! $Id: cv3_cine.F90 1999 2014-03-20 09:57:19Z emillour $ SUBROUTINE cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, & cina, cinb, plfc) ! ************************************************************** ! * ! CV3_CINE * ! * ! * ! written by : Frederique Cheruy * ! vectorization: Jean-Yves Grandpeix, 19/06/2003, 11.54.43 * ! modified by : * ! ************************************************************** IMPLICIT NONE include "YOMCST.h" include "cvthermo.h" include "cv3param.h" ! input: INTEGER ncum, nd, nloc INTEGER icb(nloc), inb(nloc) REAL pbase(nloc), plcl(nloc) REAL p(nloc, nd), ph(nloc, nd+1) REAL tv(nloc, nd), tvp(nloc, nd) ! output REAL cina(nloc), cinb(nloc), plfc(nloc) ! local variables INTEGER il, i, j, k INTEGER itop(nloc), ineg(nloc), ilow(nloc) INTEGER ifst(nloc), isublcl(nloc) LOGICAL lswitch(nloc), lswitch1(nloc), lswitch2(nloc) LOGICAL exist_lfc(nloc) REAL dpmax REAL deltap, dcin REAL buoylcl(nloc), tvplcl(nloc), tvlcl(nloc) REAL p0(nloc) REAL buoyz(nloc), buoy(nloc, nd) ! ------------------------------------------------------------- ! Initialization ! ------------------------------------------------------------- DO il = 1, ncum cina(il) = 0. cinb(il) = 0. END DO ! -------------------------------------------------------------- ! Recompute buoyancies ! -------------------------------------------------------------- DO k = 1, nd DO il = 1, ncum ! print*,'tvp tv=',tvp(il,k),tv(il,k) buoy(il, k) = tvp(il, k) - tv(il, k) END DO END DO ! --------------------------------------------------------------- ! calcul de la flottabilite a LCL (Buoylcl) ! ifst = first P-level above lcl ! isublcl = highest P-level below lcl. ! --------------------------------------------------------------- DO il = 1, ncum tvplcl(il) = tvp(il, 1)*(plcl(il)/p(il,1))**(2./7.) !For dry air, R/Cp=2/7 END DO DO il = 1, ncum IF (plcl(il)>p(il,icb(il))) THEN ifst(il) = icb(il) isublcl(il) = icb(il) - 1 ELSE ifst(il) = icb(il) + 1 isublcl(il) = icb(il) END IF END DO DO il = 1, ncum tvlcl(il) = tv(il, ifst(il)-1) + (tv(il,ifst(il))-tv(il,ifst(il)-1))*( & plcl(il)-p(il,ifst(il)-1))/(p(il,ifst(il))-p(il,ifst(il)-1)) END DO DO il = 1, ncum buoylcl(il) = tvplcl(il) - tvlcl(il) END DO ! --------------------------------------------------------------- ! premiere couche contenant un niveau de flotabilite positive ! et premiere couche contenant un niveau de flotabilite negative ! au dessus du niveau de condensation ! --------------------------------------------------------------- DO il = 1, ncum itop(il) = nl - 1 ineg(il) = nl - 1 exist_lfc(il) = .FALSE. END DO DO k = nl - 1, 1, -1 DO il = 1, ncum IF (k>=ifst(il)) THEN IF (buoy(il,k)>0.) THEN itop(il) = k exist_lfc(il) = .TRUE. ELSE ineg(il) = k END IF END IF END DO END DO ! --------------------------------------------------------------- ! When there is no positive buoyancy level, set Plfc, Cina and Cinb ! to arbitrary extreme values. ! --------------------------------------------------------------- DO il = 1, ncum IF (.NOT. exist_lfc(il)) THEN plfc(il) = 1.111 cinb(il) = -1111. cina(il) = -1112. END IF END DO ! --------------------------------------------------------------- ! -- Two cases : BUOYlcl >= 0 and BUOYlcl < 0. ! --------------------------------------------------------------- ! -------------------- ! -- 1.0 BUOYlcl >=0. ! -------------------- dpmax = 50. DO il = 1, ncum lswitch1(il) = buoylcl(il) >= 0. .AND. exist_lfc(il) lswitch(il) = lswitch1(il) END DO ! 