PROGRAM lmdz1d USE ioipsl, only: ju2ymds, ymds2ju, ioconf_calendar use phys_state_var_mod use comgeomphy use dimphy use surface_data, only : type_ocean,ok_veget use pbl_surface_mod, only : ftsoil, pbl_surface_init, $ pbl_surface_final use fonte_neige_mod, only : fonte_neige_init, fonte_neige_final use infotrac ! new use control_mod USE indice_sol_mod USE phyaqua_mod implicit none #include "dimensions.h" #include "YOMCST.h" #include "temps.h" !!#include "control.h" #include "iniprint.h" #include "clesphys.h" #include "dimsoil.h" !#include "indicesol.h" #include "comvert.h" #include "compar1d.h" #include "flux_arp.h" #include "tsoilnudge.h" #include "fcg_gcssold.h" !!!#include "fbforcing.h" !===================================================================== ! DECLARATIONS !===================================================================== !--------------------------------------------------------------------- ! Externals !--------------------------------------------------------------------- external fq_sat real fq_sat !--------------------------------------------------------------------- ! Arguments d' initialisations de la physique (USER DEFINE) !--------------------------------------------------------------------- integer, parameter :: ngrid=1 real :: zcufi = 1. real :: zcvfi = 1. !- real :: nat_surf !- logical :: ok_flux_surf !- real :: fsens !- real :: flat !- real :: tsurf !- real :: rugos !- real :: qsol(1:2) !- real :: qsurf !- real :: psurf !- real :: zsurf !- real :: albedo !- !- real :: time = 0. !- real :: time_ini !- real :: xlat !- real :: xlon !- real :: wtsurf !- real :: wqsurf !- real :: restart_runoff !- real :: xagesno !- real :: qsolinp !- real :: zpicinp !- real :: fnday real :: day, daytime real :: day1 real :: heure integer :: jour integer :: mois integer :: an ! real :: paire = 1. ! aire de la maille !** common /flux_arp/fsens,flat,ok_flux_surf !--------------------------------------------------------------------- ! Declarations related to forcing and initial profiles !--------------------------------------------------------------------- integer :: kmax = llm integer llm700,nq1,nq2 INTEGER, PARAMETER :: nlev_max=1000, nqmx=1000 real timestep, frac, timeit real height(nlev_max),tttprof(nlev_max),qtprof(nlev_max), . uprof(nlev_max),vprof(nlev_max),e12prof(nlev_max), . ugprof(nlev_max),vgprof(nlev_max),wfls(nlev_max), . dqtdxls(nlev_max),dqtdyls(nlev_max), . dqtdtls(nlev_max),thlpcar(nlev_max), . qprof(nlev_max,nqmx) real :: fff c integer :: forcing_type logical :: forcing_les = .false. logical :: forcing_armcu = .false. logical :: forcing_rico = .false. logical :: forcing_radconv = .false. logical :: forcing_toga = .false. logical :: forcing_twpice = .false. logical :: forcing_amma = .false. logical :: forcing_GCM2SCM = .false. logical :: forcing_GCSSold = .false. logical :: forcing_sandu = .false. logical :: forcing_astex = .false. logical :: forcing_fire = .false. integer :: type_ts_forcing ! 0 = SST constant; 1 = SST read from a file ! (cf read_tsurf1d.F) !vertical advection computation ! real d_t_z(llm), d_q_z(llm) ! real d_t_dyn_z(llm), d_q_dyn_z(llm) ! real zz(llm) ! real zfact !flag forcings logical :: nudge_wind=.true. logical :: nudge_thermo=.false. logical :: cptadvw=.true. !===================================================================== ! DECLARATIONS FOR EACH CASE !===================================================================== ! #include "1D_decl_cases.h" ! !--------------------------------------------------------------------- ! Declarations related to vertical discretization: !--------------------------------------------------------------------- real :: pzero=1.e5 real :: play (llm),zlay (llm),sig_s(llm),plev(llm+1) real :: playd(llm),zlayd(llm),ap_amma(llm+1),bp_amma(llm+1),poub !