! ! $Id: phys_output_write_mod.F90 2146 2014-11-14 20:22:21Z acaubel $ ! MODULE phys_output_write_mod USE phytrac_mod, ONLY : d_tr_cl, d_tr_th, d_tr_cv, d_tr_lessi_impa, & d_tr_lessi_nucl, d_tr_insc, d_tr_bcscav, d_tr_evapls, d_tr_ls, & d_tr_trsp, d_tr_sscav, d_tr_sat, d_tr_uscav ! Author: Abderrahmane IDELKADI (original include file) ! Author: Laurent FAIRHEAD (transformation to module/subroutine) ! Author: Ulysse GERARD (effective implementation) CONTAINS ! ug Routine pour définir (los du premier passageà) ET sortir les variables SUBROUTINE phys_output_write(itap, pdtphys, paprs, pphis, & pplay, lmax_th, aerosol_couple, & ok_ade, ok_aie, ivap, new_aod, ok_sync, & ptconv, read_climoz, clevSTD, ptconvth, & d_t, qx, d_qx, zmasse, flag_aerosol, flag_aerosol_strat, ok_cdnc) ! This subroutine does the actual writing of diagnostics that were ! defined and initialised in phys_output_mod.F90 USE dimphy, only: klon, klev, klevp1, nslay USE control_mod, only: day_step, iphysiq USE phys_output_ctrlout_mod, only: o_phis, o_aire, is_ter, is_lic, is_oce, & is_ave, is_sic, o_contfracATM, o_contfracOR, & o_aireTER, o_flat, o_slp, o_tsol, & o_t2m, o_t2m_min, o_t2m_max, & o_t2m_min_mon, o_t2m_max_mon, & o_q2m, o_ustar, o_u10m, o_v10m, & o_wind10m, o_wind10max, o_sicf, & o_psol, o_mass, o_qsurf, o_qsol, & o_precip, o_ndayrain, o_plul, o_pluc, & o_snow, o_msnow, o_fsnow, o_evap, & o_tops, o_tops0, o_topl, o_topl0, & o_SWupTOA, o_SWupTOAclr, o_SWdnTOA, & o_SWdnTOAclr, o_nettop, o_SWup200, & o_SWup200clr, o_SWdn200, o_SWdn200clr, & o_LWup200, o_LWup200clr, o_LWdn200, & o_LWdn200clr, o_sols, o_sols0, & o_soll, o_radsol, o_soll0, o_SWupSFC, & o_SWupSFCclr, o_SWdnSFC, o_SWdnSFCclr, & o_LWupSFC, o_LWdnSFC, o_LWupSFCclr, & o_LWdnSFCclr, o_bils, o_bils_diss, & o_bils_ec,o_bils_ech, o_bils_tke, o_bils_kinetic, & o_bils_latent, o_bils_enthalp, o_sens, & o_fder, o_ffonte, o_fqcalving, o_fqfonte, & o_taux, o_tauy, o_snowsrf, o_qsnow, & o_snowhgt, o_toice, o_sissnow, o_runoff, & o_albslw3, o_pourc_srf, o_fract_srf, & o_taux_srf, o_tauy_srf, o_tsol_srf, & o_evappot_srf, o_ustar_srf, o_u10m_srf, & o_v10m_srf, o_t2m_srf, o_evap_srf, & o_sens_srf, o_lat_srf, o_flw_srf, & o_fsw_srf, o_wbils_srf, o_wbilo_srf, & o_tke_srf, o_tke_max_srf, o_wstar, & o_cdrm, o_cdrh, o_cldl, o_cldm, o_cldh, & o_cldt, o_JrNt, o_cldljn, o_cldmjn, & o_cldhjn, o_cldtjn, o_cldq, o_lwp, o_iwp, & o_ue, o_ve, o_uq, o_vq, o_cape, o_pbase, & o_ptop, o_fbase, o_plcl, o_plfc, & o_wbeff, o_cape_max, o_upwd, o_Ma, & o_dnwd, o_dnwd0, o_ftime_con, o_mc, & o_prw, o_s_pblh, o_s_pblt, o_s_lcl, & o_s_therm, o_uSTDlevs, o_vSTDlevs, & o_wSTDlevs, o_zSTDlevs, o_qSTDlevs, & o_tSTDlevs, epsfra, o_t_oce_sic, & o_ale_bl, o_alp_bl, o_ale_wk, o_alp_wk, & o_ale, o_alp, o_cin, o_WAPE, o_wake_h, & o_wake_s, o_wake_deltat, o_wake_deltaq, & o_wake_omg, o_dtwak, o_dqwak, o_Vprecip, & o_ftd, o_fqd, o_wdtrainA, o_wdtrainM, & o_n2, o_s2, o_proba_notrig, & o_random_notrig, o_ale_bl_stat, & o_ale_bl_trig, o_alp_bl_det, & o_alp_bl_fluct_m, o_alp_bl_fluct_tke, & o_alp_bl_conv, o_alp_bl_stat, & o_slab_qflux, o_tslab, o_slab_bils, & o_weakinv, o_dthmin, o_cldtau, & o_cldemi, o_pr_con_l, o_pr_con_i, & o_pr_lsc_l, o_pr_lsc_i, o_re, o_fl, & o_rh2m, o_rh2m_min, o_rh2m_max, & o_qsat2m, o_tpot, o_tpote, o_SWnetOR, & o_SWdownOR, o_LWdownOR, o_snowl, & o_solldown, o_dtsvdfo, o_dtsvdft, & o_dtsvdfg, o_dtsvdfi, o_rugs, o_od550aer, & o_od865aer, o_absvisaer, o_od550lt1aer, & o_sconcso4, o_sconcno3, o_sconcoa, o_sconcbc, & o_sconcss, o_sconcdust, o_concso4, o_concno3, & o_concoa, o_concbc, o_concss, o_concdust, & o_loadso4, o_loadoa, o_loadbc, o_loadss, & o_loaddust, o_tausumaero, o_tausumaero_lw, & o_topswad, o_topswad0, o_solswad, o_solswad0, & o_toplwad, o_toplwad0, o_sollwad, o_sollwad0, & o_swtoaas_nat, o_swsrfas_nat, & o_swtoacs_nat, o_swtoaas_ant, & o_swsrfas_ant, o_swtoacs_ant, & o_swsrfcs_ant, o_swtoacf_nat, & o_swsrfcf_nat, o_swtoacf_ant, & o_swsrfcs_nat, o_swsrfcf_ant, & o_swtoacf_zero, o_swsrfcf_zero, & o_topswai, o_solswai, o_scdnc, & o_cldncl, o_reffclws, o_reffclwc, & o_cldnvi, o_lcc, o_lcc3d, o_lcc3dcon, & o_lcc3dstra, o_reffclwtop, o_ec550aer, & o_lwcon, o_iwcon, o_temp, o_theta, & o_ovapinit, o_ovap, o_oliq, o_geop, & o_vitu, o_vitv, o_vitw, o_pres, o_paprs, & o_zfull, o_zhalf, o_rneb, o_rnebjn, o_rnebcon, & o_rnebls, o_rhum, o_ozone, o_ozone_light, & o_dtphy, o_dqphy, o_albe_srf, o_rugs_srf, & o_ages_srf, o_alb1, o_alb2, o_tke, & o_tke_max, o_kz, o_kz_max, o_clwcon, & o_dtdyn, o_dqdyn, o_dudyn, o_dvdyn, & o_dtcon, o_tntc, o_ducon, o_dvcon, & o_dqcon, o_tnhusc, o_tnhusc, o_dtlsc, & o_dtlschr, o_dqlsc, o_beta_prec, & o_dtlscth, o_dtlscst, o_dqlscth, & o_dqlscst, o_plulth, o_plulst, & o_ptconvth, o_lmaxth, o_dtvdf, & o_dtdis, o_dqvdf, o_dteva, o_dqeva, & o_ptconv, o_ratqs, o_dtthe, & o_duthe, o_dvthe, o_ftime_th, & o_f_th, o_e_th, o_w_th, o_q_th, & o_a_th, o_d_th, o_f0_th, o_zmax_th, & o_dqthe, o_dtajs, o_dqajs, o_dtswr, & o_dtsw0, o_dtlwr, o_dtlw0, o_dtec, & o_duvdf, o_dvvdf, o_duoro, o_dvoro, & o_dtoro, o_dulif, o_dvlif, o_dtlif, & o_duhin, o_dvhin, o_dthin, o_dqch4, o_rsu, & o_rsd, o_rlu, o_rld, o_rsucs, o_rsdcs, & o_rlucs, o_rldcs, o_tnt, o_tntr, & o_tntscpbl, o_tnhus, o_tnhusscpbl, & o_evu, o_h2o, o_mcd, o_dmc, o_ref_liq, & o_ref_ice, o_rsut4co2, o_rlut4co2, & o_rsutcs4co2, o_rlutcs4co2, o_rsu4co2, & o_rlu4co2, o_rsucs4co2, o_rlucs4co2, & o_rsd4co2, o_rld4co2, o_rsdcs4co2, & o_rldcs4co2, o_tnondef, o_ta, o_zg, & o_hus, o_hur, o_ua, o_va, o_wap, & o_psbg, o_tro3, o_tro3_daylight, & o_uxv, o_vxq, o_vxT, o_wxq, o_vxphi, & o_wxT, o_uxu, o_vxv, o_TxT, o_trac, & o_dtr_vdf, o_dtr_the, o_dtr_con, & o_dtr_lessi_impa, o_dtr_lessi_nucl, & o_dtr_insc, o_dtr_bcscav, o_dtr_evapls, & o_dtr_ls, o_dtr_trsp, o_dtr_sscav, & o_dtr_sat, o_dtr_uscav, o_trac_cum, o_du_gwd_rando, o_dv_gwd_rando, & o_vstr_gwd_rando USE phys_state_var_mod, only: