Changeset 3009 for LMDZ6/trunk
- Timestamp:
- Oct 9, 2017, 9:52:45 AM (7 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
LMDZ6/trunk/DefLists/CMIP6_ping_atmos.xml
r2998 r3009 42 42 <field id="CMIP6_cfadLidarsr532" field_ref="cfad_lidarsr532" /> <!-- P1 (1.0) histogram_of_backscattering_ratio_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadLidarsr532 is defined as the simulated relative frequency of lidar scattering ratio in sampling volumes defined by altitude bins. The lidar is observing at a wavelength of 532nm. --> 43 43 <field id="CMIP6_cfc113global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_cfc113_in_air : unset --> 44 <field id="CMIP6_cfc11global" field_ref=" dummy_0d"/> <!-- P1 (1e-12) mole_fraction_of_cfc11_in_air : unset -->45 <field id="CMIP6_cfc12global" field_ref=" dummy_0d"/> <!-- P1 (1e-12) mole_fraction_of_cfc12_in_air : unset -->44 <field id="CMIP6_cfc11global" field_ref="CFC11_ppt" /> <!-- P1 (1e-12) mole_fraction_of_cfc11_in_air : unset --> 45 <field id="CMIP6_cfc12global" field_ref="CFC12_ppt" /> <!-- P1 (1e-12) mole_fraction_of_cfc12_in_air : unset --> 46 46 <field id="CMIP6_ch4" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_methane_in_air : CH4 volume mixing ratio --> 47 <field id="CMIP6_ch4global" field_ref=" dummy_0d"/> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 -->47 <field id="CMIP6_ch4global" field_ref="CH4_ppb" /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 --> 48 48 <field id="CMIP6_ci" field_ref="ftime_con" /> <!-- P1 (1.0) convection_time_fraction : Fraction of time that convection occurs in the grid cell. --> 49 49 <field id="CMIP6_cl" field_ref="rneb" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover, including both large-scale and convective cloud. --> … … 56 56 <field id="CMIP6_cldnci" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_ice_crystals_in_air_at_ice_cloud_top : Concentration 'as seen from space' over ice-cloud portion of grid cell. This is the value from uppermost model layer with ice cloud or, if available, it is the sum over all ice cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total ice cloud top fraction (as seen from TOA) of each time sample when computing monthly mean. --> 57 57 <field id="CMIP6_cldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_cloud_liquid_water_particles_in_air_at_liquid_water_cloud_top : Droplets are liquid only. Report concentration 'as seen from space' over liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> 58 <field id="CMIP6_cldnvi" field_ref=" dummy_XY"/> <!-- P1 (m-2) atmosphere_number_content_of_cloud_droplets : Droplets are liquid only. Values are weighted by liquid cloud fraction in each layer when vertically integrating, and for monthly means the samples are weighted by total liquid cloud fraction (as seen from TOA). -->58 <field id="CMIP6_cldnvi" field_ref="cldnvi" /> <!-- P1 (m-2) atmosphere_number_content_of_cloud_droplets : Droplets are liquid only. Values are weighted by liquid cloud fraction in each layer when vertically integrating, and for monthly means the samples are weighted by total liquid cloud fraction (as seen from TOA). --> 59 59 <field id="CMIP6_cldwatmxrat" field_ref="dummy_XYA" /> <!-- P2 (1.0) cloud_liquid_water_mixing_ratio : Cloud water mixing ratio --> 60 60 <field id="CMIP6_clhcalipso" field_ref="pclhcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 220hPa --> … … 109 109 <field id="CMIP6_h2o" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_water_in_air : includes all phases of water --> 110 110 <field id="CMIP6_hcfc22global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_hcfc22_in_air : unset --> 111 <field id="CMIP6_hfdsl" field_ref=" dummy_XY" /> <!