! ! $Header$ ! SUBROUTINE pentes_ini (q,w,masse,pbaru,pbarv,mode) IMPLICIT NONE c======================================================================= c Adaptation LMDZ: A.Armengaud (LGGE) c ---------------- c c ******************************************************************** c Transport des traceurs par la methode des pentes c ******************************************************************** c Reference possible : Russel. G.L., Lerner J.A.: c A new Finite-Differencing Scheme for Traceur Transport c Equation , Journal of Applied Meteorology, pp 1483-1498,dec. 81 c ******************************************************************** c q,w,masse,pbaru et pbarv c sont des arguments d'entree pour le s-pg .... c c======================================================================= #include "dimensions.h" #include "paramet.h" #include "comconst.h" #include "comvert.h" #include "comgeom2.h" c Arguments: c ---------- integer mode REAL pbaru( ip1jmp1,llm ),pbarv( ip1jm,llm ) REAL q( iip1,jjp1,llm,0:3) REAL w( ip1jmp1,llm ) REAL masse( iip1,jjp1,llm) c Local: c ------ LOGICAL limit REAL sm ( iip1,jjp1, llm ) REAL s0( iip1,jjp1,llm ), sx( iip1,jjp1,llm ) REAL sy( iip1,jjp1,llm ), sz( iip1,jjp1,llm ) real masn,mass,zz INTEGER i,j,l,iq c modif Fred 24 03 96 real sinlon(iip1),sinlondlon(iip1) real coslon(iip1),coslondlon(iip1) save sinlon,coslon,sinlondlon,coslondlon real dyn1,dyn2,dys1,dys2 real qpn,qps,dqzpn,dqzps real smn,sms,s0n,s0s,sxn(iip1),sxs(iip1) real qmin,zq,pente_max c REAL SSUM integer ismax,ismin,lati,latf EXTERNAL SSUM, ismin,ismax logical first save first c fin modif c modif Fred 24 03 96 data first/.true./ limit = .TRUE. pente_max=2 c if (mode.eq.1.or.mode.eq.3) then c if (mode.eq.1) then if (mode.ge.1) then lati=2 latf=jjm else lati=1 latf=jjp1 endif qmin=0.4995 qmin=0. if(first) then print*,'SCHEMA AMONT NOUVEAU' first=.false. do i=2,iip1 coslon(i)=cos(rlonv(i)) sinlon(i)=sin(rlonv(i)) coslondlon(i)=coslon(i)*(rlonu(i)-rlonu(i-1))/pi sinlondlon(i)=sinlon(i)*(rlonu(i)-rlonu(i-1))/pi print*,coslondlon(i),sinlondlon(i) enddo coslon(1)=coslon(iip1) coslondlon(1)=coslondlon(iip1) sinlon(1)=sinlon(iip1) sinlondlon(1)=sinlondlon(iip1) print*,'sum sinlondlon ',ssum(iim,sinlondlon,1)/sinlondlon(1) print*,'sum coslondlon ',ssum(iim,coslondlon,1)/coslondlon(1) DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 q ( i,j,l,1 )=0. q ( i,j,l,2 )=0. q ( i,j,l,3 )=0. ENDDO ENDDO ENDDO endif c Fin