! ! $Id: leapfrog_p.F 1717 2013-01-25 08:26:03Z emillour $ ! c c SUBROUTINE leapfrog_p(ucov,vcov,teta,ps,masse,phis,q,clesphy0, & time_0) USE misc_mod USE parallel USE times USE mod_hallo USE Bands USE Write_Field USE Write_Field_p USE vampir USE timer_filtre, ONLY : print_filtre_timer USE infotrac USE guide_p_mod, ONLY : guide_main USE getparam IMPLICIT NONE c ...... Version du 10/01/98 .......... c avec coordonnees verticales hybrides c avec nouveaux operat. dissipation * ( gradiv2,divgrad2,nxgraro2 ) c======================================================================= c c Auteur: P. Le Van /L. Fairhead/F.Hourdin c ------- c c Objet: c ------ c c GCM LMD nouvelle grille c c======================================================================= c c ... Dans inigeom , nouveaux calculs pour les elongations cu , cv c et possibilite d'appeler une fonction f(y) a derivee tangente c hyperbolique a la place de la fonction a derivee sinusoidale. c ... Possibilite de choisir le shema pour l'advection de c q , en modifiant iadv dans traceur.def (10/02) . c c Pour Van-Leer + Vapeur d'eau saturee, iadv(1)=4. (F.Codron,10/99) c Pour Van-Leer iadv=10 c c----------------------------------------------------------------------- c Declarations: c ------------- #include "dimensions.h" #include "paramet.h" #include "comconst.h" #include "comdissnew.h" #include "comvert.h" #include "comgeom.h" #include "logic.h" #include "temps.h" #include "control.h" #include "ener.h" #include "description.h" #include "serre.h" #include "com_io_dyn.h" #include "iniprint.h" #include "academic.h" INTEGER longcles PARAMETER ( longcles = 20 ) REAL clesphy0( longcles ) real zqmin,zqmax ! INTEGER nbetatmoy, nbetatdem,nbetat c variables dynamiques REAL :: vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants REAL :: teta(ip1jmp1,llm) ! temperature potentielle REAL :: q(ip1jmp1,llm,nqtot) ! champs advectes REAL :: ps(ip1jmp1) ! pression au sol REAL,SAVE :: p (ip1jmp1,llmp1 ) ! pression aux interfac.des couches REAL,SAVE :: pks(ip1jmp1) ! exner au sol REAL,SAVE :: pk(ip1jmp1,llm) ! exner au milieu des couches REAL,SAVE :: pkf(ip1jmp1,llm) ! exner filt.au milieu des couches REAL :: masse(ip1jmp1,llm) ! masse d'air REAL :: phis(ip1jmp1) ! geopotentiel au sol REAL,SAVE :: phi(ip1jmp1,llm) ! geopotentiel REAL,SAVE :: w(ip1jmp1,llm) ! vitesse verticale c variables dynamiques intermediaire pour le transport REAL,SAVE :: pbaru(ip1jmp1,llm),pbarv(ip1jm,llm) !flux de masse c variables dynamiques au pas -1 REAL,SAVE :: vcovm1(ip1jm,llm),ucovm1(ip1jmp1,llm) REAL,SAVE :: tetam1(ip1jmp1,llm),psm1(ip1jmp1) REAL,SAVE :: massem1(ip1jmp1,llm) c tendances dynamiques REAL,SAVE :: dv(ip1jm,llm),du(ip1jmp1,llm) REAL,SAVE :: dteta(ip1jmp1,llm),dp(ip1jmp1) REAL,DIMENSION(:,:,:), ALLOCATABLE, SAVE :: dq c tendances de la dissipation REAL,SAVE :: dvdis(ip1jm,llm),dudis(ip1jmp1,llm) REAL,SAVE :: dtetadis(ip1jmp1,llm) c tendances physiques REAL,SAVE :: dvfi(ip1jm,llm),dufi(ip1jmp1,llm) REAL,SAVE :: dtetafi(ip1jmp1,llm) REAL,SAVE :: dpfi(ip1jmp1) REAL,DIMENSION(:,:,:),ALLOCATABLE,SAVE :: dqfi c variables pour le fichier histoire REAL dtav ! intervalle de temps elementaire REAL tppn(iim),tpps(iim),tpn,tps c INTEGER itau,itaufinp1,iav ! INTEGER iday ! jour julien REAL time REAL SSUM REAL time_0 REAL,SAVE :: finvmaold(ip1jmp1,llm) cym LOGICAL lafin LOGICAL :: lafin INTEGER ij,iq,l INTEGER ik real time_step, t_wrt, t_ops ! jD_cur: jour julien courant ! jH_cur: heure julienne courante REAL :: jD_cur, jH_cur INTEGER :: an, mois, jour REAL :: secondes LOGICAL first,callinigrads data callinigrads/.true./ character*10 string10 REAL,SAVE :: alpha(ip1jmp1,llm),beta(ip1jmp1,llm) REAL,SAVE :: flxw(ip1jmp1,llm) ! flux de masse verticale c+jld variables test conservation energie REAL,SAVE :: ecin(ip1jmp1,llm),ecin0(ip1jmp1,llm) C Tendance de la temp. potentiel d (theta)/ d t due a la C tansformation d'energie cinetique en energie thermique C cree par la dissipation REAL,SAVE :: dtetaecdt(ip1jmp1,llm) REAL,SAVE :: vcont(ip1jm,llm),ucont(ip1jmp1,llm) REAL,SAVE :: vnat(ip1jm,llm),unat(ip1jmp1,llm) REAL d_h_vcol, d_qt, d_qw, d_ql, d_ec CHARACTER*15 ztit ! INTEGER ip_ebil_dyn ! PRINT level for energy conserv. diag. ! SAVE ip_ebil_dyn ! DATA ip_ebil_dyn/0/ c-jld character*80 dynhist_file, dynhistave_file character*20 modname character*80 abort_message logical,PARAMETER :: dissip_conservative=.TRUE. INTEGER testita PARAMETER (testita = 9) logical , parameter :: flag_verif = .false. c declaration liees au parallelisme INTEGER :: ierr LOGICAL :: FirstCaldyn LOGICAL :: FirstPhysic INTEGER :: ijb,ije,j,i type(Request) :: TestRequest type(Request) :: Request_Dissip type(Request) :: Request_physic REAL,SAVE :: dvfi_tmp(iip1,llm),dufi_tmp(iip1,llm) REAL,SAVE :: dtetafi_tmp(iip1,llm) REAL,DIMENSION(:,:,:),ALLOCATABLE,SAVE :: dqfi_tmp REAL,SAVE :: dpfi_tmp(iip1) INTEGER :: true_itau LOGICAL :: verbose=.true. INTEGER :: iapptrac INTEGER :: AdjustCount ! INTEGER :: var_time LOGICAL :: ok_start_timer=.FALSE. LOGICAL, SAVE :: firstcall=.TRUE. c$OMP MASTER ItCount=0 c$OMP END MASTER true_itau=0 FirstCaldyn=.TRUE. FirstPhysic=.TRUE. iapptrac=0 AdjustCount = 0 lafin=.false. itaufin = nday*day_step itaufinp1 = itaufin +1 modname="leapfrog_p" itau = 0 ! iday = day_ini+itau/day_step ! time = FLOAT(itau-(iday-day_ini)*day_step)/day_step+time_0 ! IF(time.GT.1.) THEN ! time = time-1. ! iday = iday+1 ! ENDIF c Allocate variables depending on dynamic variable nqtot c$OMP MASTER IF (firstcall) THEN firstcall=.FALSE. ALLOCATE(dq(ip1jmp1,llm,nqtot)) ALLOCATE(dqfi(ip1jmp1,llm,nqtot)) ALLOCATE(dqfi_tmp(iip1,llm,nqtot)) END IF c$OMP END MASTER c$OMP BARRIER c----------------------------------------------------------------------- c On initialise la pression et la fonction d'Exner : c -------------------------------------------------- c$OMP MASTER dq=0. CALL pression ( ip1jmp1, ap, bp, ps, p ) CALL exner_hyb( ip1jmp1, ps, p,alpha,beta, pks, pk, pkf ) c$OMP END MASTER c----------------------------------------------------------------------- c Debut de l'integration temporelle: c ---------------------------------- c et du parallelisme !! 1 CONTINUE jD_cur = jD_ref + day_ini - day_ref + int (itau * dtvr / daysec) jH_cur = jH_ref + & & (itau * dtvr / daysec - int(itau * dtvr / daysec)) #ifdef CPP_IOIPSL if (ok_guide) then !$OMP MASTER call guide_main(itau,ucov,vcov,teta,q,masse,ps) !$OMP END MASTER !$OMP BARRIER endif #endif c c IF( MOD( itau, 10* day_step ).EQ.0 ) THEN c CALL test_period ( ucov,vcov,teta,q,p,phis ) c PRINT *,' ---- Test_period apres continue OK ! -----', itau c ENDIF c cym CALL SCOPY( ijmllm ,vcov , 1, vcovm1 , 1 ) cym CALL SCOPY( ijp1llm,ucov , 1, ucovm1 , 1 ) cym CALL SCOPY( ijp1llm,teta , 1, tetam1 , 1 ) cym CALL SCOPY( ijp1llm,masse, 1, massem1, 1 ) cym CALL SCOPY( ip1jmp1, ps , 1, psm1 , 1 ) if (FirstCaldyn) then c$OMP MASTER ucovm1=ucov vcovm1=vcov tetam1= teta massem1= masse psm1= ps finvmaold = masse CALL filtreg ( finvmaold ,jjp1, llm, -2,2, .TRUE., 1 ) c$OMP END MASTER c$OMP BARRIER else ! Save fields obtained at previous time step as '...m1' ijb=ij_begin ije=ij_end c$OMP MASTER psm1 (ijb:ije) = ps (ijb:ije) c$OMP END MASTER c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) DO l=1,llm ije=ij_end ucovm1 (ijb:ije,l) = ucov (ijb:ije,l) tetam1 (ijb:ije,l) = teta (ijb:ije,l) massem1 (ijb:ije,l) = masse (ijb:ije,l) finvmaold(ijb:ije,l)=masse(ijb:ije,l) if (pole_sud) ije=ij_end-iip1 vcovm1(ijb:ije,l) = vcov (ijb:ije,l) ENDDO c$OMP ENDDO CALL filtreg_p ( finvmaold ,jj_begin,jj_end,jjp1, . llm, -2,2, .TRUE., 1 ) endif ! of if (FirstCaldyn) forward = .TRUE. leapf = .FALSE. dt = dtvr c ... P.Le Van .26/04/94 .... cym CALL SCOPY ( ijp1llm, masse, 1, finvmaold, 1 ) cym CALL filtreg ( finvmaold ,jjp1, llm, -2,2, .TRUE., 1 ) cym ne sert a rien cym call minmax(ijp1llm,q(:,:,3),zqmin,zqmax) 2 CONTINUE c$OMP MASTER ItCount=ItCount+1 if (MOD(ItCount,1)==1) then debug=.true. else debug=.false. endif c$OMP END MASTER c----------------------------------------------------------------------- c date: c ----- c gestion des appels de la physique et des dissipations: c ------------------------------------------------------ c c ... P.Le Van ( 6/02/95 ) .... apphys = .FALSE. statcl = .FALSE. conser = .FALSE. apdiss = .FALSE. c idissip=1 IF( purmats ) THEN IF( MOD(itau,iconser) .EQ.0.AND. forward ) conser = .TRUE. IF( MOD(itau,idissip ).EQ.0.AND..NOT.forward ) apdiss = .TRUE. IF( MOD(itau,iphysiq ).EQ.0.AND..NOT.forward s .and. iflag_phys.EQ.1 ) apphys = .TRUE. ELSE IF( MOD(itau ,iconser) .EQ. 0 ) conser = .TRUE. IF( MOD(itau+1,idissip) .EQ. 0 ) apdiss = .TRUE. IF( MOD(itau+1,iphysiq).EQ.0.AND.iflag_phys.EQ.1) apphys=.TRUE. END IF cym ---> Pour le moment cym apphys = .FALSE. statcl = .FALSE. conser = .FALSE. if (firstCaldyn) then c$OMP MASTER call SetDistrib(jj_Nb_Caldyn) c$OMP END MASTER c$OMP BARRIER firstCaldyn=.FALSE. cym call InitTime c$OMP MASTER call Init_timer c$OMP END MASTER endif c$OMP MASTER IF (ok_start_timer) THEN CALL InitTime ok_start_timer=.FALSE. ENDIF c$OMP END MASTER if (Adjust) then c$OMP MASTER AdjustCount=AdjustCount+1 if (iapptrac==iapp_tracvl .and. (forward. OR . leapf) & .and. itau/iphysiq>2 .and. Adjustcount>30) then AdjustCount=0 call allgather_timer_average if (Verbose) then print *,'*********************************' print *,'****** TIMER CALDYN ******' do i=0,mpi_size-1 print *,'proc',i,' : Nb Bandes :',jj_nb_caldyn(i), & ' : temps moyen :', & timer_average(jj_nb_caldyn(i),timer_caldyn,i), & '+-',timer_delta(jj_nb_caldyn(i),timer_caldyn,i) enddo print *,'*********************************' print *,'****** TIMER VANLEER ******' do i=0,mpi_size-1 print *,'proc',i,' : Nb Bandes :',jj_nb_vanleer(i), & ' : temps moyen :', & timer_average(jj_nb_vanleer(i),timer_vanleer,i), & '+-',timer_delta(jj_nb_vanleer(i),timer_vanleer,i) enddo print *,'*********************************' print *,'****** TIMER DISSIP ******' do i=0,mpi_size-1 print *,'proc',i,' : Nb Bandes :',jj_nb_dissip(i), & ' : temps moyen :', & timer_average(jj_nb_dissip(i),timer_dissip,i), & '+-',timer_delta(jj_nb_dissip(i),timer_dissip,i) enddo if (mpi_rank==0) call WriteBands endif call AdjustBands_caldyn if (mpi_rank==0) call WriteBands call Register_SwapFieldHallo(ucov,ucov,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(ucovm1,ucovm1,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(vcov,vcov,ip1jm,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(vcovm1,vcovm1,ip1jm,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(teta,teta,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(tetam1,tetam1,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(masse,masse,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(massem1,massem1,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(ps,ps,ip1jmp1,1, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(psm1,psm1,ip1jmp1,1, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(pkf,pkf,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(pk,pk,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(pks,pks,ip1jmp1,1, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(phis,phis,ip1jmp1,1, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(phi,phi,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) call Register_SwapFieldHallo(finvmaold,finvmaold,ip1jmp1,llm, & jj_Nb_caldyn,0,0,TestRequest) do j=1,nqtot call Register_SwapFieldHallo(q(1,1,j),q(1,1,j),ip1jmp1,llm, & jj_nb_caldyn,0,0,TestRequest) enddo call SetDistrib(jj_nb_caldyn) call SendRequest(TestRequest) call WaitRequest(TestRequest) call AdjustBands_dissip call AdjustBands_physic endif c$OMP END MASTER endif c----------------------------------------------------------------------- c calcul des tendances dynamiques: c -------------------------------- c$OMP BARRIER c$OMP MASTER call VTb(VThallo) c$OMP END MASTER call Register_Hallo(ucov,ip1jmp1,llm,1,1,1,1,TestRequest) call Register_Hallo(vcov,ip1jm,llm,1,1,1,1,TestRequest) call Register_Hallo(teta,ip1jmp1,llm,1,1,1,1,TestRequest) call Register_Hallo(ps,ip1jmp1,1,1,2,2,1,TestRequest) call Register_Hallo(pkf,ip1jmp1,llm,1,1,1,1,TestRequest) call Register_Hallo(pk,ip1jmp1,llm,1,1,1,1,TestRequest) call Register_Hallo(pks,ip1jmp1,1,1,1,1,1,TestRequest) call Register_Hallo(p,ip1jmp1,llmp1,1,1,1,1,TestRequest) c do j=1,nqtot c call Register_Hallo(q(1,1,j),ip1jmp1,llm,1,1,1,1, c * TestRequest) c enddo call SendRequest(TestRequest) c$OMP BARRIER call WaitRequest(TestRequest) c$OMP MASTER call VTe(VThallo) c$OMP END MASTER c$OMP BARRIER if (debug) then !$OMP BARRIER !$OMP MASTER call WriteField_p('ucov',reshape(ucov,(/iip1,jmp1,llm/))) call WriteField_p('vcov',reshape(vcov,(/iip1,jjm,llm/))) call WriteField_p('teta',reshape(teta,(/iip1,jmp1,llm/))) call WriteField_p('ps',reshape(ps,(/iip1,jmp1/))) call WriteField_p('masse',reshape(masse,(/iip1,jmp1,llm/))) call WriteField_p('pk',reshape(pk,(/iip1,jmp1,llm/))) call WriteField_p('pks',reshape(pks,(/iip1,jmp1/))) call WriteField_p('pkf',reshape(pkf,(/iip1,jmp1,llm/))) call WriteField_p('phis',reshape(phis,(/iip1,jmp1/))) do j=1,nqtot call WriteField_p('q'//trim(int2str(j)), . reshape(q(:,:,j),(/iip1,jmp1,llm/))) enddo !$OMP END MASTER c$OMP BARRIER endif True_itau=True_itau+1 c$OMP MASTER IF (prt_level>9) THEN WRITE(lunout,*)"leapfrog_p: Iteration No",True_itau ENDIF call start_timer(timer_caldyn) CALL geopot_p ( ip1jmp1, teta , pk , pks, phis , phi ) call VTb(VTcaldyn) c$OMP END MASTER ! var_time=time+iday-day_ini c$OMP BARRIER ! CALL FTRACE_REGION_BEGIN("caldyn") time = jD_cur + jH_cur CALL caldyn_p $ ( itau,ucov,vcov,teta,ps,masse,pk,pkf,phis , $ phi,conser,du,dv,dteta,dp,w, pbaru,pbarv, time ) ! CALL FTRACE_REGION_END("caldyn") c$OMP MASTER call VTe(VTcaldyn) c$OMP END MASTER cc$OMP BARRIER cc$OMP MASTER ! call WriteField_p('du',reshape(du,(/iip1,jmp1,llm/))) ! call WriteField_p('dv',reshape(dv,(/iip1,jjm,llm/))) ! call WriteField_p('dteta',reshape(dteta,(/iip1,jmp1,llm/))) ! call WriteField_p('dp',reshape(dp,(/iip1,jmp1/))) ! call WriteField_p('w',reshape(w,(/iip1,jmp1,llm/))) ! call WriteField_p('pbaru',reshape(pbaru,(/iip1,jmp1,llm/))) ! call WriteField_p('pbarv',reshape(pbarv,(/iip1,jjm,llm/))) ! call