1.1 No inhibition case ! ---------------------- ! If buoyancy is positive at LCL and stays positive over a large enough ! pressure interval (=DPMAX), inhibition is set to zero, DO il = 1, ncum IF (lswitch(il)) THEN IF (p(il,ineg(il))= p(il, icb(il)) - dpmax lswitch(il) = lswitch1(il) .AND. lswitch2(il) END DO DO il = 1, ncum IF (lswitch(il)) THEN cinb(il) = 0. ! 1.2.1 Calcul de la pression du niveau de flot. nulle juste au-dessus ! de LCL ! --------------------------------------------------------------------------- IF (ineg(il)>isublcl(il)+1) THEN ! In order to get P0, one may interpolate linearly buoyancies ! between P(ineg) and P(ineg-1). p0(il) = (buoy(il,ineg(il))*p(il,ineg(il)-1)-buoy(il,ineg( & il)-1)*p(il,ineg(il)))/(buoy(il,ineg(il))-buoy(il,ineg(il)-1)) ELSE ! In order to get P0, one has to interpolate between P(ineg) and ! Plcl. p0(il) = (buoy(il,ineg(il))*plcl(il)-buoylcl(il)*p(il,ineg(il)))/ & (buoy(il,ineg(il))-buoylcl(il)) END IF END IF END DO ! 1.2.2 Recompute itop (=1st layer with positive buoyancy above ineg) ! ------------------------------------------------------------------- DO il = 1, ncum IF (lswitch(il)) THEN itop(il) = nl - 1 END IF END DO DO k = nl, 1, -1 DO il = 1, ncum IF (lswitch(il)) THEN IF (k>=ineg(il) .AND. buoy(il,k)>0) THEN itop(il) = k END IF END IF END DO END DO ! 1.2.3 Computation of PLFC ! ------------------------- DO il = 1, ncum IF (lswitch(il)) THEN plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( & il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1)) END IF END DO ! 1.2.4 Computation of CINA ! ------------------------- ! Upper part of CINA : integral from P(itop-1) to Plfc DO il = 1, ncum IF (lswitch(il)) THEN deltap = p(il, itop(il)-1) - plfc(il) dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il)) cina(il) = min(0., dcin) END IF END DO ! Middle part of CINA : integral from P(ineg) to P(itop-1) DO k = 1, nl DO il = 1, ncum IF (lswitch(il)) THEN IF (k>=ineg(il) .AND. k<=itop(il)-2) THEN deltap = p(il, k) - p(il, k+1) dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1) cina(il) = cina(il) + min(0., dcin) END IF END IF END DO END DO ! Lower part of CINA : integral from P0 to P(ineg) DO il = 1, ncum IF (lswitch(il)) THEN deltap = p0(il) - p(il, ineg(il)) dcin = rd*buoy(il, ineg(il))*deltap/(p(il,ineg(il))+p0(il)) cina(il) = cina(il) + min(0., dcin) END IF END DO ! ------------------ ! -- 2.0 BUOYlcl <0. ! ------------------ DO il = 1, ncum lswitch1(il) = buoylcl(il) < 0. .AND. exist_lfc(il) lswitch(il) = lswitch1(il) END DO ! 2.0.1 Premiere couche ou la flotabilite est negative au dessus du sol ! ---------------------------------------------------- ! au cas ou elle existe sinon ilow=1 (nk apres) ! on suppose que la parcelle part de la premiere couche DO il = 1, ncum IF (lswitch(il)) THEN ilow(il) = 1 END IF END DO DO k = nl, 1, -1 DO il = 1, ncum IF (lswitch(il) .AND. k<=icb(il)-1) THEN IF (buoy(il,k)<0.) THEN ilow(il) = k END IF END IF END DO END DO ! 