SUBROUTINE HBTM(knon, paprs, pplay, . t2m,t10m,q2m,q10m,ustar, . flux_t,flux_q,u,v,t,q, . pblh,cape,EauLiq,ctei,pblT, . therm,trmb1,trmb2,trmb3,plcl) IMPLICIT none c*************************************************************** c* * c* HBTM2 D'apres Holstag&Boville et Troen&Mahrt * c* JAS 47 BLM * c* Algorithme These Anne Mathieu * c* Critere d'Entrainement Peter Duynkerke (JAS 50) * c* written by : Anne MATHIEU & Alain LAHELLEC, 22/11/99 * c* features : implem. exces Mathieu * c*************************************************************** c* mods : decembre 99 passage th a niveau plus bas. voir fixer * c* la prise du th a z/Lambda = -.2 (max Ray) * c* Autre algo : entrainement ~ Theta+v =cste mais comment=>The?* c* on peut fixer q a .7qsat(cf non adiab)=>T2 et The2 * c* voir aussi //KE pblh = niveau The_e ou l = env. * c*************************************************************** c* fin therm a la HBTM passage a forme Mathieu 12/09/2001 * c*************************************************************** c* c c cAM Fev 2003 c Adaptation a LMDZ version couplee c c Pour le moment on fait passer en argument les grdeurs de surface : c flux, t,q2m, t,q10m, on va utiliser systematiquement les grdeurs a 2m ms c on garde la possibilite de changer si besoin est (jusqu'a present la c forme de HB avec le 1er niveau modele etait conservee) c c c c c #include "dimensions.h" #include "dimphy.h" #include "YOMCST.h" REAL RLvCp, REPS c Arguments: c INTEGER knon ! nombre de points a calculer cAM REAL t2m(klon), t10m(klon) ! temperature a 2 et 10m REAL q2m(klon), q10m(klon) ! q a 2 et 10m REAL ustar(klon) REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) REAL pplay(klon,klev) ! pression au milieu de couche (Pa) REAL flux_t(klon,klev), flux_q(klon,klev) ! Flux REAL u(klon,klev) ! vitesse U (m/s) REAL v(klon,klev) ! vitesse V (m/s) REAL t(klon,klev) ! temperature (K) REAL q(klon,klev) ! vapeur d'eau (kg/kg) cAM REAL cd_h(klon) ! coefficient de friction au sol pour chaleur cAM REAL cd_m(klon) ! coefficient de friction au sol pour vitesse c INTEGER isommet PARAMETER (isommet=klev) ! limite max sommet pbl REAL vk PARAMETER (vk=0.35) ! Von Karman => passer a .41 ! cf U.Olgstrom REAL ricr PARAMETER (ricr=0.4) REAL fak PARAMETER (fak=8.5) ! b calcul du Prandtl et de dTetas REAL fakn PARAMETER (fakn=7.2) ! a REAL onet PARAMETER (onet=1.0/3.0) REAL t_coup PARAMETER(t_coup=273.15) REAL zkmin PARAMETER (zkmin=0.01) REAL betam PARAMETER (betam=15.0) ! pour Phim / h dans la S.L stable REAL betah PARAMETER (betah=15.0) REAL betas PARAMETER (betas=5.0) ! Phit dans la S.L. stable (mais 2 formes / z/OBL<>1 REAL sffrac PARAMETER (sffrac=0.1) ! S.L. = z/h < .1 REAL binm PARAMETER (binm=betam*sffrac) REAL binh PARAMETER (binh=betah*sffrac) REAL ccon PARAMETER (ccon=fak*sffrac*vk) c REAL q_star,t_star REAL b1,b2,b212,b2sr ! Lambert correlations T' q' avec T* q* PARAMETER (b1=70.,b2=20.) c REAL z(klon,klev) cAM REAL pcfm(klon,klev), pcfh(klon,klev) cAM REAL zref PARAMETER (zref=2.) ! Niveau de ref a 2m peut eventuellement c etre choisi a 10m cMA c INTEGER i, k, j REAL zxt cAM REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy cAM REAL zx_alf1, zx_alf2 ! parametres pour extrapolation REAL khfs(klon) ! surface kinematic heat flux [mK/s] REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] REAL heatv(klon) ! surface virtual heat flux REAL rhino(klon,klev) ! bulk Richardon no. mais en Theta_v LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) LOGICAL stblev(klon) ! stable pbl with levels within pbl LOGICAL unslev(klon) ! unstbl pbl with levels within pbl LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr LOGICAL check(klon) ! True=>chk if Richardson no.>critcal LOGICAL omegafl(klon) ! flag de prolongerment cape pour pt Omega REAL pblh(klon) REAL pblT(klon) REAL plcl(klon) cAM REAL cgh(klon,2:klev) ! counter-gradient term for heat [K/m] cAM REAL cgq(klon,2:klev) ! counter-gradient term for constituents cAM REAL cgs(klon,2:klev) ! counter-gradient star (cg/flux) REAL obklen(klon) ! Monin-Obukhov lengh cAM REAL ztvd, ztvu, REAL zdu2 REAL therm(klon) ! thermal virtual temperature excess REAL trmb1(klon),trmb2(klon),trmb3(klon) C Algorithme thermique REAL s(klon,klev) ! [P/Po]^Kappa milieux couches REAL Th_th(klon) ! potential temperature of thermal REAL The_th(klon) ! equivalent potential temperature of thermal REAL qT_th(klon) ! total water of thermal REAL Tbef(klon) ! T thermique niveau precedent REAL qsatbef(klon) LOGICAL Zsat(klon) ! le thermique est sature REAL Cape(klon) ! Cape du thermique REAL Kape(klon) ! Cape locale REAL EauLiq(klon) ! Eau liqu integr du thermique REAL ctei(klon) ! Critere d'instab d'entrainmt des nuages de CL REAL the1,the2,aa,bb,zthvd,zthvu,xintpos,qqsat cIM 091204 BEG REAL a1,a2,a3 cIM 091204 END REAL xhis,rnum,denom,th1,th2,thv1,thv2,ql2 REAL dqsat_dt,qsat2,qT1,q2,t1,t2,xnull,delt_the REAL delt_qt,delt_2,quadsat,spblh,reduc c REAL phiminv(klon) ! inverse phi function for momentum REAL phihinv(klon) ! inverse phi function for heat REAL wm(klon) ! turbulent velocity scale for momentum REAL fak1(klon) ! k*ustar*pblh REAL fak2(klon) ! k*wm*pblh REAL fak3(klon) ! fakn*wstr/wm REAL pblk(klon) ! level eddy diffusivity for momentum REAL pr(klon) ! Prandtl number for eddy diffusivities REAL zl(klon) ! zmzp / Obukhov length REAL zh(klon) ! zmzp / pblh REAL zzh(klon) ! (1-(zmzp/pblh))**2 REAL wstr(klon) ! w*, convective velocity scale REAL zm(klon) ! current level height REAL zp(klon) ! current level height + one level up REAL zcor, zdelta, zcvm5 cAM REAL zxqs REAL fac, pblmin, zmzp, term c #include "YOETHF.h" #include "FCTTRE.h" b212=sqrt(b1*b2) b2sr=sqrt(b2) c C ============================================================ C Fonctions thermo implicites C ============================================================ c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ c Tetens : pression partielle de vap d'eau e_sat(T) c ================================================= C++ e_sat(T) = r2*exp( r3*(T-Tf)/(T-r4) ) id a r2*FOEWE C++ avec : C++ Tf = 273.16 K (Temp de fusion de la glace) C++ r2 = 611.14 Pa C++ r3 = 17.269 (liquide) 21.875 (solide) adim C++ r4 = 35.86 7.66 Kelvin C++ q_sat = eps*e_sat/(p-(1-eps)*e_sat) C++ derivée : C++ ========= C++ r3*(Tf-r4)*q_sat(T,p) C++ d_qsat_dT = -------------------------------- C++ (T-r4)^2*( 1-(1-eps)*e_sat(T)/p ) c++ pour zcvm5=Lv, c'est FOEDE c++ Rq :(1.-REPS)*esarg/Parg id a RETV*Qsat C ------------------------------------------------------------------ c c Initialisation RLvCp = RLVTT/RCPD REPS = RD/RV c c DO i = 1, klon c pcfh(i,1) = cd_h(i) c pcfm(i,1) = cd_m(i) c ENDDO c DO k = 2, klev c DO i = 1, klon c pcfh(i,k) = zkmin c pcfm(i,k) = zkmin c cgs(i,k) = 0.0 c cgh(i,k) = 0.0 c cgq(i,k) = 0.0 c ENDDO c ENDDO c c Calculer les hauteurs de chaque couche c (geopotentielle Int_dp/ro = Int_[Rd.T.dp/p] z = geop/g) c pourquoi ne pas utiliser Phi/RG ? DO i = 1, knon z(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) . * (paprs(i,1)-pplay(i,1)) / RG s(i,1) = (pplay(i,1)/paprs(i,1))**RKappa ENDDO c s(k) = [pplay(k)/ps]^kappa c + + + + + + + + + pplay <-> s(k) t dp=pplay(k-1)-pplay(k) c c ----------------- paprs <-> sig(k) c c + + + + + + + + + pplay <-> s(k-1) c c c + + + + + + + + + pplay <-> s(1) t dp=paprs-pplay z(1) c c ----------------- paprs <-> sig(1) c DO k = 2, klev DO i = 1, knon z(i,k) = z(i,k-1) . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) . * (pplay(i,k-1)-pplay(i,k)) / RG s(i,k) = (pplay(i,k)/paprs(i,1))**RKappa ENDDO ENDDO c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ c +++ Determination des grandeurs de surface +++++++++++++++++++++ c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DO i = 1, knon cAM IF (thermcep) THEN cAM zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) c zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta c zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) cAM zxqs= r2es * FOEEW(tsol(i),zdelta)/paprs(i,1) cAM zxqs=MIN(0.5,zxqs) cAM zcor=1./(1.-retv*zxqs) cAM zxqs=zxqs*zcor cAM ELSE cAM IF (tsol(i).LT.t_coup) THEN cAM zxqs = qsats(tsol(i)) / paprs(i,1) cAM ELSE cAM zxqs = qsatl(tsol(i)) / paprs(i,1) cAM ENDIF cAM ENDIF c niveau de reference bulk; mais ici, c,a pourrait etre le niveau de ref du thermique cAM zx_alf1 = 1.0 cAM zx_alf2 = 1.0 - zx_alf1 cAM zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) cAM . *(1.+RETV*q(i,1))*zx_alf1 cAM . + (t(i,2)+z(i,2)*RG/RCPD/(1.+RVTMP2*q(i,2))) cAM . *(1.