- Timestamp:
- Sep 12, 2017, 4:27:15 PM (7 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
LMDZ5/trunk/DefLists/CMIP6_ping_atmos.xml
r2926 r2985 1 1 <!-- $Id$ --> 2 <!-- Ping files generated by dr2xml 0.12 using Data Request 01.00.11 --> 3 <!-- lrealms= ['atmos'] --> 4 <!-- exact= False --> 2 5 <context id="atmos"> 3 6 <field_definition> … … 12 15 <field id="CMIP6_O18s" field_ref="dummy_XY" /> <!-- P1 () O18s : Roche - LSCE --> 13 16 <field id="CMIP6_O18wv" field_ref="dummy_XYA" /> <!-- P1 () O18wv : Roche - LSCE --> 14 <field id="CMIP6_albc" field_ref="dummy_XY" /> <!-- P1 (1.0) albc : Canopy Albedo --> 17 <field id="CMIP6_aerasymbnd" field_ref="dummy_XYA" /> <!-- P1 (1) aerasymbnd : Aerosol level asymmetry parameter for each band --> 18 <field id="CMIP6_aeroptbnd" field_ref="dummy_XYA" /> <!-- P1 (1) atmosphere_absorption_optical_thickness_due_to_ambient_aerosol_particles : Aerosol level extinction optical depth for each band --> 19 <field id="CMIP6_aerssabnd" field_ref="dummy_XYA" /> <!-- P1 (1) single_scattering_albedo_in_air_due_to_ambient_aerosol_particles : Aerosol level single-scattering albedo for each band --> 20 <field id="CMIP6_albdiffbnd" field_ref="dummy_XY" /> <!-- P1 (1.0) albdiffbnd : Diffuse surface albedo for each band --> 21 <field id="CMIP6_albdirbnd" field_ref="dummy_XY" /> <!-- P1 (1.0) albdirbnd : Direct surface albedo for each band --> 15 22 <field id="CMIP6_albisccp" field_ref="albisccp" /> <!-- P1 (1.0) cloud_albedo : ISCCP Mean Cloud Albedo. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html --> 16 <field id="CMIP6_albsn" field_ref="dummy_XY" /> <!-- P1 (1.0) albsn : Albedo of the snow-covered surface, averaged over the grid cell. -->17 23 <field id="CMIP6_aod550volso4" field_ref="dummy_XY" /> <!-- P1 (1e-09) aod550volso4 : aerosol optical depth at 550 nm due to stratospheric volcanic aerosols --> 18 <field id="CMIP6_areacella" field_ref="aire" /> <!-- P1 (m2) cell_area : For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy. --> 19 <field id="CMIP6_ares" field_ref="dummy_XY" /> <!-- P1 (s m-1) aerodynamic_resistance : Aerodynamic resistance --> 20 <field id="CMIP6_cLand" field_ref="dummy_XY" /> <!-- P1 (kg m-2) cLand : as specified by C4MIP --> 24 <field id="CMIP6_areacella" field_ref="aire" /> <!-- P1 (m2) cell_area : For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy. --> 21 25 <field id="CMIP6_ccb" field_ref="pbase" /> <!-- P1 (Pa) air_pressure_at_convective_cloud_base : Where convective cloud is present in the grid cell, the instantaneous cloud base altitude should be that of the bottom of the lowest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. --> 22 26 <field id="CMIP6_ccldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) ccldncl : Droplets are liquid only. Report concentration 'as seen from space' over convective liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> 23 27 <field id="CMIP6_cct" field_ref="ptop" /> <!-- P1 (Pa) air_pressure_at_convective_cloud_top : Where convective cloud is present in the grid cell, the instantaneous cloud top altitude should be that of the top of the highest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. --> 24 <field id="CMIP6_cfadDbze94" field_ref="cfadDbze94" 28 <field id="CMIP6_cfadDbze94" field_ref="cfadDbze94" /> <!-- P1 (1.0) histogram_of_equivalent_reflectivity_factor_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadDbze94 is defined as the simulated relative frequency of occurrence of radar reflectivity in sampling volumes defined by altitude bins. The radar is observing at a frequency of 94GHz. --> 25 29 <field id="CMIP6_cfadLidarsr532" field_ref="cfad_lidarsr532" /> <!-- P1 (1.0) histogram_of_backscattering_ratio_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadLidarsr532 is defined as the simulated relative frequency of lidar scattering ratio in sampling volumes defined by altitude bins. The lidar is observing at a wavelength of 532nm. --> 26 <field id="CMIP6_cfc113global" field_ref="dummy_0d"/> <!-- P1 (1e-12) mole_fraction_of_cfc113_in_air : unset -->27 <field id="CMIP6_cfc11global" field_ref="dummy_0d"/> <!-- P1 (1e-12) mole_fraction_of_cfc11_in_air : unset -->28 <field id="CMIP6_cfc12global" field_ref="dummy_0d" /><!-- P1 (1e-12) mole_fraction_of_cfc12_in_air : unset -->30 <field field_ref="dummy_na" id="CMIP6_cfc113global" /> <!-- P1 (1e-12) mole_fraction_of_cfc113_in_air : unset --> 31 <field field_ref="dummy_na" id="CMIP6_cfc11global" /> <!-- P1 (1e-12) mole_fraction_of_cfc11_in_air : unset --> 32 <field field_ref="dummy_na" id="CMIP6_cfc12global" /> <!-- P1 (1e-12) mole_fraction_of_cfc12_in_air : unset --> 29 33 <field id="CMIP6_ch4" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_methane_in_air : CH4 volume mixing ratio --> 30 34 <field id="CMIP6_ch4Clim" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_methane_in_air : CH4 volume mixing ratio --> 31 <field id="CMIP6_ch4global" field_ref="dummy_0d"/> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 -->35 <field field_ref="dummy_na" id="CMIP6_ch4global" /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 --> 32 36 <field id="CMIP6_ch4globalClim" field_ref="dummy_0d" /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 --> 33 37 <field id="CMIP6_ci" field_ref="ftime_con" /> <!-- P1 (1.0) convection_time_fraction : Fraction of time that convection occurs in the grid cell. --> 34 38 <field id="CMIP6_cl" field_ref="rneb" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover, including both large-scale and convective cloud. --> 35 <field id="CMIP6_clay Frac" field_ref="dummy_XY" /> <!-- P1 (1.0) clayFrac : Clay Fraction -->36 <field id="CMIP6_clc" field_ref="rnebcon" /> <!-- P1 (%) convective_cloud_area_fraction_in_atmosphere_layer : Include only convective cloud. -->39 <field id="CMIP6_clayfrac" field_ref="dummy_XYSo" /> <!-- P1 (1.0) clayfrac : Clay Fraction --> 40 <field id="CMIP6_clc" field_ref="rnebcon" /> <!-- P1 (%) convective_cloud_area_fraction_in_atmosphere_layer : Include only convective cloud. --> 37 41 <field id="CMIP6_clcalipso" field_ref="clcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover at CALIPSO standard heights. --> 38 <field id="CMIP6_clcalipso2" field_ref="clcalipso2" 39 <field id="CMIP6_clcalipsoice" field_ref="clcalipsoice" 40 <field id="CMIP6_clcalipsoliq" field_ref="clcalipsoice" 41 <field id="CMIP6_cldicemxrat27" field_ref="dummy_XYA" /> <!-- P 2(1.0) cloud_ice_mixing_ratio : Cloud ice mixing ratio -->42 <field id="CMIP6_clcalipso2" field_ref="clcalipso2" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Clouds detected by CALIPSO but below the detectability threshold of CloudSat --> 43 <field id="CMIP6_clcalipsoice" field_ref="clcalipsoice" /> <!-- P1 (%) ice_cloud_area_fraction_in_atmosphere_layer : CALIPSO ice cloud Fraction --> 44 <field id="CMIP6_clcalipsoliq" field_ref="clcalipsoice" /> <!-- P1 (%) clcalipsoliq : CALIPSO liquid cloud Fraction --> 45 <field id="CMIP6_cldicemxrat27" field_ref="dummy_XYA" /> <!-- P3 (1.0) cloud_ice_mixing_ratio : Cloud ice mixing ratio --> 42 46 <field id="CMIP6_cldnci" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_ice_crystals_in_air_at_ice_cloud_top : Concentration 'as seen from space' over ice-cloud portion of grid cell. This is the value from uppermost model layer with ice cloud or, if available, it is the sum over all ice cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total ice cloud top fraction (as seen from TOA) of each time sample when computing monthly mean. --> 43 47 <field id="CMIP6_cldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_cloud_liquid_water_particles_in_air_at_liquid_water_cloud_top : Droplets are liquid only. Report concentration 'as seen from space' over liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> … … 47 51 <field id="CMIP6_cli" field_ref="iwcon" /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_ice_in_air : Includes both large-scale and convective cloud. This is calculated as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. It includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 48 52 <field id="CMIP6_clic" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_ice_in_air : Calculated as the mass of convective cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 49 <field id="CMIP6_climodis" field_ref="climodis" /> <!-- P1 (%) ice_cloud_area_fraction : MODIS Ice Cloud Fraction-->53 <field id="CMIP6_climodis" field_ref="climodis" /> <!-- P1 (%) ice_cloud_area_fraction : MODIS Ice Cloud Area Percentage --> 50 54 <field id="CMIP6_clis" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_ice_in_air : Calculated as the mass of stratiform cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 51 <field id="CMIP6_clisccp" field_ref="clisccp2" /> <!-- P1 (%) isccp_cloud_area_fraction: Percentage cloud cover in optical depth categories. -->52 <field id="CMIP6_clivi" field_ref="iwp" /> <!