! ! $Id: ppm3d.F 2197 2015-02-09 07:13:05Z crio $ ! cFrom lin@explorer.gsfc.nasa.gov Wed Apr 15 17:44:44 1998 cDate: Wed, 15 Apr 1998 11:37:03 -0400 cFrom: lin@explorer.gsfc.nasa.gov cTo: Frederic.Hourdin@lmd.jussieu.fr cSubject: 3D transport module of the GSFC CTM and GEOS GCM cThis code is sent to you by S-J Lin, DAO, NASA-GSFC cNote: this version is intended for machines like CRAY C-90. No multitasking directives implemented. C ******************************************************************** C C TransPort Core for Goddard Chemistry Transport Model (G-CTM), Goddard C Earth Observing System General Circulation Model (GEOS-GCM), and Data C Assimilation System (GEOS-DAS). C C ******************************************************************** C C Purpose: given horizontal winds on a hybrid sigma-p surfaces, C one call to tpcore updates the 3-D mixing ratio C fields one time step (NDT). [vertical mass flux is computed C internally consistent with the discretized hydrostatic mass C continuity equation of the C-Grid GEOS-GCM (for IGD=1)]. C C Schemes: Multi-dimensional Flux Form Semi-Lagrangian (FFSL) scheme based C on the van Leer or PPM. C (see Lin and Rood 1996). C Version 4.5 C Last modified: Dec. 5, 1996 C Major changes from version 4.0: a more general vertical hybrid sigma- C pressure coordinate. C Subroutines modified: xtp, ytp, fzppm, qckxyz C Subroutines deleted: vanz C C Author: Shian-Jiann Lin C mail address: C Shian-Jiann Lin* C Code 910.3, NASA/GSFC, Greenbelt, MD 20771 C Phone: 301-286-9540 C E-mail: lin@dao.gsfc.nasa.gov C C *affiliation: C Joint Center for Earth Systems Technology C The University of Maryland Baltimore County C NASA - Goddard Space Flight Center C References: C C 1. Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux form semi- C Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046-2070. C C 2. Lin, S.-J., W. C. Chao, Y. C. Sud, and G. K. Walker, 1994: A class of C the van Leer-type transport schemes and its applications to the moist- C ure transport in a General Circulation Model. Mon. Wea. Rev., 122, C 1575-1593. C C ****6***0*********0*********0*********0*********0*********0**********72 C subroutine ppm3d(IGD,Q,PS1,PS2,U,V,W,NDT,IORD,JORD,KORD,NC,IMR, & JNP,j1,NLAY,AP,BP,PT,AE,fill,dum,Umax) implicit none c rajout de déclarations c integer Jmax,kmax,ndt0,nstep,k,j,i,ic,l,js,jn,imh,iad,jad,krd c integer iu,iiu,j2,jmr,js0,jt c real dtdy,dtdy5,rcap,iml,jn0,imjm,pi,dl,dp c real dt,cr1,maxdt,ztc,d5,sum1,sum2,ru C C ******************************************************************** C C ============= C INPUT: C ============= C C Q(IMR,JNP,NLAY,NC): mixing ratios at current time (t) C NC: total # of constituents C IMR: first dimension (E-W); # of Grid intervals in E-W is IMR C JNP: 2nd dimension (N-S); # of Grid intervals in N-S is JNP-1 C NLAY: 3rd dimension (# of layers); vertical index increases from 1 at C the model top to NLAY near the surface (see fig. below). C It is assumed that 6 <= NLAY <= JNP (for dynamic memory allocation) C C PS1(IMR,JNP): surface pressure at current time (t) C PS2(IMR,JNP): surface pressure at mid-time-level (t+NDT/2) C PS2 is replaced by the predicted PS (at t+NDT) on output. C Note: surface pressure can have any unit or can be multiplied by any C const. C C The pressure at layer edges are defined as follows: C C p(i,j,k) = AP(k)*PT + BP(k)*PS(i,j) (1) C C Where PT is a constant having the same unit as PS. C AP and BP are unitless constants given at layer edges C defining the vertical coordinate. C BP(1) = 0., BP(NLAY+1) = 1. C The pressure at the model top is PTOP = AP(1)*PT C C For pure sigma system set AP(k) = 1 for all k, PT = PTOP, C BP(k) = sige(k) (sigma at edges), PS = Psfc - PTOP. C C Note: the sigma-P coordinate is a subset of Eq. 1, which in turn C is a subset of the following even more general sigma-P-thelta coord. C currently under development. C p(i,j,k) = (AP(k)*PT + BP(k)*PS(i,j))/(D(k)-C(k)*TE**(-1/kapa)) C C ///////////////////////////////// C / \ ------------- PTOP -------------- AP(1), BP(1) C | C delp(1) | ........... Q(i,j,1) ............ C | C W(1) \ / --------------------------------- AP(2), BP(2) C C C C W(k-1) / \ --------------------------------- AP(k), BP(k) C | C delp(K) | ........... Q(i,j,k) ............ C | C W(k) \ / --------------------------------- AP(k+1), BP(k+1) C C C C / \ --------------------------------- AP(NLAY), BP(NLAY) C | C delp(NLAY) | ........... Q(i,j,NLAY) ......... C | C W(NLAY)=0 \ / ------------- surface ----------- AP(NLAY+1), BP(NLAY+1) C ////////////////////////////////// C C U(IMR,JNP,NLAY) & V(IMR,JNP,NLAY):winds (m/s) at mid-time-level (t+NDT/2) C U and V may need to be polar filtered in advance in some cases. C C IGD: grid type on which winds are defined. C IGD = 0: A-Grid [all variables defined at the same point from south C pole (j=1) to north pole (j=JNP) ] C C IGD = 1 GEOS-GCM C-Grid C [North] C C V(i,j) C | C | C | C U(i-1,j)---Q(i,j)---U(i,j) [EAST] C | C | C | C V(i,j-1) C C U(i, 1) is defined at South Pole. C V(i, 1) is half grid north of the South Pole. C V(i,JMR) is half grid south of the North Pole. C C V must be defined at j=1 and j=JMR if IGD=1 C V at JNP need not be given. C C NDT: time step in seconds (need not be constant during the course of C the integration). Suggested value: 30 min. for 4x5, 15 min. for 2x2.5 C (Lat-Lon) resolution. Smaller values are recommanded if the model C has a well-resolved stratosphere. C C J1 defines the size of the polar cap: C South polar cap edge is located at -90 + (j1-1.5)*180/(JNP-1) deg. C North polar cap edge is located at 90 - (j1-1.5)*180/(JNP-1) deg. C There are currently only two choices (j1=2 or 3). C IMR must be an even integer if j1 = 