-- P1 (W m-2) surface_downward_heat_flux_in_air : Downward Heat Flux at Land Surface -->111 <field id="CMIP6_hfdsl" field_ref="bils"> bils*fract_ter </field> <!-- P1 (W m-2) surface_downward_heat_flux_in_air : Downward Heat Flux at Land Surface --> 112 112 <field id="CMIP6_hfdsnb" field_ref="dummy_XY" /> <!-- P1 (W m-2) missing : Heat flux from snow into the ice or land under the snow. --> 113 113 <field id="CMIP6_hfls" field_ref="flat" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux --> … … 119 119 <field id="CMIP6_hurs" field_ref="rh2m" /> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. --> 120 120 <field id="CMIP6_hursmax" field_ref="CMIP6_hurs" freq_op="1d" operation="maximum"> @this </field> <!-- P1 (%) relative_humidity : Daily Maximum Near-Surface Relative Humidity --> 121 <field id="CMIP6_hursmin" field_ref=" dummy_XY" /><!-- P1 (%) relative_humidity : Daily Minimum Near-Surface Relative Humidity -->121 <field id="CMIP6_hursmin" field_ref="CMIP6_hurs" freq_op="1d" operation="minimum"> @this </field> <!-- P1 (%) relative_humidity : Daily Minimum Near-Surface Relative Humidity --> 122 122 <field id="CMIP6_hursminCrop" field_ref="dummy_XY" /> <!-- P1 (%) relative_humidity : minimum near-surface (usually, 2 meter) relative humidity (add cell_method attribute "time: min") --> 123 123 <field id="CMIP6_hus" field_ref="ovap" /> <!-- P1 (1.0) specific_humidity : Specific Humidity --> 124 124 <field id="CMIP6_huss" field_ref="q2m" /> <!-- P1 (1.0) specific_humidity : Near-surface (usually, 2 meter) specific humidity. --> 125 <field id="CMIP6_iareafl" field_ref=" dummy_0d" /> <!-- P3 (m2) floating_ice_shelf_area : Total area of the floating ice shelves (the component of ice sheet that flows over ocean) -->126 <field id="CMIP6_iareagr" field_ref=" dummy_0d" /> <!-- P3 (m2) grounded_ice_sheet_area : Total area of the grounded ice sheets (the component of ice sheet resting over bedrock) -->125 <field id="CMIP6_iareafl" field_ref="fract_sic" >fract_sic*aire </field> <!-- P3 (m2) floating_ice_shelf_area : Total area of the floating ice shelves (the component of ice sheet that flows over ocean) --> 126 <field id="CMIP6_iareagr" field_ref="fract_lic" >fract_lic*aire </field> <!-- P3 (m2) grounded_ice_sheet_area : Total area of the grounded ice sheets (the component of ice sheet resting over bedrock) --> 127 127 <field id="CMIP6_intuadse" field_ref="dummy_XY" /> <!-- P1 (1.e6 J m-1 s-1) vertical_integral_eastward_wind_by_dry_static_energy : Mass weighted vertical integral of the product of northward wind by dry static energy per unit mass: (cp.T +zg).u --> 128 128 <field id="CMIP6_intuaw" field_ref="dummy_XY" /> <!-- P1 (kg m-1 s-1) vertical_integral_eastward_wind_by_total_water : Used in PMIP2 --> … … 133 133 <field id="CMIP6_jpdftaureicemodis" field_ref="crimodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, ice --> 134 134 <field id="CMIP6_jpdftaureliqmodis" field_ref="crlmodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, liquid --> 135 <field id="CMIP6_latitude" field_ref=" dummy_XY"/> <!-- P1 (degrees_north) latitude : latitude -->135 <field id="CMIP6_latitude" field_ref="lat" /> <!-- P1 (degrees_north) latitude : latitude --> 136 136 <field id="CMIP6_lim" field_ref="dummy_0d" /> <!-- P2 (kg) land_ice_mass : The ice sheet mass is computed as the volume times density --> 137 137 <field id="CMIP6_limnsw" field_ref="dummy_0d" /> <!-- P2 (kg) land_ice_mass_not_displacing_sea_water : The ice sheet mass is computed as the volume above flotation times density. Changes in land_ice_mass_not_displacing_sea_water will always result in a change in sea level, unlike changes in land_ice_mass which may not result in sea level change (such as melting of the floating ice shelves, or portion of ice that sits on bedrock below sea level) --> … … 145 145 <field id="CMIP6_loadsoa" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_secondary_particulate_organic_matter_dry_aerosol : unset --> 146 146 <field id="CMIP6_loadss" field_ref="loadss" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_seasalt_dry_aerosol : unset --> 147 <field id="CMIP6_longitude" field_ref=" dummy_XY"/> <!