PROGRAM create_limit IMPLICIT none c c------------------------------------------------------------- C Author : L. Fairhead C Date : 27/01/94 C Objet : Construction des fichiers de conditions aux limites C pour le nouveau C modele a partir de fichiers de climatologie. Les deux C grilles doivent etre regulieres c c Modifie par z.x.li (le23mars1994) c Modifie par L. Fairhead (fairhead@lmd.jussieu.fr) septembre 1999 c pour lecture netcdf dans LMDZ.3.3 c modifie par P. Braconnot pour utiliser la version sous-surfaces c------------------------------------------------------------- c #include "dimensions.h" #include "paramet.h" #include "control.h" #include "logic.h" #include "netcdf.inc" #include "comvert.h" #include "comgeom2.h" #include "comconst.h" c c----------------------------------------------------------------------- INTEGER KIDIA, KFDIA, KLON, KLEV PARAMETER (KIDIA=1,KFDIA=iim*(jjm-1)+2, . KLON=KFDIA-KIDIA+1,KLEV=llm) c----------------------------------------------------------------------- REAL phy_nat(klon,360), phy_nat0(klon) REAL phy_alb(klon,360) REAL phy_sst(klon,360) REAL phy_bil(klon,360) REAL phy_rug(klon,360) REAL phy_ice(klon,360) CPB REAL phy_icet(klon,360) REAL phy_oce(klon,360) REAL verif c REAL masque(iip1,jjp1) REAL mask(iim,jjp1) CPB C newlmt indique l'utilisation de la sous-maille fractionnelle C tandis que l'ancien codage utilise l'indicateur du sol (0,1,2,3) LOGICAL newlmt, fracterre PARAMETER(newlmt=.TRUE.) PARAMETER(fracterre = .TRUE.) CPB C Declarations pour le champ de depart INTEGER imdep, jmdep,lmdep INTEGER ibid, jbid, tbid PARAMETER (ibid = 400, ! >360 pts . jbid = 200, ! >181 pts . tbid = 60) ! >52 semaines REAL champ(ibid*jbid) REAL dlon(ibid), dlat(jbid), timecoord(tbid) c INTEGER ibid_msk, jbid_msk PARAMETER(ibid_msk=2200,jbid_msk=1100) REAL champ_msk(ibid_msk*jbid_msk) REAL dlon_msk(ibid_msk), dlat_msk(jbid_msk) REAL*4 zbidon(ibid_msk*jbid_msk) C Declarations pour le champ interpole 2D REAL champint(iim,jjp1) C Declarations pour le champ interpole 3D REAL champtime(iim,jjp1,tbid) REAL timeyear(tbid) REAL champan(iip1,jjp1,366) C Declarations pour l'inteprolation verticale REAL ax(tbid), ay(tbid) REAL by REAL yder(tbid) INTEGER ierr INTEGER dimfirst(3) INTEGER dimlast(3) c INTEGER nid, ndim, ntim INTEGER dims(2), debut(2), epais(2) INTEGER id_tim INTEGER id_NAT, id_SST, id_BILS, id_RUG, id_ALB CPB INTEGER id_FOCE, id_FSIC, id_FTER, id_FLIC INTEGER i, j, k, l c Diverses variables locales REAL time INTEGER longcles PARAMETER ( longcles = 20 ) REAL clesphy0 ( longcles ) #include "serre.h" INTEGER ncid,varid,ndimid(4),dimid character*30 namedim c initialisations: OPEN (8,file='run.def',form='formatted') CALL defrun_new(8,.TRUE.,clesphy0) CLOSE(8) pi = 4. * ATAN(1.) rad = 6 371 229. omeg = 4.* ASIN(1.)/(24.