WriteField_p('p',reshape(p,(/iip1,jmp1,llmp1/))) ! call WriteField_p('masse',reshape(masse,(/iip1,jmp1,llm/))) ! call WriteField_p('pk',reshape(pk,(/iip1,jmp1,llm/))) cc$OMP END MASTER c----------------------------------------------------------------------- c calcul des tendances advection des traceurs (dont l'humidite) c ------------------------------------------------------------- IF( forward. OR . leapf ) THEN cc$OMP PARALLEL DEFAULT(SHARED) c CALL caladvtrac_p(q,pbaru,pbarv, * p, masse, dq, teta, . flxw,pk, iapptrac) IF (offline .AND. .NOT. adjust) THEN Cmaf stokage du flux de masse pour traceurs OFF-LINE #ifdef CPP_IOIPSL CALL fluxstokenc_p(pbaru,pbarv,masse,teta,phi,phis, . dtvr, itau) #endif ENDIF ! of IF (offline) c ENDIF ! of IF( forward. OR . leapf ) cc$OMP END PARALLEL c----------------------------------------------------------------------- c integrations dynamique et traceurs: c ---------------------------------- c$OMP MASTER call VTb(VTintegre) c$OMP END MASTER c call WriteField_p('ucovm1',reshape(ucovm1,(/iip1,jmp1,llm/))) c call WriteField_p('vcovm1',reshape(vcovm1,(/iip1,jjm,llm/))) c call WriteField_p('tetam1',reshape(tetam1,(/iip1,jmp1,llm/))) c call WriteField_p('psm1',reshape(psm1,(/iip1,jmp1/))) c call WriteField_p('ucov',reshape(ucov,(/iip1,jmp1,llm/))) c call WriteField_p('vcov',reshape(vcov,(/iip1,jjm,llm/))) c call WriteField_p('teta',reshape(teta,(/iip1,jmp1,llm/))) c call WriteField_p('ps',reshape(ps,(/iip1,jmp1/))) cc$OMP PARALLEL DEFAULT(SHARED) c$OMP BARRIER ! CALL FTRACE_REGION_BEGIN("integrd") CALL integrd_p ( 2,vcovm1,ucovm1,tetam1,psm1,massem1 , $ dv,du,dteta,dq,dp,vcov,ucov,teta,q,ps,masse,phis , $ finvmaold ) ! CALL FTRACE_REGION_END("integrd") c$OMP BARRIER cc$OMP MASTER c call WriteField_p('ucovm1',reshape(ucovm1,(/iip1,jmp1,llm/))) c call WriteField_p('vcovm1',reshape(vcovm1,(/iip1,jjm,llm/))) c call WriteField_p('tetam1',reshape(tetam1,(/iip1,jmp1,llm/))) c call WriteField_p('psm1',reshape(psm1,(/iip1,jmp1/))) c call WriteField_p('ucov',reshape(ucov,(/iip1,jmp1,llm/))) c call WriteField_p('vcov',reshape(vcov,(/iip1,jjm,llm/))) c call WriteField_p('teta',reshape(teta,(/iip1,jmp1,llm/))) c call WriteField_p('dteta',reshape(dteta,(/iip1,jmp1,llm/))) c c call WriteField_p('ps',reshape(ps,(/iip1,jmp1/))) c do j=1,nqtot c call WriteField_p('q'//trim(int2str(j)), c . reshape(q(:,:,j),(/iip1,jmp1,llm/))) c call WriteField_p('dq'//trim(int2str(j)), c . reshape(dq(:,:,j),(/iip1,jmp1,llm/))) c enddo cc$OMP END MASTER c$OMP MASTER call VTe(VTintegre) c$OMP END MASTER c .P.Le Van (26/04/94 ajout de finvpold dans l'appel d'integrd) c c----------------------------------------------------------------------- c calcul des tendances physiques: c ------------------------------- c ######## P.Le Van ( Modif le 6/02/95 ) ########### c IF( purmats ) THEN IF( itau.EQ.itaufin.AND..NOT.forward ) lafin = .TRUE. ELSE IF( itau+1. EQ. itaufin ) lafin = .TRUE. ENDIF cc$OMP END PARALLEL c c IF( apphys ) THEN c c ....... Ajout P.Le Van ( 17/04/96 ) ........... c cc$OMP PARALLEL DEFAULT(SHARED) cc$OMP+ PRIVATE(rdaym_ini,rdayvrai,ijb,ije) c$OMP MASTER call suspend_timer(timer_caldyn) write(lunout,*) & 'leapfrog_p: Entree dans la physique : Iteration No ',true_itau c$OMP END MASTER CALL pression_p ( ip1jmp1, ap, bp, ps, p ) c$OMP BARRIER CALL exner_hyb_p( ip1jmp1, ps, p,alpha,beta,pks, pk, pkf ) c$OMP BARRIER jD_cur = jD_ref + day_ini - day_ref $ + int (itau * dtvr / daysec) jH_cur = jH_ref + & & (itau * dtvr / daysec - int(itau * dtvr / daysec)) ! call ju2ymds(jD_cur+jH_cur, an, mois, jour, secondes) c rajout debug c lafin = .true. c Inbterface avec les routines de phylmd (phymars ... ) c ----------------------------------------------------- c+jld c Diagnostique de conservation de l'energie : initialisation IF (ip_ebil_dyn.ge.1 ) THEN ztit='bil dyn' ! Ehouarn: be careful, diagedyn is Earth-specific (includes ../phylmd/..)! IF (planet_type.eq."earth") THEN CALL diagedyn(ztit,2,1,1,dtphys & , ucov , vcov , ps, p ,pk , teta , q(:,:,1), q(:,:,2)) ENDIF ENDIF c-jld c$OMP BARRIER c$OMP MASTER call VTb(VThallo) c$OMP END MASTER call SetTag(Request_physic,800) call Register_SwapFieldHallo(ucov,ucov,ip1jmp1,llm, * jj_Nb_physic,2,2,Request_physic) call Register_SwapFieldHallo(vcov,vcov,ip1jm,llm, * jj_Nb_physic,2,2,Request_physic) call Register_SwapFieldHallo(teta,teta,ip1jmp1,llm, * jj_Nb_physic,2,2,Request_physic) call Register_SwapFieldHallo(masse,masse,ip1jmp1,llm, * jj_Nb_physic,1,2,Request_physic) call Register_SwapFieldHallo(p,p,ip1jmp1,llmp1, * jj_Nb_physic,2,2,Request_physic) call Register_SwapFieldHallo(pk,pk,ip1jmp1,llm, * jj_Nb_physic,2,2,Request_physic) call Register_SwapFieldHallo(phis,phis,ip1jmp1,1, * jj_Nb_physic,2,2,Request_physic) call