2. Recommended value: J1=3. C C IORD, JORD, and KORD are integers controlling various options in E-W, N-S, C and vertical transport, respectively. Recommended values for positive C definite scalars: IORD=JORD=3, KORD=5. Use KORD=3 for non- C positive definite scalars or when linear correlation between constituents C is to be maintained. C C _ORD= C 1: 1st order upstream scheme (too diffusive, not a useful option; it C can be used for debugging purposes; this is THE only known "linear" C monotonic advection scheme.). C 2: 2nd order van Leer (full monotonicity constraint; C see Lin et al 1994, MWR) C 3: monotonic PPM* (slightly improved PPM of Collela & Woodward 1984) C 4: semi-monotonic PPM (same as 3, but overshoots are allowed) C 5: positive-definite PPM (constraint on the subgrid distribution is C only strong enough to prevent generation of negative values; C both overshoots & undershoots are possible). C 6: un-constrained PPM (nearly diffusion free; slightly faster but C positivity not quaranteed. Use this option only when the fields C and winds are very smooth). C C *PPM: Piece-wise Parabolic Method C C Note that KORD <=2 options are no longer supported. DO not use option 4 or 5. C for non-positive definite scalars (such as Ertel Potential Vorticity). C C The implicit numerical diffusion decreases as _ORD increases. C The last two options (ORDER=5, 6) should only be used when there is C significant explicit diffusion (such as a turbulence parameterization). You C might get dispersive results otherwise. C No filter of any kind is applied to the constituent fields here. C C AE: Radius of the sphere (meters). C Recommended value for the planet earth: 6.371E6 C C fill(logical): flag to do filling for negatives (see note below). C C Umax: Estimate (upper limit) of the maximum U-wind speed (m/s). C (220 m/s is a good value for troposphere model; 280 m/s otherwise) C C ============= C Output C ============= C C Q: mixing ratios at future time (t+NDT) (original values are over-written) C W(NLAY): large-scale vertical mass flux as diagnosed from the hydrostatic C relationship. W will have the same unit as PS1 and PS2 (eg, mb). C W must be divided by NDT to get the correct mass-flux unit. C The vertical Courant number C = W/delp_UPWIND, where delp_UPWIND C is the pressure thickness in the "upwind" direction. For example, C C(k) = W(k)/delp(k) if W(k) > 0; C C(k) = W(k)/delp(k+1) if W(k) < 0. C ( W > 0 is downward, ie, toward surface) C PS2: predicted PS at t+NDT (original values are over-written) C C ******************************************************************** C NOTES: C This forward-in-time upstream-biased transport scheme reduces to C the 2nd order center-in-time center-in-space mass continuity eqn. C if Q = 1 (constant fields will remain constant). This also ensures C that the computed vertical velocity to be identical to GEOS-1 GCM C for on-line transport. C C A larger polar cap is used if j1=3 (recommended for C-Grid winds or when C winds are noisy near poles). C C Flux-Form Semi-Lagrangian transport in the East-West direction is used C when and where Courant # is greater than one. C C The user needs to change the parameter Jmax or Kmax if the resolution C is greater than 0.5 deg in N-S or 150 layers in the vertical direction. C (this TransPort Core is otherwise resolution independent and can be used C as a library routine). C C PPM is 4th order accurate when grid spacing is uniform (x & y); 3rd C order accurate for non-uniform grid (vertical sigma coord.). C C Time step is limitted only by transport in the meridional direction. C (the FFSL scheme is not implemented in the meridional direction). C C Since only 1-D limiters are applied, negative values could C potentially be generated when large time step is used and when the C initial fields contain discontinuities. C This does not necessarily imply the integration is unstable. C These negatives are typically very small. A filling algorithm is C activated if the user set "fill" to be true. C C The van Leer scheme used here is nearly as accurate as the original PPM C due to the use of a 4th order accurate reference slope. The PPM imple- C mented here is an improvement over the original and is also based on C the 4th order reference slope. C C ****6***0*********0*********0*********0*********0*********0**********72 C C User modifiable parameters C integer,parameter :: Jmax = 361, kmax = 150 C C ****6***0*********0*********0*********0*********0*********0**********72 C C Input-Output arrays C real Q(IMR,JNP,NLAY,NC),PS1(IMR,JNP),PS2(IMR,JNP), & U(IMR,JNP,NLAY),V(IMR,JNP,NLAY),AP(NLAY+1), & BP(NLAY+1),W(IMR,JNP,NLAY),NDT,val(NLAY),Umax integer IGD,IORD,JORD,KORD,NC,IMR,JNP,j1,NLAY,AE integer IMRD2 real PT logical cross, fill, dum C C Local dynamic arrays C real CRX(IMR,JNP),CRY(IMR,JNP),xmass(IMR,JNP),ymass(IMR,JNP), & fx1(IMR+1),DPI(IMR,JNP,NLAY),delp1(IMR,JNP,NLAY), & WK1(IMR,JNP,NLAY),PU(IMR,JNP),PV(IMR,JNP),DC2(IMR,JNP), & delp2(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY,NC),VA(IMR,JNP), & UA(IMR,JNP),qtmp(-IMR:2*IMR) C C Local static arrays C real DTDX(Jmax), DTDX5(Jmax), acosp(Jmax), & cosp(Jmax), cose(Jmax), DAP(kmax),DBK(Kmax) data NDT0, NSTEP /0, 0/ data cross /.true./ REAL DTDY, DTDY5, RCAP INTEGER JS0, JN0, IML, JMR, IMJM SAVE DTDY, DTDY5, RCAP, JS0, JN0, IML, & DTDX, DTDX5, ACOSP, COSP, COSE, DAP,DBK C INTEGER NDT0, NSTEP, j2, k,j,i,ic,l,JS,JN,IMH INTEGER IU,IIU,JT,iad,jad,krd REAL r23,r3,PI,DL,DP,DT,CR1,MAXDT,ZTC,D5 REAL sum1,sum2,ru JMR = JNP -1 IMJM = IMR*JNP j2 = JNP - j1 + 1 NSTEP = NSTEP + 1 C C *********** Initialization ********************** if(NSTEP.eq.1) then c write(6,*) '------------------------------------ ' write(6,*) 'NASA/GSFC Transport Core Version 4.5' write(6,*) '------------------------------------ ' c WRITE(6,*) 'IMR=',IMR,' JNP=',JNP,' NLAY=',NLAY,' j1=',j1 WRITE(6,*) 'NC=',NC,IORD,JORD,KORD,NDT C C controles sur les parametres if(NLAY.LT.6) then write(6,*) 'NLAY must be >= 6' stop endif if (JNP.LT.NLAY) then write(6,*) 'JNP must be >= NLAY' stop endif IMRD2=mod(IMR,2) if (j1.eq.2.and.IMRD2.NE.0) then write(6,*) 'if j1=2 IMR must be an even integer' stop endif C if(Jmax.lt.JNP .or. Kmax.lt.NLAY) then write(6,*) 'Jmax or Kmax is too small' stop endif C DO k=1,NLAY DAP(k) = (AP(k+1) - AP(k))*PT DBK(k) = BP(k+1) - BP(k) ENDDO C PI = 4. * ATAN(1.) DL = 2.