*3600.) g = 9.8 daysec = 86400. kappa = 0.2857143 cpp = 1004.70885 dtvr = daysec/FLOAT(day_step) c ccc CALL iniconst ( non indispensable ) CALL inigeom c c C Traitement du relief au sol c write(*,*) 'Traitement du relief au sol pour fabriquer masque' ierr = NF_OPEN('Relief.nc', NF_NOWRITE, ncid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARID(ncid,'RELIEF',varid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARDIMID (ncid,varid,ndimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(1), namedim, imdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', imdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlon_msk) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(2), namedim, jmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', jmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlat_msk) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,varid,champ_msk) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF c CALL mask_c_o(imdep, jmdep, dlon_msk, dlat_msk,champ_msk, . iim, jjp1, rlonv, rlatu, champint) CALL gr_int_dyn(champint, masque, iim, jjp1) IF ( fracterre ) THEN DO i = 1, iim masque(i,1) = masque(i,1) masque(i,jjp1) = masque(i,jjp1) END DO ELSE DO i = 1, iim masque(i,1) = FLOAT(NINT(masque(i,1))) masque(i,jjp1) = FLOAT(NINT(masque(i,jjp1))) END DO ENDIF DO i = 1, iim DO j = 1, jjp1 mask(i,j) = champint(i,j) ENDDO ENDDO CALL gr_dyn_fi(1, iip1, jjp1, klon, masque, phy_nat0) ierr = NF_CLOSE(ncid) c c C Traitement de la rugosite c PRINT*, 'Traitement de la rugosite' ierr = NF_OPEN('Rugos.nc', NF_NOWRITE, ncid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARID(ncid,'RUGOS',varid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARDIMID (ncid,varid,ndimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(1), namedim, imdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', imdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlon) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(2), namedim, jmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', jmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlat) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(3), namedim, lmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', lmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,timecoord) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF c DO l = 1, lmdep dimfirst(1) = 1 dimfirst(2) = 1 dimfirst(3) = l c dimlast(1) = imdep dimlast(2) = jmdep dimlast(3) = 1 c PRINT*,'Lecture temporelle et int. horizontale ',l,timecoord(l) print*,dimfirst,dimlast ierr = NF_GET_VARA_REAL(ncid,varid,dimfirst,dimlast,champ) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF CALL rugosite(imdep, jmdep, dlon, dlat, champ, . iim, jjp1, rlonv, rlatu, champint, mask) DO j = 1,jjp1 DO i = 1, iim champtime (i,j,l) = champint(i,j) ENDDO ENDDO ENDDO c DO l = 1, lmdep timeyear(l) = timecoord(l) ENDDO PRINT 222, timeyear 222 FORMAT(2x,' Time year ',10f6.1) c PRINT*, 'Interpolation temporelle dans l annee' DO j = 1, jjp1 DO i = 1, iim DO l = 1, lmdep ax(l) = timeyear(l) ay(l) = champtime (i,j,l) ENDDO CALL