pctsrf, paire_ter, rain_fall, snow_fall, & nday_rain, rain_con, snow_con, & topsw, toplw, toplw0, swup, swdn, & topsw0, swup0, swdn0, SWup200, SWup200clr, & SWdn200, SWdn200clr, LWup200, LWup200clr, & LWdn200, LWdn200clr, solsw, solsw0, sollw, & radsol, sollw0, sollwdown, sollw, & sollwdownclr, lwdn0, ftsol, ustar, u10m, & v10m, pbl_tke, wstar, cape, ema_pcb, ema_pct, & ema_cbmf, Ma, fm_therm, ale_bl, alp_bl, ale, & alp, cin, wake_pe, wake_s, wake_deltat, & wake_deltaq, ftd, fqd, ale_bl_trig, albsol1, & rnebcon, wo, falb1, albsol2, coefh, clwcon0, & ratqs, entr_therm, zqasc, detr_therm, f0, heat, & heat0, cool, cool0, lwup, lwdn, lwup0, coefm, & swupp, lwupp, swup0p, lwup0p, swdnp, lwdnp, & swdn0p, lwdn0p, tnondef, O3sumSTD, uvsumSTD, & vqsumSTD, vTsumSTD, O3daysumSTD, wqsumSTD, & vphisumSTD, wTsumSTD, u2sumSTD, v2sumSTD, & T2sumSTD, nlevSTD, du_gwd_rando, dv_gwd_rando USE phys_local_var_mod, only: zxfluxlat, slp, zxtsol, zt2m, & t2m_min_mon, t2m_max_mon, & zu10m, zv10m, zq2m, zustar, zxqsurf, qsol, & rain_lsc, snow_lsc, evap, bils, sens, fder, & zxffonte, zxfqcalving, zxfqfonte, fluxu, & fluxv, zxsnow, qsnow, snowhgt, to_ice, & sissnow, runoff, albsol3_lic, evap_pot, & t2m, fevap, fluxt, fluxlat, fsollw, fsolsw, & wfbils, wfbilo, cdragm, cdragh, cldl, cldm, & cldh, cldt, JrNt, cldljn, cldmjn, cldhjn, & cldtjn, cldq, flwp, fiwp, ue, ve, uq, vq, & plcl, plfc, wbeff, upwd, dnwd, dnwd0, prw, & s_pblh, s_pblt, s_lcl, s_therm, uwriteSTD, & vwriteSTD, wwriteSTD, phiwriteSTD, qwriteSTD, & twriteSTD, ale_wake, alp_wake, wake_h, & wake_omg, d_t_wake, d_q_wake, Vprecip, & wdtrainA, wdtrainM, n2, s2, proba_notrig, & random_notrig, ale_bl_stat, & alp_bl_det, alp_bl_fluct_m, alp_bl_conv, & alp_bl_stat, alp_bl_fluct_tke, slab_wfbils, & weak_inversion, dthmin, cldtau, cldemi, & pmflxr, pmflxs, prfl, psfl, re, fl, rh2m, & qsat2m, tpote, tpot, d_ts, zxrugs, od550aer, & od865aer, absvisaer, od550lt1aer, sconcso4, sconcno3, & sconcoa, sconcbc, sconcss, sconcdust, concso4, concno3, & concoa, concbc, concss, concdust, loadso4, & loadoa, loadbc, loadss, loaddust, tausum_aero, & topswad_aero, topswad0_aero, solswad_aero, & solswad0_aero, topsw_aero, solsw_aero, & topsw0_aero, solsw0_aero, topswcf_aero, & solswcf_aero, topswai_aero, solswai_aero, & toplwad_aero, toplwad0_aero, sollwad_aero, & sollwad0_aero, toplwai_aero, sollwai_aero, & scdnc, cldncl, reffclws, reffclwc, cldnvi, & lcc, lcc3d, lcc3dcon, lcc3dstra, reffclwtop, & ec550aer, flwc, fiwc, t_seri, theta, q_seri, & ql_seri, zphi, u_seri, v_seri, omega, cldfra, & rneb, rnebjn, zx_rh, frugs, agesno, d_t_dyn, d_q_dyn, & d_u_dyn, d_v_dyn, d_t_con, d_t_ajsb, d_t_ajs, & d_u_ajs, d_v_ajs, & d_u_con, d_v_con, d_q_con, d_q_ajs, d_t_lsc, & d_t_eva, d_q_lsc, beta_prec, d_t_lscth, & d_t_lscst, d_q_lscth, d_q_lscst, plul_th, & plul_st, d_t_vdf, d_t_diss, d_q_vdf, d_q_eva, & zw2, fraca, zmax_th, d_q_ajsb, d_t_ec, d_u_vdf, & d_v_vdf, d_u_oro, d_v_oro, d_t_oro, d_u_lif, & d_v_lif, d_t_lif, d_u_hin, d_v_hin, d_t_hin, & d_q_ch4, pmfd, pmfu, ref_liq, ref_ice, rhwriteSTD USE phys_output_var_mod, only: vars_defined, snow_o, zfra_o, bils_diss, & bils_ec,bils_ech, bils_tke, bils_kinetic, bils_latent, bils_enthalp, & itau_con, nfiles, clef_files, nid_files, zvstr_gwd_rando USE ocean_slab_mod, only: tslab, slab_bils USE indice_sol_mod, only: nbsrf USE infotrac, only: nqtot, nqo USE comgeomphy, only: airephy USE surface_data, only: type_ocean, ok_veget, ok_snow ! USE aero_mod, only: naero_spc USE aero_mod, only: naero_tot, id_STRAT_phy USE ioipsl, only: histend, histsync USE iophy, only: set_itau_iophy, histwrite_phy USE netcdf, only: nf90_fill_real #ifdef CPP_XIOS ! ug Pour les sorties XIOS USE xios, ONLY: xios_update_calendar USE wxios, only: wxios_closedef #endif USE phys_cal_mod, only : mth_len IMPLICIT NONE INCLUDE "temps.h" INCLUDE "clesphys.h" INCLUDE "thermcell.h" INCLUDE "compbl.h" INCLUDE "YOMCST.h" INCLUDE "dimensions.h" include "iniprint.h" ! Input INTEGER :: itap, ivap, read_climoz INTEGER, DIMENSION(klon) :: lmax_th LOGICAL :: aerosol_couple, ok_sync LOGICAL :: ok_ade, ok_aie, new_aod LOGICAL, DIMENSION(klon, klev) :: ptconv, ptconvth REAL :: pdtphys CHARACTER (LEN=4), DIMENSION(nlevSTD) :: clevSTD REAL, DIMENSION(klon,nlevSTD) :: zx_tmp_fi3d_STD REAL, DIMENSION(klon) :: pphis REAL, DIMENSION(klon, klev) :: pplay, d_t REAL, DIMENSION(klon, klev+1) :: paprs REAL, DIMENSION(klon,klev,nqtot) :: qx, d_qx REAL, DIMENSION(klon, llm) :: zmasse LOGICAL :: flag_aerosol_strat INTEGER :: flag_aerosol LOGICAL :: ok_cdnc REAL, DIMENSION(3) :: freq_moyNMC ! Local INTEGER, PARAMETER :: jjmp1=jjm+1-1/jjm INTEGER :: itau_w INTEGER :: i, iinit, iinitend=1, iff, iq, nsrf, k, ll, naero REAL, DIMENSION (klon) :: zx_tmp_fi2d REAL, DIMENSION (klon,klev) :: zx_tmp_fi3d, zpt_conv REAL, DIMENSION (klon,klev+1) :: zx_tmp_fi3d1 CHARACTER (LEN=4) :: bb2 INTEGER, DIMENSION(iim*jjmp1) :: ndex2d INTEGER, DIMENSION(iim*jjmp1*klev) :: ndex3d REAL, PARAMETER :: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 REAL, PARAMETER :: missing_val=nf90_fill_real REAL, PARAMETER :: un_jour=86400. ! On calcul le nouveau tau: itau_w = itau_phy + itap + start_time * day_step / iphysiq ! On le donne à iophy pour que les histwrite y aient accès: CALL set_itau_iophy(itau_w) IF(.NOT.vars_defined) THEN iinitend = 2 ELSE iinitend = 1 ENDIF ! ug la boucle qui suit ne sert qu'une fois, pour l'initialisation, sinon il n'y a toujours qu'un seul passage: DO iinit=1, iinitend #ifdef CPP_XIOS !$OMP MASTER IF (vars_defined) THEN if (prt_level >= 10) then write(lunout,*)"phys_output_write: call xios_update_calendar, itau_w=",itau_w endif ! CALL xios_update_calendar(itau_w) CALL xios_update_calendar(itap) END IF !$OMP END MASTER !