*PI / REAL(IMR) DP = PI / REAL(JMR) C if(IGD.eq.0) then C Compute analytic cosine at cell edges call cosa(cosp,cose,JNP,PI,DP) else C Define cosine consistent with GEOS-GCM (using dycore2.0 or later) call cosc(cosp,cose,JNP,PI,DP) endif C do 15 J=2,JMR 15 acosp(j) = 1. / cosp(j) C C Inverse of the Scaled polar cap area. C RCAP = DP / (IMR*(1.-COS((j1-1.5)*DP))) acosp(1) = RCAP acosp(JNP) = RCAP endif C if(NDT0 .ne. NDT) then DT = NDT NDT0 = NDT if(Umax .lt. 180.) then write(6,*) 'Umax may be too small!' endif CR1 = abs(Umax*DT)/(DL*AE) MaxDT = DP*AE / abs(Umax) + 0.5 write(6,*)'Largest time step for max(V)=',Umax,' is ',MaxDT if(MaxDT .lt. abs(NDT)) then write(6,*) 'Warning!!! NDT maybe too large!' endif C if(CR1.ge.0.95) then JS0 = 0 JN0 = 0 IML = IMR-2 ZTC = 0. else ZTC = acos(CR1) * (180./PI) C JS0 = REAL(JMR)*(90.-ZTC)/180. + 2 JS0 = max(JS0, J1+1) IML = min(6*JS0/(J1-1)+2, 4*IMR/5) JN0 = JNP-JS0+1 endif C C do J=2,JMR DTDX(j) = DT / ( DL*AE*COSP(J) ) c print*,'dtdx=',dtdx(j) DTDX5(j) = 0.5*DTDX(j) enddo C DTDY = DT /(AE*DP) c print*,'dtdy=',dtdy DTDY5 = 0.5*DTDY C c write(6,*) 'J1=',J1,' J2=', J2 endif C C *********** End Initialization ********************** C C delp = pressure thickness: the psudo-density in a hydrostatic system. do k=1,NLAY do j=1,JNP do i=1,IMR delp1(i,j,k)=DAP(k)+DBK(k)*PS1(i,j) delp2(i,j,k)=DAP(k)+DBK(k)*PS2(i,j) enddo enddo enddo C if(j1.ne.2) then DO 40 IC=1,NC DO 40 L=1,NLAY DO 40 I=1,IMR Q(I, 2,L,IC) = Q(I, 1,L,IC) 40 Q(I,JMR,L,IC) = Q(I,JNP,L,IC) endif C C Compute "tracer density" DO 550 IC=1,NC DO 44 k=1,NLAY DO 44 j=1,JNP DO 44 i=1,IMR 44 DQ(i,j,k,IC) = Q(i,j,k,IC)*delp1(i,j,k) 550 continue C do 1500 k=1,NLAY C if(IGD.eq.0) then C Convert winds on A-Grid to Courant # on C-Grid. call A2C(U(1,1,k),V(1,1,k),IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) else C Convert winds on C-grid to Courant # do 45 j=j1,j2 do 45 i=2,IMR 45 CRX(i,J) = dtdx(j)*U(i-1,j,k) C do 50 j=j1,j2 50 CRX(1,J) = dtdx(j)*U(IMR,j,k) C do 55 i=1,IMR*JMR 55 CRY(i,2) = DTDY*V(i,1,k) endif C C Determine JS and JN JS = j1 JN = j2 C do j=JS0,j1+1,-1 do i=1,IMR if(abs(CRX(i,j)).GT.1.) then JS = j go to 2222 endif enddo enddo C 2222 continue do j=JN0,j2-1 do i=1,IMR if(abs(CRX(i,j)).GT.1.) then JN = j go to 2233 endif enddo enddo 2233 continue C if(j1.ne.2) then ! Enlarged polar cap. do i=1,IMR DPI(i, 2,k) = 0. DPI(i,JMR,k) = 0. enddo endif C C ******* Compute horizontal mass fluxes ************ C C N-S component do j=j1,j2+1 D5 = 0.5 * COSE(j) do i=1,IMR ymass(i,j) = CRY(i,j)*D5*(delp2(i,j,k) + delp2(i,j-1,k)) enddo enddo C do 95 j=j1,j2 DO 95 i=1,IMR 95 DPI(i,j,k) = (ymass(i,j) - ymass(i,j+1)) * acosp(j) C C Poles sum1 = ymass(IMR,j1 ) sum2 = ymass(IMR,J2+1) do i=1,IMR-1 sum1 = sum1 + ymass(i,j1 ) sum2 = sum2 + ymass(i,J2+1) enddo C sum1 = - sum1 * RCAP sum2 = sum2 * RCAP do i=1,IMR DPI(i, 1,k) = sum1 DPI(i,JNP,k) = sum2 enddo C C E-W component C do j=j1,j2 do i=2,IMR PU(i,j) = 0.5 * (delp2(i,j,k) + delp2(i-1,j,k)) enddo enddo C do j=j1,j2 PU(1,j) = 0.5 * (delp2(1,j,k) + delp2(IMR,j,k)) enddo C do 110 j=j1,j2 DO 110 i=1,IMR 110 xmass(i,j) = PU(i,j)*CRX(i,j) C DO 120 j=j1,j2 DO 120 i=1,IMR-1 120 DPI(i,j,k) = DPI(i,j,k) + xmass(i,j) - xmass(i+1,j) C DO 130 j=j1,j2 130 DPI(IMR,j,k) = DPI(IMR,j,k) + xmass(IMR,j) - xmass(1,j) C DO j=j1,j2 do i=1,IMR-1 UA(i,j) = 0.5 * (CRX(i,j)+CRX(i+1,j)) enddo enddo C DO j=j1,j2 UA(imr,j) = 0.5 * (CRX(imr,j)+CRX(1,j)) enddo ccccccccccccccccccccccccccccccccccccccccccccccccccccccc c Rajouts pour LMDZ.3.3 ccccccccccccccccccccccccccccccccccccccccccccccccccccccc do i=1,IMR do j=1,JNP VA(i,j)=0. enddo enddo do i=1,imr*(JMR-1) VA(i,2) = 0.5*(CRY(i,2)+CRY(i,3)) enddo C if(j1.eq.2) then IMH = IMR/2 do i=1,IMH VA(i, 1) = 0.5*(CRY(i,2)-CRY(i+IMH,2)) VA(i+IMH, 1) = -VA(i,1) VA(i, JNP) = 0.5*(CRY(i,JNP)-CRY(i+IMH,JMR)) VA(i+IMH,JNP) = -VA(i,JNP) enddo VA(IMR,1)=VA(1,1) VA(IMR,JNP)=VA(1,JNP) endif C C ****6***0*********0*********0*********0*********0*********0**********72 do 1000 IC=1,NC C do i=1,IMJM wk1(i,1,1) = 0. wk1(i,1,2) = 0. enddo C C E-W advective cross term do 250 j=J1,J2 if(J.GT.JS .and. J.LT.JN) GO TO 250 C do i=1,IMR qtmp(i) = q(i,j,k,IC) enddo C do i=-IML,0 qtmp(i) = q(IMR+i,j,k,IC) qtmp(IMR+1-i) = q(1-i,j,k,IC) enddo C DO 230 i=1,IMR iu = UA(i,j) ru = UA(i,j) - iu iiu = i-iu if(UA(i,j).GE.0.) then wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) else wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) endif wk1(i,j,1) = wk1(i,j,1) - qtmp(i) 230 continue 250 continue C if(JN.ne.0) then do j=JS+1,JN-1 C do i=1,IMR qtmp(i) = q(i,j,k,IC) enddo C qtmp(0) = q(IMR,J,k,IC) qtmp(IMR+1) = q( 1,J,k,IC) C do i=1,imr iu = i - UA(i,j) wk1(i,j,1) = UA(i,j)*(qtmp(iu) - qtmp(iu+1)) enddo enddo endif C ****6***0*********0*********0*********0*********0*********0**********72 C Contribution from the N-S advection do i=1,imr*(j2-j1+1) JT = REAL(J1) - VA(i,j1) wk1(i,j1,2) = VA(i,j1) * (q(i,jt,k,IC) - q(i,jt+1,k,IC)) enddo C do i=1,IMJM wk1(i,1,1) = q(i,1,k,IC) + 0.5*wk1(i,1,1) wk1(i,1,2) = q(i,1,k,IC) + 0.5*wk1(i,1,2) enddo C if(cross) then C Add cross terms in the vertical