! $Id: cv3_cine.F90 1999 2014-03-20 09:57:19Z acaubel $ SUBROUTINE cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, & cina, cinb, plfc) ! ************************************************************** ! * ! CV3_CINE * ! * ! * ! written by : Frederique Cheruy * ! vectorization: Jean-Yves Grandpeix, 19/06/2003, 11.54.43 * ! modified by : * ! ************************************************************** IMPLICIT NONE include "YOMCST.h" include "cvthermo.h" include "cv3param.h" ! input: INTEGER ncum, nd, nloc INTEGER icb(nloc), inb(nloc) REAL pbase(nloc), plcl(nloc) REAL p(nloc, nd), ph(nloc, nd+1) REAL tv(nloc, nd), tvp(nloc, nd) ! output REAL cina(nloc), cinb(nloc), plfc(nloc) ! local variables INTEGER il, i, j, k INTEGER itop(nloc), ineg(nloc), ilow(nloc) INTEGER ifst(nloc), isublcl(nloc) LOGICAL lswitch(nloc), lswitch1(nloc), lswitch2(nloc) LOGICAL exist_lfc(nloc) REAL dpmax REAL deltap, dcin REAL buoylcl(nloc), tvplcl(nloc), tvlcl(nloc) REAL p0(nloc) REAL buoyz(nloc), buoy(nloc, nd) ! ------------------------------------------------------------- ! Initialization ! ------------------------------------------------------------- DO il = 1, ncum cina(il) = 0. cinb(il) = 0. END DO ! -------------------------------------------------------------- ! Recompute buoyancies ! -------------------------------------------------------------- DO k = 1, nd DO il = 1, ncum ! print*,'tvp tv=',tvp(il,k),tv(il,k) buoy(il, k) = tvp(il, k) - tv(il, k) END DO END DO ! --------------------------------------------------------------- ! calcul de la flottabilite a LCL (Buoylcl) ! ifst = first P-level above lcl ! isublcl = highest P-level below lcl. ! --------------------------------------------------------------- DO il = 1, ncum tvplcl(il) = tvp(il, 1)*(plcl(il)/p(il,1))**(2./7.) !For dry air, R/Cp=2/7 END DO DO il = 1, ncum IF (plcl(il)>p(il,icb(il))) THEN ifst(il) = icb(il) isublcl(il) = icb(il) - 1 ELSE ifst(il) = icb(il) + 1 isublcl(il) = icb(il) END IF END DO DO il = 1, ncum tvlcl(il) = tv(il, ifst(il)-1) + (tv(il,ifst(il))-tv(il,ifst(il)-1))*( & plcl(il)-p(il,ifst(il)-1))/(p(il,ifst(il))-p(il,ifst(il)-1)) END DO DO il = 1, ncum buoylcl(il) = tvplcl(il) - tvlcl(il) END DO ! --------------------------------------------------------------- ! premiere couche contenant un niveau de flotabilite positive ! et premiere couche contenant un niveau de flotabilite negative ! au dessus du niveau de condensation ! --------------------------------------------------------------- DO il = 1, ncum itop(il) = nl - 1 ineg(il) = nl - 1 exist_lfc(il) = .FALSE. END DO DO k = nl - 1, 1, -1 DO il = 1, ncum IF (k>=ifst(il)) THEN IF (buoy(il,k)>0.) THEN itop(il) = k exist_lfc(il) = .TRUE. ELSE ineg(il) = k END IF END IF END DO END DO ! --------------------------------------------------------------- ! When there is no positive buoyancy level, set Plfc, Cina and Cinb ! to arbitrary extreme values. ! --------------------------------------------------------------- DO il = 1, ncum IF (.NOT. exist_lfc(il)) THEN plfc(il) = 1.111 cinb(il) = -1111. cina(il) = -1112. END IF END DO ! --------------------------------------------------------------- ! -- Two cases : BUOYlcl >= 0 and BUOYlcl < 0. ! --------------------------------------------------------------- ! -------------------- ! -- 1.0 BUOYlcl >=0. ! -------------------- dpmax = 50. DO il = 1, ncum lswitch1(il) = buoylcl(il) >= 0. .AND. exist_lfc(il) lswitch(il) = lswitch1(il) END DO ! 1.1 No inhibition case ! ---------------------- ! If buoyancy is positive at LCL and stays positive over a large enough ! pressure interval (=DPMAX), inhibition is set to zero, DO il = 1, ncum IF (lswitch(il)) THEN IF (p(il,ineg(il))
= p(il, icb(il)) - dpmax
lswitch(il) = lswitch1(il) .AND. lswitch2(il)
END DO
DO il = 1, ncum
IF (lswitch(il)) THEN
cinb(il) = 0.
