Changeset 2797
- Timestamp:
- Feb 23, 2017, 5:05:46 PM (8 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
LMDZ5/trunk/DefLists/CMIP6_ping_atmos.xml
r2796 r2797 13 13 <field id="CMIP6_O18wv" field_ref="dummy_XYA" /> <!-- P1 () O18wv : Roche - LSCE --> 14 14 <field id="CMIP6_albc" field_ref="dummy_XY" /> <!-- P1 (1.0) albc : Canopy Albedo --> 15 <field id="CMIP6_albisccp" field_ref=" dummy_XY" /> <!-- P1 (1.0) cloud_albedo : ISCCP Mean Cloud Albedo. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html -->15 <field id="CMIP6_albisccp" field_ref="albisccp" /> <!-- P1 (1.0) cloud_albedo : ISCCP Mean Cloud Albedo. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html --> 16 16 <field id="CMIP6_albsn" field_ref="dummy_XY" /> <!-- P1 (1.0) albsn : Albedo of the snow-covered surface, averaged over the grid cell. --> 17 17 <field id="CMIP6_aod550volso4" field_ref="dummy_XY" /> <!-- P1 (1e-09) aod550volso4 : aerosol optical depth at 550 nm due to stratospheric volcanic aerosols --> … … 19 19 <field id="CMIP6_ares" field_ref="dummy_XY" /> <!-- P1 (s m-1) aerodynamic_resistance : Aerodynamic resistance --> 20 20 <field id="CMIP6_cLand" field_ref="dummy_XY" /> <!-- P1 (kg m-2) cLand : as specified by C4MIP --> 21 <field id="CMIP6_ccb" field_ref=" dummy_XY"/> <!-- P1 (Pa) air_pressure_at_convective_cloud_base : Where convective cloud is present in the grid cell, the instantaneous cloud base altitude should be that of the bottom of the lowest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. -->21 <field id="CMIP6_ccb" field_ref="pbase" /> <!-- P1 (Pa) air_pressure_at_convective_cloud_base : Where convective cloud is present in the grid cell, the instantaneous cloud base altitude should be that of the bottom of the lowest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. --> 22 22 <field id="CMIP6_ccldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) ccldncl : Droplets are liquid only. Report concentration 'as seen from space' over convective liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> 23 <field id="CMIP6_cct" field_ref=" dummy_XY"/> <!-- P1 (Pa) air_pressure_at_convective_cloud_top : Where convective cloud is present in the grid cell, the instantaneous cloud top altitude should be that of the top of the highest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. -->23 <field id="CMIP6_cct" field_ref="ptop" /> <!-- P1 (Pa) air_pressure_at_convective_cloud_top : Where convective cloud is present in the grid cell, the instantaneous cloud top altitude should be that of the top of the highest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. --> 24 24 <field id="CMIP6_cfadDbze94" field_ref="dummy_XYA" /> <!-- P1 (1.0) histogram_of_equivalent_reflectivity_factor_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadDbze94 is defined as the simulated relative frequency of occurrence of radar reflectivity in sampling volumes defined by altitude bins. The radar is observing at a frequency of 94GHz. --> 25 <field id="CMIP6_cfadLidarsr532" field_ref=" dummy_XYA"/> <!-- P1 (1.0) histogram_of_backscattering_ratio_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadLidarsr532 is defined as the simulated relative frequency of lidar scattering ratio in sampling volumes defined by altitude bins. The lidar is observing at a wavelength of 532nm. -->25 <field id="CMIP6_cfadLidarsr532" field_ref="cfad_lidarsr532" /> <!-- P1 (1.0) histogram_of_backscattering_ratio_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadLidarsr532 is defined as the simulated relative frequency of lidar scattering ratio in sampling volumes defined by altitude bins. The lidar is observing at a wavelength of 532nm. --> 26 26 <field id="CMIP6_cfc113global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_cfc113_in_air : unset --> 27 27 <field id="CMIP6_cfc11global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_cfc11_in_air : unset --> … … 31 31 <field id="CMIP6_ch4global" field_ref="dummy_0d" /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 --> 32 32 <field id="CMIP6_ch4globalClim" field_ref="dummy_0d" /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 --> 33 <field id="CMIP6_ci" field_ref=" dummy_XY"/> <!-- P1 (1.0) convection_time_fraction : Fraction of time that convection occurs in the grid cell. -->34 <field id="CMIP6_cl" field_ref=" dummy_XYA"/> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover, including both large-scale and convective cloud. -->33 <field id="CMIP6_ci" field_ref="ftime_con" /> <!-- P1 (1.0) convection_time_fraction : Fraction of time that convection occurs in the grid cell. --> 34 <field id="CMIP6_cl" field_ref="rneb" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover, including both large-scale and convective cloud. --> 35 35 <field id="CMIP6_clayFrac" field_ref="dummy_XY" /> <!-- P1 (1.0) clayFrac : Clay Fraction --> 36 36 <field id="CMIP6_clc" field_ref="dummy_XYA" /> <!-- P1 (%) convective_cloud_area_fraction_in_atmosphere_layer : Include only convective cloud. --> 37 <field id="CMIP6_clcalipso" field_ref=" dummy_XYA" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover at CALIPSO standard heights. -->37 <field id="CMIP6_clcalipso" field_ref="clcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover at CALIPSO standard heights. --> 38 38 <field id="CMIP6_clcalipso2" field_ref="dummy_XYA" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Clouds detected by CALIPSO but below the detectability threshold of CloudSat --> 39 39 <field id="CMIP6_clcalipsoice" field_ref="dummy_XYA" /> <!-- P1 (%) ice_cloud_area_fraction_in_atmosphere_layer : CALIPSO ice cloud Fraction --> … … 44 44 <field id="CMIP6_cldnvi" field_ref="dummy_XY" /> <!-- P1 (m-2) atmosphere_number_content_of_cloud_droplets : Droplets are liquid only. Values are weighted by liquid cloud fraction in each layer when vertically integrating, and for monthly means the samples are weighted by total liquid cloud fraction (as seen from TOA). --> 45 45 <field id="CMIP6_cldwatmxrat27" field_ref="dummy_XYA" /> <!-- P2 (1.0) cloud_liquid_water_mixing_ratio : Cloud water mixing ratio --> 46 <field id="CMIP6_clhcalipso" field_ref=" dummy_XY"/> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 220hPa -->47 <field id="CMIP6_cli" field_ref=" dummy_XYA"/> <!-- P1 (kg kg-1) mass_fraction_of_cloud_ice_in_air : Includes both large-scale and convective cloud. This is calculated as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. It includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->46 <field id="CMIP6_clhcalipso" field_ref="clhcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 220hPa --> 47 <field id="CMIP6_cli" field_ref="iwcon" /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_ice_in_air : Includes both large-scale and convective cloud. This is calculated as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. It includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 48 48 <field id="CMIP6_clic" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_ice_in_air : Calculated as the mass of convective cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 49 49 <field id="CMIP6_climodis" field_ref="dummy_XY" /> <!