--------------------------------------------------------------------- ! Declarations related to variables !--------------------------------------------------------------------- integer :: iq real :: phi(llm) real :: teta(llm),tetal(llm),temp(llm),u(llm),v(llm),w(llm) real :: rlat_rad(1),rlon_rad(1) real :: omega(llm+1),omega2(llm),rho(llm+1) real :: ug(llm),vg(llm),fcoriolis real :: sfdt, cfdt real :: du_phys(llm),dv_phys(llm),dt_phys(llm) real :: du_dyn(llm),dv_dyn(llm),dt_dyn(llm) real :: dt_cooling(llm),d_t_cool(llm),d_th_adv(llm) real :: dq_cooling(llm),d_q_cool(llm) real :: tmpvar(llm) real :: alpha REAL, ALLOCATABLE, DIMENSION(:,:):: q REAL, ALLOCATABLE, DIMENSION(:,:):: dq REAL, ALLOCATABLE, DIMENSION(:,:):: dq_dyn REAL, ALLOCATABLE, DIMENSION(:,:):: d_q_adv !--------------------------------------------------------------------- ! Initialization of surface variables !--------------------------------------------------------------------- real :: run_off_lic_0(1) real :: fder(1),snsrf(1,nbsrf),qsurfsrf(1,nbsrf) real :: evap(1,nbsrf),frugs(1,nbsrf) real :: tsoil(1,nsoilmx,nbsrf) real :: agesno(1,nbsrf) !--------------------------------------------------------------------- ! Call to phyredem !--------------------------------------------------------------------- logical :: ok_writedem =.true. !--------------------------------------------------------------------- ! Call to physiq !--------------------------------------------------------------------- integer, parameter :: longcles=20 logical :: firstcall=.true. logical :: lastcall=.false. real :: phis = 0.0 real :: clesphy0(longcles) = 0.0 real :: dpsrf !--------------------------------------------------------------------- ! Initializations of boundary conditions !--------------------------------------------------------------------- integer, parameter :: yd = 360 real :: phy_nat (yd) = 0.0 ! 0=ocean libre,1=land,2=glacier,3=banquise real :: phy_alb (yd) ! Albedo land only (old value condsurf_jyg=0.3) real :: phy_sst (yd) ! SST (will not be used; cf read_tsurf1d.F) real :: phy_bil (yd) = 1.0 ! Ne sert que pour les slab_ocean real :: phy_rug (yd) ! Longueur rugosite utilisee sur land only real :: phy_ice (yd) = 0.0 ! Fraction de glace real :: phy_fter(yd) = 0.0 ! Fraction de terre real :: phy_foce(yd) = 0.0 ! Fraction de ocean real :: phy_fsic(yd) = 0.0 ! Fraction de glace real :: phy_flic(yd) = 0.0 ! Fraction de glace !--------------------------------------------------------------------- ! Fichiers et d'autres variables !--------------------------------------------------------------------- real ttt,bow,q1 integer :: ierr,k,l,i,it=1,mxcalc integer jjmp1 parameter (jjmp1=jjm+1-1/jjm) INTEGER nbteta PARAMETER(nbteta=3) REAL dudyn(iim+1,jjmp1,llm) REAL PVteta(1,nbteta) INTEGER read_climoz !Al1 integer ecrit_slab_oc !1=ecrit,-1=lit,0=no file data ecrit_slab_oc/-1/ !===================================================================== ! INITIALIZATIONS !===================================================================== ! Initialization of Common turb_forcing dtime_frcg = 0. Turb_fcg_gcssold=.false. hthturb_gcssold = 0. hqturb_gcssold = 0. !--------------------------------------------------------------------- ! OPTIONS OF THE 1D SIMULATION (lmdz1d.def => unicol.def) !--------------------------------------------------------------------- cAl1 call conf_unicol(99) cAl1 moves this gcssold var from common fcg_gcssold to Turb_fcg_gcssold = xTurb_fcg_gcssold c -------------------------------------------------------------------- close(1) cAl1 write(*,*) 'lmdz1d.def lu => unicol.def' ! forcing_type defines the way the SCM is forced: !forcing_type = 0 ==> forcing_les = .true. ! initial profiles from file prof.inp.001 ! no forcing by LS convergence ; ! surface temperature imposed ; ! radiative cooling may be imposed (iflag_radia=0 in