SPLINE(ax,ay,lmdep,1.e30,1.e30,yder) DO k = 1, 360 time = FLOAT(k-1) CALL SPLINT(ax,ay,yder,lmdep,time,by) champan(i,j,k) = by ENDDO ENDDO ENDDO DO k = 1, 360 DO j = 1, jjp1 champan(iip1,j,k) = champan(1,j,k) ENDDO ENDDO c DO k = 1, 360 CALL gr_dyn_fi(1,iip1,jjp1,klon,champan(1,1,k), phy_rug(1,k)) ENDDO c ierr = NF_CLOSE(ncid) c c C Traitement de la glace oceanique c PRINT*, 'Traitement de la glace oceanique' ierr = NF_OPEN('AMIP.nc', NF_NOWRITE, ncid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARID(ncid,'SEA_ICE',varid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARDIMID (ncid,varid,ndimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(1), namedim, imdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', imdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlon) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(2), namedim, jmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, jmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlat) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(3), namedim, lmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, lmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,timecoord) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF c DO l = 1, lmdep dimfirst(1) = 1 dimfirst(2) = 1 dimfirst(3) = l c dimlast(1) = imdep dimlast(2) = jmdep dimlast(3) = 1 c PRINT*,'Lecture temporelle et int. horizontale ',l,timecoord(l) ierr = NF_GET_VARA_REAL(ncid,varid,dimfirst,dimlast,champ) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF CALL sea_ice(imdep, jmdep, dlon, dlat, champ, . iim, jjp1, rlonv, rlatu, champint) DO j = 1,jjp1 DO i = 1, iim champtime (i,j,l) = champint(i,j) ENDDO ENDDO ENDDO c DO l = 1, lmdep timeyear(l) = timecoord(l) ENDDO PRINT 222, timeyear c PRINT*, 'Interpolation temporelle' DO j = 1, jjp1 DO i = 1, iim DO l = 1, lmdep ax(l) = timeyear(l) ay(l) = champtime (i,j,l) ENDDO CALL SPLINE(ax,ay,lmdep,1.e30,1.e30,yder) DO k = 1, 360 time = FLOAT(k-1) CALL SPLINT(ax,ay,yder,lmdep,time,by) champan(i,j,k) = by ENDDO ENDDO ENDDO DO k = 1, 360 DO j = 1, jjp1 champan(iip1, j, k) = champan(1, j, k) ENDDO ENDDO c WRITE(*,*) 'phy_nat' WRITE(*,'(72f4.1)') phy_nat0(1:klon) c DO k = 1, 360 CALL gr_dyn_fi(1, iip1, jjp1, klon, . champan(1,1,k), phy_ice(1,k)) IF ( newlmt) THEN CPB en attendant de mettre fraction de terre c WHERE(phy_ice(1:klon, k) .GT. 1.) phy_ice(1 : klon, k) = 1. WHERE(phy_ice(1:klon, k) .LT. 0.) phy_ice(1 : klon, k) = 0. WRITE(*,*) 'phy_ice : ', k WRITE(*,'(72f4.1)') phy_ice(1 : klon, k) c IF (fracterre ) THEN WRITE(*,*) 'passe dans cas fracterre' DO i = 1, klon phy_nat(i,k) = phy_nat0(i) IF (phy_nat0(i) .GE. 0.5 ) THEN IF(phy_ice(i,k) .GE. 1.e-5) THEN IF ( phy_ice(i,k) .LE. phy_nat(i,k)) THEN phy_oce(i,k) = 1. - phy_nat(i,k) phy_icet(i,k) = phy_ice(i,k) phy_ice(i,k) = 0. phy_nat(i,k)= phy_nat(i,k)- phy_icet(i,k) ELSE phy_oce(i,k) = 1. - phy_ice(i,k) phy_icet(i,k) = phy_nat(i,k) phy_nat(i,k) = 