Changeset 2919 for LMDZ5/trunk/DefLists
- Timestamp:
- Jun 28, 2017, 10:38:53 AM (8 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
LMDZ5/trunk/DefLists/CMIP6_ping_atmos.xml
r2918 r2919 16 16 <field id="CMIP6_albsn" field_ref="dummy_XY" /> <!-- P1 (1.0) albsn : Albedo of the snow-covered surface, averaged over the grid cell. --> 17 17 <field id="CMIP6_aod550volso4" field_ref="dummy_XY" /> <!-- P1 (1e-09) aod550volso4 : aerosol optical depth at 550 nm due to stratospheric volcanic aerosols --> 18 <field id="CMIP6_areacella" field_ref=" dummy_XY" /> <!-- P1 (m2) cell_area : For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy. -->18 <field id="CMIP6_areacella" field_ref="aire" /> <!-- P1 (m2) cell_area : For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy. --> 19 19 <field id="CMIP6_ares" field_ref="dummy_XY" /> <!-- P1 (s m-1) aerodynamic_resistance : Aerodynamic resistance --> 20 20 <field id="CMIP6_cLand" field_ref="dummy_XY" /> <!-- P1 (kg m-2) cLand : as specified by C4MIP --> … … 22 22 <field id="CMIP6_ccldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) ccldncl : Droplets are liquid only. Report concentration 'as seen from space' over convective liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> 23 23 <field id="CMIP6_cct" field_ref="ptop" /> <!-- P1 (Pa) air_pressure_at_convective_cloud_top : Where convective cloud is present in the grid cell, the instantaneous cloud top altitude should be that of the top of the highest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. --> 24 <field id="CMIP6_cfadDbze94" field_ref=" dummy_XYA" /> <!-- P1 (1.0) histogram_of_equivalent_reflectivity_factor_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadDbze94 is defined as the simulated relative frequency of occurrence of radar reflectivity in sampling volumes defined by altitude bins. The radar is observing at a frequency of 94GHz. -->24 <field id="CMIP6_cfadDbze94" field_ref="cfadDbze94" /> <!-- P1 (1.0) histogram_of_equivalent_reflectivity_factor_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadDbze94 is defined as the simulated relative frequency of occurrence of radar reflectivity in sampling volumes defined by altitude bins. The radar is observing at a frequency of 94GHz. --> 25 25 <field id="CMIP6_cfadLidarsr532" field_ref="cfad_lidarsr532" /> <!-- P1 (1.0) histogram_of_backscattering_ratio_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadLidarsr532 is defined as the simulated relative frequency of lidar scattering ratio in sampling volumes defined by altitude bins. The lidar is observing at a wavelength of 532nm. --> 26 26 <field id="CMIP6_cfc113global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_cfc113_in_air : unset --> … … 34 34 <field id="CMIP6_cl" field_ref="rneb" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover, including both large-scale and convective cloud. --> 35 35 <field id="CMIP6_clayFrac" field_ref="dummy_XY" /> <!-- P1 (1.0) clayFrac : Clay Fraction --> 36 <field id="CMIP6_clc" field_ref=" dummy_XYA" /> <!-- P1 (%) convective_cloud_area_fraction_in_atmosphere_layer : Include only convective cloud. -->36 <field id="CMIP6_clc" field_ref="rnebcon" /> <!-- P1 (%) convective_cloud_area_fraction_in_atmosphere_layer : Include only convective cloud. --> 37 37 <field id="CMIP6_clcalipso" field_ref="clcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover at CALIPSO standard heights. --> 38 <field id="CMIP6_clcalipso2" field_ref=" dummy_XYA" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Clouds detected by CALIPSO but below the detectability threshold of CloudSat -->39 <field id="CMIP6_clcalipsoice" field_ref=" dummy_XYA" /> <!-- P1 (%) ice_cloud_area_fraction_in_atmosphere_layer : CALIPSO ice cloud Fraction -->40 <field id="CMIP6_clcalipsoliq" field_ref=" dummy_XYA" /> <!-- P1 (%) clcalipsoliq : CALIPSO liquid cloud Fraction -->38 <field id="CMIP6_clcalipso2" field_ref="clcalipso2" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Clouds detected by CALIPSO but below the detectability threshold of CloudSat --> 39 <field id="CMIP6_clcalipsoice" field_ref="clcalipsoice" /> <!-- P1 (%) ice_cloud_area_fraction_in_atmosphere_layer : CALIPSO ice cloud Fraction --> 40 <field id="CMIP6_clcalipsoliq" field_ref="clcalipsoice" /> <!