL, SAVE, ALLOCATABLE :: cbmf(:) !!!$OMP THREADPRIVATE(cbmf)! REAL, DIMENSION(klon) :: cbmflast ! Variables supplementaires liees au bilan d'energie ! Real paire(klon) !LF Real ql(klon,klev) ! Save paire !LF Save ql !LF Real t1(klon,klev),q1(klon,klev) !LF Save t1,q1 ! Data paire /1./ REAL, SAVE, ALLOCATABLE :: ql(:, :), q1(:, :), t1(:, :) !$OMP THREADPRIVATE(ql, q1, t1) ! Variables liees au bilan d'energie et d'enthAlpi REAL ztsol(klon) REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot, & h_qs_tot, qw_tot, ql_tot, qs_tot, ec_tot SAVE h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot, & h_qs_tot, qw_tot, ql_tot, qs_tot, ec_tot !$OMP THREADPRIVATE(h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot) !$OMP THREADPRIVATE(h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot) REAL d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec REAL d_h_vcol_phy REAL fs_bound, fq_bound SAVE d_h_vcol_phy !$OMP THREADPRIVATE(d_h_vcol_phy) REAL zero_v(klon) CHARACTER *15 ztit INTEGER ip_ebil ! PRINT level for energy conserv. diag. SAVE ip_ebil DATA ip_ebil/2/ !$OMP THREADPRIVATE(ip_ebil) INTEGER if_ebil ! level for energy conserv. dignostics SAVE if_ebil DATA if_ebil/2/ !$OMP THREADPRIVATE(if_ebil) !+jld ec_conser REAL d_t_ec(klon, klev) ! tendance du a la conersion Ec -> E thermique REAL zrcpd !-jld ec_conser !LF INTEGER nloc LOGICAL, SAVE :: first = .TRUE. !$OMP THREADPRIVATE(first) INTEGER, SAVE :: itap, igout !$OMP THREADPRIVATE(itap, igout) include "YOMCST.h" include "YOMCST2.h" include "YOETHF.h" include "FCTTRE.h" !jyg< include "conema3.h" !>jyg IF (first) THEN ! Allocate some variables LF 04/2008 !IM/JYG allocate(cbmf(klon)) ALLOCATE (ql(klon,klev)) ALLOCATE (t1(klon,klev)) ALLOCATE (q1(klon,klev)) ! convoccur(:) = 0. ! itap = 0 igout = klon/2 + 1/klon END IF ! Incrementer le compteur de la physique itap = itap + 1 ! Copy T into Tconv DO k = 1, klev DO i = 1, klon Tconv(i, k) = t(i, k) END DO END DO IF (if_ebil>=1) THEN DO i = 1, klon ztsol(i) = t(i, 1) zero_v(i) = 0. DO k = 1, klev ql(i, k) = 0. END DO END DO END IF ! ym snow(:) = 0 IF (first) THEN first = .FALSE. ! =========================================================================== ! READ IN PARAMETERS FOR THE CLOSURE AND THE MIXING DISTRIBUTION ! =========================================================================== IF (iflag_con==3) THEN ! CALL cv3_inicp() CALL cv3_inip() END IF ! =========================================================================== ! READ IN PARAMETERS FOR CONVECTIVE INHIBITION BY TROPOS. DRYNESS ! =========================================================================== ! c$$$ open (56,file='supcrit.data') ! c$$$ read (56,*) Supcrit1, Supcrit2 ! c$$$ close (56) IF (prt_level>=10) WRITE (lunout, *) 'supcrit1, supcrit2', supcrit1, supcrit2 ! =========================================================================== ! Initialisation pour les bilans d'eau et d'energie ! =========================================================================== IF (if_ebil>=1) d_h_vcol_phy = 0. DO i = 1, klon cbmf(i) = 0. !! plcl(i) = 0. sigd(i) = 0. END DO END IF !