subroutine ener_conserv(klon,klev,pdtphys, & & puo,pvo,pto,pqo,pql0,pqs0, & & pun,pvn,ptn,pqn,pqln,pqsn,dtke,masse,exner,d_t_ec) !============================================================= ! Energy conservation ! Based on the TKE equation ! The M2 and N2 terms at the origin of TKE production are ! concerted into heating in the d_t_ec term ! Option 1 is the standard ! 101 is for M2 term only ! 101 for N2 term only ! -1 is a previours treatment for kinetic energy only ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 !============================================================= !============================================================= ! Declarations !============================================================= ! From module USE phys_local_var_mod, ONLY : d_u_vdf,d_v_vdf,d_t_vdf,d_u_ajs,d_v_ajs,d_t_ajs, & & d_u_con,d_v_con,d_t_con,d_t_diss USE phys_local_var_mod, ONLY : d_t_eva,d_t_lsc,d_q_eva,d_q_lsc USE phys_local_var_mod, ONLY : d_u_oro,d_v_oro,d_u_lif,d_v_lif USE phys_local_var_mod, ONLY : du_gwd_hines,dv_gwd_hines,dv_gwd_front,dv_gwd_rando USE phys_state_var_mod, ONLY : du_gwd_front,du_gwd_rando USE phys_output_var_mod, ONLY : bils_ec,bils_ech,bils_tke,bils_kinetic,bils_enthalp,bils_latent,bils_diss IMPLICIT none #include "YOMCST.h" #include "YOETHF.h" #include "clesphys.h" #include "compbl.h" ! Arguments INTEGER, INTENT(IN) :: klon,klev REAL, INTENT(IN) :: pdtphys REAL, DIMENSION(klon,klev), INTENT(IN) :: puo,pvo,pto,pqo,pql0,pqs0 REAL, DIMENSION(klon,klev), INTENT(IN) :: pun,pvn,ptn,pqn,pqln,pqsn REAL, DIMENSION(klon,klev), INTENT(IN) :: masse,exner REAL, DIMENSION(klon,klev+1), INTENT(IN) :: dtke ! REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t_ec ! Local integer k,i REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t,zv,zu,d_t_ech REAL ZRCPD character*80 abort_message character*20 :: modname modname='ener_conser' d_t_ec(:,:)=0. IF (iflag_ener_conserv==-1) THEN !+jld ec_conser DO k = 1, klev DO i = 1, klon ZRCPD = RCPD*(1.0+RVTMP2*(pqn(i,k)+pqln(i,k)+pqsn(i,k))) d_t_ec(i,k)=0.5/ZRCPD & & *(puo(i,k)**2+pvo(i,k)**2-pun(i,k)**2-pvn(i,k)**2) ENDDO ENDDO !-jld ec_conser ELSEIF (iflag_ener_conserv>=1) THEN IF (iflag_ener_conserv<=2) THEN ! print*,'ener_conserv pbl=',iflag_pbl IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN !d_t_diss accounts for conserv d_t(:,:)=d_t_ajs(:,:) ! d_t_ajs = adjust + thermals d_u(:,:)=d_u_ajs(:,:)+d_u_con(:,:) d_v(:,:)=d_v_ajs(:,:)+d_v_con(:,:) ELSE d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:) ! d_t_ajs = adjust + thermals d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:) d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:) ENDIF ELSEIF (iflag_ener_conserv==101) THEN d_t(:,:)=0. d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:) d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:) ELSEIF (iflag_ener_conserv==110) THEN d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:) d_u(:,:)=0. d_v(:,:)=0. ELSEIF (iflag_ener_conserv==3) THEN d_t(:,:)=0. d_u(:,:)=0. d_v(:,:)=0. ELSEIF (iflag_ener_conserv==4) THEN d_t(:,:)=0. d_u(:,:)=d_u_vdf(:,:) d_v(:,:)=d_v_vdf(:,:) ELSEIF (iflag_ener_conserv==5) THEN d_t(:,:)=d_t_vdf(:,:) d_u(:,:)=d_u_vdf(:,:) d_v(:,:)=d_v_vdf(:,:) ELSEIF (iflag_ener_conserv==6) THEN d_t(:,:)=d_t_vdf(:,:) d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:) d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:) ELSEIF (iflag_ener_conserv==7) THEN d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:) d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:) d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:) ELSEIF (iflag_ener_conserv==8) THEN d_t(:,:)=d_t_vdf(:,:) d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:) d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:) ELSEIF (iflag_ener_conserv==9) THEN d_t(:,:)=d_t_vdf(:,:) d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)+d_u_oro(:,:) d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)+d_v_oro(:,:) ELSEIF (iflag_ener_conserv==10) THEN