-- P 1 (kg m-2) atmosphere_mass_content_of_cloud_ice : calculate mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affectthe calculation of radiative transfer in model. -->53 <field id="CMIP6_clivic" field_ref="dummy_XY" /> <!-- P1 (kg m-2 55 <field id="CMIP6_clisccp" field_ref="clisccp2" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in optical depth categories. --> 56 <field id="CMIP6_clivi" field_ref="iwp" /> <!-- P2 (kg m-2) atmosphere_cloud_ice_content : mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model. --> 57 <field id="CMIP6_clivic" field_ref="dummy_XY" /> <!-- P1 (kg m-2) clivic : calculate mass of convective ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 54 58 <field id="CMIP6_cllcalipso" field_ref="cllcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 840hPa --> 55 59 <field id="CMIP6_clmcalipso" field_ref="clmcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 560hPa --> 56 <field id="CMIP6_clmisr" field_ref="clMISR" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Cloud percentage in spectral bands and layers as observed by the Multi-angle Imaging SpectroRadiometer (MISR) instrument. -->60 <field id="CMIP6_clmisr" field_ref="clMISR" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Cloud percentage in spectral bands and layers as observed by the Multi-angle Imaging SpectroRadiometer (MISR) instrument. --> 57 61 <field id="CMIP6_cls" field_ref="dummy_XYA" /> <!-- P1 (%) stratiform_cloud_area_fraction_in_atmosphere_layer : unset --> 58 <field id="CMIP6_clt" field_ref="cldt" /> <!-- P1 ( 1.0) cloud_area_fraction : Total cloud area fraction for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Includes both large-scale and convective cloud. -->62 <field id="CMIP6_clt" field_ref="cldt" /> <!-- P1 (%) cloud_area_fraction : Total cloud area fraction for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Includes both large-scale and convective cloud. --> 59 63 <field id="CMIP6_cltcalipso" field_ref="cltcalipso" /> <!-- P1 (%) cloud_area_fraction : unset --> 60 64 <field id="CMIP6_cltisccp" field_ref="tclisccp" /> <!-- P1 (%) cloud_area_fraction : Percentage total cloud cover, simulating ISCCP observations. --> 61 <field id="CMIP6_cltmodis" field_ref="cltmodis" /> <!-- P1 (%) cloud_area_fraction : MODIS Total Cloud Fraction-->65 <field id="CMIP6_cltmodis" field_ref="cltmodis" /> <!-- P1 (%) cloud_area_fraction : MODIS Total Cloud Cover Percentage --> 62 66 <field id="CMIP6_clw" field_ref="lwcon" /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_liquid_water_in_air : Includes both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Precipitating hydrometeors are included ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 63 <field id="CMIP6_clwc" field_ref="lcc3dcon" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_liquid_water_in_air : Calculated as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->67 <field id="CMIP6_clwc" field_ref="lcc3dcon" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_liquid_water_in_air : Calculated as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 64 68 <field id="CMIP6_clwmodis" field_ref="clwmodis" /> <!-- P1 (%) clwmodis : MODIS Liquid Cloud Fraction --> 65 69 <field id="CMIP6_clws" field_ref="lcc3dstra" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_liquid_water_in_air : Calculated as the mass of stratiform cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 66 70 <field id="CMIP6_clwvi" field_ref="lwp" /> <!-- P1 (kg m-2) atmosphere_cloud_condensed_water_content : Mass of condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 67 <field id="CMIP6_clwvic" field_ref="dummy_XY" /> <!-- P1 (kg m-2 ) atmosphere_convective_cloud_condensed_water_content : calculate mass of convective condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 68 <field id="CMIP6_cnc" field_ref="dummy_XY" /> <!-- P1 () vegetation_area_fraction : Canopy covered fraction --> 71 <field id="CMIP6_clwvic" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_convective_cloud_condensed_water_content : calculate mass of convective condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 69 72 <field id="CMIP6_co2" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_carbon_dioxide_in_air : CO2 volume mixing ratio --> 70 73 <field id="CMIP6_co23D" field_ref="dummy_XYA" /> <!-- P2 (kg kg-1) co23D : report 3D field of model simulated atmospheric CO2 mass mixing ration on model levels --> 71 74 <field id="CMIP6_co2Clim" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_carbon_dioxide_in_air : CO2 volume mixing ratio --> 72 <field id="CMIP6_co2mass" field_ref="dummy_0d"/> <!-- P1 (kg) atmosphere_mass_of_carbon_dioxide : Total atmospheric mass of Carbon Dioxide -->75 <field field_ref="dummy_na" id="CMIP6_co2mass" /> <!-- P1 (kg) atmosphere_mass_of_carbon_dioxide : Total atmospheric mass of Carbon Dioxide --> 73 76 <field id="CMIP6_co2massClim" field_ref="dummy_0d" /> <!-- P1 (kg) atmosphere_mass_of_carbon_dioxide : Total atmospheric mass of Carbon Dioxide --> 74 <field id="CMIP6_co2s" field_ref="dummy_XY" /> <!-- P2 (1e-06) co2s: As co2, but only at the surface -->77 <field id="CMIP6_co2s" field_ref="dummy_XY" /> <!-- P2 (1e-06) mole_fraction_of_carbon_dioxide_in_air : As co2, but only at the surface --> 75 78 <field id="CMIP6_co2totalmass" field_ref="dummy_0d" /> <!-- P1 (kg) co2totalmass : globally integrated mass of carbon as CO2 in atmsophere. Report as a single number for all emissions-driven runs --> 79 <field id="CMIP6_columnmassflux" field_ref="dummy_XY" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : Column integral of (mcu-mcd) --> 76 80 <field id="CMIP6_conccmcn" field_ref="dummy_XYA" /> <!-- P1 (m-3) number_concentration_of_coarse_mode_ambient_aerosol_in_air : includes all particles with diameter larger than 1 micron --> 77 81 <field id="CMIP6_conccn" field_ref="dummy_XYA" /> <!-- P1 (m-3) number_concentration_of_ambient_aerosol_in_air : unset --> 82 <field id="CMIP6_concdust" field_ref="dummy_XYA" /> <!-- P1 (kg m-3) mass_concentration_of_dust_dry_aerosol_in_air : unset --> 78 83 <field id="CMIP6_concnmcn" field_ref="dummy_XYA" /> <!-- P1 (m-3) number_concentration_of_nucleation_mode_ambient_aerosol_in_air : includes all particles with diameter smaller than 3 nm --> 79 <field id="CMIP6_cw" field_ref="dummy_XY" /> <!-- P1 (kg m-2) canopy_water_amount : Total Canopy Water Storage --> 80 <field id="CMIP6_dcw" field_ref="dummy_XY" /> <!-- P1 (kg m-2) dcw : Change in Interception Storage --> 81 <field id="CMIP6_dfr" field_ref="dummy_XY" /> <!-- P1 (m) dfr : Depth from surface to the first zero degree isotherm. Above this isotherm T < 0o, and below this line T > 0o. --> 82 <field id="CMIP6_dgw" field_ref="dummy_XY" /> <!-- P1 (kg m-2) dgw : Change in Groundwater --> 84 <field id="CMIP6_depdust" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) depdust : Balkanski - LSCE --> 83 85 <field id="CMIP6_diabdrag" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_numerical_artefacts : Other sub-grid scale/numerical zonal drag excluding that already provided for the parameterized orographic and non-ororgraphic gravity waves. This would be used to calculate the total 'diabatic drag'. Contributions to this additional drag such Rayleigh friction and diffusion that can be calculated from the monthly mean wind fields should not be included, but details (e.g. coefficients) of the friction and/or diffusion used in the model should be provided separately. --> 84 <field id="CMIP6_dmc" field_ref="upwd" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_deep_convective_mass_flux : The net mass flux represents the difference between the updraft and downdraft components. This is calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> 85 <field id="CMIP6_dmlt" field_ref="dummy_XY" /> <!-- P1 (m) dmlt : Depth from surface to the zero degree isotherm. Above this isotherm T > 0o, and below this line T < 0o. --> 86 <field id="CMIP6_drivw" field_ref="dummy_XY" /> <!-- P1 (kg m-2) drivw : Change in River Storage --> 87 <field id="CMIP6_dslw" field_ref="dummy_XY" /> <!-- P1 (kg m-2) dslw : Change in soil moisture --> 88 <field id="CMIP6_dsn" field_ref="dummy_XY" /> <!-- P1 (kg m-2) dsn : Change in snow water equivalent --> 89 <field id="CMIP6_dsw" field_ref="dummy_XY" /> <!-- P1 (kg m-2) dsw : Change in Surface Water Storage --> 90 <field id="CMIP6_dtauc" field_ref="dummy_XY" /> <!-- P3 (1.0) atmosphere_optical_thickness_due_to_convective_cloud : This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell --> 91 <field id="CMIP6_dtaus" field_ref="dummy_XY" /> <!-- P3 (1.0) atmosphere_optical_thickness_due_to_stratiform_cloud : This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell. --> 92 <field id="CMIP6_dtes" field_ref="dummy_XY" /> <!-- P1 (J m-2) dtes : Change in heat storage over the soil layer and the vegetation for which the energy balance is calculated, accumulated over the sampling time interval. --> 93 <field id="CMIP6_dtesn" field_ref="dummy_XY" /> <!