modif Fred c *** q contient les qqtes de traceur avant l'advection c *** Affectation des tableaux S a partir de Q c *** Rem : utilisation de SCOPY ulterieurement DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 s0( i,j,llm+1-l ) = q ( i,j,l,0 ) sx( i,j,llm+1-l ) = q ( i,j,l,1 ) sy( i,j,llm+1-l ) = q ( i,j,l,2 ) sz( i,j,llm+1-l ) = q ( i,j,l,3 ) ENDDO ENDDO ENDDO c PRINT*,'----- S0 just before conversion -------' c PRINT*,'S0(16,12,1)=',s0(16,12,1) c PRINT*,'Q(16,12,1,4)=',q(16,12,1,4) c *** On calcule la masse d'air en kg DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 sm ( i,j,llm+1-l)=masse( i,j,l ) ENDDO ENDDO ENDDO c *** On converti les champs S en atome (resp. kg) c *** Les routines d'advection traitent les champs c *** a advecter si ces derniers sont en atome (resp. kg) c *** A optimiser !!! DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 s0(i,j,l) = s0(i,j,l) * sm ( i,j,l ) sx(i,j,l) = sx(i,j,l) * sm ( i,j,l ) sy(i,j,l) = sy(i,j,l) * sm ( i,j,l ) sz(i,j,l) = sz(i,j,l) * sm ( i,j,l ) ENDDO ENDDO ENDDO c ss0 = 0. c DO l = 1,llm c DO j = 1,jjp1 c DO i = 1,iim c ss0 = ss0 + s0 ( i,j,l ) c ENDDO c ENDDO c ENDDO c PRINT*, 'valeur tot s0 avant advection=',ss0 c *** Appel des subroutines d'advection en X, en Y et en Z c *** Advection avec "time-splitting" c----------------------------------------------------------- c PRINT*,'----- S0 just before ADVX -------' c PRINT*,'S0(16,12,1)=',s0(16,12,1) c----------------------------------------------------------- c do l=1,llm c do j=1,jjp1 c do i=1,iip1 c zq=s0(i,j,l)/sm(i,j,l) c if(zq.lt.qmin) c , print*,'avant advx1, s0(',i,',',j,',',l,')=',zq c enddo c enddo c enddo CCC if(mode.eq.2) then do l=1,llm s0s=0. s0n=0. dyn1=0. dys1=0. dyn2=0. dys2=0. smn=0. sms=0. do i=1,iim smn=smn+sm(i,1,l) sms=sms+sm(i,jjp1,l) s0n=s0n+s0(i,1,l) s0s=s0s+s0(i,jjp1,l) zz=sy(i,1,l)/sm(i,1,l) dyn1=dyn1+sinlondlon(i)*zz dyn2=dyn2+coslondlon(i)*zz zz=sy(i,jjp1,l)/sm(i,jjp1,l) dys1=dys1+sinlondlon(i)*zz dys2=dys2+coslondlon(i)*zz enddo do i=1,iim sy(i,1,l)=dyn1*sinlon(i)+dyn2*coslon(i) sy(i,jjp1,l)=dys1*sinlon(i)+dys2*coslon(i) enddo do i=1,iim s0(i,1,l)=s0n/smn+sy(i,1,l) s0(i,jjp1,l)=s0s/sms-sy(i,jjp1,l) enddo s0(iip1,1,l)=s0(1,1,l) s0(iip1,jjp1,l)=s0(1,jjp1,l) do i=1,iim sxn(i)=s0(i+1,1,l)-s0(i,1,l) sxs(i)=s0(i+1,jjp1,l)-s0(i,jjp1,l) c on rerentre les masses enddo do i=1,iim sy(i,1,l)=sy(i,1,l)*sm(i,1,l) sy(i,jjp1,l)=sy(i,jjp1,l)*sm(i,jjp1,l) s0(i,1,l)=s0(i,1,l)*sm(i,1,l) s0(i,jjp1,l)=s0(i,jjp1,l)*sm(i,jjp1,l) enddo