physiq.def) !forcing_type = 1 ==> forcing_radconv = .true. ! idem forcing_type = 0, but the imposed radiative cooling ! is set to 0 (hence, if iflag_radia=0 in physiq.def, ! then there is no radiative cooling at all) !forcing_type = 2 ==> forcing_toga = .true. ! initial profiles from TOGA-COARE IFA files ! LS convergence and SST imposed from TOGA-COARE IFA files !forcing_type = 3 ==> forcing_GCM2SCM = .true. ! initial profiles from the GCM output ! LS convergence imposed from the GCM output !forcing_type = 4 ==> forcing_twpice = .true. ! initial profiles from TWP-ICE cdf file ! LS convergence, omega and SST imposed from TWP-ICE files !forcing_type = 5 ==> forcing_rico = .true. ! initial profiles from RICO files ! LS convergence imposed from RICO files !forcing_type = 6 ==> forcing_amma = .true. ! initial profiles from AMMA nc file ! LS convergence, omega and surface fluxes imposed from AMMA file !forcing_type = 40 ==> forcing_GCSSold = .true. ! initial profile from GCSS file ! LS convergence imposed from GCSS file !forcing_type = 50 ==> forcing_fire = .true. ! forcing from fire.nc !forcing_type = 59 ==> forcing_sandu = .true. ! initial profiles from sanduref file: see prof.inp.001 ! SST varying with time and divergence constante: see ifa_sanduref.txt file ! Radiation has to be computed interactively !forcing_type = 60 ==> forcing_astex = .true. ! initial profiles from file: see prof.inp.001 ! SST,divergence,ug,vg,ufa,vfa varying with time : see ifa_astex.txt file ! Radiation has to be computed interactively !forcing_type = 61 ==> forcing_armcu = .true. ! initial profiles from file: see prof.inp.001 ! sensible and latent heat flux imposed: see ifa_arm_cu_1.txt ! large scale advective forcing & radiative tendencies applied below 1000m: see ifa_arm_cu_2.txt ! use geostrophic wind ug=10m/s vg=0m/s. Duration of the case 53100s ! Radiation to be switched off ! if (forcing_type .eq.0) THEN forcing_les = .true. elseif (forcing_type .eq.1) THEN forcing_radconv = .true. elseif (forcing_type .eq.2) THEN forcing_toga = .true. elseif (forcing_type .eq.3) THEN forcing_GCM2SCM = .true. elseif (forcing_type .eq.4) THEN forcing_twpice = .true. elseif (forcing_type .eq.5) THEN forcing_rico = .true. elseif (forcing_type .eq.6) THEN forcing_amma = .true. elseif (forcing_type .eq.40) THEN forcing_GCSSold = .true. elseif (forcing_type .eq.50) THEN forcing_fire = .true. elseif (forcing_type .eq.59) THEN forcing_sandu = .true. elseif (forcing_type .eq.60) THEN forcing_astex = .true. elseif (forcing_type .eq.61) THEN forcing_armcu = .true. IF(llm.NE.19.AND.llm.NE.40) stop 'Erreur nombre de niveaux !!' else write (*,*) 'ERROR : unknown forcing_type ', forcing_type stop 'Forcing_type should be 0,1,2,3,4,5,6 or 40,59,60,61' ENDIF print*,"forcing type=",forcing_type ! if type_ts_forcing=0, the surface temp of 1D simulation is constant in time ! (specified by tsurf in lmdz1d.def); if type_ts_forcing=1, the surface temperature ! varies in time according to a forcing (e.g. forcing_toga) and is passed to read_tsurf1d.F ! through the common sst_forcing. type_ts_forcing = 0 if (forcing_toga .or. forcing_sandu .or. forcing_astex) : type_ts_forcing = 1 !--------------------------------------------------------------------- ! Definition of the run !