Register_SwapFieldHallo(phi,phi,ip1jmp1,llm, * jj_Nb_physic,2,2,Request_physic) call Register_SwapFieldHallo(w,w,ip1jmp1,llm, * jj_Nb_physic,2,2,Request_physic) c call SetDistrib(jj_nb_vanleer) do j=1,nqtot call Register_SwapFieldHallo(q(1,1,j),q(1,1,j),ip1jmp1,llm, * jj_Nb_physic,2,2,Request_physic) enddo call Register_SwapFieldHallo(flxw,flxw,ip1jmp1,llm, * jj_Nb_physic,2,2,Request_physic) call SendRequest(Request_Physic) c$OMP BARRIER call WaitRequest(Request_Physic) c$OMP BARRIER c$OMP MASTER call SetDistrib(jj_nb_Physic) call VTe(VThallo) call VTb(VTphysiq) c$OMP END MASTER c$OMP BARRIER cc$OMP MASTER c call WriteField_p('ucovfi',reshape(ucov,(/iip1,jmp1,llm/))) c call WriteField_p('vcovfi',reshape(vcov,(/iip1,jjm,llm/))) c call WriteField_p('tetafi',reshape(teta,(/iip1,jmp1,llm/))) c call WriteField_p('pfi',reshape(p,(/iip1,jmp1,llmp1/))) c call WriteField_p('pkfi',reshape(pk,(/iip1,jmp1,llm/))) cc$OMP END MASTER cc$OMP BARRIER ! CALL FTRACE_REGION_BEGIN("calfis") CALL calfis_p(lafin ,jD_cur, jH_cur, $ ucov,vcov,teta,q,masse,ps,p,pk,phis,phi , $ du,dv,dteta,dq, $ flxw, $ clesphy0, dufi,dvfi,dtetafi,dqfi,dpfi ) ! CALL FTRACE_REGION_END("calfis") ijb=ij_begin ije=ij_end if ( .not. pole_nord) then c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) DO l=1,llm dufi_tmp(1:iip1,l) = dufi(ijb:ijb+iim,l) dvfi_tmp(1:iip1,l) = dvfi(ijb:ijb+iim,l) dtetafi_tmp(1:iip1,l)= dtetafi(ijb:ijb+iim,l) dqfi_tmp(1:iip1,l,:) = dqfi(ijb:ijb+iim,l,:) ENDDO c$OMP END DO NOWAIT c$OMP MASTER dpfi_tmp(1:iip1) = dpfi(ijb:ijb+iim) c$OMP END MASTER endif ! of if ( .not. pole_nord) c$OMP BARRIER c$OMP MASTER call SetDistrib(jj_nb_Physic_bis) call VTb(VThallo) c$OMP END MASTER c$OMP BARRIER call Register_Hallo(dufi,ip1jmp1,llm, * 1,0,0,1,Request_physic) call Register_Hallo(dvfi,ip1jm,llm, * 1,0,0,1,Request_physic) call Register_Hallo(dtetafi,ip1jmp1,llm, * 1,0,0,1,Request_physic) call Register_Hallo(dpfi,ip1jmp1,1, * 1,0,0,1,Request_physic) do j=1,nqtot call Register_Hallo(dqfi(1,1,j),ip1jmp1,llm, * 1,0,0,1,Request_physic) enddo call SendRequest(Request_Physic) c$OMP BARRIER call WaitRequest(Request_Physic) c$OMP BARRIER c$OMP MASTER call VTe(VThallo) call SetDistrib(jj_nb_Physic) c$OMP END MASTER c$OMP BARRIER ijb=ij_begin if (.not. pole_nord) then c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) DO l=1,llm dufi(ijb:ijb+iim,l) = dufi(ijb:ijb+iim,l)+dufi_tmp(1:iip1,l) dvfi(ijb:ijb+iim,l) = dvfi(ijb:ijb+iim,l)+dvfi_tmp(1:iip1,l) dtetafi(ijb:ijb+iim,l) = dtetafi(ijb:ijb+iim,l) & +dtetafi_tmp(1:iip1,l) dqfi(ijb:ijb+iim,l,:) = dqfi(ijb:ijb+iim,l,:) & + dqfi_tmp(1:iip1,l,:) ENDDO c$OMP END DO NOWAIT c$OMP MASTER dpfi(ijb:ijb+iim) = dpfi(ijb:ijb+iim)+ dpfi_tmp(1:iip1) c$OMP END MASTER endif ! of if (.not. pole_nord) c$OMP BARRIER cc$OMP MASTER c call WriteField_p('dufi',reshape(dufi,(/iip1,jmp1,llm/))) c call WriteField_p('dvfi',reshape(dvfi,(/iip1,jjm,llm/))) c call WriteField_p('dtetafi',reshape(dtetafi,(/iip1,jmp1,llm/))) c call WriteField_p('dpfi',reshape(dpfi,(/iip1,jmp1/))) cc$OMP END MASTER c c do j=1,nqtot c call WriteField_p('dqfi'//trim(int2str(j)), c . reshape(dqfi(:,:,j),(/iip1,jmp1,llm/))) c enddo c ajout des tendances physiques: c ------------------------------ IF (ok_strato) THEN CALL top_bound_p( vcov,ucov,teta,masse,dufi,dvfi,dtetafi) ENDIF CALL addfi_p( dtphys, leapf, forward , $ ucov, vcov, teta , q ,ps , $ dufi, dvfi, dtetafi , dqfi ,dpfi ) c$OMP BARRIER c$OMP MASTER call VTe(VTphysiq) call VTb(VThallo) c$OMP END MASTER call SetTag(Request_physic,800) call Register_SwapField(ucov,ucov,ip1jmp1,llm, * jj_Nb_caldyn,Request_physic) call Register_SwapField(vcov,vcov,ip1jm,llm, * jj_Nb_caldyn,Request_physic) call Register_SwapField(teta,teta,ip1jmp1,llm, * jj_Nb_caldyn,Request_physic) call Register_SwapField(masse,masse,ip1jmp1,llm, * jj_Nb_caldyn,Request_physic) call Register_SwapField(p,p,ip1jmp1,llmp1, * jj_Nb_caldyn,Request_physic) call Register_SwapField(pk,pk,ip1jmp1,llm, * jj_Nb_caldyn,Request_physic) call Register_SwapField(phis,phis,ip1jmp1,1, * jj_Nb_caldyn,Request_physic) call Register_SwapField(phi,phi,ip1jmp1,llm, * jj_Nb_caldyn,Request_physic) call Register_SwapField(w,w,ip1jmp1,llm, * jj_Nb_caldyn,Request_physic) do j=1,nqtot call Register_SwapField(q(1,1,j),q(1,1,j),ip1jmp1,llm, * jj_Nb_caldyn,Request_physic) enddo call SendRequest(Request_Physic) c$OMP BARRIER call WaitRequest(Request_Physic) c$OMP BARRIER c$OMP MASTER call VTe(VThallo) call SetDistrib(jj_Nb_caldyn) c$OMP END MASTER c$OMP BARRIER c c Diagnostique de conservation de l'energie : difference IF (ip_ebil_dyn.ge.1 ) THEN ztit='bil phys' CALL diagedyn(ztit,2,1,1,dtphys e , ucov , vcov , ps, p ,pk , teta , q(:,:,1), q(:,:,2)) ENDIF cc$OMP MASTER c if (debug) then c call