(first) ! Initialisation a chaque pas de temps plfc(:) = 0. wbeff(:) = 100. plcl(:) = 0. DO k = 1, klev + 1 DO i = 1, klon em_ph(i, k) = paprs(i, k)/100.0 pmflxr(i, k) = 0. pmflxs(i, k) = 0. END DO END DO DO k = 1, klev DO i = 1, klon em_p(i, k) = pplay(i, k)/100.0 END DO END DO ! Feeding layer em_sig1feed = 1. !jyg< ! em_sig2feed = 0.97 em_sig2feed = cvl_sig2feed !>jyg ! em_sig2feed = 0.8 ! Relative Weight densities DO k = 1, klev em_wght(k) = 1. END DO !CRtest: couche alim des tehrmiques ponderee par a* ! DO i = 1, klon ! do k=1,lalim_conv(i) ! em_wght(k)=wght_th(i,k) ! print*,'em_wght=',em_wght(k),wght_th(i,k) ! end do ! END DO IF (iflag_con==4) THEN DO k = 1, klev DO i = 1, klon zx_t = t(i, k) zdelta = max(0., sign(1.,rtt-zx_t)) zx_qs = min(0.5, r2es*foeew(zx_t,zdelta)/em_p(i,k)/100.0) zcor = 1./(1.-retv*zx_qs) qs(i, k) = zx_qs*zcor END DO DO i = 1, klon zx_t = t_wake(i, k) zdelta = max(0., sign(1.,rtt-zx_t)) zx_qs = min(0.5, r2es*foeew(zx_t,zdelta)/em_p(i,k)/100.0) zcor = 1./(1.-retv*zx_qs) qs_wake(i, k) = zx_qs*zcor END DO END DO ELSE ! iflag_con=3 (modif de puristes qui fait la diffce pour la convergence numerique) DO k = 1, klev DO i = 1, klon zx_t = t(i, k) zdelta = max(0., sign(1.,rtt-zx_t)) zx_qs = r2es*foeew(zx_t, zdelta)/em_p(i, k)/100.0 zx_qs = min(0.5, zx_qs) zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor qs(i, k) = zx_qs END DO DO i = 1, klon zx_t = t_wake(i, k) zdelta = max(0., sign(1.,rtt-zx_t)) zx_qs = r2es*foeew(zx_t, zdelta)/em_p(i, k)/100.0 zx_qs = min(0.5, zx_qs) zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor qs_wake(i, k) = zx_qs END DO END DO END IF ! iflag_con ! ------------------------------------------------------------------ ! Main driver for convection: ! iflag_con=3 -> nvlle version de KE (JYG) ! iflag_con = 30 -> equivAlent to convect3 ! iflag_con = 4 -> equivAlent to convect1/2 IF (iflag_con==30) THEN ! print *, '-> cv_driver' !jyg CALL cv_driver(klon, klev, klevp1, ntra, iflag_con, & t, q, qs, u, v, tra, & em_p, em_ph, iflag, & d_t, d_q, d_u, d_v, d_tra, rain, & Vprecip, cbmf, sig1, w01, & !jyg kbas, ktop, & dtime, Ma, upwd, dnwd, dnwdbis, qcondc, wd, cape, & da, phi, mp, phii, d1a, dam, sij, clw, elij, & !RomP evap, ep, epmlmMm, eplaMm, & !RomP wdtrainA, wdtrainM, & !RomP epmax_diag) ! epmax_cape ! print *, 'cv_driver ->' !jyg DO i = 1, klon cbmf(i) = Ma(i, kbas(i)) END DO !RL wght(:, :) = 0. DO i = 1, klon wght(i, 1) = 1. END DO !RL ELSE !LF necessary for gathered fields nloc = klon CALL cva_driver(klon, klev, klev+1, ntra, nloc, k_upper_cv, & iflag_con, iflag_mix, iflag_ice_thermo, & iflag_clos, ok_conserv_q, dtime, cvl_comp_threshold, & t, q, qs, t_wake, q_wake, qs_wake, s_wake, u, v, tra, & em_p, em_ph, & Ale, Alp, omega, & em_sig1feed, em_sig2feed, em_wght, & iflag, d_t, d_q, d_u, d_v, d_tra, rain, kbas, ktop, & cbmf, plcl, plfc, wbeff, sig1, w01, ptop2, sigd, & Ma, mip, Vprecip, Vprecipi, upwd, dnwd, dnwdbis, qcondc, wd, & cape, cin, tvp, & dd_t, dd_q, plim1, plim2, asupmax, supmax0, & asupmaxmin, lalim_conv, & !AC!