direction. if(IORD .GE. 2) then iad = 2 else iad = 1 endif C if(JORD .GE. 2) then jad = 2 else jad = 1 endif call xadv(IMR,JNP,j1,j2,wk1(1,1,2),UA,JS,JN,IML,DC2,iad) call yadv(IMR,JNP,j1,j2,wk1(1,1,1),VA,PV,W,jad) do j=1,JNP do i=1,IMR q(i,j,k,IC) = q(i,j,k,IC) + DC2(i,j) + PV(i,j) enddo enddo endif C call xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ(1,1,k,IC),wk1(1,1,2) & ,CRX,fx1,xmass,IORD) call ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ(1,1,k,IC),wk1(1,1,1),CRY, & DC2,ymass,WK1(1,1,3),wk1(1,1,4),WK1(1,1,5),WK1(1,1,6),JORD) C 1000 continue 1500 continue C C ******* Compute vertical mass flux (same unit as PS) *********** C C 1st step: compute total column mass CONVERGENCE. C do 320 j=1,JNP do 320 i=1,IMR 320 CRY(i,j) = DPI(i,j,1) C do 330 k=2,NLAY do 330 j=1,JNP do 330 i=1,IMR CRY(i,j) = CRY(i,j) + DPI(i,j,k) 330 continue C do 360 j=1,JNP do 360 i=1,IMR C C 2nd step: compute PS2 (PS at n+1) using the hydrostatic assumption. C Changes (increases) to surface pressure = total column mass convergence C PS2(i,j) = PS1(i,j) + CRY(i,j) C C 3rd step: compute vertical mass flux from mass conservation principle. C W(i,j,1) = DPI(i,j,1) - DBK(1)*CRY(i,j) W(i,j,NLAY) = 0. 360 continue C do 370 k=2,NLAY-1 do 370 j=1,JNP do 370 i=1,IMR W(i,j,k) = W(i,j,k-1) + DPI(i,j,k) - DBK(k)*CRY(i,j) 370 continue C DO 380 k=1,NLAY DO 380 j=1,JNP DO 380 i=1,IMR delp2(i,j,k) = DAP(k) + DBK(k)*PS2(i,j) 380 continue C KRD = max(3, KORD) do 4000 IC=1,NC C C****6***0*********0*********0*********0*********0*********0**********72 call FZPPM(IMR,JNP,NLAY,j1,DQ(1,1,1,IC),W,Q(1,1,1,IC),WK1,DPI, & DC2,CRX,CRY,PU,PV,xmass,ymass,delp1,KRD) C if(fill) call qckxyz(DQ(1,1,1,IC),DC2,IMR,JNP,NLAY,j1,j2, & cosp,acosp,.false.,IC,NSTEP) C C Recover tracer mixing ratio from "density" using predicted C "air density" (pressure thickness) at time-level n+1 C DO k=1,NLAY DO j=1,JNP DO i=1,IMR Q(i,j,k,IC) = DQ(i,j,k,IC) / delp2(i,j,k) c print*,'i=',i,'j=',j,'k=',k,'Q(i,j,k,IC)=',Q(i,j,k,IC) enddo enddo enddo C if(j1.ne.2) then DO 400 k=1,NLAY DO 400 I=1,IMR c j=1 c'est le pôle Sud, j=JNP c'est le pôle Nord Q(I, 2,k,IC) = Q(I, 1,k,IC) Q(I,JMR,k,IC) = Q(I,JNP,k,IC) 400 CONTINUE endif 4000 continue C if(j1.ne.2) then DO 5000 k=1,NLAY DO 5000 i=1,IMR W(i, 2,k) = W(i, 1,k) W(i,JMR,k) = W(i,JNP,k) 5000 continue endif C RETURN END C C****6***0*********0*********0*********0*********0*********0**********72 subroutine FZPPM(IMR,JNP,NLAY,j1,DQ,WZ,P,DC,DQDT,AR,AL,A6, & flux,wk1,wk2,wz2,delp,KORD) implicit none integer,parameter :: kmax = 150 real,parameter :: R23 = 2./3., R3 = 1./3. integer IMR,JNP,NLAY,J1,KORD real WZ(IMR,JNP,NLAY),P(IMR,JNP,NLAY),DC(IMR,JNP,NLAY), & wk1(IMR,*),delp(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY), & DQDT(IMR,JNP,NLAY) C Assuming JNP >= NLAY real AR(IMR,*),AL(IMR,*),A6(IMR,*),flux(IMR,*),wk2(IMR,*), & wz2(IMR,*) integer JMR,IMJM,NLAYM1,LMT,K,I,J real c0,c1,c2,tmp,qmax,qmin,a,b,fct,a1,a2,cm,cp C JMR = JNP - 1 IMJM = IMR*JNP NLAYM1 = NLAY - 1 C LMT = KORD - 3 C C ****6***0*********0*********0*********0*********0*********0**********72 C Compute DC for PPM C ****6***0*********0*********0*********0*********0*********0**********72 C do 1000 k=1,NLAYM1 do 1000 i=1,IMJM DQDT(i,1,k) = P(i,1,k+1) - P(i,1,k) 1000 continue C DO 1220 k=2,NLAYM1 DO 1220 I=1,IMJM c0 = delp(i,1,k) / (delp(i,1,k-1)+delp(i,1,k)+delp(i,1,k+1)) c1 = (delp(i,1,k-1)+0.5*delp(i,1,k))/(delp(i,1,k+1)+delp(i,1,k)) c2 = (delp(i,1,k+1)+0.5*delp(i,1,k))/(delp(i,1,k-1)+delp(i,1,k)) tmp = c0*(c1*DQDT(i,1,k) + c2*DQDT(i,1,k-1)) Qmax = max(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) - P(i,1,k) Qmin = P(i,1,k) - min(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) DC(i,1,k) = sign(min(abs(tmp),Qmax,Qmin), tmp) 1220 CONTINUE C C ****6***0*********0*********0*********0*********0*********0**********72 C Loop over latitudes (to save memory) C ****6***0*********0*********0*********0*********0*********0**********72 C DO 2000 j=1,JNP if((j.eq.2 .or. j.eq.JMR) .and. j1.ne.2) goto 2000 C DO k=1,NLAY DO i=1,IMR wz2(i,k) = WZ(i,j,k) wk1(i,k) = P(i,j,k) wk2(i,k) = delp(i,j,k) flux(i,k) = DC(i,j,k) !this flux is actually the monotone slope enddo enddo C C****6***0*********0*********0*********0*********0*********0**********72 C Compute first guesses at cell interfaces C First guesses are required to be continuous. C ****6***0*********0*********0*********0*********0*********0**********72 C C three-cell parabolic subgrid distribution at model top C two-cell parabolic with zero gradient subgrid distribution C at the surface. C C First guess top edge value DO 10 i=1,IMR C three-cell PPM C Compute a,b, and c of q = aP**2 + bP + c using cell averages and delp a = 3.*( DQDT(i,j,2) - DQDT(i,j,1)*(wk2(i,2)+wk2(i,3))/ & (wk2(i,1)+wk2(i,2)) ) / & ( (wk2(i,2)+wk2(i,3))*(wk2(i,1)+wk2(i,2)+wk2(i,3)) ) b = 2.*DQDT(i,j,1)/(wk2(i,1)+wk2(i,2)) - & R23*a*(2.*wk2(i,1)+wk2(i,2)) AL(i,1) = wk1(i,1) - wk2(i,1)*(R3*a*wk2(i,1) + 0.5*b) AL(i,2) = wk2(i,1)*(a*wk2(i,1) + b) + AL(i,1) C C Check if change sign if(wk1(i,1)*AL(i,1).le.0.) then AL(i,1) = 0. flux(i,1) = 0. else flux(i,1) = wk1(i,1) - AL(i,1) endif 10 continue C C Bottom DO 15 i=1,IMR C 2-cell PPM with zero gradient right at the surface C fct = DQDT(i,j,NLAYM1)*wk2(i,NLAY)**2 / & ( (wk2(i,NLAY)+wk2(i,NLAYM1))*(2.*wk2(i,NLAY)+wk2(i,NLAYM1))) AR(i,NLAY) = wk1(i,NLAY) + fct AL(i,NLAY) = wk1(i,NLAY) - (fct+fct) if(wk1(i,NLAY)*AR(i,NLAY).le.0.) AR(i,NLAY) = 0. flux(i,NLAY) = AR(i,NLAY) - wk1(i,NLAY) 15 continue C C****6***0*********0*********0*********0*********0*********0**********72 C 4th order interpolation in the interior. C****6***0*********0*********0*********0*********0*********0**********72 C DO 14 k=3,NLAYM1 DO 12 i=1,IMR c1 = DQDT(i,j,k-1)*wk2(i,k-1) / (wk2(i,k-1)+wk2(i,k)) c2 = 2. / (wk2(i,k-2)+wk2(i,k-1)+wk2(i,k)+wk2(i,k+1)) A1 = (wk2(i,k-2)+wk2(i,k-1)) / (2.