[3927] | 1 | |
---|
| 2 | ! $Id: wake.F90 3648 2020-03-16 15:36:59Z jghattas $ |
---|
| 3 | |
---|
| 4 | SUBROUTINE wake(znatsurf, p, ph, pi, dtime, & |
---|
| 5 | te0, qe0, omgb, & |
---|
| 6 | dtdwn, dqdwn, amdwn, amup, dta, dqa, wgen, & |
---|
| 7 | sigd_con, Cin, & |
---|
| 8 | deltatw, deltaqw, sigmaw, awdens, wdens, & ! state variables |
---|
| 9 | dth, hw, wape, fip, gfl, & |
---|
| 10 | dtls, dqls, ktopw, omgbdth, dp_omgb, tu, qu, & |
---|
| 11 | dtke, dqke, omg, dp_deltomg, spread, cstar, & |
---|
| 12 | d_deltat_gw, & |
---|
| 13 | d_deltatw2, d_deltaqw2, d_sigmaw2, d_awdens2, d_wdens2 & ! tendencies |
---|
| 14 | |
---|
| 15 | #ifdef ISO |
---|
| 16 | ,xte0,dxtdwn,dxta,deltaxtw & |
---|
| 17 | ,dxtls,xtu,dxtke,d_deltaxtw2 & |
---|
| 18 | #endif |
---|
| 19 | ) |
---|
| 20 | |
---|
| 21 | |
---|
| 22 | ! ************************************************************** |
---|
| 23 | ! * |
---|
| 24 | ! WAKE * |
---|
| 25 | ! retour a un Pupper fixe * |
---|
| 26 | ! * |
---|
| 27 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 28 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 29 | ! ************************************************************** |
---|
| 30 | |
---|
| 31 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 32 | USE dimphy |
---|
| 33 | use mod_phys_lmdz_para |
---|
| 34 | USE print_control_mod, ONLY: prt_level |
---|
| 35 | #ifdef ISO |
---|
[4143] | 36 | USE infotrac_phy, ONLY : ntraciso=>ntiso |
---|
[3927] | 37 | #ifdef ISOVERIF |
---|
| 38 | USE isotopes_verif_mod |
---|
| 39 | !, ONLY: errmax,errmaxrel |
---|
[4491] | 40 | USE isotopes_mod, ONLY: iso_eau,iso_hdo,ridicule |
---|
[3927] | 41 | #endif |
---|
| 42 | #endif |
---|
| 43 | IMPLICIT NONE |
---|
| 44 | ! ============================================================================ |
---|
| 45 | |
---|
| 46 | |
---|
| 47 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 48 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 49 | ! le declenchement de nouvelles colonnes convectives. |
---|
| 50 | |
---|
| 51 | ! State variables : |
---|
| 52 | ! deltatw : temperature difference between wake and off-wake regions |
---|
| 53 | ! deltaqw : specific humidity difference between wake and off-wake regions |
---|
| 54 | ! sigmaw : fractional area covered by wakes. |
---|
| 55 | ! wdens : number of wakes per unit area |
---|
| 56 | |
---|
| 57 | ! Variable de sortie : |
---|
| 58 | |
---|
| 59 | ! wape : WAke Potential Energy |
---|
| 60 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 61 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 62 | ! dtls : large scale temperature tendency due to wake |
---|
| 63 | ! dqls : large scale humidity tendency due to wake |
---|
| 64 | ! hw : wake top hight (given by hw*deltatw(1)/2=wape) |
---|
| 65 | ! dp_omgb : vertical gradient of large scale omega |
---|
| 66 | ! awdens : densite de poches actives |
---|
| 67 | ! wdens : densite de poches |
---|
| 68 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 69 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 70 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 71 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 72 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
| 73 | ! spread : spreading term in d_t_wake and d_q_wake |
---|
| 74 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 75 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 76 | ! sigmaw : updated wake fractional area. |
---|
| 77 | ! d_deltat_gw : delta T tendency due to GW |
---|
| 78 | |
---|
| 79 | ! Variables d'entree : |
---|
| 80 | |
---|
| 81 | ! aire : aire de la maille |
---|
| 82 | ! te0 : temperature dans l'environnement (K) |
---|
| 83 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 84 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 85 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 86 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 87 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 88 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 89 | ! wgen : number of wakes generated per unit area and per sec (/m^2/s) |
---|
| 90 | ! amdwn: flux de masse total des descentes, par unite de |
---|
| 91 | ! surface de la maille (kg/m2/s) |
---|
| 92 | ! amup : flux de masse total des ascendances, par unite de |
---|
| 93 | ! surface de la maille (kg/m2/s) |
---|
| 94 | ! sigd_con: |
---|
| 95 | ! Cin : convective inhibition |
---|
| 96 | ! p : pressions aux milieux des couches (Pa) |
---|
| 97 | ! ph : pressions aux interfaces (Pa) |
---|
| 98 | ! pi : (p/p_0)**kapa (adim) |
---|
| 99 | ! dtime: increment temporel (s) |
---|
| 100 | |
---|
| 101 | ! Variables internes : |
---|
| 102 | |
---|
| 103 | ! rhow : masse volumique de la poche froide |
---|
| 104 | ! rho : environment density at P levels |
---|
| 105 | ! rhoh : environment density at Ph levels |
---|
| 106 | ! te : environment temperature | may change within |
---|
| 107 | ! qe : environment humidity | sub-time-stepping |
---|
| 108 | ! the : environment potential temperature |
---|
| 109 | ! thu : potential temperature in undisturbed area |
---|
| 110 | ! tu : temperature in undisturbed area |
---|
| 111 | ! qu : humidity in undisturbed area |
---|
| 112 | ! dp_omgb: vertical gradient og LS omega |
---|
| 113 | ! omgbw : wake average vertical omega |
---|
| 114 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 115 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 116 | ! dth : potential temperature diff. wake-undist. |
---|
| 117 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 118 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 119 | ! q1 : first humidity for vertical advection |
---|
| 120 | ! q2 : second humidity for vertical advection |
---|
| 121 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 122 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 123 | ! deltatw0 : deltatw initial |
---|
| 124 | ! deltaqw0 : deltaqw initial |
---|
| 125 | ! hw0 : wake top hight (defined as the altitude at which deltatw=0) |
---|
| 126 | ! amflux : horizontal mass flux through wake boundary |
---|
| 127 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
| 128 | ! unit length (2D), at the beginning of each time step |
---|
| 129 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 130 | ! Cgw : vitesse de propagation de onde de gravité |
---|
| 131 | ! LL : distance entre 2 poches |
---|
| 132 | |
---|
| 133 | ! ------------------------------------------------------------------------- |
---|
| 134 | ! Déclaration de variables |
---|
| 135 | ! ------------------------------------------------------------------------- |
---|
| 136 | |
---|
| 137 | include "YOMCST.h" |
---|
| 138 | include "cvthermo.h" |
---|
| 139 | |
---|
| 140 | ! Arguments en entree |
---|
| 141 | ! -------------------- |
---|
| 142 | |
---|
| 143 | INTEGER, DIMENSION (klon), INTENT(IN) :: znatsurf |
---|
| 144 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
---|
| 145 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph |
---|
| 146 | REAL, DIMENSION (klon, klev), INTENT(IN) :: omgb |
---|
| 147 | REAL, INTENT(IN) :: dtime |
---|
| 148 | REAL, DIMENSION (klon, klev), INTENT(IN) :: te0, qe0 |
---|
| 149 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
---|
| 150 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
---|
| 151 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
---|
| 152 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
---|
| 153 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
---|
| 154 | REAL, DIMENSION (klon), INTENT(IN) :: Cin |
---|
| 155 | #ifdef ISO |
---|
| 156 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(IN) :: xte0 |
---|
| 157 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(IN) :: dxtdwn |
---|
| 158 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(IN) :: dxta |
---|
| 159 | #endif |
---|
| 160 | |
---|
| 161 | ! |
---|
| 162 | ! Input/Output |
---|
| 163 | ! State variables |
---|
| 164 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
---|
| 165 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
---|
| 166 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens |
---|
| 167 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens |
---|
| 168 | #ifdef ISO |
---|
| 169 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(INOUT) :: deltaxtw |
---|
| 170 | #endif |
---|
| 171 | |
---|
| 172 | ! Sorties |
---|
| 173 | ! -------- |
---|
| 174 | |
---|
| 175 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
---|
| 176 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
---|
| 177 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
---|
| 178 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
---|
| 179 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: spread ! unused (jyg) |
---|
| 180 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: omgbdth, omg |
---|
| 181 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
---|
| 182 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
---|
| 183 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
---|
| 184 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
---|
| 185 | ! Tendencies of state variables |
---|
| 186 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
---|
| 187 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw2, d_awdens2, d_wdens2 |
---|
| 188 | #ifdef ISO |
---|
| 189 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(OUT) :: xtu |
---|
| 190 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(OUT) :: dxtls |
---|
| 191 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(OUT) :: dxtke |
---|
| 192 | REAL, DIMENSION (ntraciso,klon, klev), INTENT(OUT) :: d_deltaxtw2 |
---|
| 193 | #endif |
---|
| 194 | |
---|
| 195 | ! Variables internes |
---|
| 196 | ! ------------------- |
---|
| 197 | |
---|
| 198 | ! Variables à fixer |
---|
| 199 | INTEGER, SAVE :: igout |
---|
| 200 | !$OMP THREADPRIVATE(igout) |
---|
| 201 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 202 | !$OMP THREADPRIVATE(first) |
---|
| 203 | !jyg< |
---|
| 204 | !! REAL, SAVE :: stark, wdens_ref, coefgw, alpk |
---|
| 205 | REAL, SAVE, DIMENSION(2) :: wdens_ref |
---|
| 206 | REAL, SAVE :: stark, coefgw, alpk |
---|
| 207 | !>jyg |
---|
| 208 | REAL, SAVE :: crep_upper, crep_sol |
---|
| 209 | !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) |
---|
| 210 | |
---|
| 211 | REAL, SAVE :: tau_cv |
---|
| 212 | !$OMP THREADPRIVATE(tau_cv) |
---|
| 213 | REAL, SAVE :: rzero, aa0 ! minimal wake radius and area |
---|
| 214 | !$OMP THREADPRIVATE(rzero, aa0) |
---|
| 215 | |
---|
| 216 | LOGICAL, SAVE :: flag_wk_check_trgl |
---|
| 217 | !$OMP THREADPRIVATE(flag_wk_check_trgl) |
---|
| 218 | INTEGER, SAVE :: iflag_wk_check_trgl |
---|
| 219 | !$OMP THREADPRIVATE(iflag_wk_check_trgl) |
---|
| 220 | INTEGER, SAVE :: iflag_wk_pop_dyn |
---|
| 221 | !$OMP THREADPRIVATE(iflag_wk_pop_dyn) |
---|
| 222 | |
---|
| 223 | REAL :: delta_t_min |
---|
| 224 | INTEGER :: nsub |
---|
| 225 | REAL :: dtimesub |