$OMP BARRIER #endif ! On procède à l'écriture ou à la définition des nombreuses variables: !!! Champs 1D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL histwrite_phy(o_phis, pphis) CALL histwrite_phy(o_aire, airephy) IF (vars_defined) THEN DO i=1, klon zx_tmp_fi2d(i)=pctsrf(i,is_ter)+pctsrf(i,is_lic) ENDDO ENDIF CALL histwrite_phy(o_contfracATM, zx_tmp_fi2d) CALL histwrite_phy(o_contfracOR, pctsrf(:,is_ter)) CALL histwrite_phy(o_aireTER, paire_ter) !!! Champs 2D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CALL histwrite_phy(o_flat, zxfluxlat) CALL histwrite_phy(o_slp, slp) CALL histwrite_phy(o_tsol, zxtsol) CALL histwrite_phy(o_t2m, zt2m) CALL histwrite_phy(o_t2m_min, zt2m) CALL histwrite_phy(o_t2m_max, zt2m) CALL histwrite_phy(o_t2m_max_mon, t2m_max_mon) CALL histwrite_phy(o_t2m_min_mon, t2m_min_mon) IF (vars_defined) THEN DO i=1, klon zx_tmp_fi2d(i)=SQRT(zu10m(i)*zu10m(i)+zv10m(i)*zv10m(i)) ENDDO ENDIF CALL histwrite_phy(o_wind10m, zx_tmp_fi2d) IF (vars_defined) THEN DO i=1, klon zx_tmp_fi2d(i)=SQRT(zu10m(i)*zu10m(i)+zv10m(i)*zv10m(i)) ENDDO ENDIF CALL histwrite_phy(o_wind10max, zx_tmp_fi2d) IF (vars_defined) THEN DO i = 1, klon zx_tmp_fi2d(i) = pctsrf(i,is_sic) ENDDO ENDIF CALL histwrite_phy(o_sicf, zx_tmp_fi2d) CALL histwrite_phy(o_q2m, zq2m) CALL histwrite_phy(o_ustar, zustar) CALL histwrite_phy(o_u10m, zu10m) CALL histwrite_phy(o_v10m, zv10m) IF (vars_defined) THEN DO i = 1, klon zx_tmp_fi2d(i) = paprs(i,1) ENDDO ENDIF CALL histwrite_phy(o_psol, zx_tmp_fi2d) CALL histwrite_phy(o_mass, zmasse) CALL histwrite_phy(o_qsurf, zxqsurf) IF (.NOT. ok_veget) THEN CALL histwrite_phy(o_qsol, qsol) ENDIF IF (vars_defined) THEN DO i = 1, klon zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) ENDDO ENDIF CALL histwrite_phy(o_precip, zx_tmp_fi2d) CALL histwrite_phy(o_ndayrain, nday_rain) IF (vars_defined) THEN DO i = 1, klon zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) ENDDO ENDIF CALL histwrite_phy(o_plul, zx_tmp_fi2d) IF (vars_defined) THEN DO i = 1, klon zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) ENDDO ENDIF CALL histwrite_phy(o_pluc, zx_tmp_fi2d) CALL histwrite_phy(o_snow, snow_fall) CALL histwrite_phy(o_msnow, snow_o) CALL histwrite_phy(o_fsnow, zfra_o) CALL histwrite_phy(o_evap, evap) CALL histwrite_phy(o_tops, topsw) CALL histwrite_phy(o_tops0, topsw0) CALL histwrite_phy(o_topl, toplw) CALL histwrite_phy(o_topl0, toplw0) IF (vars_defined) THEN zx_tmp_fi2d(1 : klon) = swup ( 1 : klon, klevp1 ) ENDIF CALL histwrite_phy(o_SWupTOA, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d(1 : klon) = swup0 ( 1 : klon, klevp1 ) ENDIF CALL histwrite_phy(o_SWupTOAclr, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d(1 : klon) = swdn ( 1 : klon, klevp1 ) ENDIF CALL histwrite_phy(o_SWdnTOA, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d(1 : klon) = swdn0 ( 1 : klon, klevp1 ) ENDIF CALL histwrite_phy(o_SWdnTOAclr, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d(:) = topsw(:)-toplw(:) ENDIF CALL histwrite_phy(o_nettop, zx_tmp_fi2d) CALL histwrite_phy(o_SWup200, SWup200) CALL histwrite_phy(o_SWup200clr, SWup200clr) CALL histwrite_phy(o_SWdn200, SWdn200) CALL histwrite_phy(o_SWdn200clr, SWdn200clr) CALL histwrite_phy(o_LWup200, LWup200) CALL histwrite_phy(o_LWup200clr, LWup200clr) CALL histwrite_phy(o_LWdn200, LWdn200) CALL histwrite_phy(o_LWdn200clr, LWdn200clr) CALL histwrite_phy(o_sols, solsw) CALL histwrite_phy(o_sols0, solsw0) CALL histwrite_phy(o_soll, sollw) CALL histwrite_phy(o_radsol, radsol) CALL histwrite_phy(o_soll0, sollw0) IF (vars_defined) THEN zx_tmp_fi2d(1 : klon) = swup ( 1 : klon, 1 ) ENDIF CALL histwrite_phy(o_SWupSFC, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d(1 : klon) = swup0 ( 1 : klon, 1 ) ENDIF CALL histwrite_phy(o_SWupSFCclr, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d(1 : klon) = swdn ( 1 : klon, 1 ) ENDIF CALL histwrite_phy(o_SWdnSFC, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d(1 : klon) = swdn0 ( 1 : klon, 1 ) ENDIF CALL histwrite_phy(o_SWdnSFCclr, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d(1:klon)=sollwdown(1:klon)-sollw(1:klon) ENDIF CALL histwrite_phy(o_LWupSFC, zx_tmp_fi2d) CALL histwrite_phy(o_LWdnSFC, sollwdown) IF (vars_defined) THEN sollwdownclr(1:klon) = -1.*lwdn0(1:klon,1) zx_tmp_fi2d(1:klon)=sollwdownclr(1:klon)-sollw0(1:klon) ENDIF CALL histwrite_phy(o_LWupSFCclr, zx_tmp_fi2d) CALL histwrite_phy(o_LWdnSFCclr, sollwdownclr) CALL histwrite_phy(o_bils, bils) CALL histwrite_phy(o_bils_diss, bils_diss) CALL histwrite_phy(o_bils_ec, bils_ec) IF (iflag_ener_conserv>=1) THEN CALL histwrite_phy(o_bils_ech, bils_ech) ENDIF CALL histwrite_phy(o_bils_tke, bils_tke) CALL histwrite_phy(o_bils_kinetic, bils_kinetic) CALL histwrite_phy(o_bils_latent, bils_latent) CALL histwrite_phy(o_bils_enthalp, bils_enthalp) IF (vars_defined) THEN zx_tmp_fi2d(1:klon)=-1*sens(1:klon) ENDIF CALL histwrite_phy(o_sens, zx_tmp_fi2d) CALL histwrite_phy(o_fder, fder) CALL histwrite_phy(o_ffonte, zxffonte) CALL histwrite_phy(o_fqcalving, zxfqcalving) CALL histwrite_phy(o_fqfonte, zxfqfonte) IF (vars_defined) THEN zx_tmp_fi2d=0. DO nsrf=1,nbsrf zx_tmp_fi2d(:)=zx_tmp_fi2d(:)+pctsrf(:,nsrf)*fluxu(:,1,nsrf) ENDDO ENDIF CALL histwrite_phy(o_taux, zx_tmp_fi2d) IF (vars_defined) THEN zx_tmp_fi2d=0. DO nsrf=1,nbsrf zx_tmp_fi2d(:)=zx_tmp_fi2d(:)+pctsrf(:,nsrf)*fluxv(:,1,nsrf) ENDDO ENDIF CALL histwrite_phy(o_tauy, zx_tmp_fi2d) IF (ok_snow) THEN CALL histwrite_phy(o_snowsrf, zxsnow) CALL histwrite_phy(o_qsnow, qsnow) CALL histwrite_phy(o_snowhgt,snowhgt) CALL histwrite_phy(o_toice,to_ice) CALL histwrite_phy(o_sissnow,sissnow) CALL histwrite_phy(o_runoff,runoff) CALL histwrite_phy(o_albslw3,albsol3_lic) ENDIF DO nsrf = 1, nbsrf IF (vars_defined) zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100. CALL histwrite_phy(o_pourc_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf) CALL histwrite_phy(o_fract_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf) CALL histwrite_phy(o_taux_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf) CALL