+RETV*q(i,2))*zx_alf2 cAM zxu = u(i,1)*zx_alf1+u(i,2)*zx_alf2 cAM zxv = v(i,1)*zx_alf1+v(i,2)*zx_alf2 cAM zxq = q(i,1)*zx_alf1+q(i,2)*zx_alf2 cAM cAMAM zxu = u10m(i) cAMAM zxv = v10m(i) cAMAM zxmod = 1.0+SQRT(zxu**2+zxv**2) cAM Niveau de ref choisi a 2m zxt = t2m(i) c *************************************************** c attention, il doit s'agir de c ;Calcul de tcls virtuel et de w'theta'virtuel c ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; c tcls=tcls*(1+.608*qcls) c c ;Pour avoir w'theta', c ; il faut diviser par ro.Cp c Cp=Cpd*(1+0.84*qcls) c fcs=fcs/(ro_surf*Cp) c ;On transforme w'theta' en w'thetav' c Lv=(2.501-0.00237*(tcls-273.15))*1.E6 c xle=xle/(ro_surf*Lv) c fcsv=fcs+.608*xle*tcls c *************************************************** cAM khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cd_h(i) cAM kqfs(i) = (zxqs-zxq) *zxmod*cd_h(i) * beta(i) cAM cdif khfs est deja w't'_v / heatv(i) = khfs(i) + RETV*zxt*kqfs(i) cAM calcule de Ro = paprs(i,1)/Rd zxt cAM convention >0 vers le bas ds lmdz khfs(i) = - flux_t(i,1)*zxt*Rd / (RCPD*paprs(i,1)) kqfs(i) = - flux_q(i,1)*zxt*Rd / (paprs(i,1)) cAM verifier que khfs et kqfs sont bien de la forme w'l' heatv(i) = khfs(i) + 0.608*zxt*kqfs(i) c a comparer aussi aux sorties de clqh : flux_T/RoCp et flux_q/RoLv cAM heatv(i) = khfs(i) cAM ustar est en entree cAM taux = zxu *zxmod*cd_m(i) cAM tauy = zxv *zxmod*cd_m(i) cAM ustar(i) = SQRT(taux**2+tauy**2) cAM ustar(i) = MAX(SQRT(ustar(i)),0.01) c Theta et qT du thermique sans exces (interpolin vers surf) c chgt de niveau du thermique (jeudi 30/12/1999) c (interpolation lineaire avant integration phi_h) cAM qT_th(i) = zxqs*beta(i) + 4./z(i,1)*(q(i,1)-zxqs*beta(i)) cAM qT_th(i) = max(qT_th(i),q(i,1)) qT_th(i) = q2m(i) cn The_th restera la Theta du thermique sans exces jusqu'a 2eme calcul cn reste a regler convention P) pour Theta c The_th(i) = tsol(i) + 4./z(i,1)*(t(i,1)-tsol(i)) c - + RLvCp*qT_th(i) cAM Th_th(i) = tsol(i) + 4./z(i,1)*(t(i,1)-tsol(i)) Th_th(i) = t2m(i) ENDDO c DO i = 1, knon rhino(i,1) = 0.0 ! Global Richardson check(i) = .TRUE. pblh(i) = z(i,1) ! on initialise pblh a l'altitude du 1er niveau plcl(i) = 6000. c Lambda = -u*^3 / (alpha.g.kvon. obklen(i) = -t(i,1)*ustar(i)**3/(RG*vk*heatv(i)) trmb1(i) = 0. trmb2(i) = 0. trmb3(i) = 0. ENDDO C c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C PBL height calculation: C Search for level of pbl. Scan upward until the Richardson number between C the first level and the current level exceeds the "critical" value. C (bonne idee Nu de separer le Ric et l'exces de temp du thermique) c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ fac = 100.0 DO k = 2, isommet DO i = 1, knon IF (check(i)) THEN ! pourquoi / niveau 1 (au lieu du sol) et le terme en u*^2 ? ctest zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 zdu2 = u(i,k)**2+v(i,k)**2 zdu2 = max(zdu2,1.0e-20) c Theta_v environnement zthvd=t(i,k)/s(i,k)*(1.