0. phy_ice(i,k) = phy_ice(i,k) $ - phy_icet(i,k) ENDIF ELSE phy_icet(i,k) = 0. phy_ice(i,k) = 0. phy_oce(i,k) = 1. - phy_nat(i,k) ENDIF ELSE phy_oce(i,k) = 1. - phy_nat(i,k) IF(phy_ice(i,k) .GE. 1.e-5) THEN IF( phy_ice(i,k) .LE. phy_oce(i,k) ) THEN phy_icet(i,k) = 0. phy_oce(i,k) = phy_oce(i,k) - phy_ice(i,k) ELSE phy_icet(i,k)=phy_ice(i,k) - phy_oce(i,k) phy_ice(i,k) = phy_oce(i,k) phy_oce(i,k) = 0. phy_nat(i,k) = phy_nat(i,k)-phy_icet(i,k) ENDIF ELSE phy_icet(i,k) = 0. phy_ice(i,k) = 0. ENDIF ENDIF verif = phy_nat(i,k) + phy_icet(i,k)+ phy_ice(i,k) $ + phy_oce(i,k) IF ( verif .LT. 1. - 1.e-5 .OR. $ verif .GT. 1 + 1.e-5) THEN WRITE(*,*) 'pb sous maille au point : i,k,verif ' $ , i,k,verif ENDIF END DO ELSE DO i = 1, klon phy_nat(i,k) = phy_nat0(i) IF (NINT(phy_nat0(i)).EQ.1 ) THEN IF(phy_ice(i,k) .GE. 1.e-5) THEN phy_icet(i,k) = phy_ice(i,k) phy_ice(i,k) = 0. phy_nat(i,k) = phy_nat(i,k) - phy_icet(i,k) phy_oce(i,k) = 0. ELSE phy_icet(i,k) = 0. phy_ice(i,k) = 0. phy_oce(i,k) = 0. ENDIF ELSE IF(phy_ice(i,k) .GE. 1.e-5) THEN phy_icet(i,k) = 0. phy_nat(i,k) = 0. phy_oce(i,k) = 1. - phy_ice(i,k) ELSE phy_icet(i,k) = 0. phy_ice(i,k) = 0. phy_oce(i,k) = 1. ENDIF ENDIF verif = phy_nat(i,k) + phy_icet(i,k)+ phy_ice(i,k) $ + phy_oce(i,k) IF ( verif .LT. 1. - 1.e-5 .OR. $ verif .GT. 1 + 1.e-5) THEN WRITE(*,*) 'pb sous maille au point : i,k,verif ' $ , i,k,verif ENDIF END DO ENDIF ELSE DO i = 1, klon phy_nat(i,k) = phy_nat0(i) IF ( (phy_ice(i,k) - 0.5).GE.1.e-5 ) THEN IF (NINT(phy_nat0(i)).EQ.0) THEN phy_nat(i,k) = 3.0 ELSE phy_nat(i,k) = 2.0 ENDIF ENDIF END DO ENDIF ENDDO c ierr = NF_CLOSE(ncid) c c C Traitement de la sst c PRINT*, 'Traitement de la sst' ierr = NF_OPEN('AMIP.nc', NF_NOWRITE, ncid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARID(ncid,'SST',varid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARDIMID (ncid,varid,ndimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(1), namedim, imdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim,'dimension ', imdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlon) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(2), namedim, jmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', jmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlat) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(3), namedim, lmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', lmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,timecoord) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF c DO l = 1, lmdep dimfirst(1) = 1 dimfirst(2) = 1 dimfirst(3) = l c dimlast(1) = imdep dimlast(2) = jmdep dimlast(3) = 1 c PRINT*,'Lecture temporelle et int. horizontale ',l,timecoord(l) ierr = NF_GET_VARA_REAL(ncid,varid,dimfirst,dimlast,champ) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF CALL grille_m(imdep, jmdep, dlon, dlat, champ, . iim, jjp1, rlonv, rlatu, champint) DO j = 1,jjp1 DO i = 1, iim champtime (i,j,l) = champint(i,j) ENDDO