-- P1 (J m-2) dtesn : Change in cold content over the snow layer for which the energy balance is calculated, accumulated over the sampling time interval. This should also include the energy contained in the liquid water in the snow pack. --> 94 <field id="CMIP6_ec" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) ec : Interception evaporation --> 86 <field id="CMIP6_dmc" field_ref="upwd" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_deep_convective_mass_flux : The net mass flux represents the difference between the updraft and downdraft components. This is calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> 87 <field id="CMIP6_dtauc" field_ref="dummy_XYA" /> <!-- P3 (1.0) atmosphere_optical_thickness_due_to_convective_cloud : This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell --> 88 <field id="CMIP6_dtaus" field_ref="dummy_XYA" /> <!-- P3 (1.0) atmosphere_optical_thickness_due_to_stratiform_cloud : This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell. --> 95 89 <field id="CMIP6_edt" field_ref="Kz" /> <!-- P1 (m2 s-1) atmosphere_heat_diffusivity : Vertical diffusion coefficient for temperature due to parametrised eddies --> 96 <field id="CMIP6_eow" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) eow : Open Water Evaporation -->97 90 <field id="CMIP6_epfy" field_ref="dummy_lat-P" /> <!-- P1 (m3 s-2) northward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fy of Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3a of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. --> 98 91 <field id="CMIP6_epfz" field_ref="dummy_lat-P" /> <!-- P1 (m3 s-2) upward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fz of the Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3b of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. --> 99 <field id="CMIP6_es" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) es : Bare soil evaporation -->100 <field id="CMIP6_esn" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) esn : Snow Evaporation -->101 <field id="CMIP6_et" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) et : Total Evapotranspiration -->102 92 <field id="CMIP6_evspsbl" field_ref="evap" /> <!-- P1 (kg m-2 s-1) water_evaporation_flux : Evaporation at surface: flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor (from underlying surface and vegetation) --> 103 <field id="CMIP6_evspsblpot" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) water_potential_evaporation_flux : at surface; potential flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor (from underlying surface and vegetation) -->104 93 <field id="CMIP6_evu" field_ref="evu" /> <!-- P1 (m2 s-1) atmosphere_momentum_diffusivity : Vertical diffusion coefficient for momentum due to parametrised eddies --> 105 94 <field id="CMIP6_fco2antt" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_carbon_dioxide_expressed_as_carbon_due_to_anthropogenic_emission : This is requested only for the emission-driven coupled carbon climate model runs. Does not include natural fire sources but, includes all anthropogenic sources, including fossil fuel use, cement production, agricultural burning, and sources associated with anthropogenic land use change excluding forest regrowth. --> 106 95 <field id="CMIP6_fco2fos" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_fossil_fuel_combustion : This is the prescribed anthropogenic CO2 flux from fossil fuel use, including cement production, and flaring (but not from land-use changes, agricultural burning, forest regrowth, etc.) --> 107 96 <field id="CMIP6_fco2nat" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) surface_upward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_natural_sources : This is what the atmosphere sees (on its own grid). This field should be equivalent to the combined natural fluxes of carbon that account for natural exchanges between the atmosphere and land (nep) or ocean (fgco2) reservoirs. --> 108 <field id="CMIP6_flashrate" field_ref="dummy_XY" /> <!-- P1 (km-2 s-1) flashrate : proposed name: lightning_flash_rate (units to be interpreted as "counts km-2 s-1) --> 109 <field id="CMIP6_fldcapacity" field_ref="dummy_XY" /> <!-- P1 (%) fldcapacity : Field Capacity --> 110 <field id="CMIP6_grplmxrat27" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_graupel_in_air : Graupel mixing ratio --> 111 <field id="CMIP6_hcfc22global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_hcfc22_in_air : unset --> 97 <field id="CMIP6_grplmxrat27" field_ref="dummy_XYA" /> <!-- P3 (1.0) mass_fraction_of_graupel_in_air : Graupel mixing ratio --> 98 <field field_ref="dummy_na" id="CMIP6_hcfc22global" /> <!-- P1 (1e-12) mole_fraction_of_hcfc22_in_air : unset --> 99 <field id="CMIP6_hfdsl" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_downward_heat_flux_in_air : Downward Heat Flux at Land Surface --> 112 100 <field id="CMIP6_hfdsnb" field_ref="dummy_XY" /> <!-- P1 (W m-2) hfdsnb : Heat flux from snow into the ice or land under the snow. --> 113 101 <field id="CMIP6_hfls" field_ref="flat" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux --> 114 <field id="CMIP6_hfls_ isf" field_ref="dummy_??" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux -->115 <field id="CMIP6_hfmlt" field_ref="dummy_XY" /> <!-- P1 (W m-2 116 <field id="CMIP6_hfrs" field_ref="dummy_XY" /> <!-- P1 (W m-2 117 <field id="CMIP6_hfsbl" field_ref="dummy_XY" /> <!-- P1 (W m-2 102 <field id="CMIP6_hfls_land" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux --> 103 <field id="CMIP6_hfmlt" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_snow_and_ice_melt_heat_flux : Energy consumed or released during liquid/solid phase changes. --> 104 <field id="CMIP6_hfrs" field_ref="dummy_XY" /> <!-- P1 (W m-2) hfrs : Heat transferred to a snow cover by rain.. --> 105 <field id="CMIP6_hfsbl" field_ref="dummy_XY" /> <!-- P1 (W m-2) hfsbl : Energy consumed or released during vapor/solid phase changes. --> 118 106 <field id="CMIP6_hfss" field_ref="sens" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux --> 119 <field id="CMIP6_hfss_ isf" field_ref="dummy_??" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux -->107 <field id="CMIP6_hfss_land" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux --> 120 108 <field id="CMIP6_hur" field_ref="hur" /> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. --> 121 109 <field id="CMIP6_hurs" field_ref="rh2m" /> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. --> 122 <field id="CMIP6_hursmax" field_ref="dummy_XY" /><!-- P1 (%) relative_humidity : Daily Maximum Near-Surface Relative Humidity -->110 <field field_ref="CMIP6_hurs" freq_op="1d" id="CMIP6_hursmax" operation="maximum"> @this </field> <!-- P1 (%) relative_humidity : Daily Maximum Near-Surface Relative Humidity --> 123 111 <field id="CMIP6_hursmin" field_ref="dummy_XY" /> <!-- P1 (%) relative_humidity : Daily Minimum Near-Surface Relative Humidity --> 112 <field id="CMIP6_hursminCrop" field_ref="dummy_XY" /> <!-- P1 (%) relative_humidity : minimum near-surface (usually, 2 meter) relative humidity (add cell_method attribute "time: min") --> 124 113 <field id="CMIP6_hus" field_ref="hus" /> <!-- P1 (1.0) specific_humidity : Specific Humidity --> 125 114 <field id="CMIP6_hus27" field_ref="dummy_XYA" /> <!-- P2 (1.0) specific_humidity : Specific Humidity --> 115 <field id="CMIP6_hus4" field_ref="dummy_XYA" /> <!-- P1 (1.0) specific_humidity : Specific Humidity --> 126 116 <field id="CMIP6_hus7h" field_ref="dummy_XYA" /> <!-- P2 (1.0) specific_humidity : Specific Humidity --> 127 <field id="CMIP6_hus850" field_ref="dummy_XY" /><!-- P1 (1.0) specific_humidity : unset -->117 <field field_ref="CMIP6_hus" grid_ref="CMIP6_p850" id="CMIP6_hus850" /> <!-- P1 (1.0) specific_humidity : unset --> 128 118 <field id="CMIP6_huss" field_ref="q2m" /> <!-- P1 (1.0) specific_humidity : Near-surface (usually, 2 meter) specific humidity. --> 129 <field id="CMIP6_iareafl" field_ref="dummy_0d" /> <!-- P3 (m2) iareafl: Total area of the floating ice shelves (the component of ice sheet that flows over ocean) -->130 <field id="CMIP6_iareagr" field_ref="dummy_0d" /> <!-- P3 (m2) iareagr: Total area of the grounded ice sheets (the component of ice sheet resting over bedrock) -->119 <field field_ref="dummy_na" id="CMIP6_iareafl" /> <!-- P3 (m2) floating_ice_shelf_area : Total area of the floating ice shelves (the component of ice sheet that flows over ocean) --> 120 <field field_ref="dummy_na" id="CMIP6_iareagr" /> <!-- P3 (m2) grounded_ice_sheet_area : Total area of the grounded ice sheets (the component of ice sheet resting over bedrock) --> 131 121 <field id="CMIP6_intuadse" field_ref="dummy_XY" /> <!-- P1 (1.e6 J m-1 s-1) intuadse : Used in PMIP2 --> 132 122 <field id="CMIP6_intuaw" field_ref="dummy_XY" /> <!