-- P1 (%) ice_cloud_area_fraction : MODIS Ice Cloud Fraction --> 50 50 <field id="CMIP6_clis" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_ice_in_air : Calculated as the mass of stratiform cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 51 51 <field id="CMIP6_clisccp" field_ref="dummy_XYA" /> <!-- P1 (%) isccp_cloud_area_fraction : Percentage cloud cover in optical depth categories. --> 52 <field id="CMIP6_clivi" field_ref=" dummy_XY"/> <!-- P1 (kg m-2) atmosphere_mass_content_of_cloud_ice : calculate mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->52 <field id="CMIP6_clivi" field_ref="iwp" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_cloud_ice : calculate mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 53 53 <field id="CMIP6_clivic" field_ref="dummy_XY" /> <!-- P1 (kg m-2 ) clivic : calculate mass of convective ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 54 <field id="CMIP6_cllcalipso" field_ref=" dummy_XY"/> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 840hPa -->55 <field id="CMIP6_clmcalipso" field_ref=" dummy_XY"/> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 560hPa -->54 <field id="CMIP6_cllcalipso" field_ref="cllcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 840hPa --> 55 <field id="CMIP6_clmcalipso" field_ref="clmcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 560hPa --> 56 56 <field id="CMIP6_clmisr" field_ref="dummy_XYA" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Cloud percentage in spectral bands and layers as observed by the Multi-angle Imaging SpectroRadiometer (MISR) instrument. --> 57 57 <field id="CMIP6_cls" field_ref="dummy_XYA" /> <!-- P1 (%) stratiform_cloud_area_fraction_in_atmosphere_layer : unset --> 58 <field id="CMIP6_clt" field_ref=" dummy_XY"/> <!-- P1 (1.0) cloud_area_fraction : Total cloud area fraction for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Includes both large-scale and convective cloud. -->59 <field id="CMIP6_cltcalipso" field_ref=" dummy_XY"/> <!-- P1 (%) cloud_area_fraction : unset -->60 <field id="CMIP6_cltisccp" field_ref=" dummy_XY" /> <!-- P1 (%) cloud_area_fraction : Percentage total cloud cover, simulating ISCCP observations. -->58 <field id="CMIP6_clt" field_ref="cldt" /> <!-- P1 (1.0) cloud_area_fraction : Total cloud area fraction for the whole atmospheric column, as seen from the surface or the top of the atmosphere. Includes both large-scale and convective cloud. --> 59 <field id="CMIP6_cltcalipso" field_ref="cltcalipso" /> <!-- P1 (%) cloud_area_fraction : unset --> 60 <field id="CMIP6_cltisccp" field_ref="tclisccp" /> <!-- P1 (%) cloud_area_fraction : Percentage total cloud cover, simulating ISCCP observations. --> 61 61 <field id="CMIP6_cltmodis" field_ref="dummy_XY" /> <!-- P1 (%) cloud_area_fraction : MODIS Total Cloud Fraction --> 62 <field id="CMIP6_clw" field_ref=" dummy_XYA"/> <!-- P1 (kg kg-1) mass_fraction_of_cloud_liquid_water_in_air : Includes both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Precipitating hydrometeors are included ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->62 <field id="CMIP6_clw" field_ref="lwcon" /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_liquid_water_in_air : Includes both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Precipitating hydrometeors are included ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 63 63 <field id="CMIP6_clwc" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_liquid_water_in_air : Calculated as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 64 64 <field id="CMIP6_clwmodis" field_ref="dummy_XY" /> <!-- P1 (%) clwmodis : MODIS Liquid Cloud Fraction --> 65 <field id="CMIP6_clws" field_ref=" dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_liquid_water_in_air : Calculated as the mass of stratiform cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->66 <field id="CMIP6_clwvi" field_ref=" dummy_XY"/> <!-- P1 (kg m-2) atmosphere_cloud_condensed_water_content : Mass of condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->65 <field id="CMIP6_clws" field_ref="lcc3dstra" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_liquid_water_in_air : Calculated as the mass of stratiform cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 66 <field id="CMIP6_clwvi" field_ref="lwp" /> <!-- P1 (kg m-2) atmosphere_cloud_condensed_water_content : Mass of condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 67 67 <field id="CMIP6_clwvic" field_ref="dummy_XY" /> <!-- P1 (kg m-2 ) atmosphere_convective_cloud_condensed_water_content : calculate mass of convective condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 68 68 <field id="CMIP6_cnc" field_ref="dummy_XY" /> <!-- P1 () vegetation_area_fraction : Canopy covered fraction --> … … 93 93 <field id="CMIP6_dtesn" field_ref="dummy_XY" /> <!-- P1 (J m-2) dtesn : Change in cold content over the snow layer for which the energy balance is calculated, accumulated over the sampling time interval. This should also include the energy contained in the liquid water in the snow pack. --> 94 94 <field id="CMIP6_ec" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) ec : Interception evaporation --> 95 <field id="CMIP6_edt" field_ref=" dummy_XYA"/> <!-- P1 (m2 s-1) atmosphere_heat_diffusivity : Vertical diffusion coefficient for temperature due to parametrised eddies -->95 <field id="CMIP6_edt" field_ref="Kz" /> <!-- P1 (m2 s-1) atmosphere_heat_diffusivity : Vertical diffusion coefficient for temperature due to parametrised eddies --> 96 96 <field id="CMIP6_eow" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) eow : Open Water Evaporation --> 97 97 <field id="CMIP6_epfy" field_ref="dummy_lat-P" /> <!-- P1 (m3 s-2) northward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fy of Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3a of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. --> … … 100 100 <field id="CMIP6_esn" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) esn : Snow Evaporation --> 101 101 <field id="CMIP6_et" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) et : Total Evapotranspiration --> 102 <field id="CMIP6_evspsbl" field_ref=" dummy_XY"/> <!-- P1 (kg m-2 s-1) water_evaporation_flux : Evaporation at surface: flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor (from underlying surface and vegetation) -->102 <field id="CMIP6_evspsbl" field_ref="evap" /> <!-- P1 (kg m-2 s-1) water_evaporation_flux : Evaporation at surface: flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor (from underlying surface and vegetation) --> 103 103 <field id="CMIP6_evspsblpot" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) water_potential_evaporation_flux : at surface; potential flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor (from underlying surface and vegetation) --> 104 <field id="CMIP6_evu" field_ref=" dummy_XYA"/> <!