-- P1 (%) clcalipsoliq : CALIPSO liquid cloud Fraction --> 41 41 <field id="CMIP6_cldicemxrat27" field_ref="dummy_XYA" /> <!-- P2 (1.0) cloud_ice_mixing_ratio : Cloud ice mixing ratio --> 42 42 <field id="CMIP6_cldnci" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_ice_crystals_in_air_at_ice_cloud_top : Concentration 'as seen from space' over ice-cloud portion of grid cell. This is the value from uppermost model layer with ice cloud or, if available, it is the sum over all ice cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total ice cloud top fraction (as seen from TOA) of each time sample when computing monthly mean. --> … … 47 47 <field id="CMIP6_cli" field_ref="iwcon" /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_ice_in_air : Includes both large-scale and convective cloud. This is calculated as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. It includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 48 48 <field id="CMIP6_clic" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_ice_in_air : Calculated as the mass of convective cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 49 <field id="CMIP6_climodis" field_ref=" dummy_XY" /> <!-- P1 (%) ice_cloud_area_fraction : MODIS Ice Cloud Fraction -->49 <field id="CMIP6_climodis" field_ref="climodis" /> <!-- P1 (%) ice_cloud_area_fraction : MODIS Ice Cloud Fraction --> 50 50 <field id="CMIP6_clis" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_ice_in_air : Calculated as the mass of stratiform cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 51 <field id="CMIP6_clisccp" field_ref=" dummy_XYA" /> <!-- P1 (%) isccp_cloud_area_fraction : Percentage cloud cover in optical depth categories. -->51 <field id="CMIP6_clisccp" field_ref="clisccp2" /> <!-- P1 (%) isccp_cloud_area_fraction : Percentage cloud cover in optical depth categories. --> 52 52 <field id="CMIP6_clivi" field_ref="iwp" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_cloud_ice : calculate mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 53 53 <field id="CMIP6_clivic" field_ref="dummy_XY" /> <!-- P1 (kg m-2 ) clivic : calculate mass of convective ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 54 54 <field id="CMIP6_cllcalipso" field_ref="cllcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 840hPa --> 55 55 <field id="CMIP6_clmcalipso" field_ref="clmcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 560hPa --> 56 <field id="CMIP6_clmisr" field_ref=" dummy_XYA" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Cloud percentage in spectral bands and layers as observed by the Multi-angle Imaging SpectroRadiometer (MISR) instrument. -->56 <field id="CMIP6_clmisr" field_ref="clMISR" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Cloud percentage in spectral bands and layers as observed by the Multi-angle Imaging SpectroRadiometer (MISR) instrument. --> 57 57 <field id="CMIP6_cls" field_ref="dummy_XYA" /> <!-- P1 (%) stratiform_cloud_area_fraction_in_atmosphere_layer : unset --> 58 58 <field id="CMIP6_clt" field_ref="cldt" /> <!-- P1 (1.0) cloud_area_fraction : Total cloud area fraction for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Includes both large-scale and convective cloud. --> 59 59 <field id="CMIP6_cltcalipso" field_ref="cltcalipso" /> <!-- P1 (%) cloud_area_fraction : unset --> 60 60 <field id="CMIP6_cltisccp" field_ref="tclisccp" /> <!-- P1 (%) cloud_area_fraction : Percentage total cloud cover, simulating ISCCP observations. --> 61 <field id="CMIP6_cltmodis" field_ref=" dummy_XY" /> <!-- P1 (%) cloud_area_fraction : MODIS Total Cloud Fraction -->61 <field id="CMIP6_cltmodis" field_ref="cltmodis" /> <!-- P1 (%) cloud_area_fraction : MODIS Total Cloud Fraction --> 62 62 <field id="CMIP6_clw" field_ref="lwcon" /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_liquid_water_in_air : Includes both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Precipitating hydrometeors are included ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 63 <field id="CMIP6_clwc" field_ref=" dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_liquid_water_in_air : Calculated as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->64 <field id="CMIP6_clwmodis" field_ref=" dummy_XY" /> <!