*wk2(i,k-1)+wk2(i,k)) A2 = (wk2(i,k )+wk2(i,k+1)) / (2.*wk2(i,k)+wk2(i,k-1)) AL(i,k) = wk1(i,k-1) + c1 + c2 * & ( wk2(i,k )*(c1*(A1 - A2)+A2*flux(i,k-1)) - & wk2(i,k-1)*A1*flux(i,k) ) C print *,'AL1',i,k, AL(i,k) 12 CONTINUE 14 continue C do 20 i=1,IMR*NLAYM1 AR(i,1) = AL(i,2) C print *,'AR1',i,AR(i,1) 20 continue C do 30 i=1,IMR*NLAY A6(i,1) = 3.*(wk1(i,1)+wk1(i,1) - (AL(i,1)+AR(i,1))) C print *,'A61',i,A6(i,1) 30 continue C C****6***0*********0*********0*********0*********0*********0**********72 C Top & Bot always monotonic call lmtppm(flux(1,1),A6(1,1),AR(1,1),AL(1,1),wk1(1,1),IMR,0) call lmtppm(flux(1,NLAY),A6(1,NLAY),AR(1,NLAY),AL(1,NLAY), & wk1(1,NLAY),IMR,0) C C Interior depending on KORD if(LMT.LE.2) & call lmtppm(flux(1,2),A6(1,2),AR(1,2),AL(1,2),wk1(1,2), & IMR*(NLAY-2),LMT) C C****6***0*********0*********0*********0*********0*********0**********72 C DO 140 i=1,IMR*NLAYM1 IF(wz2(i,1).GT.0.) then CM = wz2(i,1) / wk2(i,1) flux(i,2) = AR(i,1)+0.5*CM*(AL(i,1)-AR(i,1)+A6(i,1)*(1.-R23*CM)) else C print *,'test2-0',i,j,wz2(i,1),wk2(i,2) CP= wz2(i,1) / wk2(i,2) C print *,'testCP',CP flux(i,2) = AL(i,2)+0.5*CP*(AL(i,2)-AR(i,2)-A6(i,2)*(1.+R23*CP)) C print *,'test2',i, AL(i,2),AR(i,2),A6(i,2),R23 endif 140 continue C DO 250 i=1,IMR*NLAYM1 flux(i,2) = wz2(i,1) * flux(i,2) 250 continue C do 350 i=1,IMR DQ(i,j, 1) = DQ(i,j, 1) - flux(i, 2) DQ(i,j,NLAY) = DQ(i,j,NLAY) + flux(i,NLAY) 350 continue C do 360 k=2,NLAYM1 do 360 i=1,IMR 360 DQ(i,j,k) = DQ(i,j,k) + flux(i,k) - flux(i,k+1) 2000 continue return end C subroutine xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ,Q,UC, & fx1,xmass,IORD) implicit none integer IMR,JNP,IML,j1,j2,JN,JS,IORD real PU,DQ,Q,UC,fx1,xmass real dc,qtmp integer ISAVE(IMR) dimension UC(IMR,*),DC(-IML:IMR+IML+1),xmass(IMR,JNP) & ,fx1(IMR+1),DQ(IMR,JNP),qtmp(-IML:IMR+1+IML) dimension PU(IMR,JNP),Q(IMR,JNP) integer jvan,j1vl,j2vl,j,i,iu,itmp,ist,imp real rut C IMP = IMR + 1 C C van Leer at high latitudes jvan = max(1,JNP/18) j1vl = j1+jvan j2vl = j2-jvan C do 1310 j=j1,j2 C do i=1,IMR qtmp(i) = q(i,j) enddo C if(j.ge.JN .or. j.le.JS) goto 2222 C ************* Eulerian ********** C qtmp(0) = q(IMR,J) qtmp(-1) = q(IMR-1,J) qtmp(IMP) = q(1,J) qtmp(IMP+1) = q(2,J) C IF(IORD.eq.1 .or. j.eq.j1. or. j.eq.j2) THEN DO 1406 i=1,IMR iu = REAL(i) - uc(i,j) 1406 fx1(i) = qtmp(iu) ELSE call xmist(IMR,IML,Qtmp,DC) DC(0) = DC(IMR) C if(IORD.eq.2 .or. j.le.j1vl .or. j.ge.j2vl) then DO 1408 i=1,IMR iu = REAL(i) - uc(i,j) 1408 fx1(i) = qtmp(iu) + DC(iu)*(sign(1.,uc(i,j))-uc(i,j)) else call fxppm(IMR,IML,UC(1,j),Qtmp,DC,fx1,IORD) endif C ENDIF C DO 1506 i=1,IMR 1506 fx1(i) = fx1(i)*xmass(i,j) C goto 1309 C C ***** Conservative (flux-form) Semi-Lagrangian transport ***** C 2222 continue C do i=-IML,0 qtmp(i) = q(IMR+i,j) qtmp(IMP-i) = q(1-i,j) enddo C IF(IORD.eq.1 .or. j.eq.j1. or. j.eq.j2) THEN DO 1306 i=1,IMR itmp = INT(uc(i,j)) ISAVE(i) = i - itmp iu = i - uc(i,j) 1306 fx1(i) = (uc(i,j) - itmp)*qtmp(iu) ELSE call xmist(IMR,IML,Qtmp,DC) C do i=-IML,0 DC(i) = DC(IMR+i) DC(IMP-i) = DC(1-i) enddo C DO 1307 i=1,IMR itmp = INT(uc(i,j)) rut = uc(i,j) - itmp ISAVE(i) = i - itmp iu = i - uc(i,j) 1307 fx1(i) = rut*(qtmp(iu) + DC(iu)*(sign(1.,rut) - rut)) ENDIF C do 1308 i=1,IMR IF(uc(i,j).GT.1.) then CDIR$ NOVECTOR do ist = ISAVE(i),i-1 fx1(i) = fx1(i) + qtmp(ist) enddo elseIF(uc(i,j).LT.-1.) then do ist = i,ISAVE(i)-1 fx1(i) = fx1(i) - qtmp(ist) enddo CDIR$ VECTOR endif 1308 continue do i=1,IMR fx1(i) = PU(i,j)*fx1(i) enddo C C *************************************** C 1309 fx1(IMP) = fx1(1) DO 1215 i=1,IMR 1215 DQ(i,j) = DQ(i,j) + fx1(i)-fx1(i+1) C C *************************************** C 1310 continue return end C subroutine fxppm(IMR,IML,UT,P,DC,flux,IORD) implicit none integer IMR,IML,IORD real UT,P,DC,flux real,parameter :: R3 = 1./3., R23 = 2./3. DIMENSION UT(*),flux(*),P(-IML:IMR+IML+1),DC(-IML:IMR+IML+1) REAL :: AR(0:IMR),AL(0:IMR),A6(0:IMR) integer LMT,IMP,JLVL,i c logical first c data first /.true./ c SAVE LMT c if(first) then C C correction calcul de LMT a chaque passage pour pouvoir choisir c plusieurs schemas PPM pour differents traceurs c IF (IORD.LE.0) then c if(IMR.GE.144) then c LMT = 0 c elseif(IMR.GE.72) then c LMT = 1 c else c LMT = 2 c endif c else c LMT = IORD - 3 c endif C LMT = IORD - 3 c write(6,*) 'PPM option in E-W direction = ', LMT c first = .false. C endif C DO 10 i=1,IMR 10 AL(i) = 0.5*(p(i-1)+p(i)) + (DC(i-1) - DC(i))*R3 C do 20 i=1,IMR-1 20 AR(i) = AL(i+1) AR(IMR) = AL(1) C do 30 i=1,IMR 30 A6(i) = 3.*(p(i)+p(i) - (AL(i)+AR(i))) C if(LMT.LE.2) call lmtppm(DC(1),A6(1),AR(1),AL(1),P(1),IMR,LMT) C AL(0) = AL(IMR) AR(0) = AR(IMR) A6(0) = A6(IMR) C DO i=1,IMR IF(UT(i).GT.0.) then flux(i) = AR(i-1) + 0.5*UT(i)*(AL(i-1) - AR(i-1) + & A6(i-1)*(1.-R23*UT(i)) ) else flux(i) = AL(i) - 0.5*UT(i)*(AR(i) - AL(i) + & A6(i)*(1.+R23*UT(i))) endif enddo return end C subroutine xmist(IMR,IML,P,DC) implicit none integer IMR,IML real,parameter :: R24 = 1./24. real :: P(-IML:IMR+1+IML),DC(-IML:IMR+1+IML) integer :: i real :: tmp,pmax,pmin C do 10 i=1,IMR tmp = R24*(8.