-- P1 (m2 s-1) atmosphere_momentum_diffusivity : Vertical diffusion coefficient for momentum due to parametrised eddies -->104 <field id="CMIP6_evu" field_ref="evu" /> <!-- P1 (m2 s-1) atmosphere_momentum_diffusivity : Vertical diffusion coefficient for momentum due to parametrised eddies --> 105 105 <field id="CMIP6_fco2antt" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_carbon_dioxide_expressed_as_carbon_due_to_anthropogenic_emission : This is requested only for the emission-driven coupled carbon climate model runs. Does not include natural fire sources but, includes all anthropogenic sources, including fossil fuel use, cement production, agricultural burning, and sources associated with anthropogenic land use change excluding forest regrowth. --> 106 106 <field id="CMIP6_fco2fos" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_fossil_fuel_combustion : This is the prescribed anthropogenic CO2 flux from fossil fuel use, including cement production, and flaring (but not from land-use changes, agricultural burning, forest regrowth, etc.) --> … … 111 111 <field id="CMIP6_hcfc22global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_hcfc22_in_air : unset --> 112 112 <field id="CMIP6_hfdsnb" field_ref="dummy_XY" /> <!-- P1 (W m-2) hfdsnb : Heat flux from snow into the ice or land under the snow. --> 113 <field id="CMIP6_hfls" field_ref=" dummy_??"/> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux -->113 <field id="CMIP6_hfls" field_ref="flat" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux --> 114 114 <field id="CMIP6_hfls_isf" field_ref="dummy_??" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux --> 115 115 <field id="CMIP6_hfmlt" field_ref="dummy_XY" /> <!-- P1 (W m-2 ) surface_snow_and_ice_melt_heat_flux : Energy consumed or released during liquid/solid phase changes. --> 116 116 <field id="CMIP6_hfrs" field_ref="dummy_XY" /> <!-- P1 (W m-2 ) hfrs : Heat transferred to a snow cover by rain.. --> 117 117 <field id="CMIP6_hfsbl" field_ref="dummy_XY" /> <!-- P1 (W m-2 ) hfsbl : Energy consumed or released during vapor/solid phase changes. --> 118 <field id="CMIP6_hfss" field_ref=" dummy_??"/> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux -->118 <field id="CMIP6_hfss" field_ref="sens" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux --> 119 119 <field id="CMIP6_hfss_isf" field_ref="dummy_??" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux --> 120 <field id="CMIP6_hur" field_ref=" dummy_XYA"/> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. -->121 <field id="CMIP6_hurs" field_ref=" dummy_XY"/> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. -->120 <field id="CMIP6_hur" field_ref="hur" /> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. --> 121 <field id="CMIP6_hurs" field_ref="rh2m" /> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. --> 122 122 <field id="CMIP6_hursmax" field_ref="dummy_XY" /> <!-- P1 (%) relative_humidity : Daily Maximum Near-Surface Relative Humidity --> 123 123 <field id="CMIP6_hursmin" field_ref="dummy_XY" /> <!-- P1 (%) relative_humidity : Daily Minimum Near-Surface Relative Humidity --> 124 <field id="CMIP6_hus" field_ref=" dummy_XYA"/> <!-- P1 (1.0) specific_humidity : Specific Humidity -->124 <field id="CMIP6_hus" field_ref="hus" /> <!-- P1 (1.0) specific_humidity : Specific Humidity --> 125 125 <field id="CMIP6_hus27" field_ref="dummy_XYA" /> <!-- P2 (1.0) specific_humidity : Specific Humidity --> 126 126 <field id="CMIP6_hus7h" field_ref="dummy_XYA" /> <!-- P2 (1.0) specific_humidity : Specific Humidity --> 127 127 <field id="CMIP6_hus850" field_ref="dummy_XY" /> <!-- P1 (1.0) specific_humidity : unset --> 128 <field id="CMIP6_huss" field_ref=" dummy_XY"/> <!-- P1 (1.0) specific_humidity : Near-surface (usually, 2 meter) specific humidity. -->128 <field id="CMIP6_huss" field_ref="q2m" /> <!-- P1 (1.0) specific_humidity : Near-surface (usually, 2 meter) specific humidity. --> 129 129 <field id="CMIP6_iareafl" field_ref="dummy_0d" /> <!-- P3 (m2) iareafl : Total area of the floating ice shelves (the component of ice sheet that flows over ocean) --> 130 130 <field id="CMIP6_iareagr" field_ref="dummy_0d" /> <!-- P3 (m2) iareagr : Total area of the grounded ice sheets (the component of ice sheet resting over bedrock) --> … … 153 153 <field id="CMIP6_lts" field_ref="dummy_XY" /> <!-- P1 (K) lts : proposed name: potential_temperature_difference_between_700hPa_and_1000hPa (Lower Tropospheric Stability) --> 154 154 <field id="CMIP6_lwsffluxaero" field_ref="dummy_XY" /> <!-- P2 (W m-2 ) lwsffluxaero : downwelling longwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call --> 155 <field id="CMIP6_lwtoafluxaerocs" field_ref="dummy_XY" 156 <field id="CMIP6_mc" field_ref=" dummy_XYA"/> <!-- P1 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : The net mass flux should represent the difference between the updraft and downdraft components. The flux is computed as the mass divided by the area of the grid cell. -->155 <field id="CMIP6_lwtoafluxaerocs" field_ref="dummy_XY" /> <!-- P1 (W m-2 ) lwtoafluxaerocs : downwelling longwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call --> 156 <field id="CMIP6_mc" field_ref="mc" /> <!-- P1 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : The net mass flux should represent the difference between the updraft and downdraft components. The flux is computed as the mass divided by the area of the grid cell. --> 157 157 <field id="CMIP6_mcd" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) atmosphere_downdraft_convective_mass_flux : Calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> 158 158 <field id="CMIP6_mcu" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) atmosphere_updraft_convective_mass_flux : In accordance with common usage in geophysical disciplines, "flux" implies per unit area, called "flux density" in physics. The atmosphere convective mass flux is the vertical transport of mass for a field of cumulus clouds or thermals, given by the product of air density and vertical velocity. For an area-average, cell_methods should specify whether the average is over all the area or the area of updrafts only. --> … … 178 178 <field id="CMIP6_parasolRefl" field_ref="dummy_XY" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). --> 179 179 <field id="CMIP6_parasolRefl_sea" field_ref="dummy_XY" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). --> 180 <field id="CMIP6_pctisccp" field_ref=" dummy_XY" /> <!-- P1 (Pa) air_pressure_at_cloud_top : ISCCP Mean Cloud Top Pressure. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html -->181 <field id="CMIP6_pfull" field_ref=" dummy_XYA"/> <!-- P1 (Pa) air_pressure : Air pressure on model levels -->180 <field id="CMIP6_pctisccp" field_ref="ctpisccp" /> <!-- P1 (Pa) air_pressure_at_cloud_top : ISCCP Mean Cloud Top Pressure. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html --> 181 <field id="CMIP6_pfull" field_ref="pres" /> <!-- P1 (Pa) air_pressure : Air pressure on model levels --> 182 182 <field id="CMIP6_pfull27" field_ref="dummy_XYA" /> <!