-- P1 (degrees_east) longitude : Longitude -->147 <field id="CMIP6_longitude" field_ref="lon" /> <!-- P1 (degrees_east) longitude : Longitude --> 148 148 <field id="CMIP6_lwsffluxaero" field_ref="dummy_XY" /> <!-- P2 (W m-2) longwave__flux__due_to_volcanic_aerosols_at_the_surface : downwelling longwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call --> 149 149 <field id="CMIP6_lwsrfasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) tendency_of_all_sky_surface_longwave_flux_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> … … 157 157 <field id="CMIP6_mcu" field_ref="dummy_XYA" /> <!-- P1 (kg m-2 s-1) atmosphere_updraft_convective_mass_flux : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_methods should specify whether the average is over all the area or the area of updrafts only. --> 158 158 <field id="CMIP6_md" field_ref="dummy_XYA" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_dust_dry_aerosol_particles_due_to_emission : Balkanski - LSCE --> 159 <field id="CMIP6_mmraerso4" field_ref="concso4 /(pres/RD/ta)" /><!-- P1 (kg kg-1) mass_fraction_of_sulfate_dry_aerosol_in_air : Aerosol Sulfate Mass Mixing Ratio -->159 <field id="CMIP6_mmraerso4" field_ref="concso4"> concso4/(pres/287.04/ta) </field><!-- P1 (kg kg-1) mass_fraction_of_sulfate_dry_aerosol_in_air : Aerosol Sulfate Mass Mixing Ratio --> 160 160 <field id="CMIP6_mrroLi" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) land_ice_runoff_flux : Runoff flux over land ice is the difference between any available liquid water in the snowpack less any refreezing. Computed as the sum of rainfall and melt of snow or ice less any refreezing or water retained in the snowpack --> 161 161 <field id="CMIP6_n2o" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_nitrous_oxide_in_air : N2O volume mixing ratio --> … … 174 174 <field id="CMIP6_prCrop" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases --> 175 175 <field id="CMIP6_prc" field_ref="pluc" /> <!-- P1 (kg m-2 s-1) convective_precipitation_flux : Convective precipitation at surface; includes both liquid and solid phases. --> 176 <field id="CMIP6_prcprof" field_ref=" dummy_XYA"/> <!-- P2 (kg m-2 s-1) convective_rainfall_flux : unset -->176 <field id="CMIP6_prcprof" field_ref="pr_con_l" /> <!-- P2 (kg m-2 s-1) convective_rainfall_flux : unset --> 177 177 <field id="CMIP6_prcsh" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) shallow_convective_precipitation_flux : Convection precipitation from shallow convection --> 178 <field id="CMIP6_prhmax" field_ref=" dummy_XY" /> <!-- P1 (kg m-2 s-1) precipitation_flux : Maximum Hourly Precipitation Rate -->179 <field id="CMIP6_prlsns" field_ref=" dummy_XYA"/> <!-- P2 (kg m-2 s-1) large_scale_snowfall_flux : large-scale precipitation of all forms of water in the solid phase. -->180 <field id="CMIP6_prlsprof" field_ref=" dummy_XYA"/> <!-- P2 (kg m-2 s-1) large_scale_rainfall_flux : unset -->178 <field id="CMIP6_prhmax" field_ref="precip" freq_op="1h" operation="maximum" > @this </field> <!-- P1 (kg m-2 s-1) precipitation_flux : Maximum Hourly Precipitation Rate --> 179 <field id="CMIP6_prlsns" field_ref="snowl" /> <!-- P2 (kg m-2 s-1) large_scale_snowfall_flux : large-scale precipitation of all forms of water in the solid phase. --> 180 <field id="CMIP6_prlsprof" field_ref="plul" /> <!-- P2 (kg m-2 s-1) large_scale_rainfall_flux : unset --> 181 181 <field id="CMIP6_prra" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate --> 182 <field id="CMIP6_prrc" field_ref=" dummy_XY"/> <!