*(p(i+1) - p(i-1)) + p(i-2) - p(i+2)) Pmax = max(P(i-1), p(i), p(i+1)) - p(i) Pmin = p(i) - min(P(i-1), p(i), p(i+1)) 10 DC(i) = sign(min(abs(tmp),Pmax,Pmin), tmp) return end C subroutine ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ,P,VC,DC2 & ,ymass,fx,A6,AR,AL,JORD) implicit none integer :: IMR,JNP,j1,j2,JORD real :: acosp,RCAP,DQ,P,VC,DC2,ymass,fx,A6,AR,AL dimension P(IMR,JNP),VC(IMR,JNP),ymass(IMR,JNP) & ,DC2(IMR,JNP),DQ(IMR,JNP),acosp(JNP) C Work array DIMENSION fx(IMR,JNP),AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) integer :: JMR,len,i,jt,j real :: sum1,sum2 C JMR = JNP - 1 len = IMR*(J2-J1+2) C if(JORD.eq.1) then DO 1000 i=1,len JT = REAL(J1) - VC(i,J1) 1000 fx(i,j1) = p(i,JT) else call ymist(IMR,JNP,j1,P,DC2,4) C if(JORD.LE.0 .or. JORD.GE.3) then call fyppm(VC,P,DC2,fx,IMR,JNP,j1,j2,A6,AR,AL,JORD) else DO 1200 i=1,len JT = REAL(J1) - VC(i,J1) 1200 fx(i,j1) = p(i,JT) + (sign(1.,VC(i,j1))-VC(i,j1))*DC2(i,JT) endif endif C DO 1300 i=1,len 1300 fx(i,j1) = fx(i,j1)*ymass(i,j1) C DO 1400 j=j1,j2 DO 1400 i=1,IMR 1400 DQ(i,j) = DQ(i,j) + (fx(i,j) - fx(i,j+1)) * acosp(j) C C Poles sum1 = fx(IMR,j1 ) sum2 = fx(IMR,J2+1) do i=1,IMR-1 sum1 = sum1 + fx(i,j1 ) sum2 = sum2 + fx(i,J2+1) enddo C sum1 = DQ(1, 1) - sum1 * RCAP sum2 = DQ(1,JNP) + sum2 * RCAP do i=1,IMR DQ(i, 1) = sum1 DQ(i,JNP) = sum2 enddo C if(j1.ne.2) then do i=1,IMR DQ(i, 2) = sum1 DQ(i,JMR) = sum2 enddo endif C return end C subroutine ymist(IMR,JNP,j1,P,DC,ID) implicit none integer :: IMR,JNP,j1,ID real,parameter :: R24 = 1./24. real :: P(IMR,JNP),DC(IMR,JNP) integer :: iimh,jmr,ijm3,imh,i real :: pmax,pmin,tmp C IMH = IMR / 2 JMR = JNP - 1 IJM3 = IMR*(JMR-3) C IF(ID.EQ.2) THEN do 10 i=1,IMR*(JMR-1) tmp = 0.25*(p(i,3) - p(i,1)) Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) 10 CONTINUE ELSE do 12 i=1,IMH C J=2 tmp = (8.*(p(i,3) - p(i,1)) + p(i+IMH,2) - p(i,4))*R24 Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) C J=JMR tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i+IMH,JMR))*R24 Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) 12 CONTINUE do 14 i=IMH+1,IMR C J=2 tmp = (8.*(p(i,3) - p(i,1)) + p(i-IMH,2) - p(i,4))*R24 Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) C J=JMR tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i-IMH,JMR))*R24 Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) 14 CONTINUE C do 15 i=1,IJM3 tmp = (8.*(p(i,4) - p(i,2)) + p(i,1) - p(i,5))*R24 Pmax = max(p(i,2),p(i,3),p(i,4)) - p(i,3) Pmin = p(i,3) - min(p(i,2),p(i,3),p(i,4)) DC(i,3) = sign(min(abs(tmp),Pmin,Pmax),tmp) 15 CONTINUE ENDIF C if(j1.ne.2) then do i=1,IMR DC(i,1) = 0. DC(i,JNP) = 0. enddo else C Determine slopes in polar caps for scalars! C do 13 i=1,IMH C South tmp = 0.25*(p(i,2) - p(i+imh,2)) Pmax = max(p(i,2),p(i,1), p(i+imh,2)) - p(i,1) Pmin = p(i,1) - min(p(i,2),p(i,1), p(i+imh,2)) DC(i,1)=sign(min(abs(tmp),Pmax,Pmin),tmp) C North. tmp = 0.25*(p(i+imh,JMR) - p(i,JMR)) Pmax = max(p(i+imh,JMR),p(i,jnp), p(i,JMR)) - p(i,JNP) Pmin = p(i,JNP) - min(p(i+imh,JMR),p(i,jnp), p(i,JMR)) DC(i,JNP) = sign(min(abs(tmp),Pmax,pmin),tmp) 13 continue C do 25 i=imh+1,IMR DC(i, 1) = - DC(i-imh, 1) DC(i,JNP) = - DC(i-imh,JNP) 25 continue endif return end C subroutine fyppm(VC,P,DC,flux,IMR,JNP,j1,j2,A6,AR,AL,JORD) implicit none integer IMR,JNP,j1,j2,JORD real,parameter :: R3 = 1./3., R23 = 2./3. real VC(IMR,*),flux(IMR,*),P(IMR,*),DC(IMR,*) C Local work arrays. real AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) integer LMT,i integer IMH,JMR,j11,IMJM1,len c logical first C data first /.true./ C SAVE LMT C IMH = IMR / 2 JMR = JNP - 1 j11 = j1-1 IMJM1 = IMR*(J2-J1+2) len = IMR*(J2-J1+3) C if(first) then C IF(JORD.LE.0) then C if(JMR.GE.90) then C LMT = 0 C elseif(JMR.GE.45) then C LMT = 1 C else C LMT = 2 C endif C else C LMT = JORD - 3 C endif C C first = .false. C endif C c modifs pour pouvoir choisir plusieurs schemas PPM LMT = JORD - 3 C DO 10 i=1,IMR*JMR AL(i,2) = 0.5*(p(i,1)+p(i,2)) + (DC(i,1) - DC(i,2))*R3 AR(i,1) = AL(i,2) 10 CONTINUE C CPoles: C DO i=1,IMH AL(i,1) = AL(i+IMH,2) AL(i+IMH,1) = AL(i,2) C AR(i,JNP) = AR(i+IMH,JMR) AR(i+IMH,JNP) = AR(i,JMR) ENDDO ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc c Rajout pour LMDZ.3.3 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc AR(IMR,1)=AL(1,1) AR(IMR,JNP)=AL(1,JNP) ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc do 30 i=1,len 30 A6(i,j11) = 3.*(p(i,j11)+p(i,j11) - (AL(i,j11)+AR(i,j11))) C if(LMT.le.2) call lmtppm(DC(1,j11),A6(1,j11),AR(1,j11) & ,AL(1,j11),P(1,j11),len,LMT) C DO 140 i=1,IMJM1 IF(VC(i,j1).GT.0.) then flux(i,j1) = AR(i,j11) + 0.5*VC(i,j1)*(AL(i,j11) - AR(i,j11) + & A6(i,j11)*(1.-R23*VC(i,j1)) ) else flux(i,j1) = AL(i,j1) - 0.5*VC(i,j1)*(AR(i,j1) - AL(i,j1) + & A6(i,j1)*(1.+R23*VC(i,j1))) endif 140 continue return end C subroutine yadv(IMR,JNP,j1,j2,p,VA,ady,wk,IAD) implicit none integer IMR,JNP,j1,j2,IAD REAL p(IMR,JNP),ady(IMR,JNP),VA(IMR,JNP) REAL WK(IMR,-1:JNP+2) INTEGER JMR,IMH,i,j,jp REAL rv,a1,b1,sum1,sum2 C JMR = JNP-1 IMH = IMR/2 do j=1,JNP do i=1,IMR wk(i,j) = p(i,j) enddo enddo C Poles: do i=1,IMH wk(i, -1) = p(i+IMH,3) wk(i+IMH,-1) = p(i,3) wk(i, 0) = p(i+IMH,2) wk(i+IMH,0) = p(i,2) wk(i,JNP+1) = p(i+IMH,JMR) wk(i+IMH,JNP+1) = p(i,JMR) wk(i,JNP+2) = p(i+IMH,JNP-2) wk(i+IMH,JNP+2) = p(i,JNP-2) enddo c write(*,*) 'toto 1' C -------------------------------- IF(IAD.eq.2) then do j=j1-1,j2+1 do i=1,IMR c write(*,*) 'avt NINT','i=',i,'j=',j JP = NINT(VA(i,j)) rv = JP - VA(i,j) c write(*,*) 'VA=',VA(i,j), 'JP1=',JP,'rv=',rv JP = j - JP c write(*,*) 'JP2=',JP a1 = 0.5*(wk(i,jp+1)+wk(i,jp-1)) - wk(i,jp) b1 = 0.5*(wk(i,jp+1)-wk(i,jp-1)) c write(*,*) 'a1=',a1,'b1=',b1 ady(i,j) = wk(i,jp) + rv*(a1*rv + b1) - wk(i,j) enddo enddo c write(*,*) 'toto 2' C ELSEIF(IAD.eq.1) then do j=j1-1,j2+1 do i=1,imr JP = REAL(j)-VA(i,j) ady(i,j) = VA(i,j)*(wk(i,jp)-wk(i,jp+1)) enddo enddo ENDIF C if(j1.ne.2) then sum1 = 0. sum2 = 0. do i=1,imr sum1 = sum1 + ady(i,2) sum2 = sum2 + ady(i,JMR) enddo sum1 = sum1 / IMR sum2 = sum2 / IMR C do i=1,imr ady(i, 2) = sum1 ady(i,JMR) = sum2 ady(i, 1) = sum1 ady(i,JNP) = sum2 enddo else C Poles: sum1 = 0. sum2 = 0. do i=1,imr sum1 = sum1 + ady(i,1) sum2 = sum2 + ady(i,JNP) enddo sum1 = sum1 / IMR sum2 = sum2 / IMR C do i=1,imr ady(i, 1) = sum1 