-- P3 (Pa) air_pressure : Air pressure on model levels --> 183 <field id="CMIP6_phalf" field_ref=" dummy_XYA"/> <!-- P1 (Pa) air_pressure : Air pressure on model half-levels -->183 <field id="CMIP6_phalf" field_ref="paprs" /> <!-- P1 (Pa) air_pressure : Air pressure on model half-levels --> 184 184 <field id="CMIP6_pmlev" field_ref="dummy_XYA" /> <!-- P1 (Pa) air_pressure : The atmospheric pressure at the model layer midpoints for all times and levels in the associated output variables --> 185 185 <field id="CMIP6_potet" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) potet : Potential Evapotranspiration --> 186 <field id="CMIP6_pr" field_ref=" dummy_XY"/> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases -->187 <field id="CMIP6_prc" field_ref=" dummy_XY"/> <!-- P1 (kg m-2 s-1) convective_precipitation_flux : Convective precipitation at surface; includes both liquid and solid phases. -->186 <field id="CMIP6_pr" field_ref="precip" /> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases --> 187 <field id="CMIP6_prc" field_ref="pluc" /> <!-- P1 (kg m-2 s-1) convective_precipitation_flux : Convective precipitation at surface; includes both liquid and solid phases. --> 188 188 <field id="CMIP6_prhmax" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) precipitation_flux : Daily Maximum Hourly Precipitation Rate --> 189 189 <field id="CMIP6_prra" field_ref="dummy_??" /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate --> … … 193 193 <field id="CMIP6_prrc_land" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) convective_rainfall_flux : Convective Rainfall rate --> 194 194 <field id="CMIP6_prrsn" field_ref="dummy_XY" /> <!-- P1 (1) prrsn : The fraction of the grid averaged rainfall which falls on the snow pack --> 195 <field id="CMIP6_prsn" field_ref=" dummy_??"/> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase -->195 <field id="CMIP6_prsn" field_ref="snow" /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase --> 196 196 <field id="CMIP6_prsn_isf" field_ref="dummy_??" /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase --> 197 <field id="CMIP6_prsnc" field_ref=" dummy_XY" /> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. -->197 <field id="CMIP6_prsnc" field_ref="pr_con_i" /> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. --> 198 198 <field id="CMIP6_prsnc_land" field_ref="dummy_XY" /> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. --> 199 199 <field id="CMIP6_prsnsn" field_ref="dummy_XY" /> <!-- P1 (1) prsnsn : The fraction of the snowfall which falls on the snow pack --> 200 <field id="CMIP6_prw" field_ref=" dummy_XY"/> <!-- P1 (kg m-2) atmosphere_water_vapor_content : vertically integrated through the atmospheric column -->201 <field id="CMIP6_ps" field_ref=" dummy_XY"/> <!-- P1 (Pa) surface_air_pressure : surface pressure (not mean sea-level pressure), 2-D field to calculate the 3-D pressure field from hybrid coordinates -->200 <field id="CMIP6_prw" field_ref="prw" /> <!-- P1 (kg m-2) atmosphere_water_vapor_content : vertically integrated through the atmospheric column --> 201 <field id="CMIP6_ps" field_ref="psol" /> <!-- P1 (Pa) surface_air_pressure : surface pressure (not mean sea-level pressure), 2-D field to calculate the 3-D pressure field from hybrid coordinates --> 202 202 <field id="CMIP6_psitem" field_ref="dummy_lat-P" /> <!-- P1 (kg s^-1) psitem : Residual mass streamfunction, computed from vstar and integrated from the top of the atmosphere (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Accademic Press. --> 203 <field id="CMIP6_psl" field_ref=" dummy_XY"/> <!-- P1 (Pa) air_pressure_at_sea_level : Sea Level Pressure -->203 <field id="CMIP6_psl" field_ref="slp" /> <!-- P1 (Pa) air_pressure_at_sea_level : Sea Level Pressure --> 204 204 <field id="CMIP6_qgwr" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) qgwr : Groundwater recharge from soil layer --> 205 205 <field id="CMIP6_rainmxrat27" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_rain_in_air : Rain mixing ratio --> 206 206 <field id="CMIP6_reffcclwtop" field_ref="dummy_XY" /> <!-- P1 (m) reffcclwtop : Droplets are liquid only. This is the effective radius "as seen from space" over convective liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately. --> 207 207 <field id="CMIP6_reffclic" field_ref="dummy_site-A" /> <!-- P2 (m) effective_radius_of_convective_cloud_ice_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 208 <field id="CMIP6_reffclis" field_ref=" dummy_XYA"/> <!-- P2 (m) effective_radius_of_stratiform_cloud_ice_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->208 <field id="CMIP6_reffclis" field_ref="ref_ice" /> <!-- P2 (m) effective_radius_of_stratiform_cloud_ice_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 209 209 <field id="CMIP6_reffclwc" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_convective_cloud_liquid_water_particle : Droplets are liquid. The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell. --> 210 210 <field id="CMIP6_reffclws" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_stratiform_cloud_liquid_water_particle : Droplets are liquid. The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell. --> … … 212 212 <field id="CMIP6_rivi" field_ref="dummy_XY" /> <!-- P1 (m3 s-1) rivi : Inflow of River Water into Cell --> 213 213 <field id="CMIP6_rivo" field_ref="dummy_XY" /> <!-- P1 (m3 s-1) rivo : Outflow of River Water from Cell --> 214 <field id="CMIP6_rld" field_ref=" dummy_site-A"/> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling Longwave Radiation (includes the fluxes at the surface and TOA) -->214 <field id="CMIP6_rld" field_ref="rld" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling Longwave Radiation (includes the fluxes at the surface and TOA) --> 215 215 <field id="CMIP6_rld4co2" field_ref="dummy_XYA" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> 216 <field id="CMIP6_rldcs" field_ref=" dummy_XYA"/> <!-- P1 (W m-2) downwelling_longwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky longwave radiation (includes the fluxes at the surface and TOA) -->216 <field id="CMIP6_rldcs" field_ref="rldcs" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky longwave radiation (includes the fluxes at the surface and TOA) --> 217 217 <field id="CMIP6_rldcs4co2" field_ref="dummy_XYA" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> 218 <field id="CMIP6_rlds" field_ref=" dummy_??"/> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air : Surface Downwelling Longwave Radiation -->218 <field id="CMIP6_rlds" field_ref="LWdnSFC" /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air : Surface Downwelling Longwave Radiation --> 219 219 <field id="CMIP6_rlds_isf" field_ref="dummy_??" /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air : Surface Downwelling Longwave Radiation --> 220 <field id="CMIP6_rldscs" field_ref=" dummy_XY"/> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air_assuming_clear_sky : Surface downwelling clear-sky longwave radiation -->220 <field id="CMIP6_rldscs" field_ref="LWdnSFCclr" /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air_assuming_clear_sky : Surface downwelling clear-sky longwave radiation --> 221 221 <field id="CMIP6_rls" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_net_downward_longwave_flux : Net longwave surface radiation --> 222 222 <field id="CMIP6_rls_land" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_net_downward_longwave_flux : Net longwave surface radiation --> 223 <field id="CMIP6_rlu" field_ref=" dummy_site-A"/> <!-- P1 (W m-2) upwelling_longwave_flux_in_air : Upwelling longwave radiation (includes the fluxes at the surface and TOA) -->223 <field id="CMIP6_rlu" field_ref="rli" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air : Upwelling longwave radiation (includes the fluxes at the surface and TOA) --> 224 224 <field id="CMIP6_rlu4co2" field_ref="dummy_XYA" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air : Upwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> 225 <field id="CMIP6_rlucs" field_ref=" dummy_XYA"/> <!-- P1 (W m-2) upwelling_longwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky longwave radiation (includes the fluxes at the surface and TOA) -->225 <field id="CMIP6_rlucs" field_ref="rlucs" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky longwave radiation (includes the fluxes at the surface and TOA) --> 226 226 <field id="CMIP6_rlucs4co2" field_ref="dummy_XYA" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> 227 <field id="CMIP6_rlus" field_ref=" dummy_??"/> <!-- P1 (W m-2) surface_upwelling_longwave_flux_in_air : Surface Upwelling Longwave Radiation -->227 <field id="CMIP6_rlus" field_ref="LWupSFC" /> <!-- P1 (W m-2) surface_upwelling_longwave_flux_in_air : Surface Upwelling Longwave Radiation --> 228 228 <field id="CMIP6_rlus_isf" field_ref="dummy_??" /> <!-- P1 (W m-2) surface_upwelling_longwave_flux_in_air : Surface Upwelling Longwave Radiation --> 229 <field id="CMIP6_rlut" field_ref=" dummy_XY"/> <!-- P1 (W m-2) toa_outgoing_longwave_flux : at the top of the atmosphere (to be compared with satellite measurements) -->229 <field id="CMIP6_rlut" field_ref="topl" /> <!-- P1 (W m-2) toa_outgoing_longwave_flux : at the top of the atmosphere (to be compared with satellite measurements) --> 230 230 <field id="CMIP6_rlut4co2" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_outgoing_longwave_flux : Top-of-atmosphere outgoing longwave radiation calculated using carbon dioxide concentrations increased fourfold --> 231 <field id="CMIP6_rlutcs" field_ref=" dummy_XY"/> <!-- P1 (W m-2) toa_outgoing_longwave_flux_assuming_clear_sky : TOA Outgoing Clear-sky Longwave Radiation -->231 <field id="CMIP6_rlutcs" field_ref="topl0" /> <!-- P1 (W m-2) toa_outgoing_longwave_flux_assuming_clear_sky : TOA Outgoing Clear-sky Longwave Radiation --> 232 232 <field id="CMIP6_rlutcs4co2" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_outgoing_longwave_flux_assuming_clear_sky : Top-of-atmosphere outgoing clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold --> 233 233 <field id="CMIP6_rootdsl" field_ref="dummy_XY" /> <!-- P1 (kg m-3) rootdsl : Root Distribution --> 234 <field id="CMIP6_rsd" field_ref=" dummy_site-A"/> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air : Downwelling shortwave radiation (includes the fluxes at the surface and top-of-atmosphere) -->234 <field id="CMIP6_rsd" field_ref="rsd" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air : Downwelling shortwave radiation (includes the fluxes at the surface and top-of-atmosphere) --> 235 235 <field id="CMIP6_rsd4co2" field_ref="dummy_XYA" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air : Downwelling shortwave radiation calculated using carbon dioxide concentrations increased fourfold --> 236 <field id="CMIP6_rsdcs" field_ref=" dummy_XYA"/> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky shortwave radiation (includes the fluxes at the surface and top-of-atmosphere) -->236 <field id="CMIP6_rsdcs" field_ref="rsdcs" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky shortwave radiation (includes the fluxes at the surface and top-of-atmosphere) --> 237 237 <field id="CMIP6_rsdcs4co2" field_ref="dummy_XYA" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky shortwave radiation calculated using carbon dioxide concentrations increased fourfold --> 238 <field id="CMIP6_rsds" field_ref=" dummy_??"/> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air : surface solar irradiance for UV calculations -->238 <field id="CMIP6_rsds" field_ref="SWdnSFC" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air : surface solar irradiance for UV calculations --> 239 239 <field id="CMIP6_rsds_isf" field_ref="dummy_??" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air : surface solar irradiance for UV calculations --> 240 <field id="CMIP6_rsdscs" field_ref=" dummy_XY"/> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clear_sky : surface solar irradiance clear sky for UV calculations -->240 <field id="CMIP6_rsdscs" field_ref="SWdnSFCclr" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clear_sky : surface solar irradiance clear sky for UV calculations --> 241 241 <field id="CMIP6_rsdscsdiff" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_diffuse_downwelling_shortwave_flux_in_air_assuming_clear_sky : unset --> 242 242 <field id="CMIP6_rsdsdiff" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_diffuse_downwelling_shortwave_flux_in_air : unset --> 243 <field id="CMIP6_rsdt" field_ref=" dummy_XY"/> <!-- P1 (W m-2) toa_incoming_shortwave_flux : Shortwave radiation incident at the top of the atmosphere -->243 <field id="CMIP6_rsdt" field_ref="SWdnTOA" /> <!-- P1 (W m-2) toa_incoming_shortwave_flux : Shortwave radiation incident at the top of the atmosphere --> 244 244 <field id="CMIP6_rss" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_net_downward_shortwave_flux : Net downward shortwave radiation at the surface --> 245 245 <field id="CMIP6_rss_land" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_net_downward_shortwave_flux : Net downward shortwave radiation at the surface --> 246 <field id="CMIP6_rsu" field_ref=" dummy_site-A"/> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air : Upwelling shortwave radiation (includes also the fluxes at the surface and top of atmosphere) -->246 <field id="CMIP6_rsu" field_ref="rsu" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air : Upwelling shortwave radiation (includes also the fluxes at the surface and top of atmosphere) --> 247 247 <field id="CMIP6_rsu4co2" field_ref="dummy_XYA" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air : Upwelling Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold --> 248 <field id="CMIP6_rsucs" field_ref=" dummy_XYA"/> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky shortwave radiation (includes the fluxes at the surface and TOA) -->248 <field id="CMIP6_rsucs" field_ref="rsucs" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky shortwave radiation (includes the fluxes at the surface and TOA) --> 249 249 <field id="CMIP6_rsucs4co2" field_ref="dummy_XYA" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky shortwave radiation calculated using carbon dioxide concentrations increased fourfold --> 250 <field id="CMIP6_rsus" field_ref=" dummy_??"/> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air : Surface Upwelling Shortwave Radiation -->250 <field id="CMIP6_rsus" field_ref="SWupSFC" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air : Surface Upwelling Shortwave Radiation --> 251 251 <field id="CMIP6_rsus_isf" field_ref="dummy_??" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air : Surface Upwelling Shortwave Radiation --> 252 <field id="CMIP6_rsuscs" field_ref=" dummy_XY"/> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clear_sky : Surface upwelling clear-sky shortwave radiation -->253 <field id="CMIP6_rsut" field_ref=" dummy_XY"/> <!-- P1 (W m-2) toa_outgoing_shortwave_flux : at the top of the atmosphere -->252 <field id="CMIP6_rsuscs" field_ref="SWupSFCclr" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clear_sky : Surface upwelling clear-sky shortwave radiation --> 253 <field id="CMIP6_rsut" field_ref="SWupTOA" /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux : at the top of the atmosphere --> 254 254 <field id="CMIP6_rsut4co2" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux : TOA Outgoing Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold --> 255 <field id="CMIP6_rsutcs" field_ref=" dummy_XY"/> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : Calculated in the absence of clouds. -->255 <field id="CMIP6_rsutcs" field_ref="SWupTOAclr" /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : Calculated in the absence of clouds. --> 256 256 <field id="CMIP6_rsutcs4co2" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : TOA Outgoing Clear-Sky Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold --> 257 257 <field id="CMIP6_rsutna" field_ref="dummy_XY" /> <!-- P1 (W m-2) rsutna : Based on Ghan (2013, ACP) --> 258 258 <field id="CMIP6_rsutnacs" field_ref="dummy_XY" /> <!-- P1 (W m-2) rsutnacs : Based on Ghan (2013, ACP) --> 259 <field id="CMIP6_rtmt" field_ref=" dummy_XY"/> <!-- P1 (W m-2) net_downward_radiative_flux_at_top_of_atmosphere_model : Net Downward Radiative Flux at Top of Model : I.e., at the top of that portion of the atmosphere where dynamics are explicitly treated by the model. This is reported only if it differs from the net downward radiative flux at the top of the atmosphere. -->259 <field id="CMIP6_rtmt" field_ref="nettop" /> <!-- P1 (W m-2) net_downward_radiative_flux_at_top_of_atmosphere_model : Net Downward Radiative Flux at Top of Model : I.e., at the top of that portion of the atmosphere where dynamics are explicitly treated by the model. This is reported only if it differs from the net downward radiative flux at the top of the atmosphere. --> 260 260 <field id="CMIP6_rzwc" field_ref="dummy_XY" /> <!-- P1 (kg m-2) rzwc : Root zone soil moisture --> 261 261 <field id="CMIP6_sandFrac" field_ref="dummy_XY" /> <!-- P1 (1.0) sandFrac : Sand Fraction --> 262 262 <field id="CMIP6_sbl" field_ref="dummy_??" /> <!-- P1 (kg m-2 s-1) surface_snow_and_ice_sublimation_flux : The snow and ice sublimation flux is the loss of snow and ice mass per unit area from the surface resulting from their direct conversion to water vapor that enters the atmosphere. --> 263 <field id="CMIP6_sci" field_ref=" dummy_XY" /> <!-- P1 (1.0) shallow_convection_time_fraction : Fraction of time that shallow convection occurs in the grid cell. -->263 <field id="CMIP6_sci" field_ref="ftime_th" /> <!-- P1 (1.0) shallow_convection_time_fraction : Fraction of time that shallow convection occurs in the grid cell. --> 264 264 <field id="CMIP6_scldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) scldncl : Droplets are liquid only. Report concentration "as seen from space" over stratiform liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> 265 265 <field id="CMIP6_sconcdust" field_ref="dummy_XY" /> <!-- P1 (kg m-3) mass_concentration_of_dust_dry_aerosol_in_air : mass concentration of dust dry aerosol in air in model lowest layer --> 266 266 <field id="CMIP6_sconcso4" field_ref="dummy_XY" /> <!-- P1 (kg m-3) mass_concentration_of_sulfate_dry_aerosol_in_air : mass concentration of sulfate dry aerosol in air in model lowest layer. --> 267 267 <field id="CMIP6_sconcss" field_ref="dummy_XY" /> <!-- P1 (kg m-3) mass_concentration_of_seasalt_dry_aerosol_in_air : mass concentration of seasalt dry aerosol in air in model lowest layer --> 268 <field id="CMIP6_sfcWind" field_ref=" dummy_XY"/> <!-- P1 (m s-1) wind_speed : near-surface (usually, 10 meters) wind speed. -->268 <field id="CMIP6_sfcWind" field_ref="wind10m" /> <!-- P1 (m s-1) wind_speed : near-surface (usually, 10 meters) wind speed. --> 269 269 <field id="CMIP6_sfcWindmax" field_ref="dummy_XY" /> <!-- P1 (m s-1) wind_speed : Daily maximum near-surface (usually, 10 meters) wind speed. --> 270 270 <field id="CMIP6_sftlf" field_ref="dummy_XY" /> <!-- P1 (1) land_area_fraction : Please express "X_area_fraction" as the fraction of horizontal area occupied by X. --> … … 286 286 <field id="CMIP6_t2" field_ref="dummy_XYA" /> <!-- P2 (K2) square_of_air_temperature : Air temperature squared --> 287 287 <field id="CMIP6_t20d" field_ref="dummy_XY" /> <!-- P2 (m) depth_of_isosurface_of_sea_water_potential_temperature : unset --> 288 <field id="CMIP6_ta" field_ref=" dummy_XYA"/> <!-- P1 (K) air_temperature : Air Temperature -->288 <field id="CMIP6_ta" field_ref="ta" /> <!-- P1 (K) air_temperature : Air Temperature --> 289 289 <field id="CMIP6_ta27" field_ref="dummy_XYA" /> <!-- P3 (K) air_temperature : Air Temperature --> 290 290 <field id="CMIP6_ta500" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : Temperature on the 500 hPa surface --> 291 <field id="CMIP6_ta700" field_ref=" dummy_XY"/> <!-- P1 (K) air_temperature : Air temperature at 700hPa -->291 <field id="CMIP6_ta700" field_ref="t700" /> <!-- P1 (K) air_temperature : Air temperature at 700hPa --> 292 292 <field id="CMIP6_ta7h" field_ref="dummy_XYA" /> <!-- P2 (K) air_temperature : Air Temperature --> 293 293 <field id="CMIP6_ta850" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : Air temperature at 850hPa --> 294 <field id="CMIP6_tas" field_ref=" dummy_XY"/> <!-- P1 (K) air_temperature : near-surface (usually, 2 meter) air temperature -->294 <field id="CMIP6_tas" field_ref="t2m" /> <!-- P1 (K) air_temperature : near-surface (usually, 2 meter) air temperature --> 295 295 <field id="CMIP6_tas_isf" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : near-surface (usually, 2 meter) air temperature --> 296 <field id="CMIP6_tasmax" field_ref=" dummy_XY"/> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") -->297 <field id="CMIP6_tasmin" field_ref=" dummy_XY"/> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") -->296 <field id="CMIP6_tasmax" field_ref="t2m_max" /> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") --> 297 <field id="CMIP6_tasmin" field_ref="t2m_min" /> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 298 298 <field id="CMIP6_tau" field_ref="dummy_XY" /> <!