WriteField_p('ucovfi',reshape(ucov,(/iip1,jmp1,llm/))) c call WriteField_p('vcovfi',reshape(vcov,(/iip1,jjm,llm/))) c call WriteField_p('tetafi',reshape(teta,(/iip1,jmp1,llm/))) c endif cc$OMP END MASTER c-jld c$OMP MASTER call resume_timer(timer_caldyn) if (FirstPhysic) then ok_start_timer=.TRUE. FirstPhysic=.false. endif c$OMP END MASTER ENDIF ! of IF( apphys ) IF(iflag_phys.EQ.2) THEN ! "Newtonian" case c Calcul academique de la physique = Rappel Newtonien + fritcion c -------------------------------------------------------------- cym teta(:,:)=teta(:,:) cym s -iphysiq*dtvr*(teta(:,:)-tetarappel(:,:))/taurappel ijb=ij_begin ije=ij_end teta(ijb:ije,:)=teta(ijb:ije,:) s -iphysiq*dtvr*(teta(ijb:ije,:)-tetarappel(ijb:ije,:))/taurappel call Register_Hallo(ucov,ip1jmp1,llm,0,1,1,0,Request_Physic) call Register_Hallo(vcov,ip1jm,llm,1,1,1,1,Request_Physic) call SendRequest(Request_Physic) c$OMP BARRIER call WaitRequest(Request_Physic) call friction_p(ucov,vcov,iphysiq*dtvr) ENDIF ! of IF(iflag_phys.EQ.2) CALL pression_p ( ip1jmp1, ap, bp, ps, p ) c$OMP BARRIER CALL exner_hyb_p( ip1jmp1, ps, p,alpha,beta, pks, pk, pkf ) c$OMP BARRIER cc$OMP END PARALLEL c----------------------------------------------------------------------- c dissipation horizontale et verticale des petites echelles: c ---------------------------------------------------------- IF(apdiss) THEN cc$OMP PARALLEL DEFAULT(SHARED) cc$OMP+ PRIVATE(ijb,ije,tppn,tpn,tpps,tps) c$OMP MASTER call suspend_timer(timer_caldyn) c print*,'Entree dans la dissipation : Iteration No ',true_itau c calcul de l'energie cinetique avant dissipation c print *,'Passage dans la dissipation' call VTb(VThallo) c$OMP END MASTER c$OMP BARRIER call Register_SwapFieldHallo(ucov,ucov,ip1jmp1,llm, * jj_Nb_dissip,1,1,Request_dissip) call Register_SwapFieldHallo(vcov,vcov,ip1jm,llm, * jj_Nb_dissip,1,1,Request_dissip) call Register_SwapField(teta,teta,ip1jmp1,llm, * jj_Nb_dissip,Request_dissip) call Register_SwapField(p,p,ip1jmp1,llmp1, * jj_Nb_dissip,Request_dissip) call Register_SwapField(pk,pk,ip1jmp1,llm, * jj_Nb_dissip,Request_dissip) call SendRequest(Request_dissip) c$OMP BARRIER call WaitRequest(Request_dissip) c$OMP BARRIER c$OMP MASTER call SetDistrib(jj_Nb_dissip) call VTe(VThallo) call VTb(VTdissipation) call start_timer(timer_dissip) c$OMP END MASTER c$OMP BARRIER call covcont_p(llm,ucov,vcov,ucont,vcont) call enercin_p(vcov,ucov,vcont,ucont,ecin0) c dissipation ! CALL FTRACE_REGION_BEGIN("dissip") CALL dissip_p(vcov,ucov,teta,p,dvdis,dudis,dtetadis) ! CALL FTRACE_REGION_END("dissip") ijb=ij_begin ije=ij_end c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) DO l=1,llm ucov(ijb:ije,l)=ucov(ijb:ije,l)+dudis(ijb:ije,l) ENDDO c$OMP END DO NOWAIT if (pole_sud) ije=ije-iip1 c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) DO l=1,llm vcov(ijb:ije,l)=vcov(ijb:ije,l)+dvdis(ijb:ije,l) ENDDO c$OMP END DO NOWAIT c teta=teta+dtetadis c------------------------------------------------------------------------ if (dissip_conservative) then C On rajoute la tendance due a la transform. Ec -> E therm. cree C lors de la dissipation c$OMP BARRIER c$OMP MASTER call suspend_timer(timer_dissip) call VTb(VThallo) c$OMP END MASTER call Register_Hallo(ucov,ip1jmp1,llm,1,1,1,1,Request_Dissip) call Register_Hallo(vcov,ip1jm,llm,1,1,1,1,Request_Dissip) call SendRequest(Request_Dissip) c$OMP BARRIER call WaitRequest(Request_Dissip) c$OMP MASTER call VTe(VThallo) call resume_timer(timer_dissip) c$OMP END MASTER c$OMP BARRIER call covcont_p(llm,ucov,vcov,ucont,vcont) call enercin_p(vcov,ucov,vcont,ucont,ecin) ijb=ij_begin ije=ij_end c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) do l=1,llm do ij=ijb,ije dtetaecdt(ij,l)= (ecin0(ij,l)-ecin(ij,l))/ pk(ij,l) dtetadis(ij,l)=dtetadis(ij,l)+dtetaecdt(ij,l) enddo enddo c$OMP END DO NOWAIT endif ijb=ij_begin ije=ij_end c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) do l=1,llm do ij=ijb,ije teta(ij,l)=teta(ij,l)+dtetadis(ij,l) enddo enddo c$OMP END DO NOWAIT c------------------------------------------------------------------------ c ....... P. Le Van ( ajout le 17/04/96 ) ........... c ... Calcul de la valeur moyenne, unique de h aux poles ..... c ijb=ij_begin ije=ij_end if (pole_nord) then c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) DO l = 1, llm DO ij = 1,iim tppn(ij) = aire( ij ) * teta( ij ,l) ENDDO tpn = SSUM(iim,tppn,1)/apoln DO ij = 1, iip1 teta( ij ,l) = tpn ENDDO ENDDO c$OMP END DO NOWAIT c$OMP MASTER DO ij = 1,iim tppn(ij) = aire( ij ) * ps ( ij ) ENDDO tpn = SSUM(iim,tppn,1)/apoln DO ij = 1, iip1 ps( ij ) = tpn ENDDO c$OMP END MASTER endif if (pole_sud) then c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) DO l = 1, llm DO ij = 1,iim