--------------------------------------------------------------------- call conf_gcm( 99, .TRUE. , clesphy0 ) c----------------------------------------------------------------------- c Choix du calendrier c ------------------- c calend = 'earth_365d' if (calend == 'earth_360d') then call ioconf_calendar('360d') write(*,*)'CALENDRIER CHOISI: Terrestre a 360 jours/an' else if (calend == 'earth_365d') then call ioconf_calendar('noleap') write(*,*)'CALENDRIER CHOISI: Terrestre a 365 jours/an' else if (calend == 'earth_366d') then call ioconf_calendar('all_leap') write(*,*)'CALENDRIER CHOISI: Terrestre bissextile' else if (calend == 'gregorian') then call ioconf_calendar('gregorian') ! not to be used by normal users write(*,*)'CALENDRIER CHOISI: Gregorien' else write (*,*) 'ERROR : unknown calendar ', calend stop 'calend should be 360d,earth_365d,earth_366d,gregorian' endif c----------------------------------------------------------------------- c cc Date : c La date est supposee donnee sous la forme [annee, numero du jour dans c l annee] ; l heure est donnee dans time_ini, lu dans lmdz1d.def. c On appelle ymds2ju pour convertir [annee, jour] en [jour Julien]. c Le numero du jour est dans "day". L heure est traitee separement. c La date complete est dans "daytime" (l'unite est le jour). if (nday>0) then fnday=nday else fnday=-nday/float(day_step) endif c Special case for arm_cu which lasts less than one day : 53100s !! (MPL 20111026) IF(forcing_type .EQ. 61) fnday=53100./86400. c Special case for amma which lasts less than one day : 64800s !! (MPL 20120216) IF(forcing_type .EQ. 6) fnday=64800./86400. annee_ref = anneeref mois = 1 day_ref = dayref heure = 0. itau_dyn = 0 itau_phy = 0 call ymds2ju(annee_ref,mois,day_ref,heure,day) day_ini = day day_end = day_ini + fnday IF (forcing_type .eq.2) THEN ! Convert the initial date of Toga-Coare to Julian day call ymds2ju $ (year_ini_toga,mth_ini_toga,day_ini_toga,heure,day_ju_ini_toga) ELSEIF (forcing_type .eq.4) THEN ! Convert the initial date of TWPICE to Julian day call ymds2ju $ (year_ini_twpi,mth_ini_twpi,day_ini_twpi,heure_ini_twpi $ ,day_ju_ini_twpi) ELSEIF (forcing_type .eq.6) THEN ! Convert the initial date of AMMA to Julian day call ymds2ju $ (year_ini_amma,mth_ini_amma,day_ini_amma,heure_ini_amma $ ,day_ju_ini_amma) ELSEIF (forcing_type .eq.59) THEN ! Convert the initial date of Sandu case to Julian day call ymds2ju $ (year_ini_sandu,mth_ini_sandu,day_ini_sandu, $ time_ini*3600.,day_ju_ini_sandu) ELSEIF (forcing_type .eq.60) THEN ! Convert the initial date of Astex case to Julian day call ymds2ju $ (year_ini_astex,mth_ini_astex,day_ini_astex, $ time_ini*3600.,day_ju_ini_astex) ELSEIF (forcing_type .eq.61) THEN ! Convert the initial date of Arm_cu case to Julian day call ymds2ju $ (year_ini_armcu,mth_ini_armcu,day_ini_armcu,heure_ini_armcu $ ,day_ju_ini_armcu) ENDIF daytime = day + time_ini/24. ! 1st day and initial time of the simulation ! Print out the actual date of the beginning of the simulation : call ju2ymds(daytime,year_print, month_print,day_print,sec_print) print *,' Time of beginning : ', $ year_print, month_print, day_print, sec_print !--------------------------------------------------------------------- ! Initialization of dimensions, geometry and initial state !--------------------------------------------------------------------- call init_phys_lmdz(1,1,llm,1,(/1/)) call suphel call initcomgeomphy call infotrac_init if (nqtot>nqmx) STOP'Augmenter nqmx dans lmdz1d.F' allocate(q(llm,nqtot)) ; q(:,:)=0. allocate(dq(llm,nqtot)) allocate(dq_dyn(llm,nqtot)) allocate(d_q_adv(llm,nqtot)) c c No ozone climatology need be read in this pre-initialization c (phys_state_var_init is called again in physiq) read_climoz = 0 c call phys_state_var_init(read_climoz) if (ngrid.ne.klon) then print*,'stop in inifis' print*,'Probleme de dimensions :' print*,'ngrid = ',ngrid print*,'klon = ',klon stop endif !!!===================================================================== !!! Feedback forcing values for Gateaux differentiation (al1) !!!===================================================================== !!! Surface Planck forcing bracketing call radiation !! surf_Planck = 0. !! surf_Conv = 0. !! write(*,*) 'Gateaux-dif Planck,Conv:',surf_Planck,surf_Conv !!! a mettre dans le lmdz1d.def ou autre !! !! qsol = qsolinp qsurf = fq_sat(tsurf,psurf/100.) rlat=xlat rlon=xlon day1= day_ini time=daytime-day ts_toga(1)=tsurf ! needed by read_tsurf1d.F rho(1)=psurf/(rd*tsurf*(1.