---|
| 226 | REAL, SAVE :: wdensmin |
---|
| 227 | !$OMP THREADPRIVATE(wdensmin) |
---|
| 228 | REAL, SAVE :: sigmad, hwmin, wapecut, cstart |
---|
| 229 | !$OMP THREADPRIVATE(sigmad, hwmin, wapecut, cstart) |
---|
| 230 | REAL, SAVE :: sigmaw_max |
---|
| 231 | !$OMP THREADPRIVATE(sigmaw_max) |
---|
| 232 | REAL, SAVE :: dens_rate |
---|
| 233 | !$OMP THREADPRIVATE(dens_rate) |
---|
| 234 | REAL :: wdens0 |
---|
| 235 | ! IM 080208 |
---|
| 236 | LOGICAL, DIMENSION (klon) :: gwake |
---|
| 237 | |
---|
| 238 | ! Variables de sauvegarde |
---|
| 239 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
| 240 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
| 241 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
| 242 | !! REAL, DIMENSION (klon) :: sigmaw1 |
---|
| 243 | #ifdef ISO |
---|
| 244 | REAL, DIMENSION (ntraciso,klon, klev) :: deltaxtw0 |
---|
| 245 | REAL, DIMENSION (ntraciso,klon, klev) :: xte |
---|
| 246 | #endif |
---|
| 247 | |
---|
| 248 | ! Variables liees a la dynamique de population |
---|
| 249 | REAL, DIMENSION(klon) :: act |
---|
| 250 | REAL, DIMENSION(klon) :: rad_wk, tau_wk_inv |
---|
| 251 | REAL, DIMENSION(klon) :: f_shear |
---|
| 252 | REAL, DIMENSION(klon) :: drdt |
---|
| 253 | REAL, DIMENSION(klon) :: d_sig_gen, d_sig_death, d_sig_col |
---|
| 254 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
---|
| 255 | LOGICAL, DIMENSION (klon) :: kill_wake |
---|
| 256 | INTEGER, SAVE :: iflag_wk_act |
---|
| 257 | !$OMP THREADPRIVATE(iflag_wk_act) |
---|
| 258 | REAL :: drdt_pos |
---|
| 259 | REAL :: tau_wk_inv_min |
---|
| 260 | |
---|
| 261 | ! Variables pour les GW |
---|
| 262 | REAL, DIMENSION (klon) :: ll |
---|
| 263 | REAL, DIMENSION (klon, klev) :: n2 |
---|
| 264 | REAL, DIMENSION (klon, klev) :: cgw |
---|
| 265 | REAL, DIMENSION (klon, klev) :: tgw |
---|
| 266 | |
---|
| 267 | ! Variables liees au calcul de hw |
---|
| 268 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
| 269 | REAL, DIMENSION (klon) :: sum_dth |
---|
| 270 | REAL, DIMENSION (klon) :: dthmin |
---|
| 271 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
| 272 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
| 273 | |
---|
| 274 | ! Variables liees au test de la forme triangulaire du profil de Delta_theta |
---|
| 275 | REAL, DIMENSION (klon) :: sum_half_dth |
---|
| 276 | REAL, DIMENSION (klon) :: dz_half |
---|
| 277 | |
---|
| 278 | ! Sub-timestep tendencies and related variables |
---|
| 279 | REAL, DIMENSION (klon, klev) :: d_deltatw, d_deltaqw |
---|
| 280 | REAL, DIMENSION (klon, klev) :: d_te, d_qe |
---|
| 281 | REAL, DIMENSION (klon) :: d_awdens, d_wdens |
---|
| 282 | REAL, DIMENSION (klon) :: d_sigmaw, alpha |
---|
| 283 | REAL, DIMENSION (klon) :: q0_min, q1_min |
---|
| 284 | LOGICAL, DIMENSION (klon) :: wk_adv, ok_qx_qw |
---|
| 285 | #ifdef ISO |
---|
| 286 | REAL, DIMENSION (ntraciso,klon, klev) :: d_deltaxtw |
---|
| 287 | REAL, DIMENSION (ntraciso,klon, klev) :: d_xte |
---|
| 288 | #endif |
---|
| 289 | REAL, SAVE :: epsilon |
---|
| 290 | !$OMP THREADPRIVATE(epsilon) |
---|
| 291 | DATA epsilon/1.E-15/ |
---|
| 292 | |
---|
| 293 | ! Autres variables internes |
---|
| 294 | INTEGER ::isubstep, k, i |
---|
| 295 | |
---|
| 296 | REAL :: wdens_targ |
---|
| 297 | REAL :: sigmaw_targ |
---|
| 298 | |
---|
| 299 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 300 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
| 301 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
| 302 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
| 303 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
| 304 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
| 305 | ! pas besoin d'isos ici |
---|
| 306 | |
---|
| 307 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
| 308 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
| 309 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
| 310 | REAL, DIMENSION (klon, klev) :: zh |
---|
| 311 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
| 312 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
| 313 | |
---|
| 314 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
| 315 | |
---|
| 316 | REAL, DIMENSION (klon, klev) :: omgbw |
---|
| 317 | REAL, DIMENSION (klon) :: pupper |
---|
| 318 | REAL, DIMENSION (klon) :: omgtop |
---|
| 319 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
| 320 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
| 321 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
| 322 | |
---|
| 323 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
| 324 | REAL :: rrd1, rrd2 |
---|
| 325 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
| 326 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
| 327 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
| 328 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
| 329 | #ifdef ISO |
---|
| 330 | REAL, DIMENSION(ntraciso,klon,klev) :: xt1, xt2 |
---|
| 331 | REAL, DIMENSION(ntraciso,klon,klev) :: D_xt1, D_xt2, D_dxt |
---|
| 332 | REAL, DIMENSION(ntraciso,klon,klev) :: omgbdxt |
---|
| 333 | integer ixt |
---|
| 334 | #endif |
---|
| 335 | |
---|
| 336 | REAL, DIMENSION (klon) :: ff, gg |
---|
| 337 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
| 338 | |
---|
| 339 | REAL, DIMENSION (klon, klev) :: crep |
---|
| 340 | |
---|
| 341 | REAL, DIMENSION (klon, klev) :: ppi |
---|
| 342 | |
---|
| 343 | ! cc nrlmd |
---|
| 344 | REAL, DIMENSION (klon) :: death_rate |
---|
| 345 | !! REAL, DIMENSION (klon) :: nat_rate |
---|
| 346 | REAL, DIMENSION (klon, klev) :: entr |
---|
| 347 | REAL, DIMENSION (klon, klev) :: detr |
---|
| 348 | |
---|
| 349 | REAL, DIMENSION(klon) :: sigmaw_in ! pour les prints |
---|
| 350 | REAL, DIMENSION(klon) :: awdens_in, wdens_in ! pour les prints |
---|
| 351 | |
---|
| 352 | ! ------------------------------------------------------------------------- |
---|
| 353 | ! Initialisations |
---|
| 354 | ! ------------------------------------------------------------------------- |
---|
| 355 | |
---|
| 356 | ! print*, 'wake initialisations' |
---|
[4036] | 357 | !#ifdef ISOVERIF |
---|
| 358 | ! write(*,*) 'wake 358: entree' |
---|
| 359 | !#endif |
---|
[3927] | 360 | |
---|
| 361 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 362 | ! ------------------------------------------------------------------------- |
---|
| 363 | |
---|
| 364 | !! DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
| 365 | !! DATA wapecut, sigmad, hwmin/1., .02, 10./ |
---|
| 366 | DATA sigmad, hwmin/.02, 10./ |
---|
| 367 | !! DATA wdensmin/1.e-12/ |
---|
| 368 | DATA wdensmin/1.e-14/ |
---|
| 369 | ! cc nrlmd |
---|
| 370 | DATA sigmaw_max/0.4/ |
---|
| 371 | DATA dens_rate/0.1/ |
---|
| 372 | ! cc |
---|
| 373 | ! Longueur de maille (en m) |
---|
| 374 | ! ------------------------------------------------------------------------- |
---|
| 375 | |
---|
| 376 | ! ALON = 3.e5 |
---|
| 377 | ! alon = 1.E6 |
---|
| 378 | |
---|
| 379 | ! Provisionnal; to be suppressed when f_shear is parameterized |
---|
| 380 | f_shear(:) = 1. ! 0. for strong shear, 1. for weak shear |
---|
| 381 | |
---|
| 382 | |
---|
| 383 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
| 384 | |
---|
| 385 | ! coefgw : Coefficient pour les ondes de gravité |
---|
| 386 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 387 | ! wdens : Densité surfacique de poche froide |
---|
| 388 | ! ------------------------------------------------------------------------- |
---|
| 389 | |
---|
| 390 | ! cc nrlmd coefgw=10 |
---|
| 391 | ! coefgw=1 |
---|
| 392 | ! wdens0 = 1.0/(alon**2) |
---|
| 393 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
| 394 | ! cc nrlmd stark = 0.50 |
---|
| 395 | ! CRtest |
---|
| 396 | ! cc nrlmd alpk=0.1 |
---|
| 397 | ! alpk = 1.0 |
---|
| 398 | ! alpk = 0.5 |
---|
| 399 | ! alpk = 0.05 |
---|
| 400 | |
---|
| 401 | if (first) then |
---|
| 402 | |
---|
| 403 | igout = klon/2+1/klon |
---|
| 404 | |
---|
| 405 | crep_upper = 0.9 |
---|
| 406 | crep_sol = 1.0 |
---|
| 407 | |
---|
| 408 | ! Get wapecut from parameter file |
---|
| 409 | wapecut = 1. |
---|
| 410 | CALL getin_p('wapecut', wapecut) |
---|
| 411 | |
---|
| 412 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
| 413 | stark=0.33 |
---|
| 414 | CALL getin_p('stark',stark) |
---|
| 415 | cstart = stark*sqrt(2.*wapecut) |
---|
| 416 | |
---|
| 417 | alpk=0.25 |
---|
| 418 | CALL getin_p('alpk',alpk) |
---|
| 419 | !jyg< |
---|
| 420 | !! wdens_ref=8.E-12 |
---|
| 421 | !! CALL getin_p('wdens_ref',wdens_ref) |
---|
| 422 | wdens_ref(1)=8.E-12 |
---|
| 423 | wdens_ref(2)=8.E-12 |
---|
| 424 | CALL getin_p('wdens_ref_o',wdens_ref(1)) !wake number per unit area ; ocean |
---|
| 425 | CALL getin_p('wdens_ref_l',wdens_ref(2)) !wake number per unit area ; land |
---|
| 426 | !>jyg |
---|
| 427 | ! |
---|
| 428 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 429 | !!!!!!!!! Population dynamics parameters !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 430 | !------------------------------------------------------------------------ |
---|
| 431 | |
---|
| 432 | iflag_wk_pop_dyn = 0 |
---|
| 433 | CALL getin_p('iflag_wk_pop_dyn',iflag_wk_pop_dyn) ! switch between wdens prescribed |
---|
| 434 | ! and wdens prognostic |
---|
| 435 | iflag_wk_act = 0 |
---|
| 436 | CALL getin_p('iflag_wk_act',iflag_wk_act) ! 0: act(:)=0. |
---|
| 437 | ! 1: act(:)=1. |
---|
| 438 | ! 2: act(:)=f(Wape) |
---|
| 439 | |
---|
| 440 | rzero = 5000. |
---|
| 441 | CALL getin_p('rzero_wk', rzero) |
---|
| 442 | aa0 = 3.14*rzero*rzero |
---|
| 443 | ! |
---|
| 444 | tau_cv = 4000. |
---|
| 445 | CALL getin_p('tau_cv', tau_cv) |
---|
| 446 | |
---|
| 447 | !------------------------------------------------------------------------ |
---|
| 448 | |
---|
| 449 | coefgw=4. |
---|
| 450 | CALL getin_p('coefgw',coefgw) |
---|
| 451 | |
---|
| 452 | WRITE(*,*) 'stark=', stark |
---|
| 453 | WRITE(*,*) 'alpk=', alpk |
---|
| 454 | !jyg< |
---|
| 455 | !! WRITE(*,*) 'wdens_ref=', wdens_ref |
---|
| 456 | WRITE(*,*) 'wdens_ref_o=', wdens_ref(1) |
---|
| 457 | WRITE(*,*) 'wdens_ref_l=', wdens_ref(2) |
---|
| 458 | !>jyg |
---|
| 459 | WRITE(*,*) 'iflag_wk_pop_dyn=',iflag_wk_pop_dyn |
---|
| 460 | WRITE(*,*) 'iflag_wk_act',iflag_wk_act |
---|
| 461 | WRITE(*,*) 'coefgw=', coefgw |
---|
| 462 | |
---|
| 463 | flag_wk_check_trgl=.false. |
---|
| 464 | CALL getin_p('flag_wk_check_trgl ', flag_wk_check_trgl) |
---|
| 465 | WRITE(*,*) 'flag_wk_check_trgl=', flag_wk_check_trgl |
---|
| 466 | WRITE(*,*) 'flag_wk_check_trgl OBSOLETE. Utilisr iflag_wk_check_trgl plutot' |
---|
| 467 | iflag_wk_check_trgl=0 ; IF (flag_wk_check_trgl) iflag_wk_check_trgl=1 |
---|
| 468 | CALL getin_p('iflag_wk_check_trgl ', iflag_wk_check_trgl) |
---|
| 469 | WRITE(*,*) 'iflag_wk_check_trgl=', iflag_wk_check_trgl |
---|
| 470 | |
---|
| 471 | first=.false. |
---|
| 472 | endif |
---|
| 473 | |
---|
| 474 | IF (iflag_wk_pop_dyn == 0) THEN |
---|
| 475 | ! Initialisation de toutes des densites a wdens_ref. |