-- P1 (N m-2) tau : module of the momentum lost by the atmosphere to the surface. --> 299 <field id="CMIP6_tauu" field_ref=" dummy_XY"/> <!-- P1 (Pa) surface_downward_eastward_stress : Downward eastward wind stress at the surface -->299 <field id="CMIP6_tauu" field_ref="taux" /> <!-- P1 (Pa) surface_downward_eastward_stress : Downward eastward wind stress at the surface --> 300 300 <field id="CMIP6_tauupbl" field_ref="dummy_XY" /> <!-- P1 (Pa) tauupbl : The downward eastward stress associated with the models parameterization of the plantary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) --> 301 <field id="CMIP6_tauv" field_ref=" dummy_XY"/> <!-- P1 (Pa) surface_downward_northward_stress : Downward northward wind stress at the surface -->301 <field id="CMIP6_tauv" field_ref="tauy" /> <!-- P1 (Pa) surface_downward_northward_stress : Downward northward wind stress at the surface --> 302 302 <field id="CMIP6_tauvpbl" field_ref="dummy_XY" /> <!-- P1 (Pa) tauvpbl : The downward northward stress associated with the models parameterization of the plantary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) --> 303 303 <field id="CMIP6_tcs" field_ref="dummy_XY" /> <!-- P1 (K) canopy_temperature : Vegetation temperature, averaged over all vegetation types --> … … 311 311 <field id="CMIP6_thetaot300" field_ref="dummy_XY" /> <!-- P1 (K) thetaot300 : Upper 300m, 2D field --> 312 312 <field id="CMIP6_thetaot700" field_ref="dummy_XY" /> <!-- P1 (K) thetaot700 : Upper 700m, 2D field --> 313 <field id="CMIP6_tnhus" field_ref=" dummy_XYA"/> <!-- P1 (s-1) tendency_of_specific_humidity : Tendency of Specific Humidity -->314 <field id="CMIP6_tnhusa" field_ref="d ummy_COSP-A"/> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_advection : Tendency of Specific Humidity due to Advection -->315 <field id="CMIP6_tnhusc" field_ref=" dummy_XYA"/> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_convection : Tendencies from cumulus convection scheme. -->316 <field id="CMIP6_tnhusd" field_ref="d ummy_XYA"/> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_diffusion : Tendency of specific humidity due to numerical diffusion.This includes any horizontal or vertical numerical moisture diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the moisture budget. -->317 <field id="CMIP6_tnhusmp" field_ref="d ummy_COSP-A"/> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_model_physics : Tendency of specific humidity due to model physics. This includes sources and sinks from parametrized moist physics (e.g. convection, boundary layer, stratiform condensation/evaporation, etc.) and excludes sources and sinks from resolved dynamics or from horizontal or vertical numerical diffusion not associated with model physicsl. For example any diffusive mixing by the boundary layer scheme would be included. -->313 <field id="CMIP6_tnhus" field_ref="tnhus" /> <!-- P1 (s-1) tendency_of_specific_humidity : Tendency of Specific Humidity --> 314 <field id="CMIP6_tnhusa" field_ref="dqdyn" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_advection : Tendency of Specific Humidity due to Advection --> 315 <field id="CMIP6_tnhusc" field_ref="rnhusc" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_convection : Tendencies from cumulus convection scheme. --> 316 <field id="CMIP6_tnhusd" field_ref="dqvdf" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_diffusion : Tendency of specific humidity due to numerical diffusion.This includes any horizontal or vertical numerical moisture diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the moisture budget. --> 317 <field id="CMIP6_tnhusmp" field_ref="dqphy" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_model_physics : Tendency of specific humidity due to model physics. This includes sources and sinks from parametrized moist physics (e.g. convection, boundary layer, stratiform condensation/evaporation, etc.) and excludes sources and sinks from resolved dynamics or from horizontal or vertical numerical diffusion not associated with model physicsl. For example any diffusive mixing by the boundary layer scheme would be included. --> 318 318 <field id="CMIP6_tnhuspbl" field_ref="dummy_site-A" /> <!-- P1 (s-1) tnhuspbl : Includes all boundary layer terms including diffusive terms. --> 319 319 <field id="CMIP6_tnhusscp" field_ref="dummy_site-A" /> <!-- P1 (s-1) tnhusscp : Tendency of Specific Humidity Due to Stratiform Clouds and Precipitation --> 320 <field id="CMIP6_tnhusscpbl" field_ref=" dummy_COSP-A"/> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Specific Humidity Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate budget terms for stratiform cloud, precipitation and boundary layer schemes. Includes all bounday layer terms including and diffusive terms.) -->321 <field id="CMIP6_tnt" field_ref=" dummy_XYA"/> <!-- P1 (K s-1) tendency_of_air_temperature : Tendency of Air Temperature -->322 <field id="CMIP6_tnta" field_ref="d ummy_XYA"/> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_advection : Tendency of Air Temperature due to Advection -->323 <field id="CMIP6_tntc" field_ref=" dummy_lat-P"/> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_convection : Tendencies from cumulus convection scheme. -->320 <field id="CMIP6_tnhusscpbl" field_ref="tnhusscpbl" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Specific Humidity Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate budget terms for stratiform cloud, precipitation and boundary layer schemes. Includes all bounday layer terms including and diffusive terms.) --> 321 <field id="CMIP6_tnt" field_ref="tnt" /> <!-- P1 (K s-1) tendency_of_air_temperature : Tendency of Air Temperature --> 322 <field id="CMIP6_tnta" field_ref="dtdyn" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_advection : Tendency of Air Temperature due to Advection --> 323 <field id="CMIP6_tntc" field_ref="tntc" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_convection : Tendencies from cumulus convection scheme. --> 324 324 <field id="CMIP6_tntd" field_ref="dummy_site-A" /> <!-- P1 (K s-1) tntd : This includes any horizontal or vertical numerical temperature diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the temperature budget. --> 325 325 <field id="CMIP6_tntlw" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating : Longwave heating rates --> 326 <field id="CMIP6_tntmp" field_ref="d ummy_lat-P"/> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. -->326 <field id="CMIP6_tntmp" field_ref="dtphy" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. --> 327 327 <field id="CMIP6_tntmp27" field_ref="dummy_lat-P" /> <!-- P2 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. --> 328 328 <field id="CMIP6_tntogw" field_ref="dummy_lat-P" /> <!