! ! $Header$ ! SUBROUTINE ADVXP(LIMIT,DTX,PBARU,SM,S0,SSX,SY,SZ . ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra) IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C second-order moments (SOM) advection of tracer in X direction C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C parametres principaux du modele C include "dimensions.h" include "paramet.h" INTEGER ntra c PARAMETER (ntra = 1) C C definition de la grille du modele C REAL dtx REAL pbaru ( iip1,jjp1,llm ) C C moments: SM total mass in each grid box C S0 mass of tracer in each grid box C Si 1rst order moment in i direction C Sij 2nd order moment in i and j directions C REAL SM(iip1,jjp1,llm) + ,S0(iip1,jjp1,llm,ntra) REAL SSX(iip1,jjp1,llm,ntra) + ,SY(iip1,jjp1,llm,ntra) + ,SZ(iip1,jjp1,llm,ntra) REAL SSXX(iip1,jjp1,llm,ntra) + ,SSXY(iip1,jjp1,llm,ntra) + ,SSXZ(iip1,jjp1,llm,ntra) + ,SYY(iip1,jjp1,llm,ntra) + ,SYZ(iip1,jjp1,llm,ntra) + ,SZZ(iip1,jjp1,llm,ntra) C Local : C ------- C mass fluxes across the boundaries (UGRI,VGRI,WGRI) C mass fluxes in kg C declaration : REAL UGRI(iip1,jjp1,llm) C Rem : VGRI et WGRI ne sont pas utilises dans C cette subroutine ( advection en x uniquement ) C C C Tij are the moments for the current latitude and level C REAL TM (iim) REAL T0 (iim,NTRA),TX (iim,NTRA) REAL TY (iim,NTRA),TZ (iim,NTRA) REAL TXX(iim,NTRA),TXY(iim,NTRA) REAL TXZ(iim,NTRA),TYY(iim,NTRA) REAL TYZ(iim,NTRA),TZZ(iim,NTRA) C C the moments F are similarly defined and used as temporary C storage for portions of the grid boxes in transit C REAL FM (iim) REAL F0 (iim,NTRA),FX (iim,NTRA) REAL FY (iim,NTRA),FZ (iim,NTRA) REAL FXX(iim,NTRA),FXY(iim,NTRA) REAL FXZ(iim,NTRA),FYY(iim,NTRA) REAL FYZ(iim,NTRA),FZZ(iim,NTRA) C C work arrays C REAL ALF (iim),ALF1(iim),ALFQ(iim),ALF1Q(iim) REAL ALF2(iim),ALF3(iim),ALF4(iim) C REAL SMNEW(iim),UEXT(iim) REAL sqi,sqf REAL TEMPTM REAL SLPMAX REAL S1MAX,S1NEW,S2NEW LOGICAL LIMIT INTEGER NUM(jjp1),LONK,NUMK INTEGER lon,lati,latf,niv INTEGER i,i2,i3,j,jv,l,k,iter lon = iim lati=2 latf = jjm niv = llm C *** Test