! 1.2.1 Calcul de la pression du niveau de flot. nulle juste au-dessus
! de LCL
! ---------------------------------------------------------------------------
IF (ineg(il)>isublcl(il)+1) THEN
! In order to get P0, one may interpolate linearly buoyancies
! between P(ineg) and P(ineg-1).
p0(il) = (buoy(il,ineg(il))*p(il,ineg(il)-1)-buoy(il,ineg( &
il)-1)*p(il,ineg(il)))/(buoy(il,ineg(il))-buoy(il,ineg(il)-1))
ELSE
! In order to get P0, one has to interpolate between P(ineg) and
! Plcl.
p0(il) = (buoy(il,ineg(il))*plcl(il)-buoylcl(il)*p(il,ineg(il)))/ &
(buoy(il,ineg(il))-buoylcl(il))
END IF
END IF
END DO
! 1.2.2 Recompute itop (=1st layer with positive buoyancy above ineg)
! -------------------------------------------------------------------
DO il = 1, ncum
IF (lswitch(il)) THEN
itop(il) = nl - 1
END IF
END DO
DO k = nl, 1, -1
DO il = 1, ncum
IF (lswitch(il)) THEN
IF (k>=ineg(il) .AND. buoy(il,k)>0) THEN
itop(il) = k
END IF
END IF
END DO
END DO
! 1.2.3 Computation of PLFC
! -------------------------
DO il = 1, ncum
IF (lswitch(il)) THEN
plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( &
il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1))
END IF
END DO
! 1.2.4 Computation of CINA
! -------------------------
! Upper part of CINA : integral from P(itop-1) to Plfc
DO il = 1, ncum
IF (lswitch(il)) THEN
deltap = p(il, itop(il)-1) - plfc(il)
dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il))
cina(il) = min(0., dcin)
END IF
END DO
! Middle part of CINA : integral from P(ineg) to P(itop-1)
DO k = 1, nl
DO il = 1, ncum
IF (lswitch(il)) THEN
IF (k>=ineg(il) .AND. k<=itop(il)-2) THEN
deltap = p(il, k) - p(il, k+1)
dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
cina(il) = cina(il) + min(0., dcin)
END IF
END IF
END DO
END DO
! Lower part of CINA : integral from P0 to P(ineg)
DO il = 1, ncum
IF (lswitch(il)) THEN
deltap = p0(il) - p(il, ineg(il))
dcin = rd*buoy(il, ineg(il))*deltap/(p(il,ineg(il))+p0(il))
cina(il) = cina(il) + min(0., dcin)
END IF
END DO
! ------------------
! -- 2.0 BUOYlcl <0.
! ------------------
DO il = 1, ncum
lswitch1(il) = buoylcl(il) < 0. .AND. exist_lfc(il)
lswitch(il) = lswitch1(il)
END DO
! 2.0.1 Premiere couche ou la flotabilite est negative au dessus du sol
! ----------------------------------------------------
! au cas ou elle existe sinon ilow=1 (nk apres)
! on suppose que la parcelle part de la premiere couche
DO il = 1, ncum
IF (lswitch(il)) THEN
ilow(il) = 1
END IF
END DO
DO k = nl, 1, -1
DO il = 1, ncum
IF (lswitch(il) .AND. k<=icb(il)-1) THEN
IF (buoy(il,k)<0.) THEN
ilow(il) = k
END IF
END IF
END DO
END DO
! 2.0.2 Calcul de la pression du niveau de flot. nulle sous le nuage
! ----------------------------------------------------
DO il = 1, ncum
IF (lswitch(il)) THEN
IF (ilow(il)>1) THEN
p0(il) = (buoy(il,ilow(il))*p(il,ilow(il)-1)-buoy(il,ilow( &
il)-1)*p(il,ilow(il)))/(buoy(il,ilow(il))-buoy(il,ilow(il)-1))
buoyz(il) = 0.