-- P2 (K s-1) tntogw : Temperature tendency due to dissipation of parameterized orographic gravity waves. --> 329 329 <field id="CMIP6_tntpbl" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tntpbl : Includes all boundary layer terms including diffusive terms. --> 330 <field id="CMIP6_tntr" field_ref=" dummy_XYA"/> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating -->330 <field id="CMIP6_tntr" field_ref="tntr" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating --> 331 331 <field id="CMIP6_tntr27" field_ref="dummy_XYA" /> <!-- P3 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating --> 332 332 <field id="CMIP6_tntrlcs" field_ref="dummy_lat-P" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Longwave Radiative Heating --> … … 337 337 <field id="CMIP6_toffset" field_ref="dummy_COSPcurtain"/> <!-- P1 (day) time : The offset time should be added to the value stored in the time dimension to get the actual time. The actual time is the time (UTC) of the corresponding point in the satellite orbit used to extract the model data. --> 338 338 <field id="CMIP6_tr" field_ref="dummy_XY" /> <!-- P1 (K) surface_temperature : Effective radiative surface temperature, averaged over the grid cell --> 339 <field id="CMIP6_ts" field_ref=" dummy_??"/> <!-- P1 (K) surface_temperature : Temperature of the lower boundary of the atmosphere -->339 <field id="CMIP6_ts" field_ref="tsol" /> <!-- P1 (K) surface_temperature : Temperature of the lower boundary of the atmosphere --> 340 340 <field id="CMIP6_ts_isf" field_ref="dummy_??" /> <!-- P1 (K) surface_temperature : Temperature of the lower boundary of the atmosphere --> 341 341 <field id="CMIP6_tsnl" field_ref="dummy_XY" /> <!-- P1 (K) snow_temperature : Temperature in the snow pack present in the grid-cell. 3D variable for multi-layer snow schemes. --> … … 344 344 <field id="CMIP6_tws" field_ref="dummy_XY" /> <!-- P1 (kg m-2) tws : Terrestrial Water Storage --> 345 345 <field id="CMIP6_u2" field_ref="dummy_XYA" /> <!-- P2 (m2 s-2) square_of_eastward_wind : u*u --> 346 <field id="CMIP6_ua" field_ref=" dummy_XY"/> <!-- P1 (m s-1) eastward_wind : Eastward Wind -->346 <field id="CMIP6_ua" field_ref="ua" /> <!-- P1 (m s-1) eastward_wind : Eastward Wind --> 347 347 <field id="CMIP6_ua200" field_ref="dummy_XY" /> <!-- P1 (m s-1) eastward_wind : Zonal wind (positive eastwards) at 200hPa --> 348 348 <field id="CMIP6_ua27" field_ref="dummy_XY" /> <!-- P3 (m s-1) eastward_wind : Eastward Wind --> 349 349 <field id="CMIP6_ua7h" field_ref="dummy_XY" /> <!-- P2 (m s-1) eastward_wind : Eastward Wind --> 350 350 <field id="CMIP6_ua850" field_ref="dummy_XY" /> <!-- P1 (m s-1) eastward_wind : Zonal wind on the 850 hPa surface --> 351 <field id="CMIP6_uas" field_ref=" dummy_XY"/> <!-- P1 (m s-1) eastward_wind : Eastward component of the near-surface (usually, 10 meters) wind -->351 <field id="CMIP6_uas" field_ref="u10m" /> <!-- P1 (m s-1) eastward_wind : Eastward component of the near-surface (usually, 10 meters) wind --> 352 352 <field id="CMIP6_ut" field_ref="dummy_XYA" /> <!-- P2 (K m s-1) product_of_eastward_wind_and_air_temperature : Product of air temperature and eastward wind --> 353 353 <field id="CMIP6_utendepfd" field_ref="dummy_lat-P" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_eliassen_palm_flux_divergence : Tendency of the zonal mean zonal wind due to the divergence of the Eliassen-Palm flux. --> … … 359 359 <field id="CMIP6_uwap" field_ref="dummy_XYA" /> <!-- P2 (Pa m s-2) product_of_eastward_wind_and_omega : u*omega --> 360 360 <field id="CMIP6_v2" field_ref="dummy_XYA" /> <!-- P2 (m2 s-2) square_of_northward_wind : v*v --> 361 <field id="CMIP6_va" field_ref=" dummy_XYA"/> <!-- P1 (m s-1) northward_wind : Northward Wind -->361 <field id="CMIP6_va" field_ref="va" /> <!-- P1 (m s-1) northward_wind : Northward Wind --> 362 362 <field id="CMIP6_va200" field_ref="dummy_XY" /> <!-- P1 (m s-1) northward_wind : Northward component of the wind --> 363 363 <field id="CMIP6_va27" field_ref="dummy_XYA" /> <!-- P3 (m s-1) northward_wind : Northward Wind --> 364 364 <field id="CMIP6_va7h" field_ref="dummy_XYA" /> <!-- P2 (m s-1) northward_wind : Northward Wind --> 365 365 <field id="CMIP6_va850" field_ref="dummy_XY" /> <!-- P1 (m s-1) northward_wind : Northward component of the wind at 850hPa --> 366 <field id="CMIP6_vas" field_ref=" dummy_XY"/> <!-- P1 (m s-1) northward_wind : Northward component of the near surface wind -->366 <field id="CMIP6_vas" field_ref="v10m" /> <!-- P1 (m s-1) northward_wind : Northward component of the near surface wind --> 367 367 <field id="CMIP6_vmrox" field_ref="dummy_lat-P" /> <!-- P1 (mol mol-1) vmrox : Mole Fraction of Ox --> 368 368 <field id="CMIP6_vortmean" field_ref="dummy_XYA" /> <!-- P1 (s-1) atmosphere_relative_vorticity : Mean vorticity over 850,700,600 hPa --> … … 372 372 <field id="CMIP6_vtendogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) vtendogw : Tendency of the northward wind by parameterized orographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 373 373 <field id="CMIP6_vwap" field_ref="dummy_XYA" /> <!-- P2 (Pa m s-2) product_of_northward_wind_and_omega : v*omega --> 374 <field id="CMIP6_wap" field_ref=" dummy_XYA"/> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) -->374 <field id="CMIP6_wap" field_ref="wap" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 375 375 <field id="CMIP6_wap2" field_ref="dummy_XYA" /> <!-- P2 (Pa2 s-2) square_of_lagrangian_tendency_of_air_pressure : omega*omega --> 376 376 <field id="CMIP6_wap27" field_ref="dummy_XYA" /> <!-- P3 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 377 377 <field id="CMIP6_wap4" field_ref="dummy_XYA" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 378 <field id="CMIP6_wap500" field_ref=" dummy_XY"/> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) at 500 hPa level; -->378 <field id="CMIP6_wap500" field_ref="w500" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) at 500 hPa level; --> 379 379 <field id="CMIP6_wap7h" field_ref="dummy_XYA" /> <!-- P2 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 380 380 <field id="CMIP6_wbptemp7h" field_ref="dummy_XYA" /> <!-- P1 (K) wbptemp : Wet bulb potential temperature --> … … 386 386 <field id="CMIP6_ygwdparam" field_ref="dummy_lat-P" /> <!-- P2 (Pa) atmosphere_northward_stress_due_to_gravity_wave_drag : Parameterised y- component of gravity wave drag --> 387 387 <field id="CMIP6_ynonoroggwdparam27" field_ref="dummy_XYA" /> <!-- P3 (m s-2) ynonoroggwdparam : Parameterised y- component of non-orogrpahic gravity wave drag --> 388 <field id="CMIP6_zg" field_ref=" dummy_XYA"/> <!-- P1 (m) geopotential_height : Geopotential Height -->388 <field id="CMIP6_zg" field_ref="zg" /> <!-- P1 (m) geopotential_height : Geopotential Height --> 389 389 <field id="CMIP6_zg27" field_ref="dummy_XYA" /> <!-- P3 (m) geopotential_height : Geopotential Height --> 390 390 <field id="CMIP6_zg7h" field_ref="dummy_XYA" /> <!-- P1 (m) geopotential_height : Geopotential Height -->
Note: See TracChangeset
for help on using the changeset viewer.