de passage d'arguments ****** c DO 399 l = 1, llm c DO 399 j = 1, jjp1 c DO 399 i = 1, iip1 c IF (S0(i,j,l,ntra) .lt. 0. ) THEN c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) c print*, 'SSX(',i,j,l,')=',SSX(i,j,l,ntra) c print*, 'SY(',i,j,l,')=',SY(i,j,l,ntra) c print*, 'SZ(',i,j,l,')=',SZ(i,j,l,ntra) c PRINT*, 'AIE !! debut ADVXP - pbl arg. passage dans ADVXP' cc STOP c ENDIF c 399 CONTINUE C *** Test : diagnostique de la qtite totale de traceur C dans l'atmosphere avant l'advection c sqi =0. sqf =0. c DO l = 1, llm DO j = 1, jjp1 DO i = 1, iim sqi = sqi + S0(i,j,l,ntra) END DO END DO END DO PRINT*,'------ DIAG DANS ADVX2 - ENTREE -----' PRINT*,'sqi=',sqi c test c ------------------------------------- DO 300 j =1,jjp1 NUM(j) =1 300 CONTINUE c DO l=1,llm c NUM(2,l)=6 c NUM(3,l)=6 c NUM(jjm-1,l)=6 c NUM(jjm,l)=6 c ENDDO c DO j=2,6 c NUM(j)=12 c ENDDO c DO j=jjm-5,jjm-1 c NUM(j)=12 c ENDDO C Interface : adaptation nouveau modele C ------------------------------------- C C --------------------------------------------------------- C Conversion des flux de masses en kg/s C pbaru est en N/s d'ou : C ugri est en kg/s DO 500 l = 1,llm DO 500 j = 1,jjp1 DO 500 i = 1,iip1 ugri (i,j,llm+1-l) =pbaru (i,j,l) 500 CONTINUE C --------------------------------------------------------- C start here C C boucle principale sur les niveaux et les latitudes C DO 1 L=1,NIV DO 1 K=lati,latf C C initialisation C C program assumes periodic boundaries in X C DO 10 I=2,LON SMNEW(I)=SM(I,K,L)+(UGRI(I-1,K,L)-UGRI(I,K,L))*DTX 10 CONTINUE SMNEW(1)=SM(1,K,L)+(UGRI(LON,K,L)-UGRI(1,K,L))*DTX C C modifications for extended polar zones C NUMK=NUM(K) LONK=LON/NUMK C IF(NUMK.GT.1) THEN C DO 111 I=1,LON TM(I)=0. 111 CONTINUE DO 112 JV=1,NTRA DO 1120 I=1,LON T0 (I,JV)=0. TX (I,JV)=0. TY (I,JV)=0. TZ (I,JV)=0. TXX(I,JV)=0. TXY(I,JV)=0. TXZ(I,JV)=0. TYY(I,JV)=0. TYZ(I,JV)=0. TZZ(I,JV)=0. 1120 CONTINUE 112 CONTINUE C DO 11 I2=1,NUMK C DO 113 I=1,LONK I3=(I-1)*NUMK+I2 TM(I)=TM(I)+SM(I3,K,L) ALF(I)=SM(I3,K,L)/TM(I) ALF1(I)=1.