---|
| 476 | ! Les densites peuvent evoluer si les poches debordent |
---|
| 477 | ! (voir au tout debut de la boucle sur les substeps) |
---|
| 478 | !jyg< |
---|
| 479 | !! wdens(:) = wdens_ref |
---|
| 480 | DO i = 1,klon |
---|
| 481 | wdens(i) = wdens_ref(znatsurf(i)+1) |
---|
| 482 | ENDDO |
---|
| 483 | !>jyg |
---|
| 484 | ENDIF ! (iflag_wk_pop_dyn == 0) |
---|
| 485 | |
---|
| 486 | ! print*,'stark',stark |
---|
| 487 | ! print*,'alpk',alpk |
---|
| 488 | ! print*,'wdens',wdens |
---|
| 489 | ! print*,'coefgw',coefgw |
---|
| 490 | ! cc |
---|
| 491 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 492 | ! ------------------------------------------------------------------------- |
---|
| 493 | |
---|
| 494 | delta_t_min = 0.2 |
---|
| 495 | |
---|
| 496 | ! 1. - Save initial values, initialize tendencies, initialize output fields |
---|
| 497 | ! ------------------------------------------------------------------------ |
---|
| 498 | |
---|
| 499 | !jyg< |
---|
| 500 | !! DO k = 1, klev |
---|
| 501 | !! DO i = 1, klon |
---|
| 502 | !! ppi(i, k) = pi(i, k) |
---|
| 503 | !! deltatw0(i, k) = deltatw(i, k) |
---|
| 504 | !! deltaqw0(i, k) = deltaqw(i, k) |
---|
| 505 | !! te(i, k) = te0(i, k) |
---|
| 506 | !! qe(i, k) = qe0(i, k) |
---|
| 507 | !! dtls(i, k) = 0. |
---|
| 508 | !! dqls(i, k) = 0. |
---|
| 509 | !! d_deltat_gw(i, k) = 0. |
---|
| 510 | !! d_te(i, k) = 0. |
---|
| 511 | !! d_qe(i, k) = 0. |
---|
| 512 | !! d_deltatw(i, k) = 0. |
---|
| 513 | !! d_deltaqw(i, k) = 0. |
---|
| 514 | !! ! IM 060508 beg |
---|
| 515 | !! d_deltatw2(i, k) = 0. |
---|
| 516 | !! d_deltaqw2(i, k) = 0. |
---|
| 517 | !! ! IM 060508 end |
---|
| 518 | !! END DO |
---|
| 519 | !! END DO |
---|
| 520 | ppi(:,:) = pi(:,:) |
---|
| 521 | deltatw0(:,:) = deltatw(:,:) |
---|
| 522 | deltaqw0(:,:) = deltaqw(:,:) |
---|
| 523 | te(:,:) = te0(:,:) |
---|
| 524 | qe(:,:) = qe0(:,:) |
---|
| 525 | dtls(:,:) = 0. |
---|
| 526 | dqls(:,:) = 0. |
---|
| 527 | d_deltat_gw(:,:) = 0. |
---|
| 528 | d_te(:,:) = 0. |
---|
| 529 | d_qe(:,:) = 0. |
---|
| 530 | d_deltatw(:,:) = 0. |
---|
| 531 | d_deltaqw(:,:) = 0. |
---|
| 532 | d_deltatw2(:,:) = 0. |
---|
| 533 | d_deltaqw2(:,:) = 0. |
---|
| 534 | #ifdef ISO |
---|
| 535 | deltaxtw0(:,:,:)= deltaxtw(:,:,:) |
---|
| 536 | xte(:,:,:) = xte0(:,:,:) |
---|
| 537 | dxtls(:,:,:) = 0. |
---|
| 538 | d_xte(:,:,:) = 0. |
---|
| 539 | d_deltaxtw(:,:,:) = 0. |
---|
| 540 | d_deltaxtw2(:,:,:)=0. |
---|
| 541 | xt1(:,:,:) = 0. |
---|
| 542 | xt2(:,:,:)=0. |
---|
| 543 | ! init non indispensable mais facilite verif iso |
---|
| 544 | q1(:,:)=0.0 |
---|
| 545 | q2(:,:)=0.0 |
---|
| 546 | #endif |
---|
| 547 | |
---|
| 548 | IF (iflag_wk_act == 0) THEN |
---|
| 549 | act(:) = 0. |
---|
| 550 | ELSEIF (iflag_wk_act == 1) THEN |
---|
| 551 | act(:) = 1. |
---|
| 552 | ENDIF |
---|
| 553 | |
---|
| 554 | !! DO i = 1, klon |
---|
| 555 | !! sigmaw_in(i) = sigmaw(i) |
---|
| 556 | !! END DO |
---|
| 557 | sigmaw_in(:) = sigmaw(:) |
---|
| 558 | !>jyg |
---|
| 559 | |
---|
| 560 | ! sigmaw1=sigmaw |
---|
| 561 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 562 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 563 | ! ENDIF |
---|
| 564 | IF (iflag_wk_pop_dyn >=1) THEN |
---|
| 565 | DO i = 1, klon |
---|
| 566 | wdens_targ = max(wdens(i),wdensmin) |
---|
| 567 | d_wdens2(i) = wdens_targ - wdens(i) |
---|
| 568 | wdens(i) = wdens_targ |
---|
| 569 | END DO |
---|
| 570 | ELSE |
---|
| 571 | DO i = 1, klon |
---|
| 572 | d_awdens2(i) = 0. |
---|
| 573 | d_wdens2(i) = 0. |
---|
| 574 | END DO |
---|
| 575 | ENDIF ! (iflag_wk_pop_dyn >=1) |
---|
| 576 | ! |
---|
| 577 | DO i = 1, klon |
---|
| 578 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
| 579 | !jyg< |
---|
| 580 | !! sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
| 581 | !! sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
| 582 | sigmaw_targ = min(max(sigmaw(i), sigmad),0.99) |
---|
| 583 | d_sigmaw2(i) = sigmaw_targ - sigmaw(i) |
---|
| 584 | sigmaw(i) = sigmaw_targ |
---|
| 585 | !>jyg |
---|
| 586 | END DO |
---|
| 587 | |
---|
| 588 | ! |
---|
| 589 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 590 | awdens_in(:) = awdens(:) |
---|
| 591 | wdens_in(:) = wdens(:) |
---|
| 592 | !! wdens(:) = wdens(:) + wgen(:)*dtime |
---|
| 593 | !! d_wdens2(:) = wgen(:)*dtime |
---|
| 594 | !! ELSE |
---|
| 595 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 596 | |
---|
| 597 | wape(:) = 0. |
---|
| 598 | wape2(:) = 0. |
---|
| 599 | d_sigmaw(:) = 0. |
---|
| 600 | ktopw(:) = 0 |
---|
| 601 | ! |
---|
| 602 | !<jyg |
---|
| 603 | dth(:,:) = 0. |
---|
| 604 | tu(:,:) = 0. |
---|
| 605 | qu(:,:) = 0. |
---|
| 606 | dtke(:,:) = 0. |
---|
| 607 | dqke(:,:) = 0. |
---|
| 608 | spread(:,:) = 0. |
---|
| 609 | omgbdth(:,:) = 0. |
---|
| 610 | omg(:,:) = 0. |
---|
| 611 | dp_omgb(:,:) = 0. |
---|
| 612 | dp_deltomg(:,:) = 0. |
---|
| 613 | hw(:) = 0. |
---|
| 614 | wape(:) = 0. |
---|
| 615 | fip(:) = 0. |
---|
| 616 | gfl(:) = 0. |
---|
| 617 | cstar(:) = 0. |
---|
| 618 | ktopw(:) = 0 |
---|
| 619 | ! |
---|
| 620 | ! Vertical advection local variables |
---|
| 621 | omgbw(:,:) = 0. |
---|
| 622 | omgtop(:) = 0 |
---|
| 623 | dp_omgbw(:,:) = 0. |
---|
| 624 | omgbdq(:,:) = 0. |
---|
| 625 | #ifdef ISO |
---|
| 626 | xtu(:,:,:) = 0. |
---|
| 627 | dxtke(:,:,:) = 0. |
---|
| 628 | omgbdxt(:,:,:) = 0. |
---|
| 629 | #endif |
---|
| 630 | !>jyg |
---|
| 631 | ! |
---|
| 632 | IF (prt_level>=10) THEN |
---|
| 633 | PRINT *, 'wake-1, sigmaw(igout) ', sigmaw(igout) |
---|
| 634 | PRINT *, 'wake-1, deltatw(igout,k) ', (k,deltatw(igout,k), k=1,klev) |
---|
| 635 | PRINT *, 'wake-1, deltaqw(igout,k) ', (k,deltaqw(igout,k), k=1,klev) |
---|
| 636 | PRINT *, 'wake-1, dowwdraughts, amdwn(igout,k) ', (k,amdwn(igout,k), k=1,klev) |
---|
| 637 | PRINT *, 'wake-1, dowwdraughts, dtdwn(igout,k) ', (k,dtdwn(igout,k), k=1,klev) |
---|
| 638 | PRINT *, 'wake-1, dowwdraughts, dqdwn(igout,k) ', (k,dqdwn(igout,k), k=1,klev) |
---|
| 639 | PRINT *, 'wake-1, updraughts, amup(igout,k) ', (k,amup(igout,k), k=1,klev) |
---|
| 640 | PRINT *, 'wake-1, updraughts, dta(igout,k) ', (k,dta(igout,k), k=1,klev) |
---|
| 641 | PRINT *, 'wake-1, updraughts, dqa(igout,k) ', (k,dqa(igout,k), k=1,klev) |
---|
| 642 | ENDIF |
---|
| 643 | |
---|
| 644 | ! 2. - Prognostic part |
---|
| 645 | ! -------------------- |
---|
| 646 | |
---|
| 647 | |
---|
| 648 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 649 | ! --------------------------------------------------------- |
---|
| 650 | |
---|
| 651 | DO i = 1, klon |
---|
| 652 | z(i) = 0. |
---|
| 653 | ktop(i) = 0 |
---|
| 654 | kupper(i) = 0 |
---|
| 655 | sum_thu(i) = 0. |
---|
| 656 | sum_tu(i) = 0. |
---|
| 657 | sum_qu(i) = 0. |
---|
| 658 | sum_thvu(i) = 0. |
---|
| 659 | sum_dth(i) = 0. |
---|
| 660 | sum_dq(i) = 0. |
---|
| 661 | sum_rho(i) = 0. |
---|
| 662 | sum_dtdwn(i) = 0. |
---|
| 663 | sum_dqdwn(i) = 0. |
---|
| 664 | |
---|
| 665 | av_thu(i) = 0. |
---|
| 666 | av_tu(i) = 0. |
---|
| 667 | av_qu(i) = 0. |
---|
| 668 | av_thvu(i) = 0. |
---|
| 669 | av_dth(i) = 0. |
---|
| 670 | av_dq(i) = 0. |
---|
| 671 | av_rho(i) = 0. |
---|
| 672 | av_dtdwn(i) = 0. |
---|
| 673 | av_dqdwn(i) = 0. |
---|
| 674 | ! pas besoin d'isos ici |
---|
| 675 | END DO |
---|
| 676 | |
---|
| 677 | |
---|
| 678 | #ifdef ISOVERIF |
---|
| 679 | ! TODO |
---|
| 680 | #endif |
---|
| 681 | |
---|
| 682 | ! Distance between wakes |
---|
| 683 | DO i = 1, klon |
---|
| 684 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
| 685 | END DO |
---|
| 686 | ! Potential temperatures and humidity |
---|
| 687 | ! ---------------------------------------------------------- |
---|
| 688 | DO k = 1, klev |
---|
| 689 | DO i = 1, klon |
---|
| 690 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
| 691 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 692 | ! write(*,*)'wake 2',rho(i,k) |
---|
| 693 | IF (k==1) THEN |
---|
| 694 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
| 695 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 696 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
| 697 | zhh(i, k) = 0 |
---|
| 698 | ELSE |
---|
| 699 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
| 700 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 701 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
| 702 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 703 | END IF |
---|
| 704 | ! write(*,*)'wake 7',ppi(i,k) |
---|
| 705 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 706 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 707 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 708 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 709 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
| 710 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 711 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 712 | #ifdef ISO |
---|
| 713 | do ixt=1,ntraciso |
---|
| 714 | xtu(ixt,i,k) = xte(ixt,i,k) - deltaxtw(ixt,i,k)*sigmaw(i) |
---|
| 715 | enddo !do ixt=1,ntraciso |
---|
[4491] | 716 | #ifdef ISOVERIF |
---|
| 717 | if (iso_eau.gt.0) then |
---|
| 718 | call iso_verif_egalite(deltaqw(i,k),deltaxtw(iso_eau,i,k),'wake 723a') |
---|
| 719 | call iso_verif_egalite(qu(i,k),xtu(iso_eau,i,k),'wake 723b') |
---|
| 720 | endif |
---|
| 721 | if (iso_HDO.gt.0) then |
---|
| 722 | if (iso_verif_aberrant_enc_choix_nostop(xtu(iso_hdo,i,k),qu(i,k),ridicule,deltalim, & |
---|
| 723 | 'wake 723c xtu').eq.1) then |
---|
| 724 | stop |
---|
| 725 | endif |
---|
| 726 | endif |
---|
[3927] | 727 | #endif |
---|
[4491] | 728 | #endif |
---|
[3927] | 729 | END DO |
---|
| 730 | END DO |
---|
| 731 | |
---|
| 732 | |
---|
| 733 | |
---|
| 734 | DO k = 1, klev - 1 |
---|
| 735 | DO i = 1, klon |
---|
| 736 | IF (k==1) THEN |
---|
| 737 | n2(i, k) = 0 |
---|
| 738 | ELSE |
---|
| 739 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i,k-1))/ & |
---|
| 740 | (p(i,k+1)-p(i,k-1))) |
---|
| 741 | END IF |
---|
| 742 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
| 743 | |
---|
| 744 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
| 745 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
| 746 | END DO |
---|
| 747 | END DO |
---|
| 748 | |
---|
| 749 | DO i = 1, klon |
---|
| 750 | n2(i, klev) = 0 |
---|
| 751 | zh(i, klev) = 0 |
---|
| 752 | cgw(i, klev) = 0 |
---|
| 753 | tgw(i, klev) = 0 |
---|
| 754 | END DO |
---|
| 755 | |
---|
| 756 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
| 757 | ! ----------------------------------------------------------------- |
---|
| 758 | |
---|
| 759 | DO k = 1, klev |
---|
| 760 | DO i = 1, klon |
---|
| 761 | epaisseur1(i, k) = 0. |
---|
| 762 | epaisseur2(i, k) = 0. |
---|
| 763 | END DO |
---|
| 764 | END DO |
---|
| 765 | |
---|
| 766 | DO i = 1, klon |
---|
| 767 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 768 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 769 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