-- P1 (kg m-1 s-1) intuaw : Used in PMIP2 --> … … 135 125 <field id="CMIP6_jo2" field_ref="dummy_lat-P" /> <!-- P1 (s-1) jo2 : rate of o2 -> o1d+o --> 136 126 <field id="CMIP6_jo3" field_ref="dummy_lat-P" /> <!-- P1 (s-1) jo3 : sum of rates o3 -> o1d+o2 and o3 -> o+o2 --> 137 <field id="CMIP6_jpdftaureicemodis" field_ref="crimodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, ice --> 138 <field id="CMIP6_jpdftaureliqmodis" field_ref="crlmodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, liquid --> 139 <field id="CMIP6_ksat" field_ref="dummy_XY" /> <!-- P1 (1e-6 m s-1) ksat : Saturated Hydraulic Conductivity --> 140 <field id="CMIP6_latitude" field_ref="dummy_COSPcurtain"/> <!-- P1 (degrees_north) latitude : latitude --> 141 <field id="CMIP6_lim" field_ref="dummy_0d" /> <!-- P2 (kg) lim : The ice sheet mass is computed as the volume times density --> 142 <field id="CMIP6_limnsw" field_ref="dummy_0d" /> <!-- P2 (kg) limnsw : The ice sheet mass is computed as the volume above flotation times density. Changes in land_ice_mass_not_displacing_sea_water will always result in a change in sea level, unlike changes in land_ice_mass which may not result in sea level change (such as melting of the floating ice shelves, or portion of ice that sits on bedrock below sea level) --> 127 <field id="CMIP6_jpdftaureicemodis" field_ref="crimodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, ice --> 128 <field id="CMIP6_jpdftaureliqmodis" field_ref="crlmodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, liquid --> 129 <field id="CMIP6_latitude" field_ref="dummy_XY" /> <!-- P1 (degrees_north) latitude : latitude --> 130 <field field_ref="dummy_na" id="CMIP6_lim" /> <!-- P2 (kg) lim : The ice sheet mass is computed as the volume times density --> 131 <field field_ref="dummy_na" id="CMIP6_limnsw" /> <!-- P2 (kg) limnsw : The ice sheet mass is computed as the volume above flotation times density. Changes in land_ice_mass_not_displacing_sea_water will always result in a change in sea level, unlike changes in land_ice_mass which may not result in sea level change (such as melting of the floating ice shelves, or portion of ice that sits on bedrock below sea level) --> 143 132 <field id="CMIP6_loadbc" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_black_carbon_dry_aerosol : unset --> 144 133 <field id="CMIP6_loaddust" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_dust_dry_aerosol : unset --> … … 150 139 <field id="CMIP6_loadsoa" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_secondary_particulate_organic_matter_dry_aerosol : unset --> 151 140 <field id="CMIP6_loadss" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_seasalt_dry_aerosol : unset --> 152 <field id="CMIP6_longitude" field_ref="dummy_COSPcurtain"/> <!-- P1 (degrees_east) longitude : longitude --> 153 <field id="CMIP6_lts" field_ref="dummy_XY" /> <!-- P1 (K) lts : proposed name: potential_temperature_difference_between_700hPa_and_1000hPa (Lower Tropospheric Stability) --> 154 <field id="CMIP6_lwsffluxaero" field_ref="dummy_XY" /> <!-- P2 (W m-2 ) lwsffluxaero : downwelling longwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call --> 155 <field id="CMIP6_lwtoafluxaerocs" field_ref="dummy_XY" /> <!-- P1 (W m-2 ) lwtoafluxaerocs : downwelling longwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call --> 156 <field id="CMIP6_mc" field_ref="mc" /> <!-- P1 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : The net mass flux should represent the difference between the updraft and downdraft components. The flux is computed as the mass divided by the area of the grid cell. --> 141 <field id="CMIP6_longitude" field_ref="dummy_XY" /> <!-- P1 (degrees_east) longitude : longitude --> 142 <field id="CMIP6_lwsffluxaero" field_ref="dummy_XY" /> <!-- P2 (W m-2) lwsffluxaero : downwelling longwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call --> 143 <field id="CMIP6_lwsrfasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) lwsrfasdust : Balkanski - LSCE --> 144 <field id="CMIP6_lwsrfcsdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) lwsrfcsdust : Balkanski - LSCE --> 145 <field id="CMIP6_lwtoaasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing : proposed name: toa_instantaneous_longwave_forcing_due_to_dust_ambient_aerosol --> 146 <field id="CMIP6_lwtoacs" field_ref="dummy_XY" /> <!-- P1 (W m-2) lwtoacs : Balkanski - LSCE --> 147 <field id="CMIP6_lwtoacsaer" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing : proposed name: toa_instantaneous_longwave_forcing_due_to_ambient_aerosol_assuming_clear_sky --> 148 <field id="CMIP6_lwtoafluxaerocs" field_ref="dummy_XY" /> <!-- P1 (W m-2) lwtoafluxaerocs : downwelling longwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call --> 149 <field id="CMIP6_mc" field_ref="mc" /> <!-- P3 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : The net mass flux should represent the difference between the updraft and downdraft components. The flux is computed as the mass divided by the area of the grid cell. --> 157 150 <field id="CMIP6_mcd" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) atmosphere_downdraft_convective_mass_flux : Calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> 158 <field id="CMIP6_mcu" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) atmosphere_updraft_convective_mass_flux : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_methods should specify whether the average is over all the area or the area of updrafts only. --> 159 <field id="CMIP6_mrfsofr" field_ref="dummy_XYSo" /> <!-- P1 (1.0) mass_fraction_of_frozen_water_in_soil_moisture : Fraction of soil moisture mass in the solid phase in each user-defined soil layer (3D variable) --> 160 <field id="CMIP6_mrlqso" field_ref="dummy_XYSo" /> <!-- P1 (1.0) mass_fraction_of_unfrozen_water_in_soil_moisture : Fraction of soil moisture mass in the liquid phase in each user-defined soil layer (3D variable) --> 161 <field id="CMIP6_mrroLi" field_ref="dummy_??" /> <!-- P1 (kg m-2 s-1) land_ice_runoff_flux : Runoff flux over land ice is the difference between any available liquid water in the snowpack less any refreezing. Computed as the sum of rainfall and melt of snow or ice less any refreezing or water retained in the snowpack --> 162 <field id="CMIP6_mrrob" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) subsurface_runoff_flux : Subsurface runoff --> 163 <field id="CMIP6_mrsll" field_ref="dummy_XYSo" /> <!-- P1 (kg m-2) mrsll : as specified by C4MIP --> 164 <field id="CMIP6_mrsow" field_ref="dummy_XY" /> <!-- P1 (1.0) volume_fraction_of_condensed_water_in_soil_at_field_capacity : Vertically integrated soil moisture divided by maximum allowable soil moisture above wilting point. --> 151 <field id="CMIP6_mcu" field_ref="dummy_XYA" /> <!-- P1 (kg m-2 s-1) atmosphere_updraft_convective_mass_flux : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_methods should specify whether the average is over all the area or the area of updrafts only. --> 152 <field id="CMIP6_md" field_ref="dummy_XYA" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_dust_dry_aerosol_particles_due_to_emission : Balkanski - LSCE --> 153 <field id="CMIP6_mmraerso4" field_ref="dummy_XY" /> <!-- P1 (kg kg-1) mass_fraction_of_sulfate_dry_aerosol_in_air : Aerosol Sulfate Mass Mixing Ratio --> 154 <field id="CMIP6_mrroLi" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) land_ice_runoff_flux : Runoff flux over land ice is the difference between any available liquid water in the snowpack less any refreezing. Computed as the sum of rainfall and melt of snow or ice less any refreezing or water retained in the snowpack --> 165 155 <field id="CMIP6_n2o" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_nitrous_oxide_in_air : N2O volume mixing ratio --> 166 156 <field id="CMIP6_n2oClim" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_nitrous_oxide_in_air : N2O volume mixing ratio --> 167 <field id="CMIP6_n2oglobal" field_ref="dummy_0d"/> <!-- P1 (1e-09) mole_fraction_of_nitrous_oxide_in_air : Global mean Nitrous Oxide (N2O) -->157 <field field_ref="dummy_na" id="CMIP6_n2oglobal" /> <!-- P1 (1e-09) mole_fraction_of_nitrous_oxide_in_air : Global mean Nitrous Oxide (N2O) --> 168 158 <field id="CMIP6_n2oglobalClim" field_ref="dummy_0d" /> <!-- P1 (1e-09) mole_fraction_of_nitrous_oxide_in_air : Global mean Nitrous Oxide (N2O) --> 169 <field id="CMIP6_netAtmosLandCO2Flux" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) surface_net_downward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_all_land_processes : as specified by C4MIP -->170 <field id="CMIP6_nudgincsm" field_ref="dummy_XY" /> <!-- P1 (kg m-2) nudgincsm : Nudging Increment of Water in Soil Mositure -->171 <field id="CMIP6_nudgincswe" field_ref="dummy_XY" /> <!