-- P1 (kg m-2 s-1) convective_rainfall_flux : Convective Rainfall rate -->182 <field id="CMIP6_prrc" field_ref="pluc" /> <!-- P1 (kg m-2 s-1) convective_rainfall_flux : Convective Rainfall rate --> 183 183 <field id="CMIP6_prrsn" field_ref="dummy_XY" /> <!-- P1 (1) mass_fraction_of_rainfall_onto_snow : The fraction of the grid averaged rainfall which falls on the snow pack --> 184 184 <field id="CMIP6_prsn" field_ref="snow" /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase --> … … 282 282 <field id="CMIP6_tas" field_ref="t2m" /> <!-- P1 (K) air_temperature : near-surface (usually, 2 meter) air temperature --> 283 283 <field id="CMIP6_tasmax" field_ref="CMIP6_tas" freq_op="1d" operation="maximum"> @this </field> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") --> 284 <field id="CMIP6_tasmaxCrop" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") --> 285 <field id="CMIP6_tasmin" field_ref="CMIP6_tas" freq_op="1d" operation="minimum"> @this </field> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 286 <field id="CMIP6_tasminCrop" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 287 <field id="CMIP6_tau" field_ref="dummy_XY" /> <!-- P1 (N m-2) surface_downward_stress : module of the momentum lost by the atmosphere to the surface. --> 284 <field id="CMIP6_tasmin" field_ref="CMIP6_tas" freq_op="1d" operation="minimum"> @this </field> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 285 <field id="CMIP6_tau" field_ref="taux" > sqrt( taux^2 + tauy^2) </field> <!-- P1 (N m-2) surface_downward_stress : module of the momentum lost by the atmosphere to the surface. --> 288 286 <field id="CMIP6_tauu" field_ref="taux" /> <!-- P1 (Pa) surface_downward_eastward_stress : Downward eastward wind stress at the surface --> 289 287 <field id="CMIP6_tauupbl" field_ref="dummy_XY" /> <!-- P1 (Pa) surface_downward_eastward_stress_due_to_planetary_boundary_layer : The downward eastward stress associated with the models parameterization of the plantary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) --> … … 299 297 <field id="CMIP6_tnhusd" field_ref="dqvdf" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_diffusion : Tendency of specific humidity due to numerical diffusion.This includes any horizontal or vertical numerical moisture diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the moisture budget. --> 300 298 <field id="CMIP6_tnhusmp" field_ref="dqphy" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_model_physics : Tendency of specific humidity due to model physics. This includes sources and sinks from parametrized moist physics (e.g. convection, boundary layer, stratiform condensation/evaporation, etc.) and excludes sources and sinks from resolved dynamics or from horizontal or vertical numerical diffusion not associated with model physicsl. For example any diffusive mixing by the boundary layer scheme would be included. --> 301 <field id="CMIP6_tnhuspbl" field_ref="d ummy_XYA"/> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_boundary_layer_mixing : Includes all boundary layer terms including diffusive terms. -->302 <field id="CMIP6_tnhusscp" field_ref="d ummy_XYA"/> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_clouds_and_precipitation : Tendency of Specific Humidity Due to Stratiform Clouds and Precipitation -->299 <field id="CMIP6_tnhuspbl" field_ref="dqvdf" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_boundary_layer_mixing : Includes all boundary layer terms including diffusive terms. --> 300 <field id="CMIP6_tnhusscp" field_ref="dqlscst" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_clouds_and_precipitation : Tendency of Specific Humidity Due to Stratiform Clouds and Precipitation --> 303 301 <field id="CMIP6_tnhusscpbl" field_ref="tnhusscpbl" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Specific Humidity Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate budget terms for stratiform cloud, precipitation and boundary layer schemes. Includes all bounday layer terms including and diffusive terms.) --> 304 302 <field id="CMIP6_tnt" field_ref="tnt" /> <!