| 770 | END DO |
---|
| 771 | |
---|
| 772 | DO k = 2, klev |
---|
| 773 | DO i = 1, klon |
---|
| 774 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
| 775 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
| 776 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
| 777 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
| 778 | END DO |
---|
| 779 | END DO |
---|
| 780 | |
---|
| 781 | |
---|
| 782 | ! Choose an integration bound well above wake top |
---|
| 783 | ! ----------------------------------------------------------------- |
---|
| 784 | |
---|
| 785 | ! Pupper = 50000. ! melting level |
---|
| 786 | ! Pupper = 60000. |
---|
| 787 | ! Pupper = 80000. ! essais pour case_e |
---|
| 788 | DO i = 1, klon |
---|
| 789 | pupper(i) = 0.6*ph(i, 1) |
---|
| 790 | pupper(i) = max(pupper(i), 45000.) |
---|
| 791 | ! cc Pupper(i) = 60000. |
---|
| 792 | END DO |
---|
| 793 | |
---|
| 794 | |
---|
| 795 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 796 | ! -------------------------------------------------------- |
---|
| 797 | |
---|
| 798 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 799 | |
---|
| 800 | DO i = 1, klon |
---|
| 801 | ptop_provis(i) = ph(i, 1) |
---|
| 802 | END DO |
---|
| 803 | DO k = 2, klev |
---|
| 804 | DO i = 1, klon |
---|
| 805 | |
---|
| 806 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
| 807 | |
---|
| 808 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
| 809 | ptop_provis(i)==ph(i,1)) THEN |
---|
| 810 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)- & |
---|
| 811 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 812 | END IF |
---|
| 813 | END DO |
---|
| 814 | END DO |
---|
| 815 | |
---|
| 816 | ! -2/ dth integral |
---|
| 817 | |
---|
| 818 | DO i = 1, klon |
---|
| 819 | sum_dth(i) = 0. |
---|
| 820 | dthmin(i) = -delta_t_min |
---|
| 821 | z(i) = 0. |
---|
| 822 | END DO |
---|
| 823 | |
---|
| 824 | DO k = 1, klev |
---|
| 825 | DO i = 1, klon |
---|
| 826 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 827 | IF (dz(i)>0) THEN |
---|
| 828 | z(i) = z(i) + dz(i) |
---|
| 829 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 830 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 831 | END IF |
---|
| 832 | END DO |
---|
| 833 | END DO |
---|
| 834 | |
---|
| 835 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 836 | |
---|
| 837 | DO i = 1, klon |
---|
| 838 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 839 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
| 840 | END DO |
---|
| 841 | |
---|
| 842 | ! -4/ now, get Ptop |
---|
| 843 | |
---|
| 844 | DO i = 1, klon |
---|
| 845 | z(i) = 0. |
---|
| 846 | ptop(i) = ph(i, 1) |
---|
| 847 | END DO |
---|
| 848 | |
---|
| 849 | DO k = 1, klev |
---|
| 850 | DO i = 1, klon |
---|
| 851 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
| 852 | IF (dz(i)>0) THEN |
---|
| 853 | z(i) = z(i) + dz(i) |
---|
| 854 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 855 | END IF |
---|
| 856 | END DO |
---|
| 857 | END DO |
---|
| 858 | |
---|
| 859 | IF (prt_level>=10) THEN |
---|
| 860 | PRINT *, 'wake-2, ptop_provis(igout), ptop(igout) ', ptop_provis(igout), ptop(igout) |
---|
| 861 | ENDIF |
---|
| 862 | |
---|
| 863 | |
---|
| 864 | ! -5/ Determination de ktop et kupper |
---|
| 865 | |
---|
| 866 | DO k = klev, 1, -1 |
---|
| 867 | DO i = 1, klon |
---|
| 868 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 869 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
| 870 | END DO |
---|
| 871 | END DO |
---|
| 872 | |
---|
| 873 | ! On evite kupper = 1 et kupper = klev |
---|
| 874 | DO i = 1, klon |
---|
| 875 | kupper(i) = max(kupper(i), 2) |
---|
| 876 | kupper(i) = min(kupper(i), klev-1) |
---|
| 877 | END DO |
---|
| 878 | |
---|
| 879 | |
---|
| 880 | ! -6/ Correct ktop and ptop |
---|
| 881 | |
---|
| 882 | DO i = 1, klon |
---|
| 883 | ptop_new(i) = ptop(i) |
---|
| 884 | END DO |
---|
| 885 | DO k = klev, 2, -1 |
---|
| 886 | DO i = 1, klon |
---|
| 887 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 888 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 889 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 890 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 891 | END IF |
---|
| 892 | END DO |
---|
| 893 | END DO |
---|
| 894 | |
---|
| 895 | DO i = 1, klon |
---|
| 896 | ptop(i) = ptop_new(i) |
---|
| 897 | END DO |
---|
| 898 | |
---|
| 899 | DO k = klev, 1, -1 |
---|
| 900 | DO i = 1, klon |
---|
| 901 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 902 | END DO |
---|
| 903 | END DO |
---|
| 904 | |
---|
| 905 | IF (prt_level>=10) THEN |
---|
| 906 | PRINT *, 'wake-3, ktop(igout), kupper(igout) ', ktop(igout), kupper(igout) |
---|
| 907 | ENDIF |
---|
| 908 | |
---|
| 909 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 910 | |
---|
| 911 | DO k = 1, klev |
---|
| 912 | DO i = 1, klon |
---|
| 913 | IF (k>=kupper(i)) THEN |
---|
| 914 | deltatw(i, k) = 0. |
---|
| 915 | deltaqw(i, k) = 0. |
---|
| 916 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 917 | #ifdef ISO |
---|
| 918 | do ixt=1,ntraciso |
---|
| 919 | deltaxtw(ixt,i, k) = 0. |
---|
| 920 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 921 | enddo |
---|
| 922 | #endif |
---|
| 923 | END IF |
---|
| 924 | END DO |
---|
| 925 | END DO |
---|
| 926 | |
---|
| 927 | |
---|
| 928 | ! Vertical gradient of LS omega |
---|
| 929 | |
---|
| 930 | DO k = 1, klev |
---|
| 931 | DO i = 1, klon |
---|
| 932 | IF (k<=kupper(i)) THEN |
---|
| 933 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 934 | END IF |
---|
| 935 | END DO |
---|
| 936 | END DO |
---|
| 937 | |
---|
| 938 | ! Integrals (and wake top level number) |
---|
| 939 | ! -------------------------------------- |
---|
| 940 | |
---|
| 941 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 942 | |
---|
| 943 | DO i = 1, klon |
---|
| 944 | z(i) = 1. |
---|
| 945 | dz(i) = 1. |
---|
| 946 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 947 | sum_dth(i) = 0. |
---|
| 948 | END DO |
---|
| 949 | |
---|
| 950 | DO k = 1, klev |
---|
| 951 | DO i = 1, klon |
---|
| 952 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 953 | IF (dz(i)>0) THEN |
---|
| 954 | z(i) = z(i) + dz(i) |
---|
| 955 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 956 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 957 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 958 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 959 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 960 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 961 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 962 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 963 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 964 | END IF |
---|
| 965 | END DO |
---|
| 966 | END DO |
---|
| 967 | |
---|
| 968 | DO i = 1, klon |
---|
| 969 | hw0(i) = z(i) |
---|
| 970 | END DO |
---|
| 971 | |
---|
| 972 | |
---|
| 973 | ! 2.1 - WAPE and mean forcing computation |
---|
| 974 | ! --------------------------------------- |
---|
| 975 | |
---|
| 976 | ! --------------------------------------- |
---|
| 977 | |
---|
| 978 | ! Means |
---|
| 979 | |
---|
| 980 | DO i = 1, klon |
---|
| 981 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 982 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 983 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 984 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 985 | ! av_thve = sum_thve/hw0 |
---|
| 986 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 987 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 988 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 989 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 990 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 991 | |
---|
| 992 | wape(i) = -rg*hw0(i)*(av_dth(i)+ & |
---|
| 993 | epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 994 | |
---|
| 995 | END DO |
---|
| 996 | |
---|
| 997 | ! 2.2 Prognostic variable update |
---|
| 998 | ! ------------------------------ |
---|
| 999 | |
---|
| 1000 | ! Filter out bad wakes |
---|
| 1001 | |
---|
| 1002 | DO k = 1, klev |
---|
| 1003 | DO i = 1, klon |
---|
| 1004 | IF (wape(i)<0.) THEN |
---|
| 1005 | deltatw(i, k) = 0. |
---|
| 1006 | deltaqw(i, k) = 0. |
---|
| 1007 | dth(i, k) = 0. |
---|
| 1008 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 1009 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 1010 | #ifdef ISO |
---|
| 1011 | do ixt=1,ntraciso |
---|
| 1012 | deltaxtw(ixt,i, k) = 0. |
---|
| 1013 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 1014 | enddo |
---|
| 1015 | #endif |
---|
| 1016 | END IF |
---|
| 1017 | END DO |
---|
| 1018 | END DO |
---|
| 1019 | |
---|
| 1020 | DO i = 1, klon |
---|
| 1021 | IF (wape(i)<0.) THEN |
---|
| 1022 | wape(i) = 0. |
---|
| 1023 | cstar(i) = 0. |
---|
| 1024 | hw(i) = hwmin |
---|
| 1025 | !jyg< |
---|
| 1026 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 1027 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 1028 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1029 | sigmaw(i) = sigmaw_targ |
---|
| 1030 | !>jyg |
---|
| 1031 | fip(i) = 0. |
---|
| 1032 | gwake(i) = .FALSE. |
---|
| 1033 | ELSE |
---|
| 1034 | hw(i) = hw0(i) |
---|
| 1035 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 1036 | gwake(i) = .TRUE. |
---|
| 1037 | END IF |
---|
| 1038 | END DO |
---|
| 1039 | |
---|
| 1040 | |
---|
| 1041 | ! Check qx and qw positivity |
---|
| 1042 | ! -------------------------- |
---|
| 1043 | DO i = 1, klon |
---|
| 1044 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), & |
---|
| 1045 | (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
| 1046 | END DO |
---|
| 1047 | DO k = 2, klev |
---|
| 1048 | DO i = 1, klon |
---|
| 1049 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), & |
---|
| 1050 | (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
| 1051 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
| 1052 | q0_min(i) = q1_min(i) |
---|
| 1053 | END IF |
---|
| 1054 | END DO |
---|
| 1055 | END DO |
---|
| 1056 | |
---|
| 1057 | DO i = 1, klon |
---|
| 1058 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
| 1059 | alpha(i) = 1. |
---|
| 1060 | END DO |
---|
| 1061 | |
---|
| 1062 | IF (prt_level>=10) THEN |
---|
| 1063 | PRINT *, 'wake-4, sigmaw(igout), cstar(igout), wape(igout), ktop(igout) ', & |
---|
| 1064 | sigmaw(igout), cstar(igout), wape(igout), ktop(igout) |
---|
| 1065 | ENDIF |
---|
| 1066 | |
---|
| 1067 | |
---|
| 1068 | ! C ----------------------------------------------------------------- |
---|
| 1069 | ! Sub-time-stepping |
---|
| 1070 | ! ----------------- |
---|
| 1071 | |
---|
| 1072 | nsub = 10 |
---|
| 1073 | dtimesub = dtime/nsub |
---|
| 1074 | |
---|
| 1075 | ! ------------------------------------------------------------ |
---|
| 1076 | DO isubstep = 1, nsub |
---|
| 1077 | ! ------------------------------------------------------------ |
---|
| 1078 | |
---|
