Changeset 5041
- Timestamp:
- Jul 10, 2024, 2:57:53 PM (4 months ago)
- Location:
- LMDZ6/branches/cirrus/libf/phylmd
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
LMDZ6/branches/cirrus/libf/phylmd/lmdz_lscp_condensation.F90
r4974 r5041 121 121 USE lmdz_lscp_ini, ONLY: lunout 122 122 123 USE lmdz_lscp_ini, ONLY: mu_subl_pdf_lscp, beta_pdf_lscp, temp_thresh_pdf_lscp, &123 USE lmdz_lscp_ini, ONLY: capa_cond_cirrus, mu_subl_pdf_lscp, beta_pdf_lscp, temp_thresh_pdf_lscp, & 124 124 rhlmid_pdf_lscp, k0_pdf_lscp, kappa_pdf_lscp, rhl0_pdf_lscp, & 125 125 cond_thresh_pdf_lscp, coef_mixing_lscp, coef_shear_lscp, & … … 384 384 ! 385 385 !--The deposition equation is 386 !-- dmi/dt = alpha*4pi*C*Svi / ( R*T/esi/Mw/Dv + Ls/ka/T * (Ls*Mw/R/T - 1) ) 387 !--from Pruppacher and Klett (2010), where 386 !-- dmi/dt = alpha*4pi*C*Svi / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) 387 !--from Lohmann et al. (2016), where 388 !--alpha is the deposition coefficient [-] 388 389 !--mi is the mass of one ice crystal [kg] 389 390 !--C is the capacitance of an ice crystal [m] 390 391 !--Svi is the supersaturation ratio equal to (qvc - qsat)/qsat [-] 391 !--R is the perfect gas constant [J/mol/K]392 !--R_v is the specific gas constant for humid air [J/kg/K] 392 393 !--T is the temperature [K] 393 394 !--esi is the saturation pressure w.r.t. ice [Pa] 394 !--Mw is the molar mass of water [kg/mol]395 395 !--Dv is the diffusivity of water vapor [m2/s] 396 396 !--Ls is the specific latent heat of sublimation [J/kg/K] 397 397 !--ka is the thermal conductivity of dry air [J/m/s/K] 398 398 ! 399 !--We fix alpha = 0.5 following Lohmann et al. (2016) 400 !--The capacitance of the ice crystals is proportional to a parameter capa_cond_cirrus 401 !-- C = capa_cond_cirrus * r_ice 402 ! 399 403 !--We have qice = Nice * mi, where Nice is the ice crystal 400 404 !--number concentration per kg of moist air 401 405 !--HYPOTHESIS 1: the ice crystals are spherical, therefore 402 !-- C = r_ice403 406 !-- mi = 4/3 * pi * r_ice**3 * rho_ice 404 407 !--HYPOTHESIS 2: the ice crystals are monodisperse with the … … 416 419 ! 417 420 !--The deposition equation then reads: 418 !-- dqi/dt = alpha*4pi* r_ice*(qvc-qsat)/qsat / ( R*T/esi/Mw/Dv + Ls/ka/T * (Ls*Mw/R/T - 1) ) * Nice419 !-- dqi/dt = alpha*4pi* (qi / qi_0)**(1/3) *r_ice_0*(qvc-qsat)/qsat &421 !-- dqi/dt = alpha*4pi*capa_cond_cirrus*r_ice*(qvc-qsat)/qsat / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) * Nice 422 !-- dqi/dt = alpha*4pi*capa_cond_cirrus* (qi / qi_0)**(1/3) *r_ice_0*(qvc-qsat)/qsat & 420 423 !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls*R_v/T - 1) ) & 421 424 !