+RETV*q(i,k)) c c therm Theta_v sans exces (avec hypothese fausse de H&B, sinon, c passer par Theta_e et virpot) c zthvu=t(i,1)/s(i,1)*(1.+RETV*q(i,1)) cAM zthvu = Th_th(i)*(1.+RETV*q(i,1)) zthvu = Th_th(i)*(1.+RETV*qT_th(i)) c Le Ri par Theta_v cAM rhino(i,k) = (z(i,k)-z(i,1))*RG*(zthvd-zthvu) cAM . /(zdu2*0.5*(zthvd+zthvu)) cAM On a nveau de ref a 2m ??? rhino(i,k) = (z(i,k)-zref)*RG*(zthvd-zthvu) . /(zdu2*0.5*(zthvd+zthvu)) c IF (rhino(i,k).GE.ricr) THEN pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * . (ricr-rhino(i,k-1))/(rhino(i,k-1)-rhino(i,k)) c test04 pblh(i) = pblh(i) + 100. pblT(i) = t(i,k-1) + (t(i,k)-t(i,k-1)) * . (pblh(i)-z(i,k-1))/(z(i,k)-z(i,k-1)) check(i) = .FALSE. ENDIF ENDIF ENDDO ENDDO C C Set pbl height to maximum value where computation exceeds number of C layers allowed C DO i = 1, knon if (check(i)) pblh(i) = z(i,isommet) ENDDO C C Improve estimate of pbl height for the unstable points. C Find unstable points (sensible heat flux is upward): C DO i = 1, knon IF (heatv(i) .GT. 0.) THEN unstbl(i) = .TRUE. check(i) = .TRUE. ELSE unstbl(i) = .FALSE. check(i) = .FALSE. ENDIF ENDDO C C For the unstable case, compute velocity scale and the C convective temperature excess: C DO i = 1, knon IF (check(i)) THEN phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet c *************************************************** c Wm ? et W* ? c'est la formule pour z/h < .1 c ;Calcul de w* ;; c ;;;;;;;;;;;;;;;; c w_star=((g/tcls)*fcsv*z(ind))^(1/3.) [ou prendre la premiere approx de h) c ;; CALCUL DE wm ;; c ;;;;;;;;;;;;;;;;;; c ; Ici on considerera que l'on est dans la couche de surf jusqu'a 100m c ; On prend svt couche de surface=0.1*h mais on ne connait pas h c ;;;;;;;;;;;Dans la couche de surface c if (z(ind) le 20) then begin c Phim=(1.-15.*(z(ind)/L))^(-1/3.) c wm=u_star/Phim c ;;;;;;;;;;;En dehors de la couche de surface c endif else if (z(ind) gt 20) then begin c wm=(u_star^3+c1*w_star^3)^(1/3.) c endif c *************************************************** wm(i)= ustar(i)*phiminv(i) c====================================================================== cvaleurs de Dominique Lambert de la campagne SEMAPHORE : c = 100.T*^2; = 20.q*^2 a 10m c = (1+1.2q).100.T* + 1.2Tv.sqrt(20*100).T*.q* + (.608*Tv)^2*20.q*^2; c et dTetavS = sqrt() ainsi calculee. c avec : T*=_s/w* et q*=/w* c !!! on peut donc utiliser w* pour les fluctuations <-> Lambert c(leur corellation pourrait dependre de beta par ex) c if fcsv(i,j) gt 0 then begin c dTetavs=b1*(1.+2.*.608*q_10(i,j))*(fcs(i,j)/wm(i,j))^2+$ c (.608*Thetav_10(i,j))^2*b2*(xle(i,j)/wm(i,j))^2+$ c 2.