-- P1 (%) clwmodis : MODIS Liquid Cloud Fraction -->63 <field id="CMIP6_clwc" field_ref="lcc3dcon" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_liquid_water_in_air : Calculated as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 64 <field id="CMIP6_clwmodis" field_ref="clwmodis" /> <!-- P1 (%) clwmodis : MODIS Liquid Cloud Fraction --> 65 65 <field id="CMIP6_clws" field_ref="lcc3dstra" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_liquid_water_in_air : Calculated as the mass of stratiform cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 66 66 <field id="CMIP6_clwvi" field_ref="lwp" /> <!-- P1 (kg m-2) atmosphere_cloud_condensed_water_content : Mass of condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> … … 82 82 <field id="CMIP6_dgw" field_ref="dummy_XY" /> <!-- P1 (kg m-2) dgw : Change in Groundwater --> 83 83 <field id="CMIP6_diabdrag" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_numerical_artefacts : Other sub-grid scale/numerical zonal drag excluding that already provided for the parameterized orographic and non-ororgraphic gravity waves. This would be used to calculate the total 'diabatic drag'. Contributions to this additional drag such Rayleigh friction and diffusion that can be calculated from the monthly mean wind fields should not be included, but details (e.g. coefficients) of the friction and/or diffusion used in the model should be provided separately. --> 84 <field id="CMIP6_dmc" field_ref=" dummy_XYA" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_deep_convective_mass_flux : The net mass flux represents the difference between the updraft and downdraft components. This is calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). -->84 <field id="CMIP6_dmc" field_ref="upwd" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_deep_convective_mass_flux : The net mass flux represents the difference between the updraft and downdraft components. This is calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> 85 85 <field id="CMIP6_dmlt" field_ref="dummy_XY" /> <!-- P1 (m) dmlt : Depth from surface to the zero degree isotherm. Above this isotherm T > 0o, and below this line T < 0o. --> 86 86 <field id="CMIP6_drivw" field_ref="dummy_XY" /> <!-- P1 (kg m-2) drivw : Change in River Storage --> … … 135 135 <field id="CMIP6_jo2" field_ref="dummy_lat-P" /> <!-- P1 (s-1) jo2 : rate of o2 -> o1d+o --> 136 136 <field id="CMIP6_jo3" field_ref="dummy_lat-P" /> <!-- P1 (s-1) jo3 : sum of rates o3 -> o1d+o2 and o3 -> o+o2 --> 137 <field id="CMIP6_jpdftaureicemodis" field_ref=" dummy_XYA" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, ice -->138 <field id="CMIP6_jpdftaureliqmodis" field_ref=" dummy_XYA" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, liquid -->137 <field id="CMIP6_jpdftaureicemodis" field_ref="crimodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, ice --> 138 <field id="CMIP6_jpdftaureliqmodis" field_ref="crlmodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, liquid --> 139 139 <field id="CMIP6_ksat" field_ref="dummy_XY" /> <!-- P1 (1e-6 m s-1) ksat : Saturated Hydraulic Conductivity --> 140 140 <field id="CMIP6_latitude" field_ref="dummy_COSPcurtain"/> <!-- P1 (degrees_north) latitude : latitude --> … … 176 176 <field id="CMIP6_oxloss" field_ref="dummy_lat-P" /> <!-- P1 (mol m-3 s-1) oxloss : total chemical loss rate for o+o1d+o3 --> 177 177 <field id="CMIP6_oxprod" field_ref="dummy_lat-P" /> <!-- P1 (mol m-3 s-1) oxprod : total production rate of o+o1d+o3 including o2 photolysis and all o3 producing reactions --> 178 <field id="CMIP6_parasolRefl" field_ref=" dummy_XY" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). -->178 <field id="CMIP6_parasolRefl" field_ref="parasol_refl" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). --> 179 179 <field id="CMIP6_parasolRefl_sea" field_ref="dummy_XY" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). --> 180 180 <field id="CMIP6_pctisccp" field_ref="ctpisccp" /> <!-- P1 (Pa) air_pressure_at_cloud_top : ISCCP Mean Cloud Top Pressure. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html -->
Note: See TracChangeset
for help on using the changeset viewer.