ELSE
p0(il) = p(il, 1)
buoyz(il) = buoy(il, 1)
END IF
END IF
END DO
! 2.1. Computation of CINB
! -----------------------
DO il = 1, ncum
lswitch2(il) = (isublcl(il)==1 .AND. ilow(il)==1) .OR. &
(isublcl(il)==ilow(il)-1)
lswitch(il) = lswitch1(il) .AND. lswitch2(il)
END DO
! c IF ( (isublcl .EQ. 1 .AND. ilow .EQ. 1)
! c $ .OR.(isublcl .EQ. ilow-1)) THEN
! 2.1.1 First case : Plcl just above P0
! -------------------------------------
DO il = 1, ncum
IF (lswitch(il)) THEN
deltap = p0(il) - plcl(il)
dcin = rd*(buoyz(il)+buoylcl(il))*deltap/(p0(il)+plcl(il))
cinb(il) = min(0., dcin)
END IF
END DO
DO il = 1, ncum
lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il)
END DO
! c ELSE
! 2.1.2 Second case : there is at least one P-level between P0 and Plcl
! ---------------------------------------------------------------------
! Lower part of CINB : integral from P0 to P(ilow)
DO il = 1, ncum
IF (lswitch(il)) THEN
deltap = p0(il) - p(il, ilow(il))
dcin = rd*(buoyz(il)+buoy(il,ilow(il)))*deltap/(p0(il)+p(il,ilow(il)))
cinb(il) = min(0., dcin)
END IF
END DO
! Middle part of CINB : integral from P(ilow) to P(isublcl)
! c DO k = ilow,isublcl-1
DO k = 1, nl
DO il = 1, ncum
IF (lswitch(il) .AND. k>=ilow(il) .AND. k<=isublcl(il)-1) THEN
deltap = p(il, k) - p(il, k+1)
dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
cinb(il) = cinb(il) + min(0., dcin)
END IF
END DO
END DO
! Upper part of CINB : integral from P(isublcl) to Plcl
DO il = 1, ncum
IF (lswitch(il)) THEN
deltap = p(il, isublcl(il)) - plcl(il)
dcin = rd*(buoy(il,isublcl(il))+buoylcl(il))*deltap/ &
(p(il,isublcl(il))+plcl(il))
cinb(il) = cinb(il) + min(0., dcin)
END IF
END DO
! c ENDIF
! 2.2 Computation of CINA
! ---------------------
DO il = 1, ncum
lswitch2(il) = plcl(il) > p(il, itop(il)-1)
lswitch(il) = lswitch1(il) .AND. lswitch2(il)
END DO
! 2.2.1 FIrst case : Plcl > P(itop-1)
! ---------------------------------
! In order to get Plfc, one may interpolate linearly buoyancies
! between P(itop) and P(itop-1).
DO il = 1, ncum
IF (lswitch(il)) THEN
plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( &
il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1))
END IF
END DO
! Upper part of CINA : integral from P(itop-1) to Plfc
DO il = 1, ncum
IF (lswitch(il)) THEN
deltap = p(il, itop(il)-1) - plfc(il)
dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il))
cina(il) = min(0., dcin)
END IF
END DO
! Middle part of CINA : integral from P(icb+1) to P(itop-1)
DO k = 1, nl
DO il = 1, ncum
IF (lswitch(il) .AND. k>=icb(il)+1 .AND. k<=itop(il)-2) THEN
deltap = p(il, k) - p(il, k+1)
dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
cina(il) = cina(il) + min(0., dcin)
END IF
END DO
END DO
! Lower part of CINA : integral from Plcl to P(icb+1)
DO il = 1, ncum
IF (lswitch(il)) THEN
IF (plcl(il)>p(il,icb(il))) THEN
IF (icb(il)