-ALF(I) ALFQ(I)=ALF(I)*ALF(I) ALF1Q(I)=ALF1(I)*ALF1(I) ALF2(I)=ALF1(I)-ALF(I) ALF3(I)=ALF(I)*ALF1(I) 113 CONTINUE C DO 114 JV=1,NTRA DO 1140 I=1,LONK I3=(I-1)*NUMK+I2 TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I)*S0(I3,K,L,JV) T0 (I,JV)=T0(I,JV)+S0(I3,K,L,JV) TXX(I,JV)=ALFQ(I)*SSXX(I3,K,L,JV)+ALF1Q(I)*TXX(I,JV) + +5.*( ALF3(I)*(SSX(I3,K,L,JV)-TX(I,JV))+ALF2(I)*TEMPTM ) TX (I,JV)=ALF(I)*SSX(I3,K,L,JV)+ALF1(I)*TX(I,JV)+3.*TEMPTM TXY(I,JV)=ALF (I)*SSXY(I3,K,L,JV)+ALF1(I)*TXY(I,JV) + +3.*(ALF1(I)*SY (I3,K,L,JV)-ALF (I)*TY (I,JV)) TXZ(I,JV)=ALF (I)*SSXZ(I3,K,L,JV)+ALF1(I)*TXZ(I,JV) + +3.*(ALF1(I)*SZ (I3,K,L,JV)-ALF (I)*TZ (I,JV)) TY (I,JV)=TY (I,JV)+SY (I3,K,L,JV) TZ (I,JV)=TZ (I,JV)+SZ (I3,K,L,JV) TYY(I,JV)=TYY(I,JV)+SYY(I3,K,L,JV) TYZ(I,JV)=TYZ(I,JV)+SYZ(I3,K,L,JV) TZZ(I,JV)=TZZ(I,JV)+SZZ(I3,K,L,JV) 1140 CONTINUE 114 CONTINUE C 11 CONTINUE C ELSE C DO 115 I=1,LON TM(I)=SM(I,K,L) 115 CONTINUE DO 116 JV=1,NTRA DO 1160 I=1,LON T0 (I,JV)=S0 (I,K,L,JV) TX (I,JV)=SSX (I,K,L,JV) TY (I,JV)=SY (I,K,L,JV) TZ (I,JV)=SZ (I,K,L,JV) TXX(I,JV)=SSXX(I,K,L,JV) TXY(I,JV)=SSXY(I,K,L,JV) TXZ(I,JV)=SSXZ(I,K,L,JV) TYY(I,JV)=SYY(I,K,L,JV) TYZ(I,JV)=SYZ(I,K,L,JV) TZZ(I,JV)=SZZ(I,K,L,JV) 1160 CONTINUE 116 CONTINUE C ENDIF C DO 117 I=1,LONK UEXT(I)=UGRI(I*NUMK,K,L) 117 CONTINUE C C place limits on appropriate moments before transport C (if flux-limiting is to be applied) C IF(.NOT.LIMIT) GO TO 13 C DO 12 JV=1,NTRA DO 120 I=1,LONK IF(T0(I,JV).GT.0.) THEN SLPMAX=T0(I,JV) S1MAX=1.5*SLPMAX S1NEW=AMIN1(S1MAX,AMAX1(-S1MAX,TX(I,JV))) S2NEW=AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , + AMAX1(ABS(S1NEW)-SLPMAX,TXX(I,JV)) ) TX (I,JV)=S1NEW TXX(I,JV)=S2NEW TXY(I,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,TXY(I,JV))) TXZ(I,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,TXZ(I,JV))) ELSE TX (I,JV)=0. TXX(I,JV)=0. TXY(I,JV)=0. TXZ(I,JV)=0. ENDIF 120 CONTINUE 12 CONTINUE C 13 CONTINUE C C calculate flux and moments between adjacent boxes C 1- create temporary moments/masses for partial boxes in transit C 2- reajusts moments remaining in the box C