-- P1 (kg m-2) nudgincswe : Nudging Increment of Water in Snow -->172 159 <field id="CMIP6_o3" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_ozone_in_air : Ozone volume mixing ratio --> 173 160 <field id="CMIP6_o3Clim" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_ozone_in_air : Ozone volume mixing ratio --> 161 <field id="CMIP6_od443dust" field_ref="dummy_XY" /> <!-- P1 (1.0) atmosphere_optical_thickness_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> 162 <field id="CMIP6_od550aerso" field_ref="dummy_XY" /> <!-- P1 (1.0) od550aerso : Balkanski - LSCE --> 174 163 <field id="CMIP6_od550aerstrat" field_ref="dummy_XY" /> <!-- P1 (1.0) od550aerstrat : From tropopause to stratopause as defined by the model --> 175 <field id="CMIP6_orog" field_ref="dummy_??" /> <!-- P1 (m) surface_altitude : The surface called "surface" means the lower boundary of the atmosphere. Altitude is the (geometric) height above the geoid, which is the reference geopotential surface. The geoid is similar to mean sea level. --> 176 <field id="CMIP6_oxloss" field_ref="dummy_lat-P" /> <!-- P1 (mol m-3 s-1) oxloss : total chemical loss rate for o+o1d+o3 --> 177 <field id="CMIP6_oxprod" field_ref="dummy_lat-P" /> <!-- P1 (mol m-3 s-1) oxprod : total production rate of o+o1d+o3 including o2 photolysis and all o3 producing reactions --> 164 <field id="CMIP6_od550so4so" field_ref="dummy_XY" /> <!-- P1 (1.0) od550so4so : Balkanski - LSCE --> 165 <field id="CMIP6_od865dust" field_ref="dummy_XY" /> <!-- P1 (1.0) atmosphere_optical_thickness_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> 178 166 <field id="CMIP6_parasolRefl" field_ref="parasol_refl" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). --> 179 167 <field id="CMIP6_parasolRefl_sea" field_ref="dummy_XY" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). --> 180 168 <field id="CMIP6_pctisccp" field_ref="ctpisccp" /> <!-- P1 (Pa) air_pressure_at_cloud_top : ISCCP Mean Cloud Top Pressure. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html --> 181 169 <field id="CMIP6_pfull" field_ref="pres" /> <!-- P1 (Pa) air_pressure : Air pressure on model levels --> 182 <field id="CMIP6_pfull27" field_ref="dummy_XYA" /> <!-- P3 (Pa) air_pressure : Air pressure on model levels -->183 170 <field id="CMIP6_phalf" field_ref="paprs" /> <!-- P1 (Pa) air_pressure : Air pressure on model half-levels --> 184 171 <field id="CMIP6_pmlev" field_ref="dummy_XYA" /> <!-- P1 (Pa) air_pressure : The atmospheric pressure at the model layer midpoints for all times and levels in the associated output variables --> 185 <field id="CMIP6_potet" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) potet : Potential Evapotranspiration -->186 172 <field id="CMIP6_pr" field_ref="precip" /> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases --> 173 <field id="CMIP6_prCrop" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases --> 187 174 <field id="CMIP6_prc" field_ref="pluc" /> <!-- P1 (kg m-2 s-1) convective_precipitation_flux : Convective precipitation at surface; includes both liquid and solid phases. --> 188 <field id="CMIP6_prhmax" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) precipitation_flux : Daily Maximum Hourly Precipitation Rate --> 189 <field id="CMIP6_prra" field_ref="dummy_??" /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate --> 190 <field id="CMIP6_prra_isf" field_ref="dummy_??" /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate --> 191 <field id="CMIP6_prra_land" field_ref="dummy_??" /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate --> 175 <field id="CMIP6_prcsh" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) prcsh : Convection precipitation from shallow convection --> 176 <field id="CMIP6_prhmax" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) precipitation_flux : Maximum Hourly Precipitation Rate --> 177 <field id="CMIP6_prra" field_ref="dummy_XY" /> <!-- P2 (kg m-2 s-1) rainfall_flux : Rainfall rate --> 178 <field id="CMIP6_prra_ifs" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate --> 179 <field id="CMIP6_prra_land" field_ref="dummy_XY" /> <!-- P2 (kg m-2 s-1) rainfall_flux : Rainfall rate --> 192 180 <field id="CMIP6_prrc" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) convective_rainfall_flux : Convective Rainfall rate --> 193 181 <field id="CMIP6_prrc_land" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) convective_rainfall_flux : Convective Rainfall rate --> 194 182 <field id="CMIP6_prrsn" field_ref="dummy_XY" /> <!-- P1 (1) prrsn : The fraction of the grid averaged rainfall which falls on the snow pack --> 195 183 <field id="CMIP6_prsn" field_ref="snow" /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase --> 196 <field id="CMIP6_prsn_i sf" field_ref="dummy_??" /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase -->184 <field id="CMIP6_prsn_ifs" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase --> 197 185 <field id="CMIP6_prsnc" field_ref="pr_con_i" /> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. --> 198 <field id="CMIP6_prsnc_land" field_ref="dummy_XY "/> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. -->186 <field id="CMIP6_prsnc_land" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. --> 199 187 <field id="CMIP6_prsnsn" field_ref="dummy_XY" /> <!-- P1 (1) prsnsn : The fraction of the snowfall which falls on the snow pack --> 200 188 <field id="CMIP6_prw" field_ref="prw" /> <!-- P1 (kg m-2) atmosphere_water_vapor_content : vertically integrated through the atmospheric column --> … … 208 196 <field id="CMIP6_reffclwc" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_convective_cloud_liquid_water_particle : Droplets are liquid. The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell. --> 209 197 <field id="CMIP6_reffclws" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_stratiform_cloud_liquid_water_particle : Droplets are liquid. The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell. --> 210 <field id="CMIP6_reffsclwtop" field_ref="dummy_XY" /> <!-- P1 (m) reffsclwtop : Droplets are liquid only. This is the effective radius "as seen from space" over liquid stratiform cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately. 198 <field id="CMIP6_reffsclwtop" field_ref="dummy_XY" /> <!-- P1 (m) reffsclwtop : Droplets are liquid only. This is the effective radius "as seen from space" over liquid stratiform cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately. --> 211 199 <field id="CMIP6_rld" field_ref="rld" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling Longwave Radiation (includes the fluxes at the surface and TOA) --> 212 200 <field id="CMIP6_rld4co2" field_ref="rld4co2" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> … … 263 251 <field id="CMIP6_rtmt" field_ref="nettop" /> <!-- P1 (W m-2) net_downward_radiative_flux_at_top_of_atmosphere_model : Net Downward Radiative Flux at Top of Model : I.e., at the top of that portion of the atmosphere where dynamics are explicitly treated by the model. This is reported only if it differs from the net downward radiative flux at the top of the atmosphere. --> 264 252 <field field_ref="CMIP6_rv" grid_ref="CMIP6_p850" id="CMIP6_rv850" /> <!-- P1 (s-1) atmosphere_relative_vorticity : Relative Vorticity at 850 hPa --> 265 <field id="CMIP6_sandfrac" field_ref="dummy_XY " /> <!-- P1 (1.0) sandFrac : Sand Fraction -->253 <field id="CMIP6_sandfrac" field_ref="dummy_XYSo" /> <!-- P1 (1.0) sandfrac : Sand Fraction --> 266 254 <field id="CMIP6_sci" field_ref="ftime_th" /> <!-- P1 (1.0) shallow_convection_time_fraction : Fraction of time that shallow convection occurs in the grid cell. --> 267 255 <field id="CMIP6_scldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) scldncl : Droplets are liquid only. Report concentration "as seen from space" over stratiform liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> … … 271 259 <field id="CMIP6_sedustCI" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) sedustCI : Balkanski - LSCE --> 272 260 <field id="CMIP6_sfcWind" field_ref="wind10m" /> <!-- P1 (m s-1) wind_speed : near-surface (usually, 10 meters) wind speed. --> 273 <field id="CMIP6_sfcWindmax" field_ref="wind10max" /><!-- P1 (m s-1) wind_speed : Daily maximum near-surface (usually, 10 meters) wind speed. -->274 <field id="CMIP6_sftlf" field_ref="fract_ter" /> <!-- P1 ( 1) land_area_fraction : Please express "X_area_fraction" as the fractionof horizontal area occupied by X. -->275 <field id="CMIP6_silt Frac" field_ref="dummy_XY" /> <!-- P1 (1.0) siltFrac : Silt Fraction -->261 <field field_ref="CMIP6_sfcWind" freq_op="1d" id="CMIP6_sfcWindmax" operation="maximum"> @this </field> <!-- P1 (m s-1) wind_speed : Daily maximum near-surface (usually, 10 meters) wind speed. --> 262 <field id="CMIP6_sftlf" field_ref="fract_ter" /> <!-- P1 (%) land_area_fraction : Please express "X_area_fraction" as the percentage of horizontal area occupied by X. --> 263 <field id="CMIP6_siltfrac" field_ref="dummy_XYSo" /> <!