+(rv/rd-1.)*qsurf)) ! !! mpl et jyg le 22/08/2012 : !! pour que les cas a flux de surface imposes marchent IF(.NOT.ok_flux_surf.or.max(abs(wtsurf),abs(wqsurf))>0.) THEN fsens=-wtsurf*rcpd*rho(1) flat=-wqsurf*rlvtt*rho(1) print *,'Flux: ok_flux wtsurf wqsurf',ok_flux_surf,wtsurf,wqsurf ENDIF print*,'Flux sol ',fsens,flat !! ok_flux_surf=.false. !! fsens=-wtsurf*rcpd*rho(1) !! flat=-wqsurf*rlvtt*rho(1) !!!! ! Vertical discretization and pressure levels at half and mid levels: pa = 5e4 !! preff= 1.01325e5 preff = psurf IF (ok_old_disvert) THEN call disvert0(pa,preff,ap,bp,dpres,presnivs,nivsigs,nivsig) print *,'On utilise disvert0' ELSE call disvert(pa,preff,ap,bp,dpres,presnivs,nivsigs,nivsig, : scaleheight) print *,'On utilise disvert' c Nouvelle version disvert permettant d imposer ap,bp (modif L.Guez) MPL 18092012 c Dans ce cas, on lit ap,bp dans le fichier hybrid.txt ENDIF sig_s=presnivs/preff plev =ap+bp*psurf play = 0.5*(plev(1:llm)+plev(2:llm+1)) ccc zlay=-rd*300.*log(play/psurf)/rg ! moved after reading profiles IF (forcing_type .eq. 59) THEN ! pour forcing_sandu, on cherche l'indice le plus proche de 700hpa#3000m write(*,*) '***********************' do l = 1, llm write(*,*) 'l,play(l),presnivs(l): ',l,play(l),presnivs(l) if (trouve_700 .and. play(l).le.70000) then llm700=l print *,'llm700,play=',llm700,play(l)/100. trouve_700= .false. endif enddo write(*,*) '***********************' ENDIF c !===================================================================== ! EVENTUALLY, READ FORCING DATA : !===================================================================== #include "1D_read_forc_cases.h" if (forcing_GCM2SCM) then write (*,*) 'forcing_GCM2SCM not yet implemented' stop 'in initialization' endif ! forcing_GCM2SCM print*,'mxcalc=',mxcalc print*,'zlay=',zlay(mxcalc) print*,'play=',play(mxcalc) cAl1 pour SST forced, appellé depuis ocean_forced_noice ts_cur = tsurf ! SST used in read_tsurf1d !===================================================================== ! Initialisation de la physique : !===================================================================== ! Rq: conf_phys.F90 lit tous les flags de physiq.def; conf_phys appele depuis physiq.F ! ! day_step, iphysiq lus dans gcm.def ci-dessus ! timestep: calcule ci-dessous from rday et day_step ! ngrid=1 ! llm: defini dans .../modipsl/modeles/LMDZ4/libf/grid/dimension ! rday: defini dans suphel.F (86400.) ! day_ini: lu dans run.def (dayref) ! rlat_rad,rlon-rad: transformes en radian de rlat,rlon lus dans lmdz1d.def (en degres) ! airefi,zcufi,zcvfi initialises au debut de ce programme ! rday,ra,rg,rd,rcpd declares dans YOMCST.h et calcules dans suphel.F day_step = float(nsplit_phys)*day_step/float(iphysiq) write (*,*) 'Time step divided by nsplit_phys (=',nsplit_phys,')' timestep =rday/day_step dtime_frcg = timestep ! zcufi=airefi zcvfi=airefi ! rlat_rad(:)=rlat(:)*rpi/180. rlon_rad(:)=rlon(:)*rpi/180. call iniphysiq(ngrid,llm,rday,day_ini,timestep, . rlat_rad,rlon_rad,airefi,zcufi,zcvfi,ra,rg,rd,rcpd,(/1/)) print*,'apres iniphysiq' ! 2 PARAMETRES QUI DEVRAIENT ETRE LUS DANS run.def MAIS NE LE SONT PAS ICI: co2_ppm= 330.0 solaire=1370.0 ! Ecriture du startphy avant le premier appel a la physique. ! On le met juste avant pour avoir acces a tous les champs ! NB: les clesphy0 seront remplies dans phyredem d'apres les flags lus dans gcm.def if (ok_writedem) then !-------------------------------------------------------------------------- ! pbl_surface_init (called here) and pbl_surface_final (called by phyredem) ! need : qsol fder snow qsurf evap rugos agesno ftsoil !