| 1079 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
| 1080 | ! loop |
---|
| 1081 | DO i = 1, klon |
---|
| 1082 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
| 1083 | END DO |
---|
| 1084 | IF (prt_level>=10) THEN |
---|
| 1085 | PRINT *, 'wake-4.1, isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) ', & |
---|
| 1086 | isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) |
---|
| 1087 | ENDIF |
---|
| 1088 | |
---|
| 1089 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
| 1090 | ! négatif de ktop à kupper -------- |
---|
| 1091 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
| 1092 | ! aurait un entrainement nul --- |
---|
| 1093 | !jyg< |
---|
| 1094 | ! Dans la configuration avec wdens prognostique, il s'agit d'un cas ou |
---|
| 1095 | ! les poches sont insuffisantes pour accueillir tout le flux de masse |
---|
| 1096 | ! des descentes unsaturees. Nous faisons alors l'hypothese que la |
---|
| 1097 | ! convection profonde cree directement de nouvelles poches, sans passer |
---|
| 1098 | ! par les thermiques. La nouvelle valeur de wdens est alors imposée. |
---|
| 1099 | |
---|
| 1100 | DO i = 1, klon |
---|
| 1101 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
| 1102 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
| 1103 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
| 1104 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 1105 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 1106 | wdens0 = (sigmaw(i)/(4.*3.14))* & |
---|
| 1107 | ((1.-sigmaw(i))*omg(i,kupper(i)+1)/((ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
| 1108 | IF (prt_level >= 10) THEN |
---|
| 1109 | print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i)', & |
---|
| 1110 | omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i) |
---|
| 1111 | ENDIF |
---|
| 1112 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
| 1113 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1114 | d_wdens2(i) = d_wdens2(i) + wdens0 - wdens(i) |
---|
| 1115 | ENDIF |
---|
| 1116 | wdens(i) = wdens0 |
---|
| 1117 | END IF |
---|
| 1118 | END IF |
---|
| 1119 | END DO |
---|
| 1120 | |
---|
| 1121 | DO i = 1, klon |
---|
| 1122 | IF (wk_adv(i)) THEN |
---|
| 1123 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
| 1124 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
---|
| 1125 | !jyg< |
---|
| 1126 | !! sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
| 1127 | sigmaw_targ = min(sigmaw(i), sigmaw_max) |
---|
| 1128 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1129 | sigmaw(i) = sigmaw_targ |
---|
| 1130 | !>jyg |
---|
| 1131 | END IF |
---|
| 1132 | END DO |
---|
| 1133 | |
---|
| 1134 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1135 | ! The variable "death_rate" is significant only when iflag_wk_pop_dyn = 0. |
---|
| 1136 | ! Here, it has to be set to zero. |
---|
| 1137 | death_rate(:) = 0. |
---|
| 1138 | |
---|
| 1139 | IF (iflag_wk_act ==2) THEN |
---|
| 1140 | DO i = 1, klon |
---|
| 1141 | IF (wk_adv(i)) THEN |
---|
| 1142 | wape1_act(i) = abs(cin(i)) |
---|
| 1143 | wape2_act(i) = 2.*wape1_act(i) + 1. |
---|
| 1144 | act(i) = min(1., max(0., (wape(i)-wape1_act(i)) / (wape2_act(i)-wape1_act(i)) )) |
---|
| 1145 | ENDIF ! (wk_adv(i)) |
---|
| 1146 | ENDDO |
---|
| 1147 | ENDIF ! (iflag_wk_act ==2) |
---|
| 1148 | |
---|
| 1149 | |
---|
| 1150 | DO i = 1, klon |
---|
| 1151 | IF (wk_adv(i)) THEN |
---|
| 1152 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
---|
| 1153 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
---|
| 1154 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
---|
| 1155 | drdt(i) = (cstar(i) - wgen(i)*(sigmaw(i)/wdens(i)-aa0)/gfl(i)) / & |
---|
| 1156 | (1 + 2*f_shear(i)*(2.*sigmaw(i)-aa0*wdens(i)) - 2.*sigmaw(i)) |
---|
| 1157 | !! (1 - 2*sigmaw(i)*(1.-f_shear(i))) |
---|
| 1158 | drdt_pos=max(drdt(i),0.) |
---|
| 1159 | |
---|
| 1160 | !! d_wdens(i) = ( wgen(i)*(1.+2.*(sigmaw(i)-sigmad)) & |
---|
| 1161 | !! - wdens(i)*tau_wk_inv_min & |
---|
| 1162 | !! - 2.*gfl(i)*wdens(i)*Cstar(i) )*dtimesub |
---|
| 1163 | d_awdens(i) = ( wgen(i) - (1./tau_cv)*(awdens(i) - act(i)*wdens(i)) )*dtimesub |
---|
| 1164 | d_wdens(i) = ( wgen(i) - (wdens(i)-awdens(i))*tau_wk_inv_min - & |
---|
| 1165 | 2.*wdens(i)*gfl(i)*drdt_pos )*dtimesub |
---|
| 1166 | d_wdens(i) = max(d_wdens(i), wdensmin-wdens(i)) |
---|
| 1167 | |
---|
| 1168 | !! d_sigmaw(i) = ( (1.-2*f_shear(i)*sigmaw(i))*(gfl(i)*Cstar(i)+wgen(i)*sigmad/wdens(i)) & |
---|
| 1169 | !! + 2.*f_shear(i)*wgen(i)*sigmaw(i)**2/wdens(i) & |
---|
| 1170 | !! - sigmaw(i)*tau_wk_inv_min )*dtimesub |
---|
| 1171 | d_sig_gen(i) = wgen(i)*aa0 |
---|
| 1172 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
---|
| 1173 | !! d_sig_col(i) = - 2*f_shear(i)*sigmaw(i)*gfl(i)*drdt_pos |
---|
| 1174 | d_sig_col(i) = - 2*f_shear(i)*(2.*sigmaw(i)-wdens(i)*aa0)*gfl(i)*drdt_pos |
---|
| 1175 | d_sigmaw(i) = ( d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + gfl(i)*cstar(i) )*dtimesub |
---|
| 1176 | d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
| 1177 | ENDIF |
---|
| 1178 | ENDDO |
---|
| 1179 | |
---|
| 1180 | IF (prt_level >= 10) THEN |
---|
| 1181 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) ', & |
---|
| 1182 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) |
---|
| 1183 | print *,'wake, wdens(1), awdens(1), act(1), d_awdens(1) ', & |
---|
| 1184 | wdens(1), awdens(1), act(1), d_awdens(1) |
---|
| 1185 | print *,'wake, wgen, -(wdens-awdens)*tau_wk_inv, -2.*wdens*gfl*drdt_pos, d_wdens ', & |
---|
| 1186 | wgen(1), -(wdens(1)-awdens(1))*tau_wk_inv(1), -2.*wdens(1)*gfl(1)*drdt_pos, d_wdens(1) |
---|
| 1187 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
---|
| 1188 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
---|
| 1189 | ENDIF |
---|
| 1190 | |
---|
| 1191 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 1192 | |
---|
| 1193 | ! cc nrlmd |
---|
| 1194 | |
---|
| 1195 | DO i = 1, klon |
---|
| 1196 | IF (wk_adv(i)) THEN |
---|
| 1197 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
| 1198 | ! test sur sigmaw_max=0.4 |
---|
| 1199 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
| 1200 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
| 1201 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
| 1202 | ELSE |
---|
| 1203 | death_rate(i) = 0. |
---|
| 1204 | END IF |
---|
| 1205 | |
---|
| 1206 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
| 1207 | dtimesub |
---|
| 1208 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
| 1209 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 1210 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
| 1211 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 1212 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
| 1213 | |
---|
| 1214 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
| 1215 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
| 1216 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 1217 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 1218 | ! sigmaw =max(sigmaw,sigmad) |
---|
| 1219 | END IF |
---|
| 1220 | END DO |
---|
| 1221 | |
---|
| 1222 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 1223 | |
---|
| 1224 | |
---|
| 1225 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 1226 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
| 1227 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
---|
| 1228 | ! IM 060208 au niveau k=1..? |
---|
| 1229 | !JYG 161013 Correction : maintenant omg est dimensionne a klev. |
---|
| 1230 | DO k = 1, klev |
---|
| 1231 | DO i = 1, klon |
---|
| 1232 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1233 | dp_deltomg(i, k) = 0. |
---|
| 1234 | END IF |
---|
| 1235 | END DO |
---|
| 1236 | END DO |
---|
| 1237 | DO k = 1, klev |
---|
| 1238 | DO i = 1, klon |
---|
| 1239 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1240 | omg(i, k) = 0. |
---|
| 1241 | END IF |
---|
| 1242 | END DO |
---|
| 1243 | END DO |
---|
| 1244 | |
---|
| 1245 | DO i = 1, klon |
---|
| 1246 | IF (wk_adv(i)) THEN |
---|
| 1247 | z(i) = 0. |
---|
| 1248 | omg(i, 1) = 0. |
---|
| 1249 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
| 1250 | END IF |
---|
| 1251 | END DO |
---|
| 1252 | |
---|
| 1253 | DO k = 2, klev |
---|
| 1254 | DO i = 1, klon |
---|
| 1255 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 1256 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
| 1257 | z(i) = z(i) + dz(i) |
---|
| 1258 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 1259 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
| 1260 | END IF |
---|
| 1261 | END DO |
---|
| 1262 | END DO |
---|
| 1263 | |
---|
| 1264 | DO i = 1, klon |
---|
| 1265 | IF (wk_adv(i)) THEN |
---|
| 1266 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
| 1267 | ztop(i) = z(i) + dztop(i) |
---|
| 1268 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
| 1269 | END IF |
---|
| 1270 | END DO |
---|
| 1271 | |
---|
| 1272 | IF (prt_level>=10) THEN |
---|
| 1273 | PRINT *, 'wake-4.2, omg(igout,k) ', (k,omg(igout,k), k=1,klev) |
---|
| 1274 | PRINT *, 'wake-4.2, omgtop(igout), ptop(igout), ktop(igout) ', & |
---|
| 1275 | omgtop(igout), ptop(igout), ktop(igout) |
---|
| 1276 | ENDIF |
---|
| 1277 | |
---|
| 1278 | ! ----------------- |
---|
| 1279 | ! From m/s to Pa/s |
---|
| 1280 | ! ----------------- |
---|
| 1281 | |
---|
| 1282 | DO i = 1, klon |
---|
| 1283 | IF (wk_adv(i)) THEN |
---|
| 1284 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
| 1285 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
| 1286 | END IF |
---|
| 1287 | END DO |
---|
| 1288 | |
---|
| 1289 | DO k = 1, klev |
---|
| 1290 | DO i = 1, klon |
---|
| 1291 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 1292 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
| 1293 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 1294 | END IF |
---|
| 1295 | END DO |
---|
| 1296 | END DO |
---|
| 1297 | |
---|
| 1298 | ! raccordement lineaire de omg de ptop a pupper |
---|
| 1299 | |
---|
| 1300 | DO i = 1, klon |
---|
| 1301 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
| 1302 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 1303 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 1304 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
| 1305 | (ptop(i)-pupper(i)) |
---|
| 1306 | END IF |
---|
| 1307 | END DO |
---|
| 1308 | |
---|
| 1309 | ! c DO i=1,klon |
---|
| 1310 | ! c print*,'Pente entre 0 et kupper (référence)' |
---|
| 1311 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
| 1312 | ! c print*,'Pente entre ktop et kupper' |
---|
| 1313 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
| 1314 | ! c ENDDO |
---|
| 1315 | ! c |
---|
| 1316 | DO k = 1, klev |
---|
| 1317 | DO i = 1, klon |
---|
| 1318 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
| 1319 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
| 1320 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
| 1321 | END IF |
---|