C flux from IP to I if U(I).lt.0 C DO 140 I=1,LONK-1 IF(UEXT(I).LT.0.) THEN FM(I)=-UEXT(I)*DTX ALF(I)=FM(I)/TM(I+1) TM(I+1)=TM(I+1)-FM(I) ENDIF 140 CONTINUE C I=LONK IF(UEXT(I).LT.0.) THEN FM(I)=-UEXT(I)*DTX ALF(I)=FM(I)/TM(1) TM(1)=TM(1)-FM(I) ENDIF C C flux from I to IP if U(I).gt.0 C DO 141 I=1,LONK IF(UEXT(I).GE.0.) THEN FM(I)=UEXT(I)*DTX ALF(I)=FM(I)/TM(I) TM(I)=TM(I)-FM(I) ENDIF 141 CONTINUE C DO 142 I=1,LONK ALFQ(I)=ALF(I)*ALF(I) ALF1(I)=1.-ALF(I) ALF1Q(I)=ALF1(I)*ALF1(I) ALF2(I)=ALF1(I)-ALF(I) ALF3(I)=ALF(I)*ALFQ(I) ALF4(I)=ALF1(I)*ALF1Q(I) 142 CONTINUE C DO 150 JV=1,NTRA DO 1500 I=1,LONK-1 C IF(UEXT(I).LT.0.) THEN C F0 (I,JV)=ALF (I)* ( T0(I+1,JV)-ALF1(I)* + ( TX(I+1,JV)-ALF2(I)*TXX(I+1,JV) ) ) FX (I,JV)=ALFQ(I)*(TX(I+1,JV)-3.*ALF1(I)*TXX(I+1,JV)) FXX(I,JV)=ALF3(I)*TXX(I+1,JV) FY (I,JV)=ALF (I)*(TY(I+1,JV)-ALF1(I)*TXY(I+1,JV)) FZ (I,JV)=ALF (I)*(TZ(I+1,JV)-ALF1(I)*TXZ(I+1,JV)) FXY(I,JV)=ALFQ(I)*TXY(I+1,JV) FXZ(I,JV)=ALFQ(I)*TXZ(I+1,JV) FYY(I,JV)=ALF (I)*TYY(I+1,JV) FYZ(I,JV)=ALF (I)*TYZ(I+1,JV) FZZ(I,JV)=ALF (I)*TZZ(I+1,JV) C T0 (I+1,JV)=T0(I+1,JV)-F0(I,JV) TX (I+1,JV)=ALF1Q(I)*(TX(I+1,JV)+3.*ALF(I)*TXX(I+1,JV)) TXX(I+1,JV)=ALF4(I)*TXX(I+1,JV) TY (I+1,JV)=TY (I+1,JV)-FY (I,JV) TZ (I+1,JV)=TZ (I+1,JV)-FZ (I,JV) TYY(I+1,JV)=TYY(I+1,JV)-FYY(I,JV) TYZ(I+1,JV)=TYZ(I+1,JV)-FYZ(I,JV) TZZ(I+1,JV)=TZZ(I+1,JV)-FZZ(I,JV) TXY(I+1,JV)=ALF1Q(I)*TXY(I+1,JV) TXZ(I+1,JV)=ALF1Q(I)*TXZ(I+1,JV) C ENDIF C 1500 CONTINUE 150 CONTINUE C I=LONK IF(UEXT(I).LT.0.) THEN C DO 151 JV=1,NTRA C F0 (I,JV)=ALF (I)* ( T0(1,JV)-ALF1(I)* + ( TX(1,JV)-ALF2(I)*TXX(1,JV) ) ) FX (I,JV)=ALFQ(I)*(TX(1,JV)-3.*ALF1(I)*TXX(1,JV)) FXX(I,JV)=ALF3(I)*TXX(1,JV) FY (I,JV)=ALF (I)*(TY(1,JV)-ALF1(I)*TXY(1,JV)) FZ (I,JV)=ALF (I)*(TZ(1,JV)-ALF1(I)*TXZ(1,JV)) FXY(I,JV)=ALFQ(I)*TXY(1,JV) FXZ(I,JV)=ALFQ(I)*TXZ(1,JV) FYY(I,JV)=ALF (I)*TYY(1,JV) FYZ(I,JV)=ALF (I)*TYZ(1,JV) FZZ(I,JV)=ALF (I)*TZZ(1,JV) C T0 (1,JV)=T0(1,JV)-F0(I,JV) TX (1,JV)=ALF1Q(I)*(TX(1,JV)+3.