tpps(ij) = aire(ij+ip1jm) * teta(ij+ip1jm,l) ENDDO tps = SSUM(iim,tpps,1)/apols DO ij = 1, iip1 teta(ij+ip1jm,l) = tps ENDDO ENDDO c$OMP END DO NOWAIT c$OMP MASTER DO ij = 1,iim tpps(ij) = aire(ij+ip1jm) * ps (ij+ip1jm) ENDDO tps = SSUM(iim,tpps,1)/apols DO ij = 1, iip1 ps(ij+ip1jm) = tps ENDDO c$OMP END MASTER endif c$OMP BARRIER c$OMP MASTER call VTe(VTdissipation) call stop_timer(timer_dissip) call VTb(VThallo) c$OMP END MASTER call Register_SwapField(ucov,ucov,ip1jmp1,llm, * jj_Nb_caldyn,Request_dissip) call Register_SwapField(vcov,vcov,ip1jm,llm, * jj_Nb_caldyn,Request_dissip) call Register_SwapField(teta,teta,ip1jmp1,llm, * jj_Nb_caldyn,Request_dissip) call Register_SwapField(p,p,ip1jmp1,llmp1, * jj_Nb_caldyn,Request_dissip) call Register_SwapField(pk,pk,ip1jmp1,llm, * jj_Nb_caldyn,Request_dissip) call SendRequest(Request_dissip) c$OMP BARRIER call WaitRequest(Request_dissip) c$OMP BARRIER c$OMP MASTER call SetDistrib(jj_Nb_caldyn) call VTe(VThallo) call resume_timer(timer_caldyn) c print *,'fin dissipation' c$OMP END MASTER c$OMP BARRIER END IF cc$OMP END PARALLEL c ajout debug c IF( lafin ) then c abort_message = 'Simulation finished' c call abort_gcm(modname,abort_message,0) c ENDIF c ******************************************************************** c ******************************************************************** c .... fin de l'integration dynamique et physique pour le pas itau .. c ******************************************************************** c ******************************************************************** c preparation du pas d'integration suivant ...... cym call WriteField('ucov',reshape(ucov,(/iip1,jmp1,llm/))) cym call WriteField('vcov',reshape(vcov,(/iip1,jjm,llm/))) c$OMP MASTER call stop_timer(timer_caldyn) c$OMP END MASTER IF (itau==itaumax) then c$OMP MASTER call allgather_timer_average if (mpi_rank==0) then print *,'*********************************' print *,'****** TIMER CALDYN ******' do i=0,mpi_size-1 print *,'proc',i,' : Nb Bandes :',jj_nb_caldyn(i), & ' : temps moyen :', & timer_average(jj_nb_caldyn(i),timer_caldyn,i) enddo print *,'*********************************' print *,'****** TIMER VANLEER ******' do i=0,mpi_size-1 print *,'proc',i,' : Nb Bandes :',jj_nb_vanleer(i), & ' : temps moyen :', & timer_average(jj_nb_vanleer(i),timer_vanleer,i) enddo print *,'*********************************' print *,'****** TIMER DISSIP ******' do i=0,mpi_size-1 print *,'proc',i,' : Nb Bandes :',jj_nb_dissip(i), & ' : temps moyen :', & timer_average(jj_nb_dissip(i),timer_dissip,i) enddo print *,'*********************************' print *,'****** TIMER PHYSIC ******' do i=0,mpi_size-1 print *,'proc',i,' : Nb Bandes :',jj_nb_physic(i), & ' : temps moyen :', & timer_average(jj_nb_physic(i),timer_physic,i) enddo endif print *,'Taille du Buffer MPI (REAL*8)',MaxBufferSize print *,'Taille du Buffer MPI utilise (REAL*8)',MaxBufferSize_Used print *, 'Temps total ecoule sur la parallelisation :',DiffTime() print *, 'Temps CPU ecoule sur la parallelisation :',DiffCpuTime() CALL print_filtre_timer call fin_getparam call finalize_parallel c$OMP END MASTER c$OMP BARRIER RETURN ENDIF IF ( .NOT.purmats ) THEN c ........................................................ c .............. schema matsuno + leapfrog .............. c ........................................................ IF(forward. OR. leapf) THEN itau= itau + 1 ! iday= day_ini+itau/day_step ! time= FLOAT(itau-(iday-day_ini)*day_step)/day_step+time_0 ! IF(time.GT.1.) THEN ! time = time-1. ! iday = iday+1 ! ENDIF ENDIF IF( itau. EQ. itaufinp1 ) then if (flag_verif) then write(79,*) 'ucov',ucov write(80,*) 'vcov',vcov write(81,*) 'teta',teta write(82,*) 'ps',ps write(83,*) 'q',q WRITE(85,*) 'q1 = ',q(:,:,1) WRITE(86,*) 'q3 = ',q(:,:,3) endif c$OMP MASTER call fin_getparam call finalize_parallel c$OMP END MASTER abort_message = 'Simulation finished' call abort_gcm(modname,abort_message,0) RETURN ENDIF c----------------------------------------------------------------------- c ecriture du fichier histoire moyenne: c ------------------------------------- IF(MOD(itau,iperiod).EQ.0 .OR. itau.EQ.itaufin) THEN c$OMP BARRIER IF(itau.EQ.itaufin) THEN iav=1 ELSE iav=0 ENDIF #ifdef CPP_IOIPSL IF (ok_dynzon) THEN call Register_Hallo(vcov,ip1jm,llm,1,0,0,1,TestRequest) call SendRequest(TestRequest) c$OMP BARRIER call WaitRequest(TestRequest) c$OMP BARRIER c$OMP MASTER ! CALL writedynav_p(histaveid, itau,vcov , ! , ucov,teta,pk,phi,q,masse,ps,phis) c ATTENTION!!! bilan_dyn_p ne marche probablement pas avec OpenMP CALL bilan_dyn_p(2,dtvr*iperiod,dtvr*day_step*periodav, , ps,masse,pk,pbaru,pbarv,teta,phi,ucov,vcov,q) c$OMP END MASTER ENDIF !ok_dynzon #endif ENDIF