ENDDO ENDDO c DO l = 1, lmdep timeyear(l) = timecoord(l) ENDDO print 222, timeyear c C interpolation temporelle DO j = 1, jjp1 DO i = 1, iim DO l = 1, lmdep ax(l) = timeyear(l) ay(l) = champtime (i,j,l) ENDDO CALL SPLINE(ax,ay,lmdep,1.e30,1.e30,yder) DO k = 1, 360 time = FLOAT(k-1) CALL SPLINT(ax,ay,yder,lmdep,time,by) champan(i,j,k) = by ENDDO ENDDO ENDDO DO k = 1, 360 DO j = 1, jjp1 champan(iip1,j,k) = champan(1,j,k) ENDDO ENDDO c DO k = 1, 360 CALL gr_dyn_fi(1, iip1, jjp1, klon, . champan(1,1,k), phy_sst(1,k)) ENDDO c ierr = NF_CLOSE(ncid) c c C Traitement de l'albedo c PRINT*, 'Traitement de l albedo' ierr = NF_OPEN('Albedo.nc', NF_NOWRITE, ncid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARID(ncid,'ALBEDO',varid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_VARDIMID (ncid,varid,ndimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(1), namedim, imdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', imdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlon) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(2), namedim, jmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', jmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,dlat) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_INQ_DIM(ncid,ndimid(3), namedim, lmdep) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF print*,'variable ', namedim, 'dimension ', lmdep ierr = NF_INQ_VARID(ncid,namedim,dimid) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF ierr = NF_GET_VAR_REAL(ncid,dimid,timecoord) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF c DO l = 1, lmdep dimfirst(1) = 1 dimfirst(2) = 1 dimfirst(3) = l c dimlast(1) = imdep dimlast(2) = jmdep dimlast(3) = 1 c PRINT*,'Lecture temporelle et int. horizontale ',l,timecoord(l) ierr = NF_GET_VARA_REAL(ncid,varid,dimfirst,dimlast,champ) if (ierr.ne.0) then print *, NF_STRERROR(ierr) STOP ENDIF CALL grille_m(imdep, jmdep, dlon, dlat, champ, . iim, jjp1, rlonv, rlatu, champint) c DO j = 1,jjp1 DO i = 1, iim champtime (i, j, l) = champint(i, j) ENDDO ENDDO ENDDO c DO l = 1, lmdep timeyear(l) = timecoord(l) ENDDO print 222, timeyear c C interpolation temporelle DO j = 1, jjp1 DO i = 1, iim DO l = 1, lmdep ax(l) = timeyear(l) ay(l) = champtime (i, j, l) ENDDO CALL SPLINE(ax,ay,lmdep,1.e30,1.e30,yder) DO k = 1, 360 time = FLOAT(k-1) CALL SPLINT(ax,ay,yder,lmdep,time,by) champan(i,j,k) = by ENDDO ENDDO ENDDO DO k = 1, 360 DO j = 1, jjp1 champan(iip1, j, k) = champan(1, j, k) ENDDO ENDDO c DO k = 1, 360 CALL gr_dyn_fi(1, iip1, jjp1, klon, . champan(1,1,k), phy_alb(1,k)) ENDDO c ierr = NF_CLOSE(ncid) c c DO k = 1, 360 DO i = 1, klon phy_bil(i,k) = 0.0 ENDDO ENDDO c PRINT*, 'Ecriture du fichier limit' c ierr = NF_CREATE ("limit.nc", NF_CLOBBER, nid) c ierr = NF_PUT_ATT_TEXT (nid, NF_GLOBAL, "title", 30, . "Fichier conditions aux limites") ierr = NF_DEF_DIM (nid, "points_physiques", klon, ndim) ierr = NF_DEF_DIM (nid, "time", NF_UNLIMITED, ntim) c