*.608*thetav_10(i,j)*sqrt(b1*b2)*(xle(i,j)/wm(i,j))*(fcs(i,j)/wm(i,j)) c dqs=b2*(xle(i,j)/wm(i,j))^2 c theta_s(i,j)=thetav_10(i,j)+sqrt(dTetavs) c q_s(i,j)=q_10(i,j)+sqrt(dqs) c endif else begin c Theta_s(i,j)=thetav_10(i,j) c q_s(i,j)=q_10(i,j) c endelse c====================================================================== c cHBTM therm(i) = heatv(i)*fak/wm(i) c forme Mathieu : q_star = kqfs(i)/wm(i) t_star = khfs(i)/wm(i) cIM 091204 BEG IF(1.EQ.0) THEN IF(t_star.LT.0..OR.q_star.LT.0.) THEN print*,'i t_star q_star khfs kqfs wm',i,t_star,q_star, $ khfs(i),kqfs(i),wm(i) ENDIF ENDIF cIM 091204 END cAM Nveau cde ref 2m => cAM therm(i) = sqrt( b1*(1.+2.*RETV*q(i,1))*t_star**2 cAM + + (RETV*T(i,1))**2*b2*q_star**2 cAM + + 2.*RETV*T(i,1)*b212*q_star*t_star cAM + ) cIM 091204 BEG a1=b1*(1.+2.*RETV*qT_th(i))*t_star**2 a2=(RETV*Th_th(i))**2*b2*q_star**2 a3=2.*RETV*Th_th(i)*b212*q_star*t_star aa=a1+a2+a3 IF(1.EQ.0) THEN IF (aa.LT.0.) THEN print*,'i a1 a2 a3 aa',i,a1,a2,a3,aa print*,'i qT_th Th_th t_star q_star RETV b1 b2 b212', $ i,qT_th(i),Th_th(i),t_star,q_star,RETV,b1,b2,b212 ENDIF ENDIF cIM 091204 END therm(i) = sqrt( b1*(1.+2.*RETV*qT_th(i))*t_star**2 + + (RETV*Th_th(i))**2*b2*q_star**2 cIM 101204 + + 2.*RETV*Th_th(i)*b212*q_star*t_star + + max(0.,2.*RETV*Th_th(i)*b212*q_star*t_star) + ) c c Theta et qT du thermique (forme H&B) avec exces c (attention, on ajoute therm(i) qui est virtuelle ...) c pourquoi pas sqrt(b1)*t_star ? c dqs = b2sr*kqfs(i)/wm(i) qT_th(i) = qT_th(i) + b2sr*q_star cnew on differre le calcul de Theta_e c The_th(i) = The_th(i) + therm(i) + RLvCp*qT_th(i) c ou: The_th(i) = The_th(i) + sqrt(b1)*khfs(i)/wm(i) + RLvCp*qT_th(i) rhino(i,1) = 0.0 ENDIF ENDDO C c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C ++ Improve pblh estimate for unstable conditions using the +++++++ C ++ convective temperature excess : +++++++ c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C DO k = 2, isommet DO i = 1, knon IF (check(i)) THEN ctest zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 zdu2 = u(i,k)**2+v(i,k)**2 zdu2 = max(zdu2,1.0e-20) c Theta_v environnement zthvd=t(i,k)/s(i,k)*(1.+RETV*q(i,k)) c c et therm Theta_v (avec hypothese de constance de H&B, c zthvu=(t(i,1)+therm(i))/s(i,1)*(1.+RETV*q(i,1)) zthvu = Th_th(i)*(1.+RETV*qT_th(i)) + therm(i) c c Le Ri par Theta_v cAM Niveau de ref 2m cAM rhino(i,k) = (z(i,k)-z(i,1))*RG*(zthvd-zthvu) cAM . /(zdu2*0.5*(zthvd+zthvu)) rhino(i,k) = (z(i,k)-zref)*RG*(zthvd-zthvu) . /(zdu2*0.5*(zthvd+zthvu)) c c IF (rhino(i,k).GE.ricr) THEN pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * . (ricr-rhino(i,k-1))/(rhino(i,k-1)-rhino(i,k)) c test04 pblh(i) = pblh(i) + 100. pblT(i) = t(i,k-1) + (t(i,k)-t(i,k-1)) * . (pblh(i)-z(i,k-1))/(z(i,k)-z(i,k-1)) check(i) = .FALSE. cIM 170305 BEG IF(1.EQ.0) THEN c debug print -120;34 -34- 58 et 0;26 wamp if (i.eq.950.or.i.eq.192.or.i.eq.624.or.i.eq.118) then print*,' i,Th_th,Therm,qT :',i,Th_th(i),therm(i),qT_th(i) q_star = kqfs(i)/wm(i) t_star = khfs(i)/wm(i) print*,'q* t*, b1,b2,b212 ',q_star,t_star - , b1*(1.