ady(i,JNP) = sum2 enddo endif C return end C subroutine xadv(IMR,JNP,j1,j2,p,UA,JS,JN,IML,adx,IAD) implicit none INTEGER IMR,JNP,j1,j2,JS,JN,IML,IAD REAL p(IMR,JNP),adx(IMR,JNP),qtmp(-IMR:IMR+IMR),UA(IMR,JNP) INTEGER JMR,j,i,ip,iu,iiu REAL ru,a1,b1 C JMR = JNP-1 do 1309 j=j1,j2 if(J.GT.JS .and. J.LT.JN) GO TO 1309 C do i=1,IMR qtmp(i) = p(i,j) enddo C do i=-IML,0 qtmp(i) = p(IMR+i,j) qtmp(IMR+1-i) = p(1-i,j) enddo C IF(IAD.eq.2) THEN DO i=1,IMR IP = NINT(UA(i,j)) ru = IP - UA(i,j) IP = i - IP a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) adx(i,j) = qtmp(ip) + ru*(a1*ru + b1) enddo ELSEIF(IAD.eq.1) then DO i=1,IMR iu = UA(i,j) ru = UA(i,j) - iu iiu = i-iu if(UA(i,j).GE.0.) then adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) else adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) endif enddo ENDIF C do i=1,IMR adx(i,j) = adx(i,j) - p(i,j) enddo 1309 continue C C Eulerian upwind C do j=JS+1,JN-1 C do i=1,IMR qtmp(i) = p(i,j) enddo C qtmp(0) = p(IMR,J) qtmp(IMR+1) = p(1,J) C IF(IAD.eq.2) THEN qtmp(-1) = p(IMR-1,J) qtmp(IMR+2) = p(2,J) do i=1,imr IP = NINT(UA(i,j)) ru = IP - UA(i,j) IP = i - IP a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) adx(i,j) = qtmp(ip)- p(i,j) + ru*(a1*ru + b1) enddo ELSEIF(IAD.eq.1) then C 1st order DO i=1,IMR IP = i - UA(i,j) adx(i,j) = UA(i,j)*(qtmp(ip)-qtmp(ip+1)) enddo ENDIF enddo C if(j1.ne.2) then do i=1,IMR adx(i, 2) = 0. adx(i,JMR) = 0. enddo endif C set cross term due to x-adv at the poles to zero. do i=1,IMR adx(i, 1) = 0. adx(i,JNP) = 0. enddo return end C subroutine lmtppm(DC,A6,AR,AL,P,IM,LMT) implicit none C C A6 = CURVATURE OF THE TEST PARABOLA C AR = RIGHT EDGE VALUE OF THE TEST PARABOLA C AL = LEFT EDGE VALUE OF THE TEST PARABOLA C DC = 0.5 * MISMATCH C P = CELL-AVERAGED VALUE C IM = VECTOR LENGTH C C OPTIONS: C C LMT = 0: FULL MONOTONICITY C LMT = 1: SEMI-MONOTONIC CONSTRAINT (NO UNDERSHOOTS) C LMT = 2: POSITIVE-DEFINITE CONSTRAINT C real,parameter :: R12 = 1./12. real :: A6(IM),AR(IM),AL(IM),P(IM),DC(IM) integer :: IM,LMT INTEGER i REAL da1,da2,a6da,fmin C if(LMT.eq.0) then C Full constraint do 100 i=1,IM if(DC(i).eq.0.) then AR(i) = p(i) AL(i) = p(i) A6(i) = 0. else da1 = AR(i) - AL(i) da2 = da1**2 A6DA = A6(i)*da1 if(A6DA .lt. -da2) then A6(i) = 3.*(AL(i)-p(i)) AR(i) = AL(i) - A6(i) elseif(A6DA .gt. da2) then A6(i) = 3.*(AR(i)-p(i)) AL(i) = AR(i) - A6(i) endif endif 100 continue elseif(LMT.eq.1) then C Semi-monotonic constraint do 150 i=1,IM if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 150 if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then AR(i) = p(i) AL(i) = p(i) A6(i) = 0. elseif(AR(i) .gt. AL(i)) then A6(i) = 3.*(AL(i)-p(i)) AR(i) = AL(i) - A6(i) else A6(i) = 3.*(AR(i)-p(i)) AL(i) = AR(i) - A6(i) endif 150 continue elseif(LMT.eq.2) then do 250 i=1,IM if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 250 fmin = p(i) + 0.25*(AR(i)-AL(i))**2/A6(i) + A6(i)*R12 if(fmin.ge.0.) go to 250 if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then AR(i) = p(i) AL(i) = p(i) A6(i) = 0. elseif(AR(i) .gt. AL(i)) then A6(i) = 3.*(AL(i)-p(i)) AR(i) = AL(i) - A6(i) else A6(i) = 3.*(AR(i)-p(i)) AL(i) = AR(i) - A6(i) endif 250 continue endif return end C subroutine A2C(U,V,IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) implicit none integer IMR,JMR,j1,j2 real :: U(IMR,*),V(IMR,*),CRX(IMR,*),CRY(IMR,*),DTDX5(*),DTDY5 integer i,j C do 35 j=j1,j2 do 35 i=2,IMR 35 CRX(i,J) = dtdx5(j)*(U(i,j)+U(i-1,j)) C do 45 j=j1,j2 45 CRX(1,J) = dtdx5(j)*(U(1,j)+U(IMR,j)) C do 55 i=1,IMR*JMR 55 CRY(i,2) = DTDY5*(V(i,2)+V(i,1)) return end C subroutine cosa(cosp,cose,JNP,PI,DP) implicit none integer JNP real :: cosp(*),cose(*),PI,DP integer JMR,j,jeq real ph5 JMR = JNP-1 do 55 j=2,JNP ph5 = -0.5*PI + (REAL(J-1)-0.5)*DP 55 cose(j) = cos(ph5) C JEQ = (JNP+1) / 2 if(JMR .eq. 2*(JMR/2) ) then do j=JNP, JEQ+1, -1 cose(j) = cose(JNP+2-j) enddo else C cell edge at equator. cose(JEQ+1) = 1. do j=JNP, JEQ+2, -1 cose(j) = cose(JNP+2-j) enddo endif C do 66 j=2,JMR 66 cosp(j) = 0.5*(cose(j)+cose(j+1)) cosp(1) = 0. cosp(JNP) = 0. return end C subroutine cosc(cosp,cose,JNP,PI,DP) implicit none integer JNP real :: cosp(*),cose(*),PI,DP real phi integer j C phi = -0.5*PI do 55 j=2,JNP-1 phi = phi + DP 55 cosp(j) = cos(phi) cosp( 1) = 0. cosp(JNP) = 0. C do 66 j=2,JNP cose(j) = 0.5*(cosp(j)+cosp(j-1)) 66 CONTINUE C do 77 j=2,JNP-1 cosp(j) = 0.5*(cose(j)+cose(j+1)) 77 CONTINUE return end C SUBROUTINE qckxyz (Q,qtmp,IMR,JNP,NLAY,j1,j2,cosp,acosp, & cross,IC,NSTEP) C real,parameter :: tiny = 1.E-60 INTEGER :: IMR,JNP,NLAY,j1,j2,IC,NSTEP REAL :: Q(IMR,JNP,NLAY),qtmp(IMR,JNP),cosp(*),acosp(*) logical cross INTEGER :: NLAYM1,len,ip,L,icr,ipy,ipx,i real :: qup,qly,dup,sum C NLAYM1 = NLAY-1 len = IMR*(j2-j1+1) ip = 0 C C Top layer L = 1 icr = 1 call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) if(ipy.eq.0) goto 50 call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) if(ipx.eq.0) goto 50 C if(cross) then call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) endif if(icr.eq.0) goto 50 C C Vertical filling... do i=1,len IF( Q(i,j1,1).LT.0.) THEN ip = ip + 1 Q(i,j1,2) = Q(i,j1,2) + Q(i,j1,1) Q(i,j1,1) = 0. endif enddo C 50 continue DO 225 L = 2,NLAYM1 icr = 1 C call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) if(ipy.eq.0) goto 225 call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) if(ipx.eq.0) go to 225 if(cross) then call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) endif if(icr.eq.0) goto 225 C do i=1,len IF( Q(I,j1,L).LT.0.) THEN C ip = ip + 1 C From above qup = Q(I,j1,L-1) qly = -Q(I,j1,L) dup = min(qly,qup) Q(I,j1,L-1) = qup - dup Q(I,j1,L ) = dup-qly C Below Q(I,j1,L+1) = Q(I,j1,L+1) + Q(I,j1,L) Q(I,j1,L) = 0. ENDIF ENDDO 