*ALF(I)*TXX(1,JV)) TXX(1,JV)=ALF4(I)*TXX(1,JV) TY (1,JV)=TY (1,JV)-FY (I,JV) TZ (1,JV)=TZ (1,JV)-FZ (I,JV) TYY(1,JV)=TYY(1,JV)-FYY(I,JV) TYZ(1,JV)=TYZ(1,JV)-FYZ(I,JV) TZZ(1,JV)=TZZ(1,JV)-FZZ(I,JV) TXY(1,JV)=ALF1Q(I)*TXY(1,JV) TXZ(1,JV)=ALF1Q(I)*TXZ(1,JV) C 151 CONTINUE C ENDIF C DO 152 JV=1,NTRA DO 1520 I=1,LONK C IF(UEXT(I).GE.0.) THEN C F0 (I,JV)=ALF (I)* ( T0(I,JV)+ALF1(I)* + ( TX(I,JV)+ALF2(I)*TXX(I,JV) ) ) FX (I,JV)=ALFQ(I)*(TX(I,JV)+3.*ALF1(I)*TXX(I,JV)) FXX(I,JV)=ALF3(I)*TXX(I,JV) FY (I,JV)=ALF (I)*(TY(I,JV)+ALF1(I)*TXY(I,JV)) FZ (I,JV)=ALF (I)*(TZ(I,JV)+ALF1(I)*TXZ(I,JV)) FXY(I,JV)=ALFQ(I)*TXY(I,JV) FXZ(I,JV)=ALFQ(I)*TXZ(I,JV) FYY(I,JV)=ALF (I)*TYY(I,JV) FYZ(I,JV)=ALF (I)*TYZ(I,JV) FZZ(I,JV)=ALF (I)*TZZ(I,JV) C T0 (I,JV)=T0(I,JV)-F0(I,JV) TX (I,JV)=ALF1Q(I)*(TX(I,JV)-3.*ALF(I)*TXX(I,JV)) TXX(I,JV)=ALF4(I)*TXX(I,JV) TY (I,JV)=TY (I,JV)-FY (I,JV) TZ (I,JV)=TZ (I,JV)-FZ (I,JV) TYY(I,JV)=TYY(I,JV)-FYY(I,JV) TYZ(I,JV)=TYZ(I,JV)-FYZ(I,JV) TZZ(I,JV)=TZZ(I,JV)-FZZ(I,JV) TXY(I,JV)=ALF1Q(I)*TXY(I,JV) TXZ(I,JV)=ALF1Q(I)*TXZ(I,JV) C ENDIF C 1520 CONTINUE 152 CONTINUE C C puts the temporary moments Fi into appropriate neighboring boxes C DO 160 I=1,LONK IF(UEXT(I).LT.0.) THEN TM(I)=TM(I)+FM(I) ALF(I)=FM(I)/TM(I) ENDIF 160 CONTINUE C DO 161 I=1,LONK-1 IF(UEXT(I).GE.0.) THEN TM(I+1)=TM(I+1)+FM(I) ALF(I)=FM(I)/TM(I+1) ENDIF 161 CONTINUE C I=LONK IF(UEXT(I).GE.0.) THEN TM(1)=TM(1)+FM(I) ALF(I)=FM(I)/TM(1) ENDIF C DO 162 I=1,LONK ALF1(I)=1.-ALF(I) ALFQ(I)=ALF(I)*ALF(I) ALF1Q(I)=ALF1(I)*ALF1(I) ALF2(I)=ALF1(I)-ALF(I) ALF3(I)=ALF(I)*ALF1(I) 162 CONTINUE C DO 170 JV=1,NTRA DO 1700 I=1,LONK C IF(UEXT(I).LT.0.) THEN C TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I)*F0(I,JV) T0 (I,JV)=T0(I,JV)+F0(I,JV) TXX(I,JV)=ALFQ(I)*FXX(I,JV)+ALF1Q(I)*TXX(I,JV) + +5.*( ALF3(I)*(FX(I,JV)-TX(I,JV))+ALF2(I)*TEMPTM ) TX (I,JV)=ALF (I)*FX (I,JV)+ALF1(I)*TX (I,JV)+3.*TEMPTM TXY(I,JV)=ALF (I)*FXY(I,JV)+ALF1(I)*TXY(I,JV) + +3.*(ALF1(I)*FY (I,JV)-ALF (I)*TY (I,JV)) TXZ(I,JV)=ALF (I)*FXZ(I,JV)+ALF1(I)*TXZ(I,JV) + +3.