-------------------------------------------------------------------------- type_ocean = "force" run_off_lic_0(1) = restart_runoff call fonte_neige_init(run_off_lic_0) fder=0. snsrf(1,:)=0. ! couverture de neige des sous surface qsurfsrf(1,:)=qsurf ! humidite de l'air des sous surface evap=0. frugs(1,:)=rugos ! couverture de neige des sous surface agesno = xagesno tsoil(:,:,:)=tsurf !------ AMMA 2e run avec modele sol et rayonnement actif (MPL 23052012) ! tsoil(1,1,1)=299.18 ! tsoil(1,2,1)=300.08 ! tsoil(1,3,1)=301.88 ! tsoil(1,4,1)=305.48 ! tsoil(1,5,1)=308.00 ! tsoil(1,6,1)=308.00 ! tsoil(1,7,1)=308.00 ! tsoil(1,8,1)=308.00 ! tsoil(1,9,1)=308.00 ! tsoil(1,10,1)=308.00 ! tsoil(1,11,1)=308.00 !----------------------------------------------------------------------- call pbl_surface_init(qsol, fder, snsrf, qsurfsrf, & evap, frugs, agesno, tsoil) !------------------ prepare limit conditions for limit.nc ----------------- !-- Ocean force print*,'avant phyredem' pctsrf(1,:)=0. if (nat_surf.eq.0.) then pctsrf(1,is_oce)=1. pctsrf(1,is_ter)=0. else pctsrf(1,is_oce)=0. pctsrf(1,is_ter)=1. end if print*,'nat_surf,pctsrf(1,is_oce),pctsrf(1,is_ter)',nat_surf $ ,pctsrf(1,is_oce),pctsrf(1,is_ter) zmasq=pctsrf(1,is_ter)+pctsrf(1,is_lic) zpic = zpicinp ftsol=tsurf falb1 = albedo falb2 = albedo rugoro=rugos t_ancien(1,:)=temp(:) q_ancien(1,:)=q(:,1) pbl_tke=1.e-8 rain_fall=0. snow_fall=0. solsw=0. sollw=0. radsol=0. rnebcon=0. ratqs=0. clwcon=0. zmea=0. zstd=0. zsig=0. zgam=0. zval=0. zthe=0. sig1=0. w01=0. u_ancien(1,:)=u(:) v_ancien(1,:)=v(:) !------------------------------------------------------------------------ ! Make file containing restart for the physics (startphy.nc) ! ! NB: List of the variables to be written by phyredem (via put_field): ! rlon,rlat,zmasq,pctsrf(:,is_ter),pctsrf(:,is_lic),pctsrf(:,is_oce) ! pctsrf(:,is_sic),ftsol(:,nsrf),tsoil(:,isoil,nsrf),qsurf(:,nsrf) ! qsol,falb1(:,nsrf),falb2(:,nsrf),evap(:,nsrf),snow(:,nsrf) ! radsol,solsw,sollw,fder,rain_fall,snow_fall,frugs(:,nsrf) ! agesno(:,nsrf),zmea,zstd,zsig,zgam,zthe,zpic,zval,rugoro ! t_ancien,q_ancien,frugs(:,is_oce),clwcon(:,1),rnebcon(:,1),ratqs(:,1) ! run_off_lic_0,pbl_tke(:,1:klev,nsrf),zmax0,f0,sig1,w01 ! wake_deltat,wake_deltaq,wake_s,wake_cstar,wake_fip !------------------------------------------------------------------------ CAl1 =============== restart option ========================== if (.not.restart) then call phyredem ("startphy.nc") else c (desallocations) print*,'callin surf final' call pbl_surface_final(qsol, fder, snsrf, qsurfsrf, & evap, frugs, agesno, tsoil) print*,'after surf final' CALL fonte_neige_final(run_off_lic_0) endif ok_writedem=.false. print*,'apres phyredem' endif ! ok_writedem !------------------------------------------------------------------------ ! Make file containing boundary conditions (limit.nc) **Al1->restartdyn*** ! -------------------------------------------------- ! NB: List of the variables to be written in limit.nc ! (by writelim.F, subroutine of 1DUTILS.h): ! phy_nat,phy_alb,phy_sst,phy_bil,phy_rug,phy_ice, ! phy_fter,phy_foce,phy_flic,phy_fsic) !------------------------------------------------------------------------ do i=1,yd phy_nat(i) = nat_surf phy_alb(i) = albedo phy_sst(i) = tsurf ! read_tsurf1d will be used instead phy_rug(i) = rugos phy_fter(i) = pctsrf(1,is_ter) phy_foce(i) = pctsrf(1,is_oce) phy_fsic(i) = pctsrf(1,is_sic) phy_flic(i) = pctsrf(1,is_lic) enddo C fabrication de limit.nc call writelim (1,phy_nat,phy_alb,phy_sst,phy_bil,phy_rug, & phy_ice,phy_fter,phy_foce,phy_flic,phy_fsic) call phys_state_var_end cAl1 if (restart) then print*,'call to restart dyn 1d' Call dyn1deta0("start1dyn.nc", & plev,play,phi,phis,presnivs, & u,v,temp,q,omega2) print*,'fnday,annee_ref,day_ref,day_ini', & fnday,annee_ref,day_ref,day_ini c** call ymds2ju(annee_ref,mois,day_ini,heure,day) day = day_ini day_end = day_ini + nday daytime = day + time_ini/24. ! 