histwrite_phy(o_tauy_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf) CALL histwrite_phy(o_tsol_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = evap_pot( 1 : klon, nsrf) CALL histwrite_phy(o_evappot_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = ustar(1 : klon, nsrf) CALL histwrite_phy(o_ustar_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = u10m(1 : klon, nsrf) CALL histwrite_phy(o_u10m_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = v10m(1 : klon, nsrf) CALL histwrite_phy(o_v10m_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = t2m(1 : klon, nsrf) CALL histwrite_phy(o_t2m_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = fevap(1 : klon, nsrf) CALL histwrite_phy(o_evap_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf) CALL histwrite_phy(o_sens_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf) CALL histwrite_phy(o_lat_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = fsollw( 1 : klon, nsrf) CALL histwrite_phy(o_flw_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = fsolsw( 1 : klon, nsrf) CALL histwrite_phy(o_fsw_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = wfbils( 1 : klon, nsrf) CALL histwrite_phy(o_wbils_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = wfbilo( 1 : klon, nsrf) CALL histwrite_phy(o_wbilo_srf(nsrf), zx_tmp_fi2d) IF (iflag_pbl > 1) THEN CALL histwrite_phy(o_tke_srf(nsrf), pbl_tke(:,1:klev,nsrf)) CALL histwrite_phy(o_tke_max_srf(nsrf), pbl_tke(:,1:klev,nsrf)) ENDIF ENDDO DO nsrf=1,nbsrf+1 CALL histwrite_phy(o_wstar(nsrf), wstar(1 : klon, nsrf)) ENDDO CALL histwrite_phy(o_cdrm, cdragm) CALL histwrite_phy(o_cdrh, cdragh) CALL histwrite_phy(o_cldl, cldl) CALL histwrite_phy(o_cldm, cldm) CALL histwrite_phy(o_cldh, cldh) CALL histwrite_phy(o_cldt, cldt) CALL histwrite_phy(o_JrNt, JrNt) CALL histwrite_phy(o_cldljn, cldl*JrNt) CALL histwrite_phy(o_cldmjn, cldm*JrNt) CALL histwrite_phy(o_cldhjn, cldh*JrNt) CALL histwrite_phy(o_cldtjn, cldt*JrNt) CALL histwrite_phy(o_cldq, cldq) IF (vars_defined) zx_tmp_fi2d(1:klon) = flwp(1:klon) CALL histwrite_phy(o_lwp, zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1:klon) = fiwp(1:klon) CALL histwrite_phy(o_iwp, zx_tmp_fi2d) CALL histwrite_phy(o_ue, ue) CALL histwrite_phy(o_ve, ve) CALL histwrite_phy(o_uq, uq) CALL histwrite_phy(o_vq, vq) IF(iflag_con.GE.3) THEN ! sb CALL histwrite_phy(o_cape, cape) CALL histwrite_phy(o_pbase, ema_pcb) CALL histwrite_phy(o_ptop, ema_pct) CALL histwrite_phy(o_fbase, ema_cbmf) if (iflag_con /= 30) then CALL histwrite_phy(o_plcl, plcl) CALL histwrite_phy(o_plfc, plfc) CALL histwrite_phy(o_wbeff, wbeff) end if CALL histwrite_phy(o_cape_max, cape) CALL histwrite_phy(o_upwd, upwd) CALL histwrite_phy(o_Ma, Ma) CALL histwrite_phy(o_dnwd, dnwd) CALL histwrite_phy(o_dnwd0, dnwd0) IF (vars_defined) zx_tmp_fi2d=float(itau_con)/float(itap) CALL histwrite_phy(o_ftime_con, zx_tmp_fi2d) IF (vars_defined) THEN IF(iflag_thermals>=1)THEN zx_tmp_fi3d=dnwd+dnwd0+upwd+fm_therm(:,1:klev) ELSE zx_tmp_fi3d=dnwd+dnwd0+upwd ENDIF ENDIF CALL histwrite_phy(o_mc, zx_tmp_fi3d) ENDIF !iflag_con .GE. 3 CALL histwrite_phy(o_prw, prw) CALL histwrite_phy(o_s_pblh, s_pblh) CALL histwrite_phy(o_s_pblt, s_pblt) CALL histwrite_phy(o_s_lcl, s_lcl) CALL histwrite_phy(o_s_therm, s_therm) !IM : Les champs suivants (s_capCL, s_oliqCL, s_cteiCL, s_trmb1, s_trmb2, s_trmb3) ne sont pas definis dans HBTM.F ! IF (o_s_capCL%flag(iff)<=lev_files(iff)) THEN ! CALL histwrite_phy(nid_files(iff),clef_stations(iff), ! $o_s_capCL%name,itau_w,s_capCL) ! ENDIF ! IF (o_s_oliqCL%flag(iff)<=lev_files(iff)) THEN ! CALL histwrite_phy(nid_files(iff),clef_stations(iff), ! $o_s_oliqCL%name,itau_w,s_oliqCL) ! ENDIF ! IF (o_s_cteiCL%flag(iff)<=lev_files(iff)) THEN ! CALL histwrite_phy(nid_files(iff),clef_stations(iff), ! $o_s_cteiCL%name,itau_w,s_cteiCL) ! ENDIF ! IF (o_s_trmb1%flag(iff)<=lev_files(iff)) THEN ! CALL histwrite_phy(nid_files(iff),clef_stations(iff), ! $o_s_trmb1%name,itau_w,s_trmb1) ! ENDIF ! IF (o_s_trmb2%flag(iff)<=lev_files(iff)) THEN ! CALL histwrite_phy(nid_files(iff),clef_stations(iff), ! $o_s_trmb2%name,itau_w,s_trmb2) ! ENDIF ! IF (o_s_trmb3%flag(iff)<=lev_files(iff)) THEN ! CALL histwrite_phy(nid_files(iff),clef_stations(iff), ! $o_s_trmb3%name,itau_w,s_trmb3) ! ENDIF ! ATTENTION, LES ANCIENS HISTWRITE ONT ETES CONSERVES EN ATTENDANT MIEUX: ! Champs interpolles sur des niveaux de pression DO iff=1, nfiles ll=0 DO k=1, nlevSTD bb2=clevSTD(k) IF(bb2.EQ."850".OR.bb2.EQ."700".OR. & bb2.EQ."500".OR.bb2.EQ."200".OR. & bb2.EQ."100".OR. & bb2.EQ."50".OR.bb2.EQ."10") THEN ! a refaire correctement !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ll=ll+1 CALL histwrite_phy(o_uSTDlevs(ll),uwriteSTD(:,k,iff), iff) CALL histwrite_phy(o_vSTDlevs(ll),vwriteSTD(:,k,iff), iff) CALL histwrite_phy(o_wSTDlevs(ll),wwriteSTD(:,k,iff), iff) CALL histwrite_phy(o_zSTDlevs(ll),phiwriteSTD(:,k,iff), iff) CALL histwrite_phy(o_qSTDlevs(ll),qwriteSTD(:,k,iff), iff) CALL histwrite_phy(o_tSTDlevs(ll),twriteSTD(:,k,iff), iff) ENDIF !(bb2.EQ."850".OR.bb2.EQ."700".OR. ENDDO ENDDO IF (vars_defined) THEN DO i=1, klon IF (pctsrf(i,is_oce).GT.epsfra.OR. & pctsrf(i,is_sic).GT.epsfra) THEN zx_tmp_fi2d(i) = (ftsol(i, is_oce) * pctsrf(i,is_oce)+ & ftsol(i, is_sic) * pctsrf(i,is_sic))/ & (pctsrf(i,is_oce)+pctsrf(i,is_sic)) ELSE zx_tmp_fi2d(i) = 273.15 ENDIF ENDDO ENDIF CALL histwrite_phy(o_t_oce_sic, zx_tmp_fi2d) ! Couplage convection-couche limite IF (iflag_con.GE.3) THEN IF (iflag_coupl>=1) THEN CALL histwrite_phy(o_ale_bl, ale_bl) CALL histwrite_phy(o_alp_bl, alp_bl) ENDIF !iflag_coupl>=1 ENDIF !