+!RomP+jyg !! da,phi,mp,phii,d1a,dam,sij,clw,elij, & ! RomP !! evap,ep,epmlmMm,eplaMm, ! RomP da, phi, mp, phii, d1a, dam, sij, wght, & ! RomP+RL clw, elij, evap, ep, epmlmMm, eplaMm, & ! RomP+RL wdtrainA, wdtrainM, qtc, sigt, & tau_cld_cv, coefw_cld_cv, & ! RomP,AJ !AC!+!RomP+jyg epmax_diag) ! epmax_cape END IF ! ------------------------------------------------------------------ IF (prt_level>=10) WRITE (lunout, *) ' cva_driver -> cbmf,plcl,plfc,wbeff, d_t, d_q ', & cbmf(1), plcl(1), plfc(1), wbeff(1), d_t(1,1), d_q(1,1) DO i = 1, klon rain(i) = rain(i)/86400. rflag(i) = iflag(i) END DO DO k = 1, klev DO i = 1, klon d_t(i, k) = dtime*d_t(i, k) d_q(i, k) = dtime*d_q(i, k) d_u(i, k) = dtime*d_u(i, k) d_v(i, k) = dtime*d_v(i, k) END DO END DO IF (iflag_con==3) THEN DO i = 1,klon IF (wbeff(i) > 100. .OR. wbeff(i) == 0 .OR. iflag(i) > 3) THEN wbeff(i) = 0. convoccur(i) = 0. ELSE convoccur(i) = 1. ENDIF ENDDO ENDIF IF (iflag_con==30) THEN DO itra = 1, ntra DO k = 1, klev DO i = 1, klon !RL! d_tra(i,k,itra) =dtime*d_tra(i,k,itra) d_tra(i, k, itra) = 0. END DO END DO END DO END IF !!AC! IF (iflag_con==3) THEN DO itra = 1, ntra DO k = 1, klev DO i = 1, klon !RL! d_tra(i,k,itra) =dtime*d_tra(i,k,itra) d_tra(i, k, itra) = 0. END DO END DO END DO END IF !!AC! DO k = 1, klev DO i = 1, klon t1(i, k) = t(i, k) + d_t(i, k) q1(i, k) = q(i, k) + d_q(i, k) END DO END DO ! !jyg IF (iflag_con == 30 .OR. iflag_ice_thermo ==0) THEN ! --Separation neige/pluie (pour diagnostics) !jyg DO k = 1, klev !jyg DO i = 1, klon !jyg IF (t1(i,k): dd_t,dd_q ',dd_t(1,1),dd_q(1,1) DO k = 1, klev DO i = 1, klon dtvpdt1(i, k) = 0. dtvpdq1(i, k) = 0. END DO END DO DO i = 1, klon dplcldt(i) = 0. dplcldr(i) = 0. END DO IF (prt_level>=20) THEN DO k = 1, klev ! print*,'physiq apres_add_con i k it d_u d_v d_t d_q qdl0',igout, & ! k,itap,d_u_con(igout,k) ,d_v_con(igout,k), d_t_con(igout,k), & ! d_q_con(igout,k),dql0(igout,k) ! print*,'phys apres_add_con itap Ma cin ALE ALP wak t q undi t q', & ! itap,Ma(igout,k),cin(igout),ALE(igout), ALP(igout), & ! t_wake(igout,k),q_wake(igout,k),t_undi(igout,k),q_undi(igout,k) ! print*,'phy apres_add_con itap CON rain snow EMA wk1 wk2 Vpp mip', & ! itap,rain_con(igout),snow_con(igout),ema_work1(igout,k), & ! ema_work2(igout,k),Vprecip(igout,k), mip(igout,k) ! print*,'phy apres_add_con itap upwd dnwd dnwd0 cape tvp Tconv ', & ! itap,upwd(igout,k),dnwd(igout,k),dnwd0(igout,k),cape(igout), & ! tvp(igout,k),Tconv(igout,k) ! print*,'phy apres_add_con itap dtvpdt dtvdq dplcl dplcldr qcondc', & ! itap,dtvpdt1(igout,k),dtvpdq1(igout,k),dplcldt(igout), & ! dplcldr(igout),qcondc(igout,k) ! print*,'phy apres_add_con itap wd pmflxr Kpmflxr Kp1 Kpmflxs Kp1', & ! itap,wd(igout),pmflxr(igout,k),pmflxr(igout,k+1),pmflxs(igout,k), & ! pmflxs(igout,k+1) ! print*,'phy apres_add_con itap da phi mp ftd fqd lalim wgth', & ! itap,da(igout,k),phi(igout,k,k),mp(igout,k),ftd(igout,k), & ! fqd(igout,k),lalim_conv(igout),wght_th(igout,k) END DO END IF !(prt_level.EQ.20) THEN RETURN END SUBROUTINE concvl