*(ALF1(I)*FZ (I,JV)-ALF (I)*TZ (I,JV)) TY (I,JV)=TY (I,JV)+FY (I,JV) TZ (I,JV)=TZ (I,JV)+FZ (I,JV) TYY(I,JV)=TYY(I,JV)+FYY(I,JV) TYZ(I,JV)=TYZ(I,JV)+FYZ(I,JV) TZZ(I,JV)=TZZ(I,JV)+FZZ(I,JV) C ENDIF C 1700 CONTINUE 170 CONTINUE C DO 171 JV=1,NTRA DO 1710 I=1,LONK-1 C IF(UEXT(I).GE.0.) THEN C TEMPTM=ALF(I)*T0(I+1,JV)-ALF1(I)*F0(I,JV) T0 (I+1,JV)=T0(I+1,JV)+F0(I,JV) TXX(I+1,JV)=ALFQ(I)*FXX(I,JV)+ALF1Q(I)*TXX(I+1,JV) + +5.*( ALF3(I)*(TX(I+1,JV)-FX(I,JV))-ALF2(I)*TEMPTM ) TX (I+1,JV)=ALF(I)*FX (I ,JV)+ALF1(I)*TX (I+1,JV)+3.*TEMPTM TXY(I+1,JV)=ALF(I)*FXY(I ,JV)+ALF1(I)*TXY(I+1,JV) + +3.*(ALF(I)*TY (I+1,JV)-ALF1(I)*FY (I ,JV)) TXZ(I+1,JV)=ALF(I)*FXZ(I ,JV)+ALF1(I)*TXZ(I+1,JV) + +3.*(ALF(I)*TZ (I+1,JV)-ALF1(I)*FZ (I ,JV)) TY (I+1,JV)=TY (I+1,JV)+FY (I,JV) TZ (I+1,JV)=TZ (I+1,JV)+FZ (I,JV) TYY(I+1,JV)=TYY(I+1,JV)+FYY(I,JV) TYZ(I+1,JV)=TYZ(I+1,JV)+FYZ(I,JV) TZZ(I+1,JV)=TZZ(I+1,JV)+FZZ(I,JV) C ENDIF C 1710 CONTINUE 171 CONTINUE C I=LONK IF(UEXT(I).GE.0.) THEN DO 172 JV=1,NTRA TEMPTM=ALF(I)*T0(1,JV)-ALF1(I)*F0(I,JV) T0 (1,JV)=T0(1,JV)+F0(I,JV) TXX(1,JV)=ALFQ(I)*FXX(I,JV)+ALF1Q(I)*TXX(1,JV) + +5.*( ALF3(I)*(TX(1,JV)-FX(I,JV))-ALF2(I)*TEMPTM ) TX (1,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(1,JV)+3.*TEMPTM TXY(1,JV)=ALF(I)*FXY(I,JV)+ALF1(I)*TXY(1,JV) + +3.*(ALF(I)*TY (1,JV)-ALF1(I)*FY (I,JV)) TXZ(1,JV)=ALF(I)*FXZ(I,JV)+ALF1(I)*TXZ(1,JV) + +3.*(ALF(I)*TZ (1,JV)-ALF1(I)*FZ (I,JV)) TY (1,JV)=TY (1,JV)+FY (I,JV) TZ (1,JV)=TZ (1,JV)+FZ (I,JV) TYY(1,JV)=TYY(1,JV)+FYY(I,JV) TYZ(1,JV)=TYZ(1,JV)+FYZ(I,JV) TZZ(1,JV)=TZZ(1,JV)+FZZ(I,JV) 172 CONTINUE ENDIF C C retour aux mailles d'origine (passage des Tij aux Sij) C IF(NUMK.GT.1) THEN C DO 18 I2=1,NUMK C DO 180 I=1,LONK C I3=I2+(I-1)*NUMK SM(I3,K,L)=SMNEW(I3) ALF(I)=SMNEW(I3)/TM(I) TM(I)=TM(I)-SMNEW(I3) C ALFQ(I)=ALF(I)*ALF(I) ALF1(I)=1.-ALF(I) ALF1Q(I)=ALF1(I)*ALF1(I) ALF2(I)=ALF1(I)-ALF(I) ALF3(I)=ALF(I)*ALFQ(I) ALF4(I)=ALF1(I)*ALF1Q(I) C 180 CONTINUE C DO 181 JV=1,NTRA DO 181 I=1,LONK C I3=I2+(I-1)*NUMK S0 (I3,K,L,JV)=ALF (I)* ( T0(I,JV)-ALF1(I)* + ( TX(I,JV)-ALF2(I)*TXX(I,JV) ) ) SSX (I3,K,L,JV)=ALFQ(I)*(TX(I,JV)-3.