-- P1 (K s-1) tendency_of_air_temperature : Tendency of Air Temperature --> … … 308 306 <field id="CMIP6_tntmp" field_ref="dtphy" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. --> 309 307 <field id="CMIP6_tntnogw" field_ref="dummy_XYA" /> <!-- P2 (K s-1) temperature_tendency_due_to_dissipation_nonorographic_gravity_wave_drag : Temperature tendency due to dissipation of parameterized nonorographic gravity waves. --> 310 <field id="CMIP6_tntogw" field_ref="d ummy_XYA"/> <!-- P2 (K s-1) temperature_tendency_due_to_dissipation_orographic_gravity_wave_drag : Temperature tendency due to dissipation of parameterized orographic gravity waves. -->311 <field id="CMIP6_tntpbl" field_ref="d ummy_XYA"/> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_boundary_layer_mixing : Includes all boundary layer terms including diffusive terms. -->308 <field id="CMIP6_tntogw" field_ref="dtoro" /> <!-- P2 (K s-1) temperature_tendency_due_to_dissipation_orographic_gravity_wave_drag : Temperature tendency due to dissipation of parameterized orographic gravity waves. --> 309 <field id="CMIP6_tntpbl" field_ref="dtvdf" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_boundary_layer_mixing : Includes all boundary layer terms including diffusive terms. --> 312 310 <field id="CMIP6_tntr" field_ref="tntr" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating --> 313 <field id="CMIP6_tntrlcs" field_ref="d ummy_XYA"/> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Longwave Radiative Heating -->314 <field id="CMIP6_tntrscs" field_ref="d ummy_XYA"/> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_shortwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Shortwave Radiative Heating -->311 <field id="CMIP6_tntrlcs" field_ref="dtlw0" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Longwave Radiative Heating --> 312 <field id="CMIP6_tntrscs" field_ref="dtsw0" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_shortwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Shortwave Radiative Heating --> 315 313 <field id="CMIP6_tntscp" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_stratiform_clouds_and_precipitation : Tendency of Air Temperature Due to Stratiform Clouds and Precipitation --> 316 <field id="CMIP6_tntscpbl" field_ref=" dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Air Temperature Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate cloud, precipitation and boundary layer terms. Includes all boundary layer terms including diffusive ones.) -->314 <field id="CMIP6_tntscpbl" field_ref="tntscpbl" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Air Temperature Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate cloud, precipitation and boundary layer terms. Includes all boundary layer terms including diffusive ones.) --> 317 315 <field id="CMIP6_tr" field_ref="dummy_XY" /> <!-- P1 (K) surface_temperature : Effective radiative surface temperature, averaged over the grid cell --> 318 316 <field id="CMIP6_ts" field_ref="tsol" /> <!-- P1 (K) surface_temperature : Temperature of the lower boundary of the atmosphere --> 319 317 <field id="CMIP6_tsns" field_ref="dummy_XY" /> <!-- P1 (K) surface_temperature : Temperature of the snow surface as it interacts with the atmosphere, averaged over a grid cell. --> 320 <field id="CMIP6_twap" field_ref=" dummy_XYA" /> <!