1st day and initial time of the simulation ! Print out the actual date of the beginning of the simulation : call ju2ymds(daytime, an, mois, jour, heure) print *,' Time of beginning : y m d h',an, mois,jour,heure/3600. day = int(daytime) time=daytime-day print*,'****** intialised fields from restart1dyn *******' print*,'plev,play,phi,phis,presnivs,u,v,temp,q,omega2' print*,'temp(1),q(1,1),u(1),v(1),plev(1),phis :' print*,temp(1),q(1,1),u(1),v(1),plev(1),phis c raz for safety do l=1,llm dq_dyn(l,1) = 0. enddo endif !Al1 ================ end restart ================================= IF (ecrit_slab_oc.eq.1) then open(97,file='div_slab.dat',STATUS='UNKNOWN') elseif (ecrit_slab_oc.eq.0) then open(97,file='div_slab.dat',STATUS='OLD') endif !===================================================================== ! START OF THE TEMPORAL LOOP : !===================================================================== do while(it.le.nint(fnday*day_step)) if (prt_level.ge.1) then print*,'XXXXXXXXXXXXXXXXXXX ITAP,day,time=', . it,day,time,nint(fnday*day_step) print*,'PAS DE TEMPS ',timestep endif !Al1 demande de restartphy.nc if (it.eq.nint(fnday*day_step)) lastcall=.True. !--------------------------------------------------------------------- ! Interpolation of forcings in time and onto model levels !--------------------------------------------------------------------- #include "1D_interp_cases.h" if (forcing_GCM2SCM) then write (*,*) 'forcing_GCM2SCM not yet implemented' stop 'in time loop' endif ! forcing_GCM2SCM !--------------------------------------------------------------------- ! Geopotential : !--------------------------------------------------------------------- phi(1)=RD*temp(1)*(plev(1)-play(1))/(.5*(plev(1)+play(1))) do l = 1, llm-1 phi(l+1)=phi(l)+RD*(temp(l)+temp(l+1))* . (play(l)-play(l+1))/(play(l)+play(l+1)) enddo !--------------------------------------------------------------------- ! Listing output for debug prt_level>=1 !--------------------------------------------------------------------- if (prt_level>=1) then print *,' avant physiq : -------- day time ',day,time write(*,*) 'firstcall,lastcall,phis', : firstcall,lastcall,phis write(*,'(a10,2a4,4a13)') 'BEFOR1 IT=','it','l', : 'presniv','plev','play','phi' write(*,'(a10,2i4,4f13.2)') ('BEFOR1 IT= ',it,l, : presnivs(l),plev(l),play(l),phi(l),l=1,llm) write(*,'(a11,2a4,a11,6a8)') 'BEFOR2','it','l', : 'presniv','u','v','temp','q1','q2','omega2' write(*,'(a11,2i4,f11.2,5f8.2,e10.2)') ('BEFOR2 IT= ',it,l, : presnivs(l),u(l),v(l),temp(l),q(l,1),q(l,2),omega2(l),l=1,llm) endif !--------------------------------------------------------------------- ! Call physiq : !--------------------------------------------------------------------- call physiq(ngrid,llm, : firstcall,lastcall, : day,time,timestep, : plev,play,phi,phis,presnivs,clesphy0, : u,v,temp,q,omega2, : du_phys,dv_phys,dt_phys,dq,dpsrf, : dudyn,PVteta) firstcall=.false. !--------------------------------------------------------------------- ! Listing output for debug prt_level>=1 !--------------------------------------------------------------------- if (prt_level>=1) then write(*,'(a11,2a4,4a13)') 'AFTER1 IT=','it','l', : 'presniv','plev','play','phi' write(*,'(a11,2i4,4f13.2)') ('AFTER1 it= ',it,l, : presnivs(l),plev(l),play(l),phi(l),l=1,llm) write(*,'(a11,2a4,a11,6a8)') 'AFTER2','it','l', : 'presniv','u','v','temp','q1','q2','omega2' write(*,'(a11,2i4,f11.2,5f8.2,e10.2)') ('AFTER2 it= ',it,l, : presnivs(l),u(l),v(l),temp(l),q(l,1),q(l,2),omega2(l),l=1,llm) write(*,'(a11,2a4,a11,5a8)') 'AFTER3','it','l', : 'presniv','du_phys','dv_phys','dt_phys','dq1','dq2' write(*,'(a11,2i4,f11.2,5f8.2)') ('AFTER3 it= ',it,l, : presnivs(l),86400*du_phys(l),86400*dv_phys(l), : 86400*dt_phys(l),86400*dq(l,1),dq(l,2),l=1,llm) write(*,*) 'dpsrf',dpsrf endif !