*ALF1(I)*TXX(I,JV)) SSXX(I3,K,L,JV)=ALF3(I)*TXX(I,JV) SY (I3,K,L,JV)=ALF (I)*(TY(I,JV)-ALF1(I)*TXY(I,JV)) SZ (I3,K,L,JV)=ALF (I)*(TZ(I,JV)-ALF1(I)*TXZ(I,JV)) SSXY(I3,K,L,JV)=ALFQ(I)*TXY(I,JV) SSXZ(I3,K,L,JV)=ALFQ(I)*TXZ(I,JV) SYY(I3,K,L,JV)=ALF (I)*TYY(I,JV) SYZ(I3,K,L,JV)=ALF (I)*TYZ(I,JV) SZZ(I3,K,L,JV)=ALF (I)*TZZ(I,JV) C C reajusts moments remaining in the box C T0 (I,JV)=T0(I,JV)-S0(I3,K,L,JV) TX (I,JV)=ALF1Q(I)*(TX(I,JV)+3.*ALF(I)*TXX(I,JV)) TXX(I,JV)=ALF4 (I)*TXX(I,JV) TY (I,JV)=TY (I,JV)-SY (I3,K,L,JV) TZ (I,JV)=TZ (I,JV)-SZ (I3,K,L,JV) TYY(I,JV)=TYY(I,JV)-SYY(I3,K,L,JV) TYZ(I,JV)=TYZ(I,JV)-SYZ(I3,K,L,JV) TZZ(I,JV)=TZZ(I,JV)-SZZ(I3,K,L,JV) TXY(I,JV)=ALF1Q(I)*TXY(I,JV) TXZ(I,JV)=ALF1Q(I)*TXZ(I,JV) C 181 CONTINUE C 18 CONTINUE C ELSE C DO 190 I=1,LON SM(I,K,L)=TM(I) 190 CONTINUE DO 191 JV=1,NTRA DO 1910 I=1,LON S0 (I,K,L,JV)=T0 (I,JV) SSX (I,K,L,JV)=TX (I,JV) SY (I,K,L,JV)=TY (I,JV) SZ (I,K,L,JV)=TZ (I,JV) SSXX(I,K,L,JV)=TXX(I,JV) SSXY(I,K,L,JV)=TXY(I,JV) SSXZ(I,K,L,JV)=TXZ(I,JV) SYY(I,K,L,JV)=TYY(I,JV) SYZ(I,K,L,JV)=TYZ(I,JV) SZZ(I,K,L,JV)=TZZ(I,JV) 1910 CONTINUE 191 CONTINUE C ENDIF C 1 CONTINUE C C ----------- AA Test en fin de ADVX ------ Controle des S* c DO 9999 l = 1, llm c DO 9999 j = 1, jjp1 c DO 9999 i = 1, iip1 c IF (S0(i,j,l,ntra).lt.0..and.LIMIT) THEN c PRINT*, '-------------------' c PRINT*, 'En fin de ADVXP' c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) c print*, 'SSX(',i,j,l,')=',SSX(i,j,l,ntra) c print*, 'SY(',i,j,l,')=',SY(i,j,l,ntra) c print*, 'SZ(',i,j,l,')=',SZ(i,j,l,ntra) c WRITE (*,*) 'On arrete !! - pbl en fin de ADVXP' c STOP c ENDIF c 9999 CONTINUE c ---------- bouclage cyclique DO l = 1,llm DO j = 1,jjp1 SM(iip1,j,l) = SM(1,j,l) S0(iip1,j,l,ntra) = S0(1,j,l,ntra) SSX(iip1,j,l,ntra) = SSX(1,j,l,ntra) SY(iip1,j,l,ntra) = SY(1,j,l,ntra) SZ(iip1,j,l,ntra) = SZ(1,j,l,ntra) END DO END DO C ----------- qqtite totale de traceur dans tte l'atmosphere DO l = 1, llm DO j = 1, jjp1 DO i = 1, iim sqf = sqf + S0(i,j,l,ntra) END DO END DO END DO PRINT*,'------ DIAG DANS ADVX2 - SORTIE -----' PRINT*,'sqf=',sqf c------------------------------------------------------------- RETURN END