+2.*RETV*qT_th(i))*t_star**2 - , (RETV*Th_th(i))**2*b2*q_star**2 - , 2.*RETV*Th_th(i)*b212*q_star*t_star print*,'zdu2 ,100.*ustar(i)**2',zdu2 ,fac*ustar(i)**2 endif ENDIF !(1.EQ.0) THEN cIM 170305 END c q_star = kqfs(i)/wm(i) c t_star = khfs(i)/wm(i) c trmb1(i) = b1*(1.+2.*RETV*q(i,1))*t_star**2 c trmb2(i) = (RETV*T(i,1))**2*b2*q_star**2 c Omega now trmb3(i) = 2.*RETV*T(i,1)*b212*q_star*t_star ENDIF ENDIF ENDDO ENDDO C C Set pbl height to maximum value where computation exceeds number of C layers allowed C DO i = 1, knon if (check(i)) pblh(i) = z(i,isommet) ENDDO C C PBL height must be greater than some minimum mechanical mixing depth C Several investigators have proposed minimum mechanical mixing depth C relationships as a function of the local friction velocity, u*. We C make use of a linear relationship of the form h = c u* where c=700. C The scaling arguments that give rise to this relationship most often C represent the coefficient c as some constant over the local coriolis C parameter. Here we make use of the experimental results of Koracin C and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f C where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid C latitude value for f so that c = 0.07/f = 700. C DO i = 1, knon pblmin = 700.0*ustar(i) pblh(i) = MAX(pblh(i),pblmin) c par exemple : pblT(i) = t(i,2) + (t(i,3)-t(i,2)) * . (pblh(i)-z(i,2))/(z(i,3)-z(i,2)) ENDDO C ******************************************************************** C pblh is now available; do preparation for diffusivity calculation : C ******************************************************************** DO i = 1, knon check(i) = .TRUE. Zsat(i) = .FALSE. c omegafl utilise pour prolongement CAPE omegafl(i) = .FALSE. Cape(i) = 0. Kape(i) = 0. EauLiq(i) = 0. CTEI(i) = 0. pblk(i) = 0.0 fak1(i) = ustar(i)*pblh(i)*vk C C Do additional preparation for unstable cases only, set temperature C and moisture perturbations depending on stability. C *** Rq: les formule sont prises dans leur forme CS *** IF (unstbl(i)) THEN cAM Niveau de ref du thermique cAM zxt=(t(i,1)-z(i,1)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) cAM . *(1.+RETV*q(i,1)) zxt=(Th_th(i)-zref*0.5*RG/RCPD/(1.+RVTMP2*qT_th(i))) . *(1.+RETV*qT_th(i)) phiminv(i) = (1. - binm*pblh(i)/obklen(i))**onet phihinv(i) = sqrt(1. - binh*pblh(i)/obklen(i)) wm(i) = ustar(i)*phiminv(i) fak2(i) = wm(i)*pblh(i)*vk wstr(i) = (heatv(i)*RG*pblh(i)/zxt)**onet fak3(i) = fakn*wstr(i)/wm(i) ENDIF c Computes Theta_e for thermal (all cases : to be modified) c attention ajout therm(i) = virtuelle The_th(i) = Th_th(i) + therm(i) + RLvCp*qT_th(i) c ou: The_th(i) = Th_th(i) + sqrt(b1)*khfs(i)/wm(i) + RLvCp*qT_th(i) ENDDO C Main level loop to compute the diffusivities and C counter-gradient terms: C DO 1000 k = 2, isommet C C Find levels within