c----------------------------------------------------------------------- c ecriture de la bande histoire: c ------------------------------ c IF( MOD(itau,iecri ).EQ.0) THEN IF( MOD(itau,iecri*day_step).EQ.0) THEN c$OMP BARRIER c$OMP MASTER ! nbetat = nbetatdem CALL geopot_p(ip1jmp1,teta,pk,pks,phis,phi) cym unat=0. ijb=ij_begin ije=ij_end if (pole_nord) then ijb=ij_begin+iip1 unat(1:iip1,:)=0. endif if (pole_sud) then ije=ij_end-iip1 unat(ij_end-iip1+1:ij_end,:)=0. endif do l=1,llm unat(ijb:ije,l)=ucov(ijb:ije,l)/cu(ijb:ije) enddo ijb=ij_begin ije=ij_end if (pole_sud) ije=ij_end-iip1 do l=1,llm vnat(ijb:ije,l)=vcov(ijb:ije,l)/cv(ijb:ije) enddo #ifdef CPP_IOIPSL ! CALL writehist_p(histid,histvid, itau,vcov, ! & ucov,teta,phi,q,masse,ps,phis) #endif ! For some Grads outputs of fields if (output_grads_dyn) then ! Ehouarn: hope this works the way I think it does: call Gather_Field(unat,ip1jmp1,llm,0) call Gather_Field(vnat,ip1jm,llm,0) call Gather_Field(teta,ip1jmp1,llm,0) call Gather_Field(ps,ip1jmp1,1,0) do iq=1,nqtot call Gather_Field(q(1,1,iq),ip1jmp1,llm,0) enddo if (mpi_rank==0) then #include "write_grads_dyn.h" endif endif ! of if (output_grads_dyn) c$OMP END MASTER ENDIF ! of IF(MOD(itau,iecri).EQ.0) IF(itau.EQ.itaufin) THEN c$OMP BARRIER c$OMP MASTER if (planet_type.eq."earth") then ! Write an Earth-format restart file CALL dynredem1_p("restart.nc",0.0, & vcov,ucov,teta,q,masse,ps) endif ! of if (planet_type.eq."earth") ! CLOSE(99) c$OMP END MASTER ENDIF ! of IF (itau.EQ.itaufin) c----------------------------------------------------------------------- c gestion de l'integration temporelle: c ------------------------------------ IF( MOD(itau,iperiod).EQ.0 ) THEN GO TO 1 ELSE IF ( MOD(itau-1,iperiod). EQ. 0 ) THEN IF( forward ) THEN c fin du pas forward et debut du pas backward forward = .FALSE. leapf = .FALSE. GO TO 2 ELSE c fin du pas backward et debut du premier pas leapfrog leapf = .TRUE. dt = 2.*dtvr GO TO 2 END IF ELSE c ...... pas leapfrog ..... leapf = .TRUE. dt = 2.*dtvr GO TO 2 END IF ! of IF (MOD(itau,iperiod).EQ.0) ! ELSEIF (MOD(itau-1,iperiod).EQ.0) ELSE ! of IF (.not.purmats) c ........................................................ c .............. schema matsuno ............... c ........................................................ IF( forward ) THEN itau = itau + 1 ! iday = day_ini+itau/day_step ! time = FLOAT(itau-(iday-day_ini)*day_step)/day_step+time_0 ! ! IF(time.GT.1.) THEN ! time = time-1. ! iday = iday+1 ! ENDIF forward = .FALSE. IF( itau. EQ. itaufinp1 ) then c$OMP MASTER call fin_getparam call finalize_parallel c$OMP END MASTER abort_message = 'Simulation finished' call abort_gcm(modname,abort_message,0) RETURN ENDIF GO TO 2 ELSE ! of IF(forward) IF(MOD(itau,iperiod).EQ.0 .OR. itau.EQ.itaufin) THEN IF(itau.EQ.itaufin) THEN iav=1 ELSE iav=0 ENDIF #ifdef CPP_IOIPSL IF (ok_dynzon) THEN c$OMP BARRIER call Register_Hallo(vcov,ip1jm,llm,1,0,0,1,TestRequest) call SendRequest(TestRequest) c$OMP BARRIER call WaitRequest(TestRequest) c$OMP BARRIER c$OMP MASTER ! CALL writedynav_p(histaveid, itau,vcov , ! , ucov,teta,pk,phi,q,masse,ps,phis) CALL bilan_dyn_p(2,dtvr*iperiod,dtvr*day_step*periodav, , ps,masse,pk,pbaru,pbarv,teta,phi,ucov,vcov,q) c$OMP END MASTER END IF !ok_dynzon #endif ENDIF ! of IF(MOD(itau,iperiod).EQ.0 .OR. itau.EQ.itaufin) c IF(MOD(itau,iecri ).EQ.0) THEN IF(MOD(itau,iecri*day_step).EQ.0) THEN c$OMP BARRIER c$OMP MASTER ! nbetat = nbetatdem CALL geopot_p(ip1jmp1,teta,pk,pks,phis,phi) cym unat=0. ijb=ij_begin ije=ij_end if (pole_nord) then ijb=ij_begin+iip1 unat(1:iip1,:)=0. endif if (pole_sud) then ije=ij_end-iip1 unat(ij_end-iip1+1:ij_end,:)=0. endif do l=1,llm unat(ijb:ije,l)=ucov(ijb:ije,l)/cu(ijb:ije) enddo ijb=ij_begin ije=ij_end if (pole_sud) ije=ij_end-iip1 do l=1,llm vnat(ijb:ije,l)=vcov(ijb:ije,l)/cv(ijb:ije) enddo #ifdef CPP_IOIPSL ! CALL writehist_p(histid, histvid, itau,vcov , ! & ucov,teta,phi,q,masse,ps,phis) #endif ! For some Grads output (but does it work?) if (output_grads_dyn) then call Gather_Field(unat,ip1jmp1,llm,0) call Gather_Field(vnat,ip1jm,llm,0) call Gather_Field(teta,ip1jmp1,llm,0) call Gather_Field(ps,ip1jmp1,1,0) do iq=1,nqtot call Gather_Field(q(1,1,iq),ip1jmp1,llm,0) enddo c if (mpi_rank==0) then #include "write_grads_dyn.h" endif endif ! of if (output_grads_dyn) c$OMP END MASTER ENDIF ! of IF(MOD(itau,iecri*day_step).EQ.0) IF(itau.EQ.itaufin) THEN if (planet_type.eq."earth") then c$OMP MASTER CALL dynredem1_p("restart.nc",0.0, . vcov,ucov,teta,q,masse,ps) c$OMP END MASTER endif ! of if (planet_type.eq."earth") ENDIF ! of IF(itau.EQ.itaufin) forward = .TRUE. GO TO 1 ENDIF ! of IF (forward) END IF ! of IF(.not.purmats) c$OMP MASTER call fin_getparam call finalize_parallel c$OMP END MASTER RETURN END