(iflag_con.GE.3) ! Wakes IF (iflag_con.EQ.3) THEN IF (iflag_wake>=1) THEN CALL histwrite_phy(o_ale_wk, ale_wake) CALL histwrite_phy(o_alp_wk, alp_wake) CALL histwrite_phy(o_ale, ale) CALL histwrite_phy(o_alp, alp) CALL histwrite_phy(o_cin, cin) CALL histwrite_phy(o_WAPE, wake_pe) CALL histwrite_phy(o_wake_h, wake_h) CALL histwrite_phy(o_wake_s, wake_s) CALL histwrite_phy(o_wake_deltat, wake_deltat) CALL histwrite_phy(o_wake_deltaq, wake_deltaq) CALL histwrite_phy(o_wake_omg, wake_omg) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_wake(1:klon,1:klev) & /pdtphys CALL histwrite_phy(o_dtwak, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_wake(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dqwak, zx_tmp_fi3d) ENDIF ! iflag_wake>=1 CALL histwrite_phy(o_Vprecip, Vprecip) CALL histwrite_phy(o_ftd, ftd) CALL histwrite_phy(o_fqd, fqd) ELSEIF (iflag_con.EQ.30) THEN ! sortie RomP convection descente insaturee iflag_con=30 CALL histwrite_phy(o_Vprecip, Vprecip) CALL histwrite_phy(o_wdtrainA, wdtrainA) CALL histwrite_phy(o_wdtrainM, wdtrainM) ENDIF !(iflag_con.EQ.3.or.iflag_con.EQ.30) !!! nrlmd le 10/04/2012 IF (iflag_trig_bl>=1) THEN CALL histwrite_phy(o_n2, n2) CALL histwrite_phy(o_s2, s2) CALL histwrite_phy(o_proba_notrig, proba_notrig) CALL histwrite_phy(o_random_notrig, random_notrig) CALL histwrite_phy(o_ale_bl_stat, ale_bl_stat) CALL histwrite_phy(o_ale_bl_trig, ale_bl_trig) ENDIF !(iflag_trig_bl>=1) IF (iflag_clos_bl>=1) THEN CALL histwrite_phy(o_alp_bl_det, alp_bl_det) CALL histwrite_phy(o_alp_bl_fluct_m, alp_bl_fluct_m) CALL histwrite_phy(o_alp_bl_fluct_tke, & alp_bl_fluct_tke) CALL histwrite_phy(o_alp_bl_conv, alp_bl_conv) CALL histwrite_phy(o_alp_bl_stat, alp_bl_stat) ENDIF !(iflag_clos_bl>=1) !!! fin nrlmd le 10/04/2012 ! Output of slab ocean variables IF (type_ocean=='slab ') THEN CALL histwrite_phy(o_slab_qflux, slab_wfbils) CALL histwrite_phy(o_slab_bils, slab_bils) IF (nslay.EQ.1) THEN zx_tmp_fi2d(:)=tslab(:,1) CALL histwrite_phy(o_tslab, zx_tmp_fi2d) ELSE CALL histwrite_phy(o_tslab, tslab) END IF ENDIF !type_ocean == force/slab CALL histwrite_phy(o_weakinv, weak_inversion) CALL histwrite_phy(o_dthmin, dthmin) CALL histwrite_phy(o_cldtau, cldtau) CALL histwrite_phy(o_cldemi, cldemi) CALL histwrite_phy(o_pr_con_l, pmflxr(:,1:klev)) CALL histwrite_phy(o_pr_con_i, pmflxs(:,1:klev)) CALL histwrite_phy(o_pr_lsc_l, prfl(:,1:klev)) CALL histwrite_phy(o_pr_lsc_i, psfl(:,1:klev)) CALL histwrite_phy(o_re, re) CALL histwrite_phy(o_fl, fl) IF (vars_defined) THEN DO i=1, klon zx_tmp_fi2d(i)=MIN(100.,rh2m(i)*100.) ENDDO ENDIF CALL histwrite_phy(o_rh2m, zx_tmp_fi2d) IF (vars_defined) THEN DO i=1, klon zx_tmp_fi2d(i)=MIN(100.,rh2m(i)*100.) ENDDO ENDIF CALL histwrite_phy(o_rh2m_min, zx_tmp_fi2d) IF (vars_defined) THEN DO i=1, klon zx_tmp_fi2d(i)=MIN(100.,rh2m(i)*100.) ENDDO ENDIF CALL histwrite_phy(o_rh2m_max, zx_tmp_fi2d) CALL histwrite_phy(o_qsat2m, qsat2m) CALL histwrite_phy(o_tpot, tpot) CALL histwrite_phy(o_tpote, tpote) IF (vars_defined) zx_tmp_fi2d(1 : klon) = fsolsw( 1 : klon, is_ter) CALL histwrite_phy(o_SWnetOR, zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1:klon) = solsw(1:klon)/(1.-albsol1(1:klon)) CALL histwrite_phy(o_SWdownOR, zx_tmp_fi2d) CALL histwrite_phy(o_LWdownOR, sollwdown) CALL histwrite_phy(o_snowl, snow_lsc) CALL histwrite_phy(o_solldown, sollwdown) CALL histwrite_phy(o_dtsvdfo, d_ts(:,is_oce)) CALL histwrite_phy(o_dtsvdft, d_ts(:,is_ter)) CALL histwrite_phy(o_dtsvdfg, d_ts(:,is_lic)) CALL histwrite_phy(o_dtsvdfi, d_ts(:,is_sic)) CALL histwrite_phy(o_rugs, zxrugs) ! OD550 per species !--OLIVIER !This is warranted by treating INCA aerosols as offline aerosols ! IF (new_aod .and. (.not. aerosol_couple)) THEN IF (new_aod) THEN IF (flag_aerosol.GT.0) THEN CALL histwrite_phy(o_od550aer, od550aer) CALL histwrite_phy(o_od865aer, od865aer) CALL histwrite_phy(o_absvisaer, absvisaer) CALL histwrite_phy(o_od550lt1aer, od550lt1aer) CALL histwrite_phy(o_sconcso4, sconcso4) CALL histwrite_phy(o_sconcno3, sconcno3) CALL histwrite_phy(o_sconcoa, sconcoa) CALL histwrite_phy(o_sconcbc, sconcbc) CALL histwrite_phy(o_sconcss, sconcss) CALL histwrite_phy(o_sconcdust, sconcdust) CALL histwrite_phy(o_concso4, concso4) CALL histwrite_phy(o_concno3, concno3) CALL histwrite_phy(o_concoa, concoa) CALL histwrite_phy(o_concbc, concbc) CALL histwrite_phy(o_concss, concss) CALL histwrite_phy(o_concdust, concdust) CALL histwrite_phy(o_loadso4, loadso4) CALL histwrite_phy(o_loadoa, loadoa) CALL histwrite_phy(o_loadbc, loadbc) CALL histwrite_phy(o_loadss, loadss) CALL histwrite_phy(o_loaddust, loaddust) !--STRAT AER ENDIF IF (flag_aerosol.GT.0.OR.flag_aerosol_strat) THEN ! DO naero = 1, naero_spc !--correction mini bug OB DO naero = 1, naero_tot CALL histwrite_phy(o_tausumaero(naero), & tausum_aero(:,2,naero) ) END DO ENDIF IF (flag_aerosol_strat) THEN CALL histwrite_phy(o_tausumaero_lw, & tausum_aero(:,6,id_STRAT_phy) ) ENDIF ENDIF IF (ok_ade) THEN CALL histwrite_phy(o_topswad, topswad_aero) CALL histwrite_phy(o_topswad0, topswad0_aero) CALL histwrite_phy(o_solswad, solswad_aero) CALL histwrite_phy(o_solswad0, solswad0_aero) CALL histwrite_phy(o_toplwad, toplwad_aero) CALL histwrite_phy(o_toplwad0, toplwad0_aero) CALL histwrite_phy(o_sollwad, sollwad_aero) CALL histwrite_phy(o_sollwad0, sollwad0_aero) !====MS forcing diagnostics if (new_aod) then CALL histwrite_phy(o_swtoaas_nat, topsw_aero(:,1)) CALL histwrite_phy(o_swsrfas_nat, solsw_aero(:,1)) CALL histwrite_phy(o_swtoacs_nat, topsw0_aero(:,1)) CALL histwrite_phy(o_swsrfcs_nat, solsw0_aero(:,1)) !ant CALL histwrite_phy(o_swtoaas_ant, topsw_aero(:,2)) CALL histwrite_phy(o_swsrfas_ant, solsw_aero(:,2)) CALL histwrite_phy(o_swtoacs_ant, topsw0_aero(:,2)) CALL histwrite_phy(o_swsrfcs_ant, solsw0_aero(:,2)) !cf if (.not. aerosol_couple) then CALL histwrite_phy(o_swtoacf_nat, topswcf_aero(:,1)) CALL histwrite_phy(o_swsrfcf_nat, solswcf_aero(:,1)) CALL histwrite_phy(o_swtoacf_ant, topswcf_aero(:,2)) CALL histwrite_phy(o_swsrfcf_ant, solswcf_aero(:,2)) CALL histwrite_phy(o_swtoacf_zero,topswcf_aero(:,3)) CALL histwrite_phy(o_swsrfcf_zero,solswcf_aero(:,3)) endif endif ! new_aod !