sxn(iip1)=sxn(1) sxs(iip1)=sxs(1) do i=1,iim sx(i+1,1,l)=0.25*(sxn(i)+sxn(i+1))*sm(i+1,1,l) sx(i+1,jjp1,l)=0.25*(sxs(i)+sxs(i+1))*sm(i+1,jjp1,l) enddo s0(iip1,1,l)=s0(1,1,l) s0(iip1,jjp1,l)=s0(1,jjp1,l) sy(iip1,1,l)=sy(1,1,l) sy(iip1,jjp1,l)=sy(1,jjp1,l) sx(1,1,l)=sx(iip1,1,l) sx(1,jjp1,l)=sx(iip1,jjp1,l) enddo endif if (mode.eq.4) then do l=1,llm do i=1,iip1 sx(i,1,l)=0. sx(i,jjp1,l)=0. sy(i,1,l)=0. sy(i,jjp1,l)=0. enddo enddo endif call limx(s0,sx,sm,pente_max) c call minmaxq(zq,1.e33,-1.e33,'avant advx ') call advx( limit,.5*dtvr,pbaru,sm,s0,sx,sy,sz,lati,latf) c call minmaxq(zq,1.e33,-1.e33,'avant advy ') if (mode.eq.4) then do l=1,llm do i=1,iip1 sx(i,1,l)=0. sx(i,jjp1,l)=0. sy(i,1,l)=0. sy(i,jjp1,l)=0. enddo enddo endif call limy(s0,sy,sm,pente_max) call advy( limit,.5*dtvr,pbarv,sm,s0,sx,sy,sz ) c call minmaxq(zq,1.e33,-1.e33,'avant advz ') do j=1,jjp1 do i=1,iip1 sz(i,j,1)=0. sz(i,j,llm)=0. enddo enddo call limz(s0,sz,sm,pente_max) call advz( limit,dtvr,w,sm,s0,sx,sy,sz ) if (mode.eq.4) then do l=1,llm do i=1,iip1 sx(i,1,l)=0. sx(i,jjp1,l)=0. sy(i,1,l)=0. sy(i,jjp1,l)=0. enddo enddo endif call limy(s0,sy,sm,pente_max) call advy( limit,.5*dtvr,pbarv,sm,s0,sx,sy,sz ) do l=1,llm do j=1,jjp1 sm(iip1,j,l)=sm(1,j,l) s0(iip1,j,l)=s0(1,j,l) sx(iip1,j,l)=sx(1,j,l) sy(iip1,j,l)=sy(1,j,l) sz(iip1,j,l)=sz(1,j,l) enddo enddo c call minmaxq(zq,1.e33,-1.e33,'avant advx ') if (mode.eq.4) then do l=1,llm do i=1,iip1 sx(i,1,l)=0. sx(i,jjp1,l)=0. sy(i,1,l)=0. sy(i,jjp1,l)=0. enddo enddo endif call limx(s0,sx,sm,pente_max) call advx( limit,.5*dtvr,pbaru,sm,s0,sx,sy,sz,lati,latf) c call minmaxq(zq,1.e33,-1.e33,'apres advx ') c do l=1,llm c do j=1,jjp1 c do i=1,iip1 c zq=s0(i,j,l)/sm(i,j,l) c if(zq.lt.qmin) c , print*,'apres advx2, s0(',i,',',j,',',l,')=',zq c enddo c enddo c enddo c *** On repasse les S dans la variable q directement 14/10/94 c On revient a des rapports de melange en divisant par la masse c En dehors des poles: DO l = 1,llm DO j = 1,jjp1 DO i = 1,iim q(i,j,llm+1-l,0)=s0(i,j,l)/sm(i,j,l) q(i,j,llm+1-l,1)=sx(i,j,l)/sm(i,j,l) q(i,j,llm+1-l,2)=sy(i,j,l)/sm(i,j,l) q(i,j,llm+1-l,3)=sz(i,j,l)/sm(i,j,l) ENDDO ENDDO ENDDO c Traitements specifiques au pole if(mode.ge.1) then DO l=1,llm c filtrages aux poles masn=ssum(iim,sm(1,1,l),1) mass=ssum(iim,sm(1,jjp1,l),1) qpn=ssum(iim,s0(1,1,l),1)/masn qps=ssum(iim,s0(1,jjp1,l),1)/mass dqzpn=ssum(iim,sz(1,1,l),1)/masn