-- * qi_0 / ( 4/3 RPI r_ice_0**3 rho_ice ) 422 425 !-- dqi/dt = qi**(1/3) * (qvc - qsat) * qi_0**(2/3) & 423 !-- *alpha/qsat / (R_v*T/esi/Dv + Ls/ka/T*(Ls*R_v/T - 1)) / ( 1/3 r_ice_0**2 rho_ice )426 !-- *alpha/qsat*capa_cond_cirrus/ (R_v*T/esi/Dv + Ls/ka/T*(Ls*R_v/T - 1)) / ( 1/3 r_ice_0**2 rho_ice ) 424 427 !--and we have 425 428 !-- dqvc/dt = - qi**(1/3) * (qvc - qsat) / kappa * qi_0**(2/3) / r_ice_0**2 426 429 !-- dqi/dt = qi**(1/3) * (qvc - qsat) / kappa * qi_0**(2/3) / r_ice_0**2 427 !--where kappa = (2/3*rho_ice)*qsat*(R_v*T/esi/Dv + Ls/ka/T*(Ls/R_v/T - 1)) 430 !--where kappa = (2/3*rho_ice)/capa_cond_cirrus*qsat*(R_v*T/esi/Dv + Ls/ka/T*(Ls/R_v/T - 1)) 431 !--having replaced alpha = 0.5 in the formula 428 432 ! 429 433 !--This system of equations can be resolved with an exact … … 440 444 !--This formula for water vapor diffusivity comes from Hall and Pruppacher (1976) 441 445 water_vapor_diff = 0.211 * ( temp(i) / RTT )**1.94 * ( 101325. / pplay(i) ) * 1.e-4 442 kappa = 2. / 3. * rho_ice * qsat(i) &446 kappa = 2. / 3. * rho_ice / capa_cond_cirrus * qsat(i) & 443 447 * ( RV * temp(i) / water_vapor_diff / pres_sat & 444 448 + RLSTT / air_thermal_conduct / temp(i) * ( RLSTT / RV / temp(i) - 1. ) ) 449 !--NB. the greater kappa, the lower the efficiency of the deposition/sublimation process 445 450 ENDIF 446 451 -
LMDZ6/branches/cirrus/libf/phylmd/lmdz_lscp_ini.F90
r5025 r5041 154 154 INTEGER, SAVE, PROTECTED :: iflag_cloud_sublim_pdf=3 ! iflag for the distribution of water inside ice clouds 155 155 !$OMP THREADPRIVATE(iflag_cloud_sublim_pdf) 156 157 REAL, SAVE, PROTECTED :: capa_cond_cirrus=1. ! [-] capacitance factor for growth/sublimation of ice crystals in cirrus clouds 158 !$OMP THREADPRIVATE(capa_cond_cirrus) 156 159 157 160 REAL, SAVE, PROTECTED :: mu_subl_pdf_lscp=1./3. ! [-] shape factor of the gamma distribution of water inside ice clouds … … 389 392 CALL getin_p('ok_weibull_warm_clouds',ok_weibull_warm_clouds) 390 393 CALL getin_p('iflag_cloud_sublim_pdf',iflag_cloud_sublim_pdf) 394 CALL getin_p('capa_cond_cirrus',capa_cond_cirrus) 391 395 CALL getin_p('mu_subl_pdf_lscp',mu_subl_pdf_lscp) 392 396 CALL getin_p('beta_pdf_lscp',beta_pdf_lscp) … … 463 467 WRITE(lunout,*) 'lscp_ini, ok_weibull_warm_clouds:', ok_weibull_warm_clouds 464 468 WRITE(lunout,*) 'lscp_ini, iflag_cloud_sublim_pdf:', iflag_cloud_sublim_pdf 469 WRITE(lunout,*) 'lscp_ini, capa_cond_cirrus:', capa_cond_cirrus 465 470 WRITE(lunout,*) 'lscp_ini, mu_subl_pdf_lscp:', mu_subl_pdf_lscp 466 471 WRITE(lunout,*) 'lscp_ini, beta_pdf_lscp:', beta_pdf_lscp
Note: See TracChangeset
for help on using the changeset viewer.