====MS forcing diagnostics ENDIF IF (ok_aie) THEN CALL histwrite_phy(o_topswai, topswai_aero) CALL histwrite_phy(o_solswai, solswai_aero) ENDIF IF (flag_aerosol.GT.0.AND.ok_cdnc) THEN CALL histwrite_phy(o_scdnc, scdnc) CALL histwrite_phy(o_cldncl, cldncl) CALL histwrite_phy(o_reffclws, reffclws) CALL histwrite_phy(o_reffclwc, reffclwc) CALL histwrite_phy(o_cldnvi, cldnvi) CALL histwrite_phy(o_lcc, lcc) CALL histwrite_phy(o_lcc3d, lcc3d) CALL histwrite_phy(o_lcc3dcon, lcc3dcon) CALL histwrite_phy(o_lcc3dstra, lcc3dstra) CALL histwrite_phy(o_reffclwtop, reffclwtop) ENDIF ! Champs 3D: IF (ok_ade .OR. ok_aie) then CALL histwrite_phy(o_ec550aer, ec550aer) ENDIF CALL histwrite_phy(o_lwcon, flwc) CALL histwrite_phy(o_iwcon, fiwc) CALL histwrite_phy(o_temp, t_seri) CALL histwrite_phy(o_theta, theta) CALL histwrite_phy(o_ovapinit, qx(:,:,ivap)) CALL histwrite_phy(o_ovap, q_seri) CALL histwrite_phy(o_oliq, ql_seri) CALL histwrite_phy(o_geop, zphi) CALL histwrite_phy(o_vitu, u_seri) CALL histwrite_phy(o_vitv, v_seri) CALL histwrite_phy(o_vitw, omega) CALL histwrite_phy(o_pres, pplay) CALL histwrite_phy(o_paprs, paprs(:,1:klev)) IF (vars_defined) THEN DO i=1, klon zx_tmp_fi3d1(i,1)= pphis(i)/RG !020611 zx_tmp_fi3d(i,1)= pphis(i)/RG ENDDO DO k=1, klev !020611 DO k=1, klev-1 DO i=1, klon !020611 zx_tmp_fi3d(i,k+1)= zx_tmp_fi3d(i,k) - (t_seri(i,k) *RD * zx_tmp_fi3d1(i,k+1)= zx_tmp_fi3d1(i,k) - (t_seri(i,k) *RD * & (paprs(i,k+1) - paprs(i,k))) / ( pplay(i,k) * RG ) ENDDO ENDDO ENDIF CALL histwrite_phy(o_zfull,zx_tmp_fi3d1(:,2:klevp1)) !020611 $o_zfull%name,itau_w,zx_tmp_fi3d) IF (vars_defined) THEN DO i=1, klon zx_tmp_fi3d(i,1)= pphis(i)/RG - ( & (t_seri(i,1)+zxtsol(i))/2. *RD * & (pplay(i,1) - paprs(i,1)))/( (paprs(i,1)+pplay(i,1))/2.* RG) ENDDO DO k=1, klev-1 DO i=1, klon zx_tmp_fi3d(i,k+1)= zx_tmp_fi3d(i,k) - ( & (t_seri(i,k)+t_seri(i,k+1))/2. *RD * & (pplay(i,k+1) - pplay(i,k))) / ( paprs(i,k) * RG ) ENDDO ENDDO ENDIF CALL histwrite_phy(o_zhalf, zx_tmp_fi3d) CALL histwrite_phy(o_rneb, cldfra) CALL histwrite_phy(o_rnebcon, rnebcon) CALL histwrite_phy(o_rnebls, rneb) IF (vars_defined) THEN DO k=1, klev DO i=1, klon zx_tmp_fi3d(i,k)=cldfra(i,k)*JrNt(i) ENDDO ENDDO ENDIF CALL histwrite_phy(o_rnebjn, zx_tmp_fi3d) CALL histwrite_phy(o_rhum, zx_rh) CALL histwrite_phy(o_ozone, & wo(:, :, 1) * dobson_u * 1e3 / zmasse / rmo3 * rmd) IF (read_climoz == 2) THEN CALL histwrite_phy(o_ozone_light, & wo(:, :, 2) * dobson_u * 1e3 / zmasse / rmo3 * rmd) ENDIF CALL histwrite_phy(o_dtphy, d_t) CALL histwrite_phy(o_dqphy, d_qx(:,:,ivap)) DO nsrf=1, nbsrf IF (vars_defined) zx_tmp_fi2d(1 : klon) = falb1( 1 : klon, nsrf) CALL histwrite_phy(o_albe_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf) CALL histwrite_phy(o_rugs_srf(nsrf), zx_tmp_fi2d) IF (vars_defined) zx_tmp_fi2d(1 : klon) = agesno( 1 : klon, nsrf) CALL histwrite_phy(o_ages_srf(nsrf), zx_tmp_fi2d) ENDDO !nsrf=1, nbsrf CALL histwrite_phy(o_alb1, albsol1) CALL histwrite_phy(o_alb2, albsol2) !FH Sorties pour la couche limite if (iflag_pbl>1) then zx_tmp_fi3d=0. IF (vars_defined) THEN do nsrf=1,nbsrf do k=1,klev zx_tmp_fi3d(:,k)=zx_tmp_fi3d(:,k) & +pctsrf(:,nsrf)*pbl_tke(:,k,nsrf) enddo enddo ENDIF CALL histwrite_phy(o_tke, zx_tmp_fi3d) CALL histwrite_phy(o_tke_max, zx_tmp_fi3d) ENDIF CALL histwrite_phy(o_kz, coefh(:,:,is_ave)) CALL histwrite_phy(o_kz_max, coefh(:,:,is_ave)) CALL histwrite_phy(o_clwcon, clwcon0) CALL histwrite_phy(o_dtdyn, d_t_dyn) CALL histwrite_phy(o_dqdyn, d_q_dyn) CALL histwrite_phy(o_dudyn, d_u_dyn) CALL histwrite_phy(o_dvdyn, d_v_dyn) IF (vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_t_con(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_dtcon, zx_tmp_fi3d) if(iflag_thermals.eq.0)then IF (vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_t_con(1:klon,1:klev)/pdtphys + & d_t_ajsb(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_tntc, zx_tmp_fi3d) else if(iflag_thermals.ge.1.and.iflag_wake.EQ.1)then IF (vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_t_con(1:klon,1:klev)/pdtphys + & d_t_ajs(1:klon,1:klev)/pdtphys + & d_t_wake(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_tntc, zx_tmp_fi3d) endif IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_u_con(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_ducon, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_v_con(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dvcon, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_con(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dqcon, zx_tmp_fi3d) IF(iflag_thermals.EQ.0) THEN IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_con(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_tnhusc, zx_tmp_fi3d) ELSE IF(iflag_thermals.GE.1.AND.iflag_wake.EQ.1) THEN IF (vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_q_con(1:klon,1:klev)/pdtphys + & d_q_ajs(1:klon,1:klev)/pdtphys + & d_q_wake(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_tnhusc, zx_tmp_fi3d) ENDIF IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_lsc(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtlsc, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon, 1:klev)=(d_t_lsc(1:klon,1:klev)+ & d_t_eva(1:klon,1:klev))/pdtphys CALL histwrite_phy(o_dtlschr, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_lsc(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dqlsc, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=beta_prec(1:klon,1:klev) CALL histwrite_phy(o_beta_prec, zx_tmp_fi3d) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Sorties specifiques a la separation thermiques/non thermiques if (iflag_thermals>=1) then IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_lscth(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtlscth, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_lscst(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtlscst, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_lscth(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dqlscth, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_lscst(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dqlscst, zx_tmp_fi3d) CALL histwrite_phy(o_plulth, plul_th) CALL histwrite_phy(o_plulst, plul_st) IF (vars_defined) THEN do k=1,klev do i=1,klon if (ptconvth(i,k)) then zx_tmp_fi3d(i,k)=1. else zx_tmp_fi3d(i,k)=0. endif enddo enddo ENDIF CALL histwrite_phy(o_ptconvth, zx_tmp_fi3d) IF (vars_defined) THEN do i=1,klon zx_tmp_fi2d(1:klon)=lmax_th(:) enddo ENDIF CALL histwrite_phy(o_lmaxth, zx_tmp_fi2d) endif ! iflag_thermals>=1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_vdf(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtvdf, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_diss(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtdis, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_vdf(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dqvdf, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_eva(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dteva, zx_tmp_fi3d) IF (vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_eva(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dqeva, zx_tmp_fi3d) zpt_conv = 0. WHERE (ptconv) zpt_conv = 1. CALL histwrite_phy(o_ptconv, zpt_conv) CALL histwrite_phy(o_ratqs, ratqs) IF (vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_t_ajs(1:klon,1:klev)/pdtphys - & d_t_ajsb(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_dtthe, zx_tmp_fi3d) IF (vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_u_ajs(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_duthe, zx_tmp_fi3d) IF (vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_v_ajs(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_dvthe, zx_tmp_fi3d) IF (iflag_thermals>=1) THEN ! Pour l instant 0 a y reflichir pour les thermiques zx_tmp_fi2d=0. CALL histwrite_phy(o_ftime_th, zx_tmp_fi2d) CALL histwrite_phy(o_f_th, fm_therm) CALL histwrite_phy(o_e_th, entr_therm) CALL histwrite_phy(o_w_th, zw2) CALL histwrite_phy(o_q_th, zqasc) CALL histwrite_phy(o_a_th, fraca) CALL histwrite_phy(o_d_th, detr_therm) CALL histwrite_phy(o_f0_th, f0) CALL histwrite_phy(o_zmax_th, zmax_th) IF (vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_q_ajs(1:klon,1:klev)/pdtphys - & d_q_ajsb(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_dqthe, zx_tmp_fi3d) ENDIF !iflag_thermals IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_ajsb(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtajs, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_q_ajsb(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dqajs, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=heat(1:klon,1:klev)/RDAY CALL histwrite_phy(o_dtswr, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=heat0(1:klon,1:klev)/RDAY CALL histwrite_phy(o_dtsw0, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=-1.*cool(1:klon,1:klev)/RDAY CALL histwrite_phy(o_dtlwr, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=-1.*cool0(1:klon,1:klev)/RDAY CALL histwrite_phy(o_dtlw0, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_ec(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtec, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_u_vdf(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_duvdf, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_v_vdf(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dvvdf, zx_tmp_fi3d) IF (ok_orodr) THEN IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_u_oro(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_duoro, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_v_oro(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dvoro, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_oro(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtoro, zx_tmp_fi3d) ENDIF IF (ok_orolf) THEN IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_u_lif(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dulif, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_v_lif(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dvlif, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_lif(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dtlif, zx_tmp_fi3d) ENDIF IF (ok_hines) THEN IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_u_hin(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_duhin, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_v_hin(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dvhin, zx_tmp_fi3d) IF(vars_defined) zx_tmp_fi3d(1:klon,1:klev)=d_t_hin(1:klon,1:klev)/pdtphys CALL histwrite_phy(o_dthin, zx_tmp_fi3d) ENDIF IF (ok_gwd_rando) then CALL histwrite_phy(o_du_gwd_rando, du_gwd_rando / pdtphys) CALL histwrite_phy(o_dv_gwd_rando, dv_gwd_rando / pdtphys) CALL histwrite_phy(o_vstr_gwd_rando, zvstr_gwd_rando) end IF IF (ok_qch4) then CALL histwrite_phy(o_dqch4, d_q_ch4 / pdtphys) ENDIF CALL histwrite_phy(o_rsu, swup) CALL histwrite_phy(o_rsd, swdn) CALL histwrite_phy(o_rlu, lwup) CALL histwrite_phy(o_rld, lwdn) CALL histwrite_phy(o_rsucs, swup0) CALL histwrite_phy(o_rsdcs, swdn0) CALL histwrite_phy(o_rlucs, lwup0) CALL histwrite_phy(o_rldcs, lwdn0) IF(vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_t(1:klon,1:klev)+ & d_t_dyn(1:klon,1:klev) ENDIF CALL histwrite_phy(o_tnt, zx_tmp_fi3d) IF(vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=heat(1:klon,1:klev)/RDAY - & cool(1:klon,1:klev)/RDAY ENDIF CALL histwrite_phy(o_tntr, zx_tmp_fi3d) IF(vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)= (d_t_lsc(1:klon,1:klev)+ & d_t_eva(1:klon,1:klev)+ & d_t_vdf(1:klon,1:klev))/pdtphys ENDIF CALL histwrite_phy(o_tntscpbl, zx_tmp_fi3d) IF(vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_qx(1:klon,1:klev,ivap)+ & d_q_dyn(1:klon,1:klev) ENDIF CALL histwrite_phy(o_tnhus, zx_tmp_fi3d) IF(vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=d_q_lsc(1:klon,1:klev)/pdtphys+ & d_q_eva(1:klon,1:klev)/pdtphys ENDIF CALL histwrite_phy(o_tnhusscpbl, zx_tmp_fi3d) CALL histwrite_phy(o_evu, coefm(:,:,is_ave)) IF(vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=q_seri(1:klon,1:klev)+ & ql_seri(1:klon,1:klev) ENDIF CALL histwrite_phy(o_h2o, zx_tmp_fi3d) if (iflag_con >= 3) then IF(vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=-1 * (dnwd(1:klon,1:klev)+ & dnwd0(1:klon,1:klev)) ENDIF CALL histwrite_phy(o_mcd, zx_tmp_fi3d) IF(vars_defined) THEN zx_tmp_fi3d(1:klon,1:klev)=upwd(1:klon,1:klev) + & dnwd(1:klon,1:klev)+ dnwd0(1:klon,1:klev) ENDIF CALL histwrite_phy(o_dmc, zx_tmp_fi3d) else if (iflag_con == 2) then CALL histwrite_phy(o_mcd, pmfd) CALL histwrite_phy(o_dmc, pmfu + pmfd) end if CALL histwrite_phy(o_ref_liq, ref_liq) CALL histwrite_phy(o_ref_ice, ref_ice) if (RCO2_per.NE.RCO2_act.OR.RCH4_per.NE.RCH4_act.OR. & RN2O_per.NE.RN2O_act.OR.RCFC11_per.NE.RCFC11_act.OR. & RCFC12_per.NE.RCFC12_act) THEN IF(vars_defined) zx_tmp_fi2d(1 : klon) = swupp ( 1 : klon, klevp1 ) CALL histwrite_phy(o_rsut4co2, zx_tmp_fi2d) IF(vars_defined) zx_tmp_fi2d(1 : klon) = lwupp ( 1 : klon, klevp1 ) CALL histwrite_phy(o_rlut4co2, zx_tmp_fi2d) IF(vars_defined) zx_tmp_fi2d(1 : klon) = swup0p ( 1 : klon, klevp1 ) CALL histwrite_phy(o_rsutcs4co2, zx_tmp_fi2d) IF(vars_defined) zx_tmp_fi2d(1 : klon) = lwup0p ( 1 : klon, klevp1 ) CALL histwrite_phy(o_rlutcs4co2, zx_tmp_fi2d) CALL histwrite_phy(o_rsu4co2, swupp) CALL histwrite_phy(o_rlu4co2, lwupp) CALL histwrite_phy(o_rsucs4co2, swup0p) CALL histwrite_phy(o_rlucs4co2, lwup0p) CALL histwrite_phy(o_rsd4co2, swdnp) CALL histwrite_phy(o_rld4co2, lwdnp) CALL histwrite_phy(o_rsdcs4co2, swdn0p) CALL histwrite_phy(o_rldcs4co2, lwdn0p) ENDIF !!!!!!!!!!!! Sorties niveaux de pression NMC !!!!!!!!!!!!!!!!!!!! DO iff=7, nfiles CALL histwrite_phy(o_tnondef,tnondef(:,:,iff-6),iff) CALL histwrite_phy(o_ta,twriteSTD(:,:,iff-6),iff) CALL histwrite_phy(o_zg,phiwriteSTD(:,:,iff-6),iff) CALL histwrite_phy(o_hus,qwriteSTD(:,:,iff-6),iff) CALL histwrite_phy(o_hur,rhwriteSTD(:,:,iff-6),iff) CALL histwrite_phy(o_ua,uwriteSTD(:,:,iff-6),iff) CALL histwrite_phy(o_va,vwriteSTD(:,:,iff-6),iff) CALL histwrite_phy(o_wap,wwriteSTD(:,:,iff-6),iff) IF(vars_defined) THEN DO k=1, nlevSTD DO i=1, klon IF(tnondef(i,k,iff-6).NE.missing_val) THEN IF(freq_outNMC(iff-6).LT.0) THEN freq_moyNMC(iff-6)=(mth_len*un_jour)/freq_calNMC(iff-6) ELSE freq_moyNMC(iff-6)=freq_outNMC(iff-6)/freq_calNMC(iff-6) ENDIF zx_tmp_fi3d_STD(i,k) = (100.*tnondef(i,k,iff-6))/freq_moyNMC(iff-6) ELSE zx_tmp_fi3d_STD(i,k) = missing_val ENDIF ENDDO ENDDO ENDIF CALL histwrite_phy(o_psbg,zx_tmp_fi3d_STD,iff) IF(vars_defined) THEN DO k=1, nlevSTD DO i=1, klon IF(O3sumSTD(i,k,iff-6).NE.missing_val) THEN zx_tmp_fi3d_STD(i,k) = O3sumSTD(i,k,iff-6) * 1.e+9 ELSE zx_tmp_fi3d_STD(i,k) = missing_val ENDIF ENDDO ENDDO !k=1, nlevSTD ENDIF CALL histwrite_phy(o_tro3,zx_tmp_fi3d_STD,iff) if (read_climoz == 2) THEN IF(vars_defined) THEN DO k=1, nlevSTD DO i=1, klon IF(O3daysumSTD(i,k,iff-6).NE.missing_val) THEN zx_tmp_fi3d_STD(i,k) = O3daysumSTD(i,k,iff-6) * 1.e+9 ELSE zx_tmp_fi3d_STD(i,k) = missing_val ENDIF ENDDO ENDDO !k=1, nlevSTD ENDIF CALL histwrite_phy(o_tro3_daylight,zx_tmp_fi3d_STD,iff) endif CALL histwrite_phy(o_uxv,uvsumSTD(:,:,iff-6),iff) CALL histwrite_phy(o_vxq,vqsumSTD(:,:,iff-6),iff) CALL histwrite_phy(o_vxT,vTsumSTD(:,:,iff-6),iff) CALL histwrite_phy(o_wxq,wqsumSTD(:,:,iff-6),iff) CALL histwrite_phy(o_vxphi,vphisumSTD(:,:,iff-6),iff) CALL histwrite_phy(o_wxT,wTsumSTD(:,:,iff-6),iff) CALL histwrite_phy(o_uxu,u2sumSTD(:,:,iff-6),iff) CALL histwrite_phy(o_vxv,v2sumSTD(:,:,iff-6),iff) CALL histwrite_phy(o_TxT,T2sumSTD(:,:,iff-6),iff) ENDDO !nfiles !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! IF (nqtot.GE.nqo+1) THEN DO iq=nqo+1,nqtot CALL histwrite_phy(o_trac(iq-nqo), qx(:,:,iq)) CALL histwrite_phy(o_dtr_vdf(iq-nqo),d_tr_cl(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_the(iq-nqo),d_tr_th(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_con(iq-nqo),d_tr_cv(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_lessi_impa(iq-nqo),d_tr_lessi_impa(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_lessi_nucl(iq-nqo),d_tr_lessi_nucl(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_insc(iq-nqo),d_tr_insc(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_bcscav(iq-nqo),d_tr_bcscav(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_evapls(iq-nqo),d_tr_evapls(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_ls(iq-nqo),d_tr_ls(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_trsp(iq-nqo),d_tr_trsp(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_sscav(iq-nqo),d_tr_sscav(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_sat(iq-nqo),d_tr_sat(:,:,iq-nqo)) CALL histwrite_phy(o_dtr_uscav(iq-nqo),d_tr_uscav(:,:,iq-nqo)) zx_tmp_fi2d=0. IF(vars_defined) THEN DO k=1,klev zx_tmp_fi2d(:)=zx_tmp_fi2d(:)+zmasse(:,k)*qx(:,k,iq) ENDDO ENDIF CALL histwrite_phy(o_trac_cum(iq-nqo), zx_tmp_fi2d) ENDDO ENDIF IF(.NOT.vars_defined) THEN !$OMP MASTER #ifndef CPP_IOIPSL_NO_OUTPUT DO iff=1,nfiles IF (clef_files(iff)) THEN CALL histend(nid_files(iff)) ndex2d = 0 ndex3d = 0 ENDIF ! clef_files ENDDO ! iff #endif #ifdef CPP_XIOS !On finalise l'initialisation: CALL wxios_closedef() #endif !$OMP END MASTER !$OMP BARRIER vars_defined = .TRUE. END IF END DO IF(vars_defined) THEN ! On synchronise les fichiers pour IOIPSL #ifndef CPP_IOIPSL_NO_OUTPUT !$OMP MASTER DO iff=1,nfiles IF (ok_sync .AND. clef_files(iff)) THEN CALL histsync(nid_files(iff)) ENDIF END DO !$OMP END MASTER #endif ENDIF END SUBROUTINE phys_output_write END MODULE phys_output_write_mod