-- P1 (1.0) siltfrac : Silt Fraction --> 276 264 <field id="CMIP6_slbnosn" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) slbnosn : Sublimation of the snow free area --> 277 265 <field id="CMIP6_smc" field_ref="f_th" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_shallow_convective_mass_flux : The net mass flux represents the difference between the updraft and downdraft components. For models with a distinct shallow convection scheme, this is calculated as convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> … … 291 279 <field id="CMIP6_ta" field_ref="ta" /> <!-- P3 (K) air_temperature : Air Temperature --> 292 280 <field id="CMIP6_ta27" field_ref="dummy_XYA" /> <!-- P3 (K) air_temperature : Air Temperature --> 293 <field id="CMIP6_ta500" field_ref="t500" /><!-- P1 (K) air_temperature : Temperature on the 500 hPa surface -->294 <field id="CMIP6_ta700" field_ref="t700" /><!-- P1 (K) air_temperature : Air temperature at 700hPa -->281 <field field_ref="CMIP6_ta" grid_ref="CMIP6_p500" id="CMIP6_ta500" /> <!-- P1 (K) air_temperature : Temperature on the 500 hPa surface --> 282 <field field_ref="CMIP6_ta" grid_ref="CMIP6_p700" id="CMIP6_ta700" /> <!-- P1 (K) air_temperature : Air temperature at 700hPa --> 295 283 <field id="CMIP6_ta7h" field_ref="dummy_XYA" /> <!-- P2 (K) air_temperature : Air Temperature --> 296 <field id="CMIP6_ta850" field_ref="t850" /><!-- P1 (K) air_temperature : Air temperature at 850hPa -->284 <field field_ref="CMIP6_ta" grid_ref="CMIP6_p850" id="CMIP6_ta850" /> <!-- P1 (K) air_temperature : Air temperature at 850hPa --> 297 285 <field id="CMIP6_tas" field_ref="t2m" /> <!-- P1 (K) air_temperature : near-surface (usually, 2 meter) air temperature --> 298 <field id="CMIP6_tasmax" field_ref="t2m_max" /> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") --> 299 <field id="CMIP6_tasmin" field_ref="t2m_min" /> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 286 <field field_ref="CMIP6_tas" freq_op="1d" id="CMIP6_tasmax" operation="maximum"> @this </field> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") --> 287 <field id="CMIP6_tasmaxCrop" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") --> 288 <field field_ref="CMIP6_tas" freq_op="1d" id="CMIP6_tasmin" operation="minimum"> @this </field> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 289 <field id="CMIP6_tasminCrop" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 300 290 <field id="CMIP6_tau" field_ref="dummy_XY" /> <!-- P1 (N m-2) tau : module of the momentum lost by the atmosphere to the surface. --> 301 291 <field id="CMIP6_tauu" field_ref="taux" /> <!-- P1 (Pa) surface_downward_eastward_stress : Downward eastward wind stress at the surface --> … … 303 293 <field id="CMIP6_tauv" field_ref="tauy" /> <!-- P1 (Pa) surface_downward_northward_stress : Downward northward wind stress at the surface --> 304 294 <field id="CMIP6_tauvpbl" field_ref="dummy_XY" /> <!-- P1 (Pa) tauvpbl : The downward northward stress associated with the models parameterization of the plantary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) --> 305 <field id="CMIP6_tcs" field_ref="dummy_XY" /> <!-- P1 (K) canopy_temperature : Vegetation temperature, averaged over all vegetation types --> 306 <field id="CMIP6_tdps" field_ref="dummy_XY" /> <!-- P1 (K) dew_point_temperature : unset --> 307 <field id="CMIP6_tendacabf" field_ref="dummy_0d" /> <!-- P3 (kg s-1) tendacabf : The total surface mass balance flux over land ice is a spatial integration of the surface mass balance flux --> 308 <field id="CMIP6_tendlibmassbf" field_ref="dummy_0d" /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_basal_mass_balance : The total basal mass balance flux over land ice is a spatial integration of the basal mass balance flux --> 309 <field id="CMIP6_tendlicalvf" field_ref="dummy_0d" /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_calving : The total calving flux over land ice is a spatial integration of the calving flux --> 310 <field id="CMIP6_tgs" field_ref="dummy_XY" /> <!-- P1 (K) surface_temperature : Surface bare soil temperature --> 311 <field id="CMIP6_thetaot" field_ref="dummy_XY" /> <!-- P1 (K) sea_water_potential_temperature : Vertical average of the sea water potential temperature through the whole ocean depth --> 312 <field id="CMIP6_thetaot2000" field_ref="dummy_XY" /> <!-- P1 (K) thetaot2000 : Upper 2000m, 2D field --> 313 <field id="CMIP6_thetaot300" field_ref="dummy_XY" /> <!-- P1 (K) thetaot300 : Upper 300m, 2D field --> 314 <field id="CMIP6_thetaot700" field_ref="dummy_XY" /> <!-- P1 (K) thetaot700 : Upper 700m, 2D field --> 295 <field id="CMIP6_tdps" field_ref="dummy_XY" /> <!-- P2 (K) dew_point_temperature : unset --> 296 <field field_ref="dummy_na" id="CMIP6_tendacabf" /> <!-- P3 (kg s-1) tendacabf : The total surface mass balance flux over land ice is a spatial integration of the surface mass balance flux --> 297 <field field_ref="dummy_na" id="CMIP6_tendlibmassbf" /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_basal_mass_balance : The total basal mass balance flux over land ice is a spatial integration of the basal mass balance flux --> 298 <field field_ref="dummy_na" id="CMIP6_tendlicalvf" /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_calving : The total calving flux over land ice is a spatial integration of the calving flux --> 315 299 <field id="CMIP6_tnhus" field_ref="tnhus" /> <!-- P1 (s-1) tendency_of_specific_humidity : Tendency of Specific Humidity --> 316 300 <field id="CMIP6_tnhusa" field_ref="dqdyn" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_advection : Tendency of Specific Humidity due to Advection --> … … 318 302 <field id="CMIP6_tnhusd" field_ref="dqvdf" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_diffusion : Tendency of specific humidity due to numerical diffusion.This includes any horizontal or vertical numerical moisture diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the moisture budget. --> 319 303 <field id="CMIP6_tnhusmp" field_ref="dqphy" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_model_physics : Tendency of specific humidity due to model physics. This includes sources and sinks from parametrized moist physics (e.g. convection, boundary layer, stratiform condensation/evaporation, etc.) and excludes sources and sinks from resolved dynamics or from horizontal or vertical numerical diffusion not associated with model physicsl. For example any diffusive mixing by the boundary layer scheme would be included. --> 320 <field id="CMIP6_tnhuspbl" field_ref="dummy_ site-A"/> <!-- P1 (s-1) tnhuspbl : Includes all boundary layer terms including diffusive terms. -->321 <field id="CMIP6_tnhusscp" field_ref="dummy_ site-A"/> <!-- P1 (s-1) tnhusscp : Tendency of Specific Humidity Due to Stratiform Clouds and Precipitation -->304 <field id="CMIP6_tnhuspbl" field_ref="dummy_XYA" /> <!-- P1 (s-1) tnhuspbl : Includes all boundary layer terms including diffusive terms. --> 305 <field id="CMIP6_tnhusscp" field_ref="dummy_XYA" /> <!-- P1 (s-1) tnhusscp : Tendency of Specific Humidity Due to Stratiform Clouds and Precipitation --> 322 306 <field id="CMIP6_tnhusscpbl" field_ref="tnhusscpbl" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Specific Humidity Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate budget terms for stratiform cloud, precipitation and boundary layer schemes. Includes all bounday layer terms including and diffusive terms.) --> 323 307 <field id="CMIP6_tnt" field_ref="tnt" /> <!-- P1 (K s-1) tendency_of_air_temperature : Tendency of Air Temperature --> 324 308 <field id="CMIP6_tnta" field_ref="dtdyn" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_advection : Tendency of Air Temperature due to Advection --> 325 309 <field id="CMIP6_tntc" field_ref="tntc" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_convection : Tendencies from cumulus convection scheme. --> 326 <field id="CMIP6_tntd" field_ref="dummy_site-A" /> <!-- P1 (K s-1) tntd : This includes any horizontal or vertical numerical temperature diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the temperature budget. --> 327 <field id="CMIP6_tntlw" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating : Longwave heating rates --> 310 <field id="CMIP6_tntd" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tntd : This includes any horizontal or vertical numerical temperature diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the temperature budget. --> 328 311 <field id="CMIP6_tntmp" field_ref="dtphy" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. --> 329 <field id="CMIP6_tntmp27" field_ref="dummy_lat-P" /> <!-- P2 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. --> 312 <field id="CMIP6_tntmp27" field_ref="dummy_XYA" /> <!-- P2 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. --> 313 <field id="CMIP6_tntnogw" field_ref="dummy_lat-P" /> <!-- P2 (K s-1) tntnogw : Temperature tendency due to dissipation of parameterized nonorographic gravity waves. --> 330 314 <field id="CMIP6_tntogw" field_ref="dummy_lat-P" /> <!