-- P2 (K Pa s-1) product_of_omega_and_air_temperature : Product of air temperature and pressure tendency -->321 <field id="CMIP6_u2" field_ref=" dummy_XYA" /> <!-- P2 (m2 s-2) square_of_eastward_wind : u*u -->318 <field id="CMIP6_twap" field_ref="omega">vitw*temp </field> <!-- P2 (K Pa s-1) product_of_omega_and_air_temperature : Product of air temperature and pressure tendency --> 319 <field id="CMIP6_u2" field_ref="vitu" > vitu*vitu</field> <!-- P2 (m2 s-2) square_of_eastward_wind : u*u --> 322 320 <field id="CMIP6_ua" field_ref="vitu" /> <!-- P1 (m s-1) eastward_wind : Eastward Wind --> 323 321 <field id="CMIP6_uas" field_ref="u10m" /> <!-- P1 (m s-1) eastward_wind : Eastward component of the near-surface (usually, 10 meters) wind --> 324 322 <field id="CMIP6_uqint" field_ref="dummy_XY" /> <!-- P1 (m2 s-1) integral_of_product_of_eastward_wind_and_specific_humidity_wrt_height : Column integrated eastward wind times specific humidity --> 325 <field id="CMIP6_ut" field_ref=" dummy_XYA" /> <!-- P2 (K m s-1) product_of_eastward_wind_and_air_temperature : Product of air temperature and eastward wind -->323 <field id="CMIP6_ut" field_ref="vitu" > vitu*temp </field> <!-- P2 (K m s-1) product_of_eastward_wind_and_air_temperature : Product of air temperature and eastward wind --> 326 324 <field id="CMIP6_utendepfd" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_eliassen_palm_flux_divergence : Tendency of the zonal mean zonal wind due to the divergence of the Eliassen-Palm flux. --> 327 325 <field id="CMIP6_utendnogw" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the eastward wind by parameterized nonorographic gravity waves. --> … … 329 327 <field id="CMIP6_utendvtem" field_ref="dummy_XYA" /> <!-- P1 (m s-1 d-1) u-tendency_by_wstar_advection : Tendency of zonally averaged eastward wind, by the residual upward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. --> 330 328 <field id="CMIP6_utendwtem" field_ref="dummy_XYA" /> <!-- P1 (m s-1 d-1) u-tendency_by_vstar_advection : Tendency of zonally averaged eastward wind, by the residual northward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. --> 331 <field id="CMIP6_uv" field_ref=" dummy_XYA" /> <!-- P2 (m2 s-2) product_of_eastward_wind_and_northward_wind : u*v -->332 <field id="CMIP6_uwap" field_ref=" dummy_XYA" /> <!-- P2 (Pa m s-2) product_of_eastward_wind_and_omega : u*omega -->333 <field id="CMIP6_v2" field_ref=" dummy_XYA" /> <!-- P2 (m2 s-2) square_of_northward_wind : v*v -->329 <field id="CMIP6_uv" field_ref="vitu"> vitu*vitv </field> <!-- P2 (m2 s-2) product_of_eastward_wind_and_northward_wind : u*v --> 330 <field id="CMIP6_uwap" field_ref="vitu"> vitu*vitw </field> <!-- P2 (Pa m s-2) product_of_eastward_wind_and_omega : u*omega --> 331 <field id="CMIP6_v2" field_ref="vitv"> vitv*vitv </field> <!-- P2 (m2 s-2) square_of_northward_wind : v*v --> 334 332 <field id="CMIP6_va" field_ref="vitv" /> <!-- P1 (m s-1) northward_wind : Northward component of the wind at 850hPa --> 335 333 <field id="CMIP6_vas" field_ref="v10m" /> <!-- P1 (m s-1) northward_wind : Northward component of the near surface wind --> 336 334 <field id="CMIP6_vortmean" field_ref="dummy_XY" /> <!-- P1 (s-1) atmosphere_relative_vorticity : Mean vorticity over 850,700,600 hPa --> 337 335 <field id="CMIP6_vqint" field_ref="dummy_XY" /> <!-- P1 (m2 s-1) integral_of_product_of_northward_wind_and_specific_humidity_wrt_height : Column integrated northward wind times specific humidity --> 338 <field id="CMIP6_vt" field_ref=" dummy_XYA" /> <!-- P2 (K m s-1) product_of_northward_wind_and_air_temperature : Product of air temperature and northward wind -->336 <field id="CMIP6_vt" field_ref="vitv"> vitv*temp </field> <!-- P2 (K m s-1) product_of_northward_wind_and_air_temperature : Product of air temperature and northward wind --> 339 337 <field id="CMIP6_vtem" field_ref="dummy_XYA" /> <!