dims(1) = ndim dims(2) = ntim c ierr = NF_DEF_VAR (nid, "TEMPS", NF_FLOAT, 1,ntim, id_tim) ierr = NF_PUT_ATT_TEXT (nid, id_tim, "title", 17, . "Jour dans l annee") IF (newlmt) THEN c ierr = NF_DEF_VAR (nid, "FOCE", NF_FLOAT, 2,dims, id_FOCE) ierr = NF_PUT_ATT_TEXT (nid, id_FOCE, "title", 14, . "Fraction ocean") c ierr = NF_DEF_VAR (nid, "FSIC", NF_FLOAT, 2,dims, id_FSIC) ierr = NF_PUT_ATT_TEXT (nid, id_FSIC, "title", 21, . "Fraction glace de mer") c ierr = NF_DEF_VAR (nid, "FTER", NF_FLOAT, 2,dims, id_FTER) ierr = NF_PUT_ATT_TEXT (nid, id_FTER, "title", 14, . "Fraction terre") c ierr = NF_DEF_VAR (nid, "FLIC", NF_FLOAT, 2,dims, id_FLIC) ierr = NF_PUT_ATT_TEXT (nid, id_FLIC, "title", 17, . "Fraction land ice") c ELSE ierr = NF_DEF_VAR (nid, "NAT", NF_FLOAT, 2,dims, id_NAT) ierr = NF_PUT_ATT_TEXT (nid, id_NAT, "title", 23, . "Nature du sol (0,1,2,3)") ENDIF C ierr = NF_DEF_VAR (nid, "SST", NF_FLOAT, 2,dims, id_SST) ierr = NF_PUT_ATT_TEXT (nid, id_SST, "title", 35, . "Temperature superficielle de la mer") ierr = NF_DEF_VAR (nid, "BILS", NF_FLOAT, 2,dims, id_BILS) ierr = NF_PUT_ATT_TEXT (nid, id_BILS, "title", 32, . "Reference flux de chaleur au sol") ierr = NF_DEF_VAR (nid, "ALB", NF_FLOAT, 2,dims, id_ALB) ierr = NF_PUT_ATT_TEXT (nid, id_ALB, "title", 19, . "Albedo a la surface") ierr = NF_DEF_VAR (nid, "RUG", NF_FLOAT, 2,dims, id_RUG) ierr = NF_PUT_ATT_TEXT (nid, id_RUG, "title", 8, . "Rugosite") c ierr = NF_ENDDEF(nid) c DO k = 1, 360 c debut(1) = 1 debut(2) = k epais(1) = klon epais(2) = 1 c #ifdef NC_DOUBLE ierr = NF_PUT_VAR1_DOUBLE (nid,id_tim,k,DBLE(k)) c IF (newlmt ) THEN ierr = NF_PUT_VARA_DOUBLE (nid,id_FOCE,debut,epais $ ,phy_oce(1,k)) ierr = NF_PUT_VARA_DOUBLE (nid,id_FSIC,debut,epais $ ,phy_ice(1,k)) ierr = NF_PUT_VARA_DOUBLE (nid,id_FTER,debut,epais $ ,phy_nat(1,k)) ierr = NF_PUT_VARA_DOUBLE (nid,id_FLIC,debut,epais $ ,phy_icet(1,k)) ELSE ierr = NF_PUT_VARA_DOUBLE (nid,id_NAT,debut,epais $ ,phy_nat(1,k)) ENDIF c ierr = NF_PUT_VARA_DOUBLE (nid,id_SST,debut,epais,phy_sst(1,k)) ierr = NF_PUT_VARA_DOUBLE (nid,id_BILS,debut,epais,phy_bil(1,k)) ierr = NF_PUT_VARA_DOUBLE (nid,id_ALB,debut,epais,phy_alb(1,k)) ierr = NF_PUT_VARA_DOUBLE (nid,id_RUG,debut,epais,phy_rug(1,k)) #else ierr = NF_PUT_VAR1_REAL (nid,id_tim,k,FLOAT(k)) IF (newlmt ) THEN ierr = NF_PUT_VARA_REAL (nid,id_FOCE,debut,epais $ ,phy_oce(1,k)) ierr = NF_PUT_VARA_REAL (nid,id_FSIC,debut,epais $ ,phy_ice(1,k)) ierr = NF_PUT_VARA_REAL (nid,id_FTER,debut,epais $ ,phy_nat(1,k)) ierr = NF_PUT_VARA_REAL (nid,id_FLIC,debut,epais $ ,phy_icet(1,k)) ELSE ierr = NF_PUT_VARA_REAL (nid,id_NAT,debut,epais $ ,phy_nat(1,k)) ENDIF ierr = NF_PUT_VARA_REAL (nid,id_SST,debut,epais,phy_sst(1,k)) ierr = NF_PUT_VARA_REAL (nid,id_BILS,debut,epais,phy_bil(1,k)) ierr = NF_PUT_VARA_REAL (nid,id_ALB,debut,epais,phy_alb(1,k)) ierr = NF_PUT_VARA_REAL (nid,id_RUG,debut,epais,phy_rug(1,k)) #endif c ENDDO c ierr = NF_CLOSE(nid) c STOP END