--------------------------------------------------------------------- ! Add physical tendencies : !--------------------------------------------------------------------- fcoriolis=2.*sin(rpi*xlat/180.)*romega if (forcing_radconv .or. forcing_fire) then fcoriolis=0.0 dt_cooling=0.0 d_th_adv=0.0 d_q_adv=0.0 endif if (forcing_toga .or. forcing_GCSSold .or. forcing_twpice : .or.forcing_amma) then fcoriolis=0.0 ; ug=0. ; vg=0. endif if(forcing_rico) then dt_cooling=0. endif print*, 'fcoriolis ', fcoriolis, xlat du_age(1:mxcalc)= : fcoriolis*(v(1:mxcalc)-vg(1:mxcalc)) dv_age(1:mxcalc)= : -fcoriolis*(u(1:mxcalc)-ug(1:mxcalc)) !!!!!!!!!!!!!!!!!!!!!!!! ! Geostrophic wind !!!!!!!!!!!!!!!!!!!!!!!! sfdt = sin(0.5*fcoriolis*timestep) cfdt = cos(0.5*fcoriolis*timestep) ! du_age(1:mxcalc)= -2.*sfdt/timestep* : (sfdt*(u(1:mxcalc)-ug(1:mxcalc)) - : cfdt*(v(1:mxcalc)-vg(1:mxcalc)) ) !! : fcoriolis*(v(1:mxcalc)-vg(1:mxcalc)) ! dv_age(1:mxcalc)= -2.*sfdt/timestep* : (cfdt*(u(1:mxcalc)-ug(1:mxcalc)) + : sfdt*(v(1:mxcalc)-vg(1:mxcalc)) ) !! : -fcoriolis*(u(1:mxcalc)-ug(1:mxcalc)) ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! call writefield_phy('dv_age' ,dv_age,llm) ! call writefield_phy('du_age' ,du_age,llm) ! call writefield_phy('du_phys' ,du_phys,llm) ! call writefield_phy('u_tend' ,u,llm) ! call writefield_phy('u_g' ,ug,llm) ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Increment state variables !!!!!!!!!!!!!!!!!!!!!!!!!!!!! u(1:mxcalc)=u(1:mxcalc) + timestep*( : du_phys(1:mxcalc) : +du_age(1:mxcalc) ) v(1:mxcalc)=v(1:mxcalc) + timestep*( : dv_phys(1:mxcalc) : +dv_age(1:mxcalc) ) q(1:mxcalc,:)=q(1:mxcalc,:)+timestep*( : dq(1:mxcalc,:) : +d_q_adv(1:mxcalc,:) ) if (prt_level.ge.1) then print *, : 'physiq-> temp(1),dt_phys(1),d_th_adv(1),dt_cooling(1) ', : temp(1),dt_phys(1),d_th_adv(1),dt_cooling(1) print*,du_phys print*, v print*, vg endif temp(1:mxcalc)=temp(1:mxcalc)+timestep*( . dt_phys(1:mxcalc) . +d_th_adv(1:mxcalc) . +dt_cooling(1:mxcalc)) ! Taux de chauffage ou refroid. teta=temp*(pzero/play)**rkappa ! !--------------------------------------------------------------------- ! Nudge soil temperature if requested !--------------------------------------------------------------------- IF (nudge_tsoil) THEN ftsoil(1,isoil_nudge,:) = ftsoil(1,isoil_nudge,:) . -timestep/tau_soil_nudge*(ftsoil(1,isoil_nudge,:)-Tsoil_nudge) ENDIF !--------------------------------------------------------------------- ! Add large-scale tendencies (advection, etc) : !--------------------------------------------------------------------- ccc nrlmd ccc tmpvar=teta ccc call advect_vert(llm,omega,timestep,tmpvar,plev) ccc ccc teta(1:mxcalc)=tmpvar(1:mxcalc) ccc tmpvar(:)=q(:,1) ccc call advect_vert(llm,omega,timestep,tmpvar,plev) ccc q(1:mxcalc,1)=tmpvar(1:mxcalc) ccc tmpvar(:)=q(:,2) ccc call advect_vert(llm,omega,timestep,tmpvar,plev) ccc q(1:mxcalc,2)=tmpvar(1:mxcalc) !--------------------------------------------------------------------- ! Air temperature : !--------------------------------------------------------------------- if (lastcall) then print*,'Pas de temps final ',it call ju2ymds(daytime, an, mois, jour, heure) print*,'a la date : a m j h',an, mois, jour ,heure/3600. endif c incremente day time c print*,'daytime bef',daytime,1./day_step daytime = daytime+1./day_step !Al1dbg day = int(daytime+0.1/day_step) c time = max(daytime-day,0.0) cAl1&jyg: correction de bug ccc time = real(mod(it,day_step))/day_step time = time_ini/24.+real(mod(it,day_step))/day_step c print*,'daytime nxt time',daytime,time it=it+1 enddo !Al1 if (ecrit_slab_oc.ne.-1) close(97) !Al1 Call to 1D equivalent of dynredem (an,mois,jour,heure ?) ! ------------------------------------- call dyn1dredem("restart1dyn.nc", : plev,play,phi,phis,presnivs, : u,v,temp,q,omega2) CALL abort_gcm ('lmdz1d ','The End ',0) end #include "1DUTILS.h" #include "1Dconv.h"