-- P1 (m s-1) northward_transformed_eulerian_mean_air_velocity : Transformed Eulerian Mean Diagnostics v*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). --> 340 338 <field id="CMIP6_vtendnogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) tendency_of_northward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the northward wind by parameterized nonorographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 341 339 <field id="CMIP6_vtendogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) tendency_of_northward_wind_due_to_orographic_gravity_wave_drag : Tendency of the northward wind by parameterized orographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 342 <field id="CMIP6_vwap" field_ref=" dummy_XYA" /> <!-- P2 (Pa m s-2) product_of_northward_wind_and_omega : v*omega -->340 <field id="CMIP6_vwap" field_ref="vitv"> vitv*vitw </field> <!-- P2 (Pa m s-2) product_of_northward_wind_and_omega : v*omega --> 343 341 <field id="CMIP6_wap" field_ref="vitw" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 344 342 <field id="CMIP6_wap2" field_ref="dummy_XYA" /> <!-- P2 (Pa2 s-2) square_of_lagrangian_tendency_of_air_pressure : omega*omega --> 345 343 <field id="CMIP6_wbptemp" field_ref="dummy_XYA" /> <!-- P1 (K) wet_bulb_potential_temperature : Wet bulb potential temperature --> 346 344 <field id="CMIP6_wtem" field_ref="dummy_XYA" /> <!-- P1 (m s-1) unset : Transformed Eulerian Mean Diagnostics w*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). Scale height: 6950 m --> 347 <field id="CMIP6_xgwdparam" field_ref=" dummy_XYA"/> <!-- P2 (Pa) atmosphere_eastward_stress_due_to_gravity_wave_drag : Parameterised x-component of gravity wave drag -->348 <field id="CMIP6_ygwdparam" field_ref=" dummy_XYA" /> <!-- P2 (Pa) atmosphere_northward_stress_due_to_gravity_wave_drag : Parameterised y- component of gravity wave drag -->345 <field id="CMIP6_xgwdparam" field_ref="east_gwstress" /> <!-- P2 (Pa) atmosphere_eastward_stress_due_to_gravity_wave_drag : Parameterised x-component of gravity wave drag --> 346 <field id="CMIP6_ygwdparam" field_ref="west_gwstress" /> <!-- P2 (Pa) atmosphere_northward_stress_due_to_gravity_wave_drag : Parameterised y- component of gravity wave drag --> 349 347 <field id="CMIP6_zfull" field_ref="dummy_XYA" /> <!-- P2 (m) height_above_reference_ellipsoid : Altitude of Model Full-Levels --> 350 348 <field id="CMIP6_zg" field_ref="geop" /> <!-- P1 (m) geopotential_height : Geopotential height on the 1000 hPa surface --> … … 354 352 <field id="CMIP6_zmswaero" field_ref="dummy_XYA" /> <!-- P1 (K s-1) shortwave_heating_rate_due_to_volcanic_aerosols : shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> 355 353 <field id="CMIP6_zmtnt" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_diabatic_processes : The diabatic heating rates due to all the processes that may change potential temperature --> 356 <field id="CMIP6_ap" field_ref=" dummy_hyb" /><!-- One of the hybrid coordinate arrays -->357 <field id="CMIP6_ap_bnds" field_ref=" dummy_hyb" /><!-- One of the hybrid coordinate arrays -->358 <field id="CMIP6_b" field_ref=" dummy_hyb" /><!-- One of the hybrid coordinate arrays -->359 <field id="CMIP6_b_bnds" field_ref=" dummy_hyb" /><!-- One of the hybrid coordinate arrays -->354 <field id="CMIP6_ap" field_ref="Ahyb" /><!-- One of the hybrid coordinate arrays --> 355 <field id="CMIP6_ap_bnds" field_ref="Ahyb_inter" /><!-- One of the hybrid coordinate arrays --> 356 <field id="CMIP6_b" field_ref="Bhyb" /><!-- One of the hybrid coordinate arrays --> 357 <field id="CMIP6_b_bnds" field_ref="Bhyb_inter" /><!-- One of the hybrid coordinate arrays --> 360 358 </field_definition> 361 359 </context>
Note: See TracChangeset
for help on using the changeset viewer.