225 CONTINUE C C BOTTOM LAYER sum = 0. L = NLAY C call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) if(ipy.eq.0) goto 911 call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) if(ipx.eq.0) goto 911 C call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) if(icr.eq.0) goto 911 C DO I=1,len IF( Q(I,j1,L).LT.0.) THEN ip = ip + 1 c C From above C qup = Q(I,j1,NLAYM1) qly = -Q(I,j1,L) dup = min(qly,qup) Q(I,j1,NLAYM1) = qup - dup C From "below" the surface. sum = sum + qly-dup Q(I,j1,L) = 0. ENDIF ENDDO C 911 continue C if(ip.gt.IMR) then write(6,*) 'IC=',IC,' STEP=',NSTEP, & ' Vertical filling pts=',ip endif C if(sum.gt.1.e-25) then write(6,*) IC,NSTEP,' Mass source from the ground=',sum endif RETURN END C subroutine filcr(q,IMR,JNP,j1,j2,cosp,acosp,icr,tiny) implicit none integer :: IMR,JNP,j1,j2,icr real :: q(IMR,*),cosp(*),acosp(*),tiny integer :: i,j real :: dq,dn,d0,d1,ds,d2 icr = 0 do 65 j=j1+1,j2-1 DO 50 i=1,IMR-1 IF(q(i,j).LT.0.) THEN icr = 1 dq = - q(i,j)*cosp(j) C N-E dn = q(i+1,j+1)*cosp(j+1) d0 = max(0.,dn) d1 = min(dq,d0) q(i+1,j+1) = (dn - d1)*acosp(j+1) dq = dq - d1 C S-E ds = q(i+1,j-1)*cosp(j-1) d0 = max(0.,ds) d2 = min(dq,d0) q(i+1,j-1) = (ds - d2)*acosp(j-1) q(i,j) = (d2 - dq)*acosp(j) + tiny endif 50 continue if(icr.eq.0 .and. q(IMR,j).ge.0.) goto 65 DO 55 i=2,IMR IF(q(i,j).LT.0.) THEN icr = 1 dq = - q(i,j)*cosp(j) C N-W dn = q(i-1,j+1)*cosp(j+1) d0 = max(0.,dn) d1 = min(dq,d0) q(i-1,j+1) = (dn - d1)*acosp(j+1) dq = dq - d1 C S-W ds = q(i-1,j-1)*cosp(j-1) d0 = max(0.,ds) d2 = min(dq,d0) q(i-1,j-1) = (ds - d2)*acosp(j-1) q(i,j) = (d2 - dq)*acosp(j) + tiny endif 55 continue C ***************************************** C i=1 i=1 IF(q(i,j).LT.0.) THEN icr = 1 dq = - q(i,j)*cosp(j) C N-W dn = q(IMR,j+1)*cosp(j+1) d0 = max(0.,dn) d1 = min(dq,d0) q(IMR,j+1) = (dn - d1)*acosp(j+1) dq = dq - d1 C S-W ds = q(IMR,j-1)*cosp(j-1) d0 = max(0.,ds) d2 = min(dq,d0) q(IMR,j-1) = (ds - d2)*acosp(j-1) q(i,j) = (d2 - dq)*acosp(j) + tiny endif C ***************************************** C i=IMR i=IMR IF(q(i,j).LT.0.) THEN icr = 1 dq = - q(i,j)*cosp(j) C N-E dn = q(1,j+1)*cosp(j+1) d0 = max(0.,dn) d1 = min(dq,d0) q(1,j+1) = (dn - d1)*acosp(j+1) dq = dq - d1 C S-E ds = q(1,j-1)*cosp(j-1) d0 = max(0.,ds) d2 = min(dq,d0) q(1,j-1) = (ds - d2)*acosp(j-1) q(i,j) = (d2 - dq)*acosp(j) + tiny endif C ***************************************** 65 continue C do i=1,IMR if(q(i,j1).lt.0. .or. q(i,j2).lt.0.) then icr = 1 goto 80 endif enddo C 80 continue C if(q(1,1).lt.0. .or. q(1,jnp).lt.0.) then icr = 1 endif C return end C subroutine filns(q,IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) implicit none integer :: IMR,JNP,j1,j2,ipy real :: q(IMR,*),cosp(*),acosp(*),tiny real :: DP,CAP1,dq,dn,d0,d1,ds,d2 INTEGER :: i,j c logical first c data first /.true./ c save cap1 C c if(first) then DP = 4.*ATAN(1.)/REAL(JNP-1) CAP1 = IMR*(1.-COS((j1-1.5)*DP))/DP c first = .false. c endif C ipy = 0 do 55 j=j1+1,j2-1 DO 55 i=1,IMR IF(q(i,j).LT.0.) THEN ipy = 1 dq = - q(i,j)*cosp(j) C North dn = q(i,j+1)*cosp(j+1) d0 = max(0.,dn) d1 = min(dq,d0) q(i,j+1) = (dn - d1)*acosp(j+1) dq = dq - d1 C South ds = q(i,j-1)*cosp(j-1) d0 = max(0.,ds) d2 = min(dq,d0) q(i,j-1) = (ds - d2)*acosp(j-1) q(i,j) = (d2 - dq)*acosp(j) + tiny endif 55 continue C do i=1,imr IF(q(i,j1).LT.0.) THEN ipy = 1 dq = - q(i,j1)*cosp(j1) C North dn = q(i,j1+1)*cosp(j1+1) d0 = max(0.,dn) d1 = min(dq,d0) q(i,j1+1) = (dn - d1)*acosp(j1+1) q(i,j1) = (d1 - dq)*acosp(j1) + tiny endif enddo C j = j2 do i=1,imr IF(q(i,j).LT.0.) THEN ipy = 1 dq = - q(i,j)*cosp(j) C South ds = q(i,j-1)*cosp(j-1) d0 = max(0.,ds) d2 = min(dq,d0) q(i,j-1) = (ds - d2)*acosp(j-1) q(i,j) = (d2 - dq)*acosp(j) + tiny endif enddo C C Check Poles. if(q(1,1).lt.0.) then dq = q(1,1)*cap1/REAL(IMR)*acosp(j1) do i=1,imr q(i,1) = 0. q(i,j1) = q(i,j1) + dq if(q(i,j1).lt.0.) ipy = 1 enddo endif C if(q(1,JNP).lt.0.) then dq = q(1,JNP)*cap1/REAL(IMR)*acosp(j2) do i=1,imr q(i,JNP) = 0. q(i,j2) = q(i,j2) + dq if(q(i,j2).lt.0.) ipy = 1 enddo endif C return end C subroutine filew(q,qtmp,IMR,JNP,j1,j2,ipx,tiny) implicit none integer :: IMR,JNP,j1,j2,ipx real :: q(IMR,*),qtmp(JNP,IMR),tiny integer :: i,j real :: d0,d1,d2 C ipx = 0 C Copy & swap direction for vectorization. do 25 i=1,imr do 25 j=j1,j2 25 qtmp(j,i) = q(i,j) C do 55 i=2,imr-1 do 55 j=j1,j2 if(qtmp(j,i).lt.0.) then ipx = 1 c west d0 = max(0.,qtmp(j,i-1)) d1 = min(-qtmp(j,i),d0) qtmp(j,i-1) = qtmp(j,i-1) - d1 qtmp(j,i) = qtmp(j,i) + d1 c east d0 = max(0.,qtmp(j,i+1)) d2 = min(-qtmp(j,i),d0) qtmp(j,i+1) = qtmp(j,i+1) - d2 qtmp(j,i) = qtmp(j,i) + d2 + tiny endif 55 continue c i=1 do 65 j=j1,j2 if(qtmp(j,i).lt.0.) then ipx = 1 c west d0 = max(0.,qtmp(j,imr)) d1 = min(-qtmp(j,i),d0) qtmp(j,imr) = qtmp(j,imr) - d1 qtmp(j,i) = qtmp(j,i) + d1 c east d0 = max(0.,qtmp(j,i+1)) d2 = min(-qtmp(j,i),d0) qtmp(j,i+1) = qtmp(j,i+1) - d2 c qtmp(j,i) = qtmp(j,i) + d2 + tiny endif 65 continue i=IMR do 75 j=j1,j2 if(qtmp(j,i).lt.0.) then ipx = 1 c west d0 = max(0.,qtmp(j,i-1)) d1 = min(-qtmp(j,i),d0) qtmp(j,i-1) = qtmp(j,i-1) - d1 qtmp(j,i) = qtmp(j,i) + d1 c east d0 = max(0.,qtmp(j,1)) d2 = min(-qtmp(j,i),d0) qtmp(j,1) = qtmp(j,1) - d2 c qtmp(j,i) = qtmp(j,i) + d2 + tiny endif 75 continue C if(ipx.ne.0) then do 85 j=j1,j2 do 85 i=1,imr 85 q(i,j) = qtmp(j,i) else C C Poles. if(q(1,1).lt.0. or. q(1,JNP).lt.0.) ipx = 1 endif return end C subroutine zflip(q,im,km,nc) implicit none C This routine flip the array q (in the vertical). integer :: im,km,nc real q(im,km,nc) C local dynamic array real qtmp(im,km) integer IC,k,i C do 4000 IC = 1, nc C do 1000 k=1,km do 1000 i=1,im qtmp(i,k) = q(i,km+1-k,IC) 1000 continue C do 2000 i=1,im*km 2000 q(i,1,IC) = qtmp(i,1) 4000 continue return end