-- P2 (K s-1) tntogw : Temperature tendency due to dissipation of parameterized orographic gravity waves. --> 331 315 <field id="CMIP6_tntpbl" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tntpbl : Includes all boundary layer terms including diffusive terms. --> 332 316 <field id="CMIP6_tntr" field_ref="tntr" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating --> 333 317 <field id="CMIP6_tntr27" field_ref="dummy_XYA" /> <!-- P3 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating --> 334 <field id="CMIP6_tntrlcs" field_ref="dummy_ lat-P"/> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Longwave Radiative Heating -->318 <field id="CMIP6_tntrlcs" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Longwave Radiative Heating --> 335 319 <field id="CMIP6_tntrscs" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_shortwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Shortwave Radiative Heating --> 336 <field id="CMIP6_tntscp" field_ref="dummy_ site-A"/> <!-- P1 (K s-1) tntscp : Tendency of Air Temperature Due to Stratiform Clouds and Precipitation -->320 <field id="CMIP6_tntscp" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tntscp : Tendency of Air Temperature Due to Stratiform Clouds and Precipitation --> 337 321 <field id="CMIP6_tntscpbl" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Air Temperature Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate cloud, precipitation and boundary layer terms. Includes all boundary layer terms including diffusive ones.) --> 338 <field id="CMIP6_tntsw" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_shortwave_heating : shortwave heating rates -->339 <field id="CMIP6_toffset" field_ref="dummy_COSPcurtain"/> <!-- P1 (day) time : The offset time should be added to the value stored in the time dimension to get the actual time. The actual time is the time (UTC) of the corresponding point in the satellite orbit used to extract the model data. -->340 322 <field id="CMIP6_tr" field_ref="dummy_XY" /> <!-- P1 (K) surface_temperature : Effective radiative surface temperature, averaged over the grid cell --> 341 323 <field id="CMIP6_ts" field_ref="tsol" /> <!-- P1 (K) surface_temperature : Temperature of the lower boundary of the atmosphere --> 342 <field id="CMIP6_ts_isf" field_ref="dummy_??" /> <!-- P1 (K) surface_temperature : Temperature of the lower boundary of the atmosphere -->343 <field id="CMIP6_tsnl" field_ref="dummy_XY" /> <!-- P1 (K) snow_temperature : Temperature in the snow pack present in the grid-cell. 3D variable for multi-layer snow schemes. -->344 324 <field id="CMIP6_tsns" field_ref="dummy_XY" /> <!-- P1 (K) surface_temperature : Temperature of the snow surface as it interacts with the atmosphere, averaged over a grid cell. --> 345 325 <field id="CMIP6_twap" field_ref="dummy_XYA" /> <!-- P2 (K Pa s-1) product_of_omega_and_air_temperature : Product of air temperature and pressure tendency --> 346 <field id="CMIP6_tws" field_ref="dummy_XY" /> <!-- P1 (kg m-2) tws : Terrestrial Water Storage -->347 326 <field id="CMIP6_u2" field_ref="dummy_XYA" /> <!-- P2 (m2 s-2) square_of_eastward_wind : u*u --> 348 327 <field id="CMIP6_ua" field_ref="ua" /> <!-- P1 (m s-1) eastward_wind : Eastward Wind --> 349 <field id="CMIP6_ua200" field_ref="dummy_XY" /><!-- P1 (m s-1) eastward_wind : Zonal wind (positive eastwards) at 200hPa -->350 <field id="CMIP6_ua27" field_ref="dummy_XY "/> <!-- P3 (m s-1) eastward_wind : Eastward Wind -->351 <field id="CMIP6_ua7h" field_ref="dummy_XY " /> <!-- P2(m s-1) eastward_wind : Eastward Wind -->352 <field id="CMIP6_ua850" field_ref="dummy_XY" /><!-- P1 (m s-1) eastward_wind : Zonal wind on the 850 hPa surface -->328 <field field_ref="CMIP6_ua" grid_ref="CMIP6_p200" id="CMIP6_ua200" /> <!-- P1 (m s-1) eastward_wind : Zonal wind (positive eastwards) at 200hPa --> 329 <field id="CMIP6_ua27" field_ref="dummy_XYA" /> <!-- P3 (m s-1) eastward_wind : Eastward Wind --> 330 <field id="CMIP6_ua7h" field_ref="dummy_XYA" /> <!-- P1 (m s-1) eastward_wind : Eastward Wind --> 331 <field field_ref="CMIP6_ua" grid_ref="CMIP6_p850" id="CMIP6_ua850" /> <!-- P1 (m s-1) eastward_wind : Zonal wind on the 850 hPa surface --> 353 332 <field id="CMIP6_uas" field_ref="u10m" /> <!-- P1 (m s-1) eastward_wind : Eastward component of the near-surface (usually, 10 meters) wind --> 333 <field id="CMIP6_uqint" field_ref="dummy_XY" /> <!-- P1 (m2 s-1) integral_of_product_of_eastward_wind_and_specific_humidity_wrt_height : Column integrated eastward wind times specific humidity --> 354 334 <field id="CMIP6_ut" field_ref="dummy_XYA" /> <!-- P2 (K m s-1) product_of_eastward_wind_and_air_temperature : Product of air temperature and eastward wind --> 355 335 <field id="CMIP6_utendepfd" field_ref="dummy_lat-P" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_eliassen_palm_flux_divergence : Tendency of the zonal mean zonal wind due to the divergence of the Eliassen-Palm flux. --> 356 <field id="CMIP6_utendnogw" field_ref="dummy_lat-P" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the eastward wind by parameterized nonorographic gravity waves. --> 357 <field id="CMIP6_utendogw" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_orographic_gravity_wave_drag : Tendency of the eastward wind by parameterized orographic gravity waves. --> 336 <field id="CMIP6_utendnogw" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the eastward wind by parameterized nonorographic gravity waves. --> 337 <field id="CMIP6_utendnogw27" field_ref="dummy_XYA" /> <!-- P3 (m s-2) tendency_of_eastward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the eastward wind by parameterized nonorographic gravity waves. --> 338 <field id="CMIP6_utendogw" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_orographic_gravity_wave_drag : Tendency of the eastward wind by parameterized orographic gravity waves. --> 358 339 <field id="CMIP6_utendvtem" field_ref="dummy_lat-P" /> <!-- P1 (m s-1 d-1) utendvtem : Tendency of zonally averaged eastward wind, by the residual upward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Accademic Press. --> 359 340 <field id="CMIP6_utendwtem" field_ref="dummy_lat-P" /> <!-- P1 (m s-1 d-1) utendwtem : Tendency of zonally averaged eastward wind, by the residual northward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Accademic Press. --> … … 362 343 <field id="CMIP6_v2" field_ref="dummy_XYA" /> <!-- P2 (m2 s-2) square_of_northward_wind : v*v --> 363 344 <field id="CMIP6_va" field_ref="va" /> <!-- P1 (m s-1) northward_wind : Northward Wind --> 364 <field id="CMIP6_va200" field_ref="dummy_XY" /><!-- P1 (m s-1) northward_wind : Northward component of the wind -->345 <field field_ref="CMIP6_va" grid_ref="CMIP6_p200" id="CMIP6_va200" /> <!-- P1 (m s-1) northward_wind : Northward component of the wind --> 365 346 <field id="CMIP6_va27" field_ref="dummy_XYA" /> <!-- P3 (m s-1) northward_wind : Northward Wind --> 366 347 <field id="CMIP6_va7h" field_ref="dummy_XYA" /> <!-- P2 (m s-1) northward_wind : Northward Wind --> 367 <field id="CMIP6_va850" field_ref="dummy_XY" /><!-- P1 (m s-1) northward_wind : Northward component of the wind at 850hPa -->348 <field field_ref="CMIP6_va" grid_ref="CMIP6_p850" id="CMIP6_va850" /> <!-- P1 (m s-1) northward_wind : Northward component of the wind at 850hPa --> 368 349 <field id="CMIP6_vas" field_ref="v10m" /> <!-- P1 (m s-1) northward_wind : Northward component of the near surface wind --> 369 <field id="CMIP6_v mrox" field_ref="dummy_lat-P" /> <!-- P1 (mol mol-1) vmrox : Mole Fraction of Ox-->370 <field id="CMIP6_v ortmean" field_ref="dummy_XYA" /> <!-- P1 (s-1) atmosphere_relative_vorticity : Mean vorticity over 850,700,600 hPa-->350 <field id="CMIP6_vortmean" field_ref="dummy_XY" /> <!-- P1 (s-1) atmosphere_relative_vorticity : Mean vorticity over 850,700,600 hPa --> 351 <field id="CMIP6_vqint" field_ref="dummy_XY" /> <!-- P1 (m2 s-1) integral_of_product_of_northward_wind_and_specific_humidity_wrt_height : Column integrated northward wind times specific humidity --> 371 352 <field id="CMIP6_vt" field_ref="dummy_XYA" /> <!-- P2 (K m s-1) product_of_northward_wind_and_air_temperature : Product of air temperature and northward wind --> 372 353 <field id="CMIP6_vtem" field_ref="dummy_lat-P" /> <!-- P1 (m s-1) northward_transformed_eulerian_mean_air_velocity : Transformed Eulerian Mean Diagnostics v*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). --> 373 <field id="CMIP6_vtendnogw" field_ref="dummy_lat-P" /> <!-- P2 (m s-2) vtendnogw : Tendency of the northward wind by parameterized nonorographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 354 <field id="CMIP6_vtendnogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) vtendnogw : Tendency of the northward wind by parameterized nonorographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 355 <field id="CMIP6_vtendnogw27" field_ref="dummy_XYA" /> <!