boundary layer: C DO i = 1, knon unslev(i) = .FALSE. stblev(i) = .FALSE. zm(i) = z(i,k-1) zp(i) = z(i,k) IF (zkmin.EQ.0.0 .AND. zp(i).GT.pblh(i)) zp(i) = pblh(i) IF (zm(i) .LT. pblh(i)) THEN zmzp = 0.5*(zm(i) + zp(i)) C debug c if (i.EQ.1864) then c print*,'i,pblh(1864),obklen(1864)',i,pblh(i),obklen(i) c endif zh(i) = zmzp/pblh(i) zl(i) = zmzp/obklen(i) zzh(i) = 0. IF (zh(i).LE.1.0) zzh(i) = (1. - zh(i))**2 C C stblev for points zm < plbh and stable and neutral C unslev for points zm < plbh and unstable C IF (unstbl(i)) THEN unslev(i) = .TRUE. ELSE stblev(i) = .TRUE. ENDIF ENDIF ENDDO c print*,'fin calcul niveaux' C C Stable and neutral points; set diffusivities; counter-gradient C terms zero for stable case: C DO i = 1, knon IF (stblev(i)) THEN IF (zl(i).LE.1.) THEN pblk(i) = fak1(i)*zh(i)*zzh(i)/(1. + betas*zl(i)) ELSE pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas + zl(i)) ENDIF c pcfm(i,k) = pblk(i) c pcfh(i,k) = pcfm(i,k) ENDIF ENDDO C C unssrf, unstable within surface layer of pbl C unsout, unstable within outer layer of pbl C DO i = 1, knon unssrf(i) = .FALSE. unsout(i) = .FALSE. IF (unslev(i)) THEN IF (zh(i).lt.sffrac) THEN unssrf(i) = .TRUE. ELSE unsout(i) = .TRUE. ENDIF ENDIF ENDDO C C Unstable for surface layer; counter-gradient terms zero C DO i = 1, knon IF (unssrf(i)) THEN term = (1. - betam*zl(i))**onet pblk(i) = fak1(i)*zh(i)*zzh(i)*term pr(i) = term/sqrt(1. - betah*zl(i)) ENDIF ENDDO c print*,'fin counter-gradient terms zero' C C Unstable for outer layer; counter-gradient terms non-zero: C DO i = 1, knon IF (unsout(i)) THEN pblk(i) = fak2(i)*zh(i)*zzh(i) c cgs(i,k) = fak3(i)/(pblh(i)*wm(i)) c cgh(i,k) = khfs(i)*cgs(i,k) pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak c cgq(i,k) = kqfs(i)*cgs(i,k) ENDIF ENDDO c print*,'fin counter-gradient terms non zero' C C For all unstable layers, compute diffusivities and ctrgrad ter m C c DO i = 1, knon c IF (unslev(i)) THEN c pcfm(i,k) = pblk(i) c pcfh(i,k) = pblk(i)/pr(i) c etc cf original c ENDIF c ENDDO C C For all layers, compute integral info and CTEI C DO i = 1, knon if (check(i).or.omegafl(i)) then if (.not.Zsat(i)) then c Th2 = The_th(i) - RLvCp*qT_th(i) Th2 = Th_th(i) T2 = Th2*s(i,k) c thermodyn functions zdelta=MAX(0.,SIGN(1.,RTT-T2)) qqsat= r2es * FOEEW(T2,zdelta)/pplay(i,k) qqsat=MIN(0.5,qqsat) zcor=1./(1.-retv*qqsat) qqsat=qqsat*zcor c if (qqsat.lt.qT_th(i)) then c on calcule lcl if (k.eq.2) then plcl(i) = z(i,k) else plcl(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * . (qT_th(i)-qsatbef(i))/(qsatbef(i)-qqsat) endif Zsat(i) = .true. Tbef(i) = T2 endif c endif qsatbef(i) = qqsat camn ???? cette ligne a deja ete faite normalement ? endif c print*,'hbtm2 i,k=',i,k ENDDO 1000 continue ! end of level loop cIM 170305 BEG IF(1.EQ.0) THEN print*,'hbtm2 ok' ENDIF !(1.EQ.0) THEN cIM 170305 END RETURN END