| 1322 | END DO |
---|
| 1323 | END DO |
---|
| 1324 | !! print *,'omg(igout,k) ', (k,omg(igout,k),k=1,klev) |
---|
| 1325 | ! cc nrlmd |
---|
| 1326 | ! c DO i=1,klon |
---|
| 1327 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
| 1328 | ! c END DO |
---|
| 1329 | ! cc |
---|
| 1330 | |
---|
| 1331 | |
---|
| 1332 | ! -- Compute wake average vertical velocity omgbw |
---|
| 1333 | |
---|
| 1334 | |
---|
| 1335 | DO k = 1, klev |
---|
| 1336 | DO i = 1, klon |
---|
| 1337 | IF (wk_adv(i)) THEN |
---|
| 1338 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
| 1339 | END IF |
---|
| 1340 | END DO |
---|
| 1341 | END DO |
---|
| 1342 | ! -- and its vertical gradient dp_omgbw |
---|
| 1343 | |
---|
| 1344 | DO k = 1, klev-1 |
---|
| 1345 | DO i = 1, klon |
---|
| 1346 | IF (wk_adv(i)) THEN |
---|
| 1347 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 1348 | END IF |
---|
| 1349 | END DO |
---|
| 1350 | END DO |
---|
| 1351 | DO i = 1, klon |
---|
| 1352 | IF (wk_adv(i)) THEN |
---|
| 1353 | dp_omgbw(i, klev) = 0. |
---|
| 1354 | END IF |
---|
| 1355 | END DO |
---|
| 1356 | |
---|
| 1357 | ! -- Upstream coefficients for omgb velocity |
---|
| 1358 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 1359 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 1360 | DO k = 1, klev |
---|
| 1361 | DO i = 1, klon |
---|
| 1362 | IF (wk_adv(i)) THEN |
---|
| 1363 | alpha_up(i, k) = 0. |
---|
| 1364 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
| 1365 | END IF |
---|
| 1366 | END DO |
---|
| 1367 | END DO |
---|
| 1368 | |
---|
| 1369 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
| 1370 | |
---|
| 1371 | DO i = 1, klon |
---|
| 1372 | IF (wk_adv(i)) THEN |
---|
| 1373 | rre1(i) = 1. - sigmaw(i) |
---|
| 1374 | rre2(i) = sigmaw(i) |
---|
| 1375 | END IF |
---|
| 1376 | END DO |
---|
| 1377 | rrd1 = -1. |
---|
| 1378 | rrd2 = 1. |
---|
| 1379 | |
---|
| 1380 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
| 1381 | |
---|
| 1382 | DO k = 1, klev |
---|
| 1383 | DO i = 1, klon |
---|
| 1384 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 1385 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1386 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
| 1387 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
| 1388 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
| 1389 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
| 1390 | #ifdef ISO |
---|
| 1391 | do ixt=1,ntraciso |
---|
| 1392 | xt1(ixt,i,k) = xte(ixt,i,k) -sigmaw(i) *deltaxtw(ixt,i,k) ! undisturbed area |
---|
| 1393 | xt2(ixt,i,k) = xte(ixt,i,k) +(1.-sigmaw(i))*deltaxtw(ixt,i,k) ! wake |
---|
| 1394 | enddo |
---|
| 1395 | #endif |
---|
| 1396 | END IF |
---|
| 1397 | END DO |
---|
| 1398 | END DO |
---|
| 1399 | |
---|
| 1400 | DO i = 1, klon |
---|
| 1401 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1402 | d_th1(i, 1) = 0. |
---|
| 1403 | d_th2(i, 1) = 0. |
---|
| 1404 | d_dth(i, 1) = 0. |
---|
| 1405 | d_q1(i, 1) = 0. |
---|
| 1406 | d_q2(i, 1) = 0. |
---|
| 1407 | d_dq(i, 1) = 0. |
---|
| 1408 | #ifdef ISO |
---|
| 1409 | do ixt=1,ntraciso |
---|
| 1410 | d_xt1(ixt,i,1) = 0. |
---|
| 1411 | d_xt2(ixt,i,1) = 0. |
---|
| 1412 | d_dxt(ixt,i,1) = 0. |
---|
| 1413 | enddo !do ixt=1,ntraciso |
---|
| 1414 | #endif |
---|
| 1415 | END IF |
---|
| 1416 | END DO |
---|
| 1417 | |
---|
| 1418 | DO k = 2, klev |
---|
| 1419 | DO i = 1, klon |
---|
| 1420 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 1421 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
| 1422 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
| 1423 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
| 1424 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
| 1425 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
| 1426 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
| 1427 | #ifdef ISO |
---|
| 1428 | do ixt=1,ntraciso |
---|
| 1429 | d_xt1(ixt,i,k) = xt1(ixt,i,k-1)-xt1(ixt,i,k) |
---|
| 1430 | d_xt2(ixt,i,k) = xt2(ixt,i,k-1)-xt2(ixt,i,k) |
---|
| 1431 | d_dxt(ixt,i,k) = deltaxtw(ixt,i,k-1)-deltaxtw(ixt,i,k) |
---|
| 1432 | enddo !do ixt=1,ntraciso |
---|
| 1433 | #endif |
---|
| 1434 | END IF |
---|
| 1435 | END DO |
---|
| 1436 | END DO |
---|
| 1437 | |
---|
| 1438 | DO i = 1, klon |
---|
| 1439 | IF (wk_adv(i)) THEN |
---|
| 1440 | omgbdth(i, 1) = 0. |
---|
| 1441 | omgbdq(i, 1) = 0. |
---|
| 1442 | #ifdef ISO |
---|
| 1443 | do ixt=1,ntraciso |
---|
| 1444 | omgbdxt(ixt,i,1) = 0. |
---|
| 1445 | enddo !do ixt=1,ntraciso |
---|
| 1446 | #endif |
---|
| 1447 | END IF |
---|
| 1448 | END DO |
---|
| 1449 | |
---|
| 1450 | DO k = 2, klev |
---|
| 1451 | DO i = 1, klon |
---|
| 1452 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
| 1453 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
| 1454 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
| 1455 | #ifdef ISO |
---|
| 1456 | do ixt=1,ntraciso |
---|
| 1457 | omgbdxt(ixt,i,k) = omgb(i,k)*(deltaxtw(ixt,i,k-1) - deltaxtw(ixt,i,k)) |
---|
| 1458 | enddo !do ixt=1,ntraciso |
---|
| 1459 | #ifdef ISOVERIF |
---|
| 1460 | if (iso_eau.gt.0) then |
---|
| 1461 | call iso_verif_egalite(deltaqw(i,k-1),deltaxtw(iso_eau,i,k-1),'wake 1460a') |
---|
| 1462 | call iso_verif_egalite(deltaqw(i,k),deltaxtw(iso_eau,i,k),'wake 1460b') |
---|
| 1463 | call iso_verif_egalite(omgbdq(i,k),omgbdxt(iso_eau,i,k),'wake 1460c') |
---|
| 1464 | endif |
---|
| 1465 | #endif |
---|
| 1466 | #endif |
---|
| 1467 | END IF |
---|
| 1468 | END DO |
---|
| 1469 | END DO |
---|
| 1470 | |
---|
| 1471 | IF (prt_level>=10) THEN |
---|
| 1472 | PRINT *, 'wake-4.3, th1(igout,k) ', (k,th1(igout,k), k=1,klev) |
---|
| 1473 | PRINT *, 'wake-4.3, th2(igout,k) ', (k,th2(igout,k), k=1,klev) |
---|
| 1474 | PRINT *, 'wake-4.3, dth(igout,k) ', (k,dth(igout,k), k=1,klev) |
---|
| 1475 | PRINT *, 'wake-4.3, omgbdth(igout,k) ', (k,omgbdth(igout,k), k=1,klev) |
---|
| 1476 | ENDIF |
---|
| 1477 | |
---|
| 1478 | ! ----------------------------------------------------------------- |
---|
| 1479 | DO k = 1, klev-1 |
---|
| 1480 | DO i = 1, klon |
---|
| 1481 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
| 1482 | ! ----------------------------------------------------------------- |
---|
| 1483 | |
---|
| 1484 | ! Compute redistribution (advective) term |
---|
| 1485 | |
---|
| 1486 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1487 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k) - & |
---|
| 1488 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1)- & |
---|
| 1489 | (1.-alpha_up(i,k))*omgbdth(i,k)- & |
---|
| 1490 | alpha_up(i,k+1)*omgbdth(i,k+1))*ppi(i, k) |
---|
| 1491 | ! print*,'d_deltatw=', k, d_deltatw(i,k) |
---|
| 1492 | |
---|
| 1493 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1494 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
| 1495 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1)- & |
---|
| 1496 | (1.-alpha_up(i,k))*omgbdq(i,k)- & |
---|
| 1497 | alpha_up(i,k+1)*omgbdq(i,k+1)) |
---|
| 1498 | ! print*,'d_deltaqw=', k, d_deltaqw(i,k) |
---|
| 1499 | #ifdef ISO |
---|
| 1500 | do ixt=1,ntraciso |
---|
| 1501 | d_deltaxtw(ixt,i,k) = dtimesub/(Ph(i,k)-Ph(i,k+1))* & |
---|
| 1502 | (rrd1*omg(i,k )*sigmaw(i) *d_xt1(ixt,i,k)- & |
---|
| 1503 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_xt2(ixt,i,k+1)- & |
---|
| 1504 | (1.-alpha_up(i,k))*omgbdxt(ixt,i,k)- & |
---|
| 1505 | alpha_up(i,k+1)*omgbdxt(ixt,i,k+1)) |
---|
| 1506 | enddo !do ixt=1,ntraciso |
---|
| 1507 | #ifdef ISOVERIF |
---|
| 1508 | if (iso_eau.gt.0) then |
---|
| 1509 | call iso_verif_egalite(d_q1(i,k),d_xt1(iso_eau,i,k),'wake 1502a') |
---|
| 1510 | call iso_verif_egalite(d_q2(i,k),d_xt2(iso_eau,i,k),'wake 1502b') |
---|
| 1511 | call iso_verif_egalite(omgbdq(i,k),omgbdxt(iso_eau,i,k),'wake 1502c') |
---|
| 1512 | call iso_verif_egalite(omgbdq(i,k+1),omgbdxt(iso_eau,i,k+1),'wake 1502d') |
---|
| 1513 | call iso_verif_egalite(d_deltaqw(i,k),d_deltaxtw(iso_eau,i,k),'wake 1502e') |
---|
| 1514 | endif |
---|
| 1515 | #endif |
---|
| 1516 | #endif |
---|
| 1517 | |
---|
| 1518 | ! and increment large scale tendencies |
---|
| 1519 | |
---|
| 1520 | |
---|
| 1521 | |
---|
| 1522 | |
---|
| 1523 | ! C |
---|
| 1524 | ! ----------------------------------------------------------------- |
---|
| 1525 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)- & |
---|
| 1526 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/ & |
---|
| 1527 | (ph(i,k)-ph(i,k+1)) & |
---|
| 1528 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
| 1529 | (ph(i,k)-ph(i,k+1)) )*ppi(i, k) |
---|
| 1530 | |
---|
| 1531 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
| 1532 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/ & |
---|
| 1533 | (ph(i,k)-ph(i,k+1)) & |
---|
| 1534 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
| 1535 | (ph(i,k)-ph(i,k+1)) ) |
---|
| 1536 | #ifdef ISO |
---|
| 1537 | do ixt=1,ntraciso |
---|
| 1538 | d_xte(ixt,i,k) = dtimesub*( & |
---|
| 1539 | ( rre1(i)*omg(i,k )*sigmaw(i) *d_xt1(ixt,i,k) & |
---|
| 1540 | -rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_xt2(ixt,i,k+1) ) & |
---|
| 1541 | /(Ph(i,k)-Ph(i,k+1)) & |
---|
| 1542 | -sigmaw(i)*(1.-sigmaw(i))*deltaxtw(ixt,i,k) & |
---|
| 1543 | *(omg(i,k)-omg(i,k+1))/(Ph(i,k)-Ph(i,k+1)) & |
---|
| 1544 | ) |
---|
| 1545 | enddo !do ixt=1,ntraciso |
---|
| 1546 | #endif |
---|
| 1547 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
| 1548 | d_te(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)/(ph(i,k)-ph(i,k+1)))*ppi(i, k) |
---|
| 1549 | |
---|
| 1550 | d_qe(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)/(ph(i,k)-ph(i,k+1))) |
---|
| 1551 | |
---|
| 1552 | #ifdef ISO |
---|
| 1553 | do ixt=1,ntraciso |
---|
| 1554 | d_xte(ixt,i,k) = dtimesub*( & |
---|
| 1555 | ( rre1(i)*omg(i,k )*sigmaw(i) *d_xt1(ixt,i,k) & |
---|
| 1556 | /(Ph(i,k)-Ph(i,k+1))) & |
---|
| 1557 | ) |
---|
| 1558 | enddo !do ixt=1,ntraciso |
---|
| 1559 | #endif |
---|
| 1560 | END IF |
---|
| 1561 | ! cc |
---|
| 1562 | END DO |
---|
| 1563 | END DO |
---|
| 1564 | ! ------------------------------------------------------------------ |
---|
| 1565 | |
---|
| 1566 | IF (prt_level>=10) THEN |
---|
| 1567 | PRINT *, 'wake-4.3, d_deltatw(igout,k) ', (k,d_deltatw(igout,k), k=1,klev) |
---|
| 1568 | PRINT *, 'wake-4.3, d_deltaqw(igout,k) ', (k,d_deltaqw(igout,k), k=1,klev) |
---|
| 1569 | ENDIF |
---|
| 1570 | |
---|
| 1571 | ! Increment state variables |
---|
| 1572 | !jyg< |
---|
| 1573 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1574 | DO k = 1, klev |
---|
| 1575 | DO i = 1, klon |
---|
| 1576 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1577 | detr(i,k) = - d_sig_death(i) - d_sig_col(i) |
---|
| 1578 | entr(i,k) = d_sig_gen(i) |
---|
| 1579 | ENDIF |
---|
| 1580 | ENDDO |
---|
| 1581 | ENDDO |
---|
| 1582 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 1583 | DO k = 1, klev |
---|
| 1584 | DO i = 1, klon |
---|
| 1585 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1586 | detr(i, k) = 0. |