-- P3 (m s-2) vtendnogw : Tendency of the northward wind by parameterized nonorographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 374 356 <field id="CMIP6_vtendogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) vtendogw : Tendency of the northward wind by parameterized orographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 375 357 <field id="CMIP6_vwap" field_ref="dummy_XYA" /> <!-- P2 (Pa m s-2) product_of_northward_wind_and_omega : v*omega --> … … 378 360 <field id="CMIP6_wap27" field_ref="dummy_XYA" /> <!-- P3 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 379 361 <field id="CMIP6_wap4" field_ref="dummy_XYA" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 380 <field id="CMIP6_wap500" field_ref="w500" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) at 500 hPa level;-->362 <field field_ref="CMIP6_wap" grid_ref="CMIP6_p500" id="CMIP6_wap500" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) at 500 hPa level; --> 381 363 <field id="CMIP6_wap7h" field_ref="dummy_XYA" /> <!-- P2 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 382 <field id="CMIP6_wbptemp7h" field_ref="dummy_XYA" /> <!-- P1 (K) wbptemp : Wet bulb potential temperature --> 383 <field id="CMIP6_wilt" field_ref="dummy_XY" /> <!-- P1 (%) wilt : Wilting Point --> 384 <field id="CMIP6_wtd" field_ref="dummy_XY" /> <!-- P1 (m) wtd : Water table depth --> 364 <field id="CMIP6_wbptemp7h" field_ref="dummy_XYA" /> <!-- P1 (K) wet_bulb_potential_temperature : Wet bulb potential temperature --> 385 365 <field id="CMIP6_wtem" field_ref="dummy_lat-P" /> <!-- P1 (m s-1) wtem : Transformed Eulerian Mean Diagnostics w*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). Scale height: 6950 m --> 386 <field id="CMIP6_xgwdparam" field_ref="dummy_lat-P" /> <!-- P2 (Pa) atmosphere_eastward_stress_due_to_gravity_wave_drag : Parameterised x-component of gravity wave drag --> 387 <field id="CMIP6_xnonoroggwdparam27" field_ref="dummy_XYA" /> <!-- P3 (m s-2) xnonoroggwdparam : Parameterised x-component of non-orographic gravity wave drag --> 388 <field id="CMIP6_ygwdparam" field_ref="dummy_lat-P" /> <!-- P2 (Pa) atmosphere_northward_stress_due_to_gravity_wave_drag : Parameterised y- component of gravity wave drag --> 389 <field id="CMIP6_ynonoroggwdparam27" field_ref="dummy_XYA" /> <!-- P3 (m s-2) ynonoroggwdparam : Parameterised y- component of non-orogrpahic gravity wave drag --> 366 <field id="CMIP6_xgwdparam" field_ref="dummy_XYA" /> <!-- P2 (Pa) atmosphere_eastward_stress_due_to_gravity_wave_drag : Parameterised x-component of gravity wave drag --> 367 <field id="CMIP6_ygwdparam" field_ref="dummy_XYA" /> <!-- P2 (Pa) atmosphere_northward_stress_due_to_gravity_wave_drag : Parameterised y- component of gravity wave drag --> 368 <field id="CMIP6_zfull" field_ref="dummy_XYA" /> <!-- P2 (m) height_above_reference_ellipsoid : Altitude of Model Full-Levels --> 390 369 <field id="CMIP6_zg" field_ref="zg" /> <!-- P1 (m) geopotential_height : Geopotential Height --> 370 <field field_ref="CMIP6_zg" grid_ref="CMIP6_p1000" id="CMIP6_zg1000" /> <!-- P1 (m) geopotential_height : Geopotential height on the 1000 hPa surface --> 391 371 <field id="CMIP6_zg27" field_ref="dummy_XYA" /> <!-- P3 (m) geopotential_height : Geopotential Height --> 392 372 <field id="CMIP6_zg7h" field_ref="dummy_XYA" /> <!-- P1 (m) geopotential_height : Geopotential Height --> 373 <field id="CMIP6_zhalf" field_ref="dummy_XYA" /> <!-- P2 (m) height_above_reference_ellipsoid : Altitude of Model Half-Levels --> 393 374 <field id="CMIP6_zmla" field_ref="dummy_XY" /> <!-- P1 (m) atmosphere_boundary_layer_thickness : Height of Boundary Layer --> 394 375 <field id="CMIP6_zmlwaero" field_ref="dummy_lat-A" /> <!-- P1 (K s-1) zmlwaero : longwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> … … 396 377 <field id="CMIP6_zmtnt" field_ref="dummy_lat-P" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_diabatic_processes : The diabatic heating rates due to all the processes that may change potential temperature --> 397 378 </field_definition> 379 380 <axis_definition> 381 382 <axis id="CMIP6_alev" name="alev" axis_ref="dummy_axisatm" > </axis> 383 <!-- must instantiate the level index representing the lowest atmospheric level --> 384 <axis id="CMIP6_alev1" name="alev" axis_ref="CMIP6_alev" > <zoom_axis begin="90" n="1"/> </axis> 385 <axis id="CMIP6_alevhalf" name="alevhalf" axis_ref="dummy_axisatm" > </axis> 386 <axis id="CMIP6_dbze" name="dbze" axis_ref="dummy_axisatm" value="(0,14) [ -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 2.5 7.5 12.5 17.5 22.5"> </axis> 387 <axis id="CMIP6_effectRadIc" name="effectRadIc" axis_ref="dummy_axisatm" > </axis> 388 <axis id="CMIP6_effectRadLi" name="effectRadLi" axis_ref="dummy_axisatm" > </axis> 389 <axis id="CMIP6_height100m" name="height" axis_ref="dummy_axisatm" value="(0,0) [ 100. ]"> </axis> 390 <axis id="CMIP6_height10m" name="height" axis_ref="dummy_axisatm" value="(0,0) [ 10. ]"> </axis> 391 <axis id="CMIP6_height2m" name="height" axis_ref="dummy_axisatm" value="(0,0) [ 2. ]"> </axis> 392 <axis id="CMIP6_landUse" name="landUse" axis_ref="dummy_axisatm" > </axis> 393 <axis id="CMIP6_location" name="location" axis_ref="dummy_axisatm" > </axis> 394 <axis id="CMIP6_misrBands" name="misrBands" axis_ref="dummy_axisatm" > </axis> 395 <axis id="CMIP6_scatratio" name="scatratio" axis_ref="dummy_axisatm" > </axis> 396 <axis id="CMIP6_site" name="site" axis_ref="dummy_axisatm" > </axis> 397 <axis id="CMIP6_spectband" name="spectband" axis_ref="dummy_axisatm" > </axis> 398 <axis id="CMIP6_sza5" name="sza5" axis_ref="dummy_axisatm" > </axis> 399 <axis id="CMIP6_tau" name="tau" axis_ref="dummy_axisatm" > </axis> 400 <axis id="CMIP6_vegtype" name="vegtype" axis_ref="dummy_axisatm" > </axis> 401 <axis id="CMIP6_sdepth" name="sdepth" axis_ref="dummy_axis_srf" > </axis> 402 <axis id="CMIP6_sdepth1" name="sdepth1" axis_ref="dummy_axis_srf" value="(0,0) [ 0.05 ]"> </axis> 403 404 </axis_definition> 405 406 <grid_definition> 407 <grid id="COSP_sites_grid"> 408 <domain id="COSP_sites_domain" ni_glo="256" nj_glo="128" type="rectilinear" prec="8"> 409 <generate_rectilinear_domain/> 410 <interpolate_domain order="1" renormalize="true" write_weight="true" mode="read_or_compute"/> 411 </domain> 412 <!-- <domain id="COSP_sites_domain" data_dim="1" type="unstructured" --> 413 <!-- ni_glo="1" latvalue_1d="(0,0)[ 45. ]" lonvalue_1d="(0,0)[ 0. ]" --> 414 <!-- nvertex="4" --> 415 <!-- bounds_lat_1d="(0,3)x(0,0)[ 45.01 45.01 44.99 44.99 ]" --> 416 <!-- bounds_lon_1d="(0,3)x(0,0)[ -0.01 0.01 0.01 - 0.01 ]" > --> 417 <!-- <generate_rectilinear_domain/> --> 418 <!-- </domain> --> 419 </grid> 420 421 <grid id="CMIP6_p1000" > 422 <domain domain_ref="domain_atm"/> 423 <axis id="CMIP6_axis_p1000" positive="up" n_glo="1" value="(0,0) [100000.]"> 424 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 425 </axis> 426 </grid> 427 428 <grid id="CMIP6_p850"> 429 <domain domain_ref="domain_atm"/> 430 <axis id="CMIP6_axis_p850" positive="up" n_glo="1" value="(0,0) [85000.]">" > 431 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 432 </axis> 433 </grid> 434 435 <grid id="CMIP6_p840"> 436 <domain domain_ref="domain_atm"/> 437 <axis id="CMIP6_axis_p840" positive="up" n_glo="1" value="(0,0) [84000.]"> 438 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 439 </axis> 440 </grid> 441 442 <grid id="CMIP6_p700"> 443 <domain domain_ref="domain_atm"/> 444 <axis id="CMIP6_axis_p700" positive="up" n_glo="1" value="(0,0) [70000.]"> 445 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 446 </axis> 447 </grid> 448 449 <grid id="CMIP6_p560"> 450 <domain domain_ref="domain_atm"/> 451 <axis id="CMIP6_axis_p560" positive="up" n_glo="1" value="(0,0) [56000.]"> 452 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 453 </axis> 454 </grid> 455 456 <grid id="CMIP6_p500"> 457 <domain domain_ref="domain_atm"/> 458 <axis id="CMIP6_axis_p500" positive="up" n_glo="1" value="(0,0) [50000.]"> 459 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 460 </axis> 461 </grid> 462 463 <grid id="CMIP6_p220"> 464 <domain domain_ref="domain_atm"/> 465 <axis id="CMIP6_axis_p220" positive="up" n_glo="1" value="(0,0) [22000.]"> 466 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 467 </axis> 468 </grid> 469 470 <grid id="CMIP6_p200"> 471 <domain domain_ref="domain_atm"/> 472 <axis id="CMIP6_axis_p200" positive="up" n_glo="1" value="(0,0) [20000.]"> 473 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 474 </axis> 475 </grid> 476 477 <grid id="CMIP6_p10"> 478 <domain domain_ref="domain_atm"/> 479 <axis id="CMIP6_axis_p10" positive="up" n_glo="1" value="(0,0) [1000.]"> 480 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/> 481 </axis> 482 </grid> 483 484 </grid_definition> 398 485 </context>
Note: See TracChangeset
for help on using the changeset viewer.