d_t(:,:)=d_t_vdf(:,:) d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)+d_u_oro(:,:)+d_u_lif(:,:) d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)+d_v_oro(:,:)+d_v_lif(:,:) ELSEIF (iflag_ener_conserv==11) THEN d_t(:,:)=d_t_vdf(:,:) d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)+d_u_oro(:,:)+d_u_lif(:,:) d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)+d_v_oro(:,:)+d_v_lif(:,:) IF (ok_hines) THEN d_u_vdf(:,:)=d_u_vdf(:,:)+du_gwd_hines(:,:) d_v_vdf(:,:)=d_v_vdf(:,:)+dv_gwd_hines(:,:) ENDIF IF (.not. ok_hines .and. ok_gwd_rando) THEN d_u_vdf(:,:)=d_u_vdf(:,:)+du_gwd_front(:,:) d_v_vdf(:,:)=d_v_vdf(:,:)+dv_gwd_front(:,:) ENDIF IF (ok_gwd_rando) THEN d_u_vdf(:,:)=d_u_vdf(:,:)+du_gwd_rando(:,:) d_v_vdf(:,:)=d_v_vdf(:,:)+dv_gwd_rando(:,:) ENDIF ELSE abort_message = 'iflag_ener_conserv non prevu' CALL abort_physic (modname,abort_message,1) ENDIF !---------------------------------------------------------------------------- ! Two options wether we consider time integration in the energy conservation !---------------------------------------------------------------------------- if (iflag_ener_conserv==2) then zu(:,:)=puo(:,:) zv(:,:)=pvo(:,:) else IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN zu(:,:)=puo(:,:)+d_u_vdf(:,:)+0.5*d_u(:,:) zv(:,:)=pvo(:,:)+d_v_vdf(:,:)+0.5*d_v(:,:) ELSE zu(:,:)=puo(:,:)+0.5*d_u(:,:) zv(:,:)=pvo(:,:)+0.5*d_v(:,:) ENDIF endif fluxu(:,klev+1)=0. fluxv(:,klev+1)=0. fluxt(:,klev+1)=0. do k=klev,1,-1 fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k) fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k) fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k) enddo dddu(:,1)=2*zu(:,1)*fluxu(:,1) dddv(:,1)=2*zv(:,1)*fluxv(:,1) dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1) do k=2,klev dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k) dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k) dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k) enddo dddu(:,klev+1)=0. dddv(:,klev+1)=0. dddt(:,klev+1)=0. do k=1,klev d_t_ech(:,k)=-(rcpd*(dddt(:,k)+dddt(:,k+1)))/(2.*rcpd*masse(:,k)) d_t_ec(:,k)=-(dddu(:,k)+dddu(:,k+1)+dddv(:,k)+dddv(:,k+1))/(2.*rcpd*masse(:,k))+d_t_ech(:,k) enddo ENDIF !================================================================ ! Computation of integrated enthalpie and kinetic energy variation ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 ! bils_ec : energie conservation term ! bils_ech : part of this term linked to temperature ! bils_tke : change of TKE ! bils_diss : dissipation of TKE (when activated) ! bils_kinetic : change of kinetic energie of the column ! bils_enthalp : change of enthalpie ! bils_latent : change of latent heat. Computed between ! after reevaporation (at the beginning of the physics) ! and before large scale condensation (fisrtilp) !================================================================ bils_ec(:)=0. bils_ech(:)=0. bils_tke(:)=0. bils_diss(:)=0. bils_kinetic(:)=0. bils_enthalp(:)=0. bils_latent(:)=0. DO k=1,klev bils_ec(:)=bils_ec(:)-d_t_ec(:,k)*masse(:,k) bils_tke(:)=bils_tke(:)+0.5*(dtke(:,k)+dtke(:,k+1))*masse(:,k) bils_diss(:)=bils_diss(:)-d_t_diss(:,k)*masse(:,k) bils_kinetic(:)=bils_kinetic(:)+masse(:,k)* & & (pun(:,k)*pun(:,k)+pvn(:,k)*pvn(:,k) & & -puo(:,k)*puo(:,k)-pvo(:,k)*pvo(:,k)) bils_enthalp(:)= & & bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)-d_t_eva(:,k)-d_t_lsc(:,k)) ! & bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)) bils_latent(:)=bils_latent(:)+masse(:,k)* & ! & (pqn(:,k)-pqo(:,k)) & (pqn(:,k)-pqo(:,k)-d_q_eva(:,k)-d_q_lsc(:,k)) ENDDO bils_ec(:)=rcpd*bils_ec(:)/pdtphys bils_tke(:)=bils_tke(:)/pdtphys bils_diss(:)=rcpd*bils_diss(:)/pdtphys bils_kinetic(:)= 0.5*bils_kinetic(:)/pdtphys bils_enthalp(:)=rcpd*bils_enthalp(:)/pdtphys bils_latent(:)=rlvtt*bils_latent(:)/pdtphys IF (iflag_ener_conserv>=1) THEN bils_ech(:)=0. DO k=1,klev bils_ech(:)=bils_ech(:)-d_t_ech(:,k)*masse(:,k) ENDDO bils_ech(:)=rcpd*bils_ech(:)/pdtphys ENDIF RETURN END