---|
| 1587 | |
---|
| 1588 | entr(i, k) = 0. |
---|
| 1589 | ENDIF |
---|
| 1590 | ENDDO |
---|
| 1591 | ENDDO |
---|
| 1592 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 1593 | |
---|
| 1594 | |
---|
| 1595 | |
---|
| 1596 | DO k = 1, klev |
---|
| 1597 | DO i = 1, klon |
---|
| 1598 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
| 1599 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1600 | ! cc |
---|
| 1601 | |
---|
| 1602 | |
---|
| 1603 | |
---|
| 1604 | ! Coefficient de répartition |
---|
| 1605 | |
---|
| 1606 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
| 1607 | (ph(i,kupper(i))-ph(i,1)) |
---|
| 1608 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/ & |
---|
| 1609 | (p(i,1)-ph(i,kupper(i))) |
---|
| 1610 | |
---|
| 1611 | |
---|
| 1612 | ! Reintroduce compensating subsidence term. |
---|
| 1613 | |
---|
| 1614 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 1615 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 1616 | ! . /(1-sigmaw) |
---|
| 1617 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 1618 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 1619 | ! . /(1-sigmaw) |
---|
| 1620 | |
---|
| 1621 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 1622 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 1623 | ! . /(1-sigmaw) |
---|
| 1624 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 1625 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 1626 | ! . /(1-sigmaw) |
---|
| 1627 | |
---|
| 1628 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
| 1629 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
| 1630 | #ifdef ISO |
---|
| 1631 | do ixt=1,ntraciso |
---|
| 1632 | dxtke(ixt,i,k)=(dxtdwn(ixt,i,k)/sigmaw(i) - dxta(ixt,i,k) & |
---|
| 1633 | /(1.-sigmaw(i))) |
---|
| 1634 | enddo !do ixt=1,ntraciso |
---|
| 1635 | #ifdef ISOVERIF |
---|
| 1636 | if (iso_eau.gt.0) then |
---|
| 1637 | call iso_verif_egalite(dqke(i,k),dxtKE(iso_eau,i,k),'wake 1621a') |
---|
| 1638 | call iso_verif_egalite(dqdwn(i,k),dxtdwn(iso_eau,i,k),'wake 1621b') |
---|
| 1639 | call iso_verif_egalite(dqa(i,k),dxta(iso_eau,i,k),'wake 1621c') |
---|
| 1640 | call iso_verif_egalite(d_deltaqw(i,k),d_deltaxtw(iso_eau,i,k),'wake 1621d') |
---|
| 1641 | endif |
---|
| 1642 | #endif |
---|
| 1643 | #endif |
---|
| 1644 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
| 1645 | |
---|
| 1646 | ! |
---|
| 1647 | |
---|
| 1648 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
| 1649 | ! cc Définitions de entr, detr |
---|
| 1650 | !jyg< |
---|
| 1651 | !! detr(i, k) = 0. |
---|
| 1652 | !! |
---|
| 1653 | !! entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
| 1654 | !! sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
| 1655 | !! |
---|
| 1656 | entr(i, k) = entr(i,k) + gfl(i)*cstar(i) + & |
---|
| 1657 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
| 1658 | !>jyg |
---|
| 1659 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
| 1660 | |
---|
| 1661 | ! cc spread(i,k) = |
---|
| 1662 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
| 1663 | ! cc $ sigmaw(i) |
---|
| 1664 | |
---|
| 1665 | |
---|
| 1666 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
| 1667 | ! Jingmei |
---|
| 1668 | |
---|
| 1669 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
| 1670 | ! & Tgw(i,k),deltatw(i,k) |
---|
| 1671 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
| 1672 | dtimesub |
---|
| 1673 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
| 1674 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
| 1675 | |
---|
| 1676 | ! Sans GW |
---|
| 1677 | |
---|
| 1678 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
| 1679 | |
---|
| 1680 | ! GW formule 1 |
---|
| 1681 | |
---|
| 1682 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 1683 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 1684 | |
---|
| 1685 | ! GW formule 2 |
---|
| 1686 | |
---|
| 1687 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
| 1688 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k) - & |
---|
| 1689 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
| 1690 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & ! cc |
---|
| 1691 | tgw(i,k)*deltatw(i,k) ) |
---|
| 1692 | ELSE |
---|
| 1693 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i,k)))* & |
---|
| 1694 | (ff(i)+dtke(i,k) - & |
---|
| 1695 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
| 1696 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & |
---|
| 1697 | tgw(i,k)*deltatw(i,k) ) |
---|
| 1698 | END IF |
---|
| 1699 | |
---|
| 1700 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1701 | |
---|
| 1702 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
| 1703 | |
---|
| 1704 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k) - & |
---|
| 1705 | entr(i,k)*deltaqw(i,k)/sigmaw(i) - & |
---|
| 1706 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
| 1707 | #ifdef ISO |
---|
| 1708 | do ixt=1,ntraciso |
---|
| 1709 | gg(i)=d_deltaxtw(ixt,i,k)/dtimesub |
---|
| 1710 | d_deltaxtw(ixt,i,k) = dtimesub*(gg(i) + dxtKE(ixt,i,k) - & |
---|
| 1711 | entr(i,k)*deltaxtw(ixt,i,k)/sigmaw(i) - & |
---|
| 1712 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaxtw(ixt,i,k)/(1.-sigmaw(i))) |
---|
| 1713 | enddo !do ixt=1,ntraciso |
---|
| 1714 | #ifdef ISOVERIF |
---|
| 1715 | if (iso_eau.gt.0) then |
---|
| 1716 | call iso_verif_egalite(dqke(i,k),dxtKE(iso_eau,i,k),'wake 1692a') |
---|
| 1717 | call iso_verif_egalite(deltaqw(i,k),deltaxtw(iso_eau,i,k),'wake 1692b') |
---|
| 1718 | call iso_verif_egalite(d_deltaqw(i,k),d_deltaxtw(iso_eau,i,k),'wake 1692c') |
---|
| 1719 | endif |
---|
| 1720 | #endif |
---|
| 1721 | #endif |
---|
| 1722 | ! cc |
---|
| 1723 | |
---|
| 1724 | ! cc nrlmd |
---|
| 1725 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
| 1726 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
| 1727 | ! cc |
---|
| 1728 | END IF |
---|
| 1729 | END DO |
---|
| 1730 | END DO |
---|
| 1731 | |
---|
| 1732 | #ifdef ISO |
---|
| 1733 | #ifdef ISOVERIF |
---|
| 1734 | if (iso_eau.gt.0) then |
---|
| 1735 | call iso_verif_egalite_vect2D(d_deltaxtw,d_deltaqw, & |
---|
| 1736 | 'wake 1359',ntraciso,klon,klev) |
---|
| 1737 | endif |
---|
| 1738 | #endif |
---|
| 1739 | #endif |
---|
| 1740 | |
---|
| 1741 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
| 1742 | |
---|
| 1743 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1744 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1745 | |
---|
| 1746 | ! cc nrlmd |
---|
| 1747 | ! c print*,'alpha' |
---|
| 1748 | ! c do i=1,klon |
---|
| 1749 | ! c print*,alpha(i) |
---|
| 1750 | ! c end do |
---|
| 1751 | ! cc |
---|
| 1752 | DO k = 1, klev |
---|
| 1753 | DO i = 1, klon |
---|
| 1754 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1755 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
| 1756 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
| 1757 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
| 1758 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
| 1759 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
| 1760 | #ifdef ISO |
---|
| 1761 | do ixt=1,ntraciso |
---|
| 1762 | d_xte(ixt,i,k)=alpha(i)*d_xte(ixt,i,k) |
---|
| 1763 | d_deltaxtw(ixt,i,k)=alpha(i)*d_deltaxtw(ixt,i,k) |
---|
| 1764 | enddo !do ixt=1,ntraciso |
---|
| 1765 | #endif |
---|
| 1766 | END IF |
---|
| 1767 | END DO |
---|
| 1768 | END DO |
---|
| 1769 | DO i = 1, klon |
---|
| 1770 | IF (wk_adv(i)) THEN |
---|
| 1771 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
| 1772 | END IF |
---|
| 1773 | END DO |
---|
| 1774 | |
---|
| 1775 | ! Update large scale variables and wake variables |
---|
| 1776 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
| 1777 | ! IM 060208 DO k = 1,kupper(i) |
---|
| 1778 | DO k = 1, klev |
---|
| 1779 | DO i = 1, klon |
---|
| 1780 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1781 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
| 1782 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
| 1783 | #ifdef ISO |
---|
| 1784 | do ixt=1,ntraciso |
---|
| 1785 | dxtls(ixt,i,k)=dxtls(ixt,i,k)+d_xte(ixt,i,k) |
---|
| 1786 | enddo !do ixt=1,ntraciso |
---|
| 1787 | #endif |
---|
| 1788 | ! cc nrlmd |
---|
| 1789 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
| 1790 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
| 1791 | #ifdef ISO |
---|
| 1792 | do ixt=1,ntraciso |
---|
| 1793 | d_deltaxtw2(ixt,i,k)=d_deltaxtw2(ixt,i,k)+d_deltaxtw(ixt,i,k) |
---|
| 1794 | enddo !do ixt=1,ntraciso |
---|
| 1795 | #endif |
---|
| 1796 | ! cc |
---|
| 1797 | END IF |
---|
| 1798 | END DO |
---|
| 1799 | END DO |
---|
| 1800 | |
---|
| 1801 | |
---|
| 1802 | #ifdef ISO |
---|
| 1803 | #ifdef ISOVERIF |
---|
| 1804 | if (iso_eau.gt.0) then |
---|
| 1805 | DO k= 1,klev |
---|
| 1806 | DO i = 1,klon |
---|
| 1807 | call iso_verif_egalite_choix(dxtls(iso_eau,i,k), & |
---|
| 1808 | dqls(i,k),'wake 1379',errmax,errmaxrel) |
---|
| 1809 | enddo ! DO i = 1,klon |
---|
| 1810 | enddo ! DO k= 1,klev |
---|
| 1811 | endif !if (iso_eau.gt.0) then |
---|
| 1812 | #endif |
---|
| 1813 | #endif |
---|
| 1814 | |
---|
| 1815 | |
---|
| 1816 | DO k = 1, klev |
---|
| 1817 | DO i = 1, klon |
---|
| 1818 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1819 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
| 1820 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
| 1821 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1822 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
| 1823 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
| 1824 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1825 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
| 1826 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
| 1827 | #ifdef ISO |
---|
| 1828 | do ixt=1,ntraciso |
---|
| 1829 | xte(ixt,i,k) = xte0(ixt,i,k) + dxtls(ixt,i,k) |
---|
| 1830 | deltaxtw(ixt,i,k) = deltaxtw(ixt,i,k)+d_deltaxtw(ixt,i,k) |
---|
| 1831 | enddo !do ixt=1,ntraciso |
---|
| 1832 | #endif |
---|
| 1833 | END IF |
---|
| 1834 | END DO |
---|
| 1835 | END DO |
---|
| 1836 | ! |
---|
| 1837 | DO i = 1, klon |
---|
| 1838 | IF (wk_adv(i)) THEN |
---|
| 1839 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
| 1840 | d_sigmaw2(i) = d_sigmaw2(i) + d_sigmaw(i) |
---|
| 1841 | END IF |
---|
| 1842 | END DO |
---|
| 1843 | |
---|
| 1844 | #ifdef ISO |
---|
| 1845 | #ifdef ISOVERIF |
---|
[4491] | 1846 | write(*,*) 'wake 1859' |
---|
[3927] | 1847 | if (iso_eau.gt.0) then |
---|
| 1848 | DO k= 1,klev |
---|
| 1849 | DO i = 1,klon |
---|
| 1850 | call iso_verif_egalite_choix(xte(iso_eau,i,k), & |
---|
| 1851 | qe(i,k),'wake 1379',errmax,errmaxrel) |
---|
| 1852 | enddo ! DO i = 1,klon |
---|
| 1853 | enddo ! DO k= 1,klev |
---|
| 1854 | endif !if (iso_eau.gt.0) then |
---|
| 1855 | if (iso_hdo.gt.0) then |
---|
| 1856 | call iso_verif_aberrant_enc_vect2D( & |
---|
| 1857 | xte,qe, & |
---|
| 1858 | 'wake 1456, xte apres modifs',ntraciso,klon,klev) |
---|