dqzps=ssum(iim,sz(1,jjp1,l),1)/mass do i=1,iip1 q( i,1,llm+1-l,3)=dqzpn q( i,jjp1,llm+1-l,3)=dqzps q( i,1,llm+1-l,0)=qpn q( i,jjp1,llm+1-l,0)=qps enddo if(mode.eq.3) then dyn1=0. dys1=0. dyn2=0. dys2=0. do i=1,iim dyn1=dyn1+sinlondlon(i)*sy(i,1,l)/sm(i,1,l) dyn2=dyn2+coslondlon(i)*sy(i,1,l)/sm(i,1,l) dys1=dys1+sinlondlon(i)*sy(i,jjp1,l)/sm(i,jjp1,l) dys2=dys2+coslondlon(i)*sy(i,jjp1,l)/sm(i,jjp1,l) enddo do i=1,iim q(i,1,llm+1-l,2)= s (sinlon(i)*dyn1+coslon(i)*dyn2) q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0)+q(i,1,llm+1-l,2) q(i,jjp1,llm+1-l,2)= s (sinlon(i)*dys1+coslon(i)*dys2) q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) s -q(i,jjp1,llm+1-l,2) enddo endif if(mode.eq.1) then c on filtre les valeurs au bord de la "grande maille pole" dyn1=0. dys1=0. dyn2=0. dys2=0. do i=1,iim zz=s0(i,2,l)/sm(i,2,l)-q(i,1,llm+1-l,0) dyn1=dyn1+sinlondlon(i)*zz dyn2=dyn2+coslondlon(i)*zz zz=q(i,jjp1,llm+1-l,0)-s0(i,jjm,l)/sm(i,jjm,l) dys1=dys1+sinlondlon(i)*zz dys2=dys2+coslondlon(i)*zz enddo do i=1,iim q(i,1,llm+1-l,2)= s (sinlon(i)*dyn1+coslon(i)*dyn2)/2. q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0)+q(i,1,llm+1-l,2) q(i,jjp1,llm+1-l,2)= s (sinlon(i)*dys1+coslon(i)*dys2)/2. q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) s -q(i,jjp1,llm+1-l,2) enddo q(iip1,1,llm+1-l,0)=q(1,1,llm+1-l,0) q(iip1,jjp1,llm+1-l,0)=q(1,jjp1,llm+1-l,0) do i=1,iim sxn(i)=q(i+1,1,llm+1-l,0)-q(i,1,llm+1-l,0) sxs(i)=q(i+1,jjp1,llm+1-l,0)-q(i,jjp1,llm+1-l,0) enddo sxn(iip1)=sxn(1) sxs(iip1)=sxs(1) do i=1,iim q(i+1,1,llm+1-l,1)=0.25*(sxn(i)+sxn(i+1)) q(i+1,jjp1,llm+1-l,1)=0.25*(sxs(i)+sxs(i+1)) enddo q(1,1,llm+1-l,1)=q(iip1,1,llm+1-l,1) q(1,jjp1,llm+1-l,1)=q(iip1,jjp1,llm+1-l,1) endif ENDDO endif c bouclage en longitude do iq=0,3 do l=1,llm do j=1,jjp1 q(iip1,j,l,iq)=q(1,j,l,iq) enddo enddo enddo c PRINT*, ' SORTIE DE PENTES --- ca peut glisser ....' DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 IF (q(i,j,l,0).lt.0.) THEN c PRINT*,'------------ BIP-----------' c PRINT*,'Q0(',i,j,l,')=',q(i,j,l,0) c PRINT*,'QX(',i,j,l,')=',q(i,j,l,1) c PRINT*,'QY(',i,j,l,')=',q(i,j,l,2) c PRINT*,'QZ(',i,j,l,')=',q(i,j,l,3) c PRINT*,' PBL EN SORTIE DE PENTES' q(i,j,l,0)=0. c STOP ENDIF ENDDO ENDDO ENDDO c PRINT*, '-------------------------------------------' do l=1,llm do j=1,jjp1 do i=1,iip1 if(q(i,j,l,0).lt.qmin) , print*,'apres pentes, s0(',i,',',j,',',l,')=',q(i,j,l,0) enddo enddo enddo RETURN END