2.0.2 Calcul de la pression du niveau de flot. nulle sous le nuage ! ---------------------------------------------------- DO il = 1, ncum IF (lswitch(il)) THEN IF (ilow(il)>1) THEN p0(il) = (buoy(il,ilow(il))*p(il,ilow(il)-1)-buoy(il,ilow( & il)-1)*p(il,ilow(il)))/(buoy(il,ilow(il))-buoy(il,ilow(il)-1)) buoyz(il) = 0. ELSE p0(il) = p(il, 1) buoyz(il) = buoy(il, 1) END IF END IF END DO ! 2.1. Computation of CINB ! ----------------------- DO il = 1, ncum lswitch2(il) = (isublcl(il)==1 .AND. ilow(il)==1) .OR. & (isublcl(il)==ilow(il)-1) lswitch(il) = lswitch1(il) .AND. lswitch2(il) END DO ! c IF ( (isublcl .EQ. 1 .AND. ilow .EQ. 1) ! c $ .OR.(isublcl .EQ. ilow-1)) THEN ! 2.1.1 First case : Plcl just above P0 ! ------------------------------------- DO il = 1, ncum IF (lswitch(il)) THEN deltap = p0(il) - plcl(il) dcin = rd*(buoyz(il)+buoylcl(il))*deltap/(p0(il)+plcl(il)) cinb(il) = min(0., dcin) END IF END DO DO il = 1, ncum lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il) END DO ! c ELSE ! 2.1.2 Second case : there is at least one P-level between P0 and Plcl ! --------------------------------------------------------------------- ! Lower part of CINB : integral from P0 to P(ilow) DO il = 1, ncum IF (lswitch(il)) THEN deltap = p0(il) - p(il, ilow(il)) dcin = rd*(buoyz(il)+buoy(il,ilow(il)))*deltap/(p0(il)+p(il,ilow(il))) cinb(il) = min(0., dcin) END IF END DO ! Middle part of CINB : integral from P(ilow) to P(isublcl) ! c DO k = ilow,isublcl-1 DO k = 1, nl DO il = 1, ncum IF (lswitch(il) .AND. k>=ilow(il) .AND. k<=isublcl(il)-1) THEN deltap = p(il, k) - p(il, k+1) dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1) cinb(il) = cinb(il) + min(0., dcin) END IF END DO END DO ! Upper part of CINB : integral from P(isublcl) to Plcl DO il = 1, ncum IF (lswitch(il)) THEN deltap = p(il, isublcl(il)) - plcl(il) dcin = rd*(buoy(il,isublcl(il))+buoylcl(il))*deltap/ & (p(il,isublcl(il))+plcl(il)) cinb(il) = cinb(il) + min(0., dcin) END IF END DO ! c ENDIF ! 2.2 Computation of CINA ! --------------------- DO il = 1, ncum lswitch2(il) = plcl(il) > p(il, itop(il)-1) lswitch(il) = lswitch1(il) .AND. lswitch2(il) END DO ! 2.2.1 FIrst case : Plcl > P(itop-1) ! --------------------------------- ! In order to get Plfc, one may interpolate linearly buoyancies ! between P(itop) and P(itop-1). DO il = 1, ncum IF (lswitch(il)) THEN plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( & il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1)) END IF END DO ! Upper part of CINA : integral from P(itop-1) to Plfc DO il = 1, ncum IF (lswitch(il)) THEN deltap = p(il, itop(il)-1) - plfc(il) dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il)) cina(il) = min(0., dcin) END IF END DO ! Middle part of CINA : integral from P(icb+1) to P(itop-1) DO k = 1, nl DO il = 1, ncum IF (lswitch(il) .AND. k>=icb(il)+1 .AND. k<=itop(il)-2) THEN deltap = p(il, k) - p(il, k+1) dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1) cina(il) = cina(il) + min(0., dcin) END IF END DO END DO ! Lower part of CINA : integral from Plcl to P(icb+1) DO il = 1, ncum IF (lswitch(il)) THEN IF (plcl(il)>p(il,icb(il))) THEN IF (icb(il)