| 1859 | ! call iso_verif_aberrant_enc_vect2D_ns( |
---|
| 1860 | ! : deltaxtw,deltaqw, |
---|
| 1861 | ! : 'wake 1518, deltaqw apres modifs',ntraciso,klon,klev) |
---|
| 1862 | endif |
---|
| 1863 | #endif |
---|
| 1864 | #endif |
---|
| 1865 | |
---|
| 1866 | !jyg< |
---|
| 1867 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1868 | DO i = 1, klon |
---|
| 1869 | IF (wk_adv(i)) THEN |
---|
| 1870 | awdens(i) = awdens(i) + d_awdens(i) |
---|
| 1871 | wdens(i) = wdens(i) + d_wdens(i) |
---|
| 1872 | d_awdens2(i) = d_awdens2(i) + d_awdens(i) |
---|
| 1873 | d_wdens2(i) = d_wdens2(i) + d_wdens(i) |
---|
| 1874 | END IF |
---|
| 1875 | END DO |
---|
| 1876 | DO i = 1, klon |
---|
| 1877 | IF (wk_adv(i)) THEN |
---|
| 1878 | wdens_targ = max(wdens(i),wdensmin) |
---|
| 1879 | d_wdens2(i) = d_wdens2(i) + wdens_targ - wdens(i) |
---|
| 1880 | wdens(i) = wdens_targ |
---|
| 1881 | ! |
---|
| 1882 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
---|
| 1883 | d_awdens2(i) = d_awdens2(i) + wdens_targ - awdens(i) |
---|
| 1884 | awdens(i) = wdens_targ |
---|
| 1885 | END IF |
---|
| 1886 | END DO |
---|
| 1887 | DO i = 1, klon |
---|
| 1888 | IF (wk_adv(i)) THEN |
---|
| 1889 | sigmaw_targ = max(sigmaw(i),sigmad) |
---|
| 1890 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1891 | sigmaw(i) = sigmaw_targ |
---|
| 1892 | END IF |
---|
| 1893 | END DO |
---|
| 1894 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 1895 | !>jyg |
---|
| 1896 | |
---|
| 1897 | |
---|
| 1898 | ! Determine Ptop from buoyancy integral |
---|
| 1899 | ! --------------------------------------- |
---|
| 1900 | |
---|
| 1901 | ! - 1/ Pressure of the level where dth changes sign. |
---|
| 1902 | |
---|
| 1903 | DO i = 1, klon |
---|
| 1904 | IF (wk_adv(i)) THEN |
---|
| 1905 | ptop_provis(i) = ph(i, 1) |
---|
| 1906 | END IF |
---|
| 1907 | END DO |
---|
| 1908 | |
---|
| 1909 | DO k = 2, klev |
---|
| 1910 | DO i = 1, klon |
---|
| 1911 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
| 1912 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1913 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
| 1914 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1915 | END IF |
---|
| 1916 | END DO |
---|
| 1917 | END DO |
---|
| 1918 | |
---|
| 1919 | ! - 2/ dth integral |
---|
| 1920 | |
---|
| 1921 | DO i = 1, klon |
---|
| 1922 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1923 | sum_dth(i) = 0. |
---|
| 1924 | dthmin(i) = -delta_t_min |
---|
| 1925 | z(i) = 0. |
---|
| 1926 | END IF |
---|
| 1927 | END DO |
---|
| 1928 | |
---|
| 1929 | DO k = 1, klev |
---|
| 1930 | DO i = 1, klon |
---|
| 1931 | IF (wk_adv(i)) THEN |
---|
| 1932 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1933 | IF (dz(i)>0) THEN |
---|
| 1934 | z(i) = z(i) + dz(i) |
---|
| 1935 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1936 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 1937 | END IF |
---|
| 1938 | END IF |
---|
| 1939 | END DO |
---|
| 1940 | END DO |
---|
| 1941 | |
---|
| 1942 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 1943 | |
---|
| 1944 | DO i = 1, klon |
---|
| 1945 | IF (wk_adv(i)) THEN |
---|
| 1946 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 1947 | hw(i) = amax1(hwmin, hw(i)) |
---|
| 1948 | END IF |
---|
| 1949 | END DO |
---|
| 1950 | |
---|
| 1951 | ! - 4/ now, get Ptop |
---|
| 1952 | |
---|
| 1953 | DO i = 1, klon |
---|
| 1954 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1955 | ktop(i) = 0 |
---|
| 1956 | z(i) = 0. |
---|
| 1957 | END IF |
---|
| 1958 | END DO |
---|
| 1959 | |
---|
| 1960 | DO k = 1, klev |
---|
| 1961 | DO i = 1, klon |
---|
| 1962 | IF (wk_adv(i)) THEN |
---|
| 1963 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
| 1964 | IF (dz(i)>0) THEN |
---|
| 1965 | z(i) = z(i) + dz(i) |
---|
| 1966 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 1967 | ktop(i) = k |
---|
| 1968 | END IF |
---|
| 1969 | END IF |
---|
| 1970 | END DO |
---|
| 1971 | END DO |
---|
| 1972 | |
---|
| 1973 | ! 4.5/Correct ktop and ptop |
---|
| 1974 | |
---|
| 1975 | DO i = 1, klon |
---|
| 1976 | IF (wk_adv(i)) THEN |
---|
| 1977 | ptop_new(i) = ptop(i) |
---|
| 1978 | END IF |
---|
| 1979 | END DO |
---|
| 1980 | |
---|
| 1981 | DO k = klev, 2, -1 |
---|
| 1982 | DO i = 1, klon |
---|
| 1983 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
| 1984 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 1985 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1986 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
| 1987 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1988 | END IF |
---|
| 1989 | END DO |
---|
| 1990 | END DO |
---|
| 1991 | |
---|
| 1992 | |
---|
| 1993 | DO i = 1, klon |
---|
| 1994 | IF (wk_adv(i)) THEN |
---|
| 1995 | ptop(i) = ptop_new(i) |
---|
| 1996 | END IF |
---|
| 1997 | END DO |
---|
| 1998 | |
---|
| 1999 | DO k = klev, 1, -1 |
---|
| 2000 | DO i = 1, klon |
---|
| 2001 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2002 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 2003 | END IF |
---|
| 2004 | END DO |
---|
| 2005 | END DO |
---|
| 2006 | |
---|
| 2007 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 2008 | |
---|
| 2009 | DO k = 1, klev |
---|
| 2010 | DO i = 1, klon |
---|
| 2011 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
| 2012 | deltatw(i, k) = 0. |
---|
| 2013 | deltaqw(i, k) = 0. |
---|
| 2014 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2015 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 2016 | #ifdef ISO |
---|
| 2017 | do ixt=1,ntraciso |
---|
| 2018 | deltaxtw(ixt,i,k) = 0. |
---|
| 2019 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 2020 | enddo !do ixt=1,ntraciso |
---|
| 2021 | #endif |
---|
| 2022 | END IF |
---|
| 2023 | END DO |
---|
| 2024 | END DO |
---|
| 2025 | |
---|
| 2026 | |
---|
| 2027 | ! -------------Cstar computation--------------------------------- |
---|
| 2028 | DO i = 1, klon |
---|
| 2029 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2030 | sum_thu(i) = 0. |
---|
| 2031 | sum_tu(i) = 0. |
---|
| 2032 | sum_qu(i) = 0. |
---|
| 2033 | sum_thvu(i) = 0. |
---|
| 2034 | sum_dth(i) = 0. |
---|
| 2035 | sum_dq(i) = 0. |
---|
| 2036 | sum_rho(i) = 0. |
---|
| 2037 | sum_dtdwn(i) = 0. |
---|
| 2038 | sum_dqdwn(i) = 0. |
---|
| 2039 | |
---|
| 2040 | av_thu(i) = 0. |
---|
| 2041 | av_tu(i) = 0. |
---|
| 2042 | av_qu(i) = 0. |
---|
| 2043 | av_thvu(i) = 0. |
---|
| 2044 | av_dth(i) = 0. |
---|
| 2045 | av_dq(i) = 0. |
---|
| 2046 | av_rho(i) = 0. |
---|
| 2047 | av_dtdwn(i) = 0. |
---|
| 2048 | av_dqdwn(i) = 0. |
---|
| 2049 | END IF |
---|
| 2050 | END DO |
---|
| 2051 | |
---|
| 2052 | ! Integrals (and wake top level number) |
---|
| 2053 | ! -------------------------------------- |
---|
| 2054 | |
---|
| 2055 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 2056 | |
---|
| 2057 | DO i = 1, klon |
---|
| 2058 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2059 | z(i) = 1. |
---|
| 2060 | dz(i) = 1. |
---|
| 2061 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 2062 | sum_dth(i) = 0. |
---|
| 2063 | END IF |
---|
| 2064 | END DO |
---|
| 2065 | |
---|
| 2066 | DO k = 1, klev |
---|
| 2067 | DO i = 1, klon |
---|
| 2068 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2069 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 2070 | IF (dz(i)>0) THEN |
---|
| 2071 | z(i) = z(i) + dz(i) |
---|
| 2072 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 2073 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 2074 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 2075 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 2076 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 2077 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 2078 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 2079 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 2080 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 2081 | END IF |
---|
| 2082 | END IF |
---|
| 2083 | END DO |
---|
| 2084 | END DO |
---|
| 2085 | |
---|
| 2086 | DO i = 1, klon |
---|
| 2087 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2088 | hw0(i) = z(i) |
---|
| 2089 | END IF |
---|
| 2090 | END DO |
---|
| 2091 | |
---|
| 2092 | |
---|
| 2093 | ! - WAPE and mean forcing computation |
---|
| 2094 | ! --------------------------------------- |
---|
| 2095 | |
---|
| 2096 | ! --------------------------------------- |
---|
| 2097 | |
---|
| 2098 | ! Means |
---|
| 2099 | |
---|
| 2100 | DO i = 1, klon |
---|
| 2101 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2102 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 2103 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 2104 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 2105 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 2106 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 2107 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 2108 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 2109 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 2110 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 2111 | |
---|
| 2112 | wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
| 2113 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 2114 | END IF |
---|
| 2115 | END DO |
---|
| 2116 | |
---|
| 2117 | ! Filter out bad wakes |
---|
| 2118 | |
---|
| 2119 | DO k = 1, klev |
---|
| 2120 | DO i = 1, klon |
---|
| 2121 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2122 | IF (wape(i)<0.) THEN |
---|
| 2123 | deltatw(i, k) = 0. |
---|
| 2124 | deltaqw(i, k) = 0. |
---|
| 2125 | dth(i, k) = 0. |
---|
| 2126 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2127 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 2128 | #ifdef ISO |
---|
| 2129 | do ixt=1,ntraciso |
---|
| 2130 | deltaxtw(ixt,i,k) = 0. |
---|
| 2131 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 2132 | enddo !do ixt=1,ntraciso |
---|
| 2133 | #endif |
---|
| 2134 | END IF |
---|
| 2135 | END IF |
---|
| 2136 | END DO |
---|
| 2137 | END DO |
---|
| 2138 | |
---|
| 2139 | DO i = 1, klon |
---|
| 2140 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 2141 | IF (wape(i)<0.) THEN |
---|
| 2142 | wape(i) = 0. |
---|
| 2143 | cstar(i) = 0. |
---|
| 2144 | hw(i) = hwmin |
---|
| 2145 | !jyg< |
---|
| 2146 | !! sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
| 2147 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 2148 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 2149 | sigmaw(i) = sigmaw_targ |
---|
| 2150 | !>jyg |
---|
| 2151 | fip(i) = 0. |
---|
| 2152 | gwake(i) = .FALSE. |
---|
| 2153 | ELSE |
---|
| 2154 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 2155 | gwake(i) = .TRUE. |
---|
| 2156 | END IF |
---|
| 2157 | END IF |
---|
| 2158 | END DO |
---|
| 2159 | |
---|
| 2160 | END DO ! end sub-timestep loop |
---|
| 2161 | |
---|
| 2162 | IF (prt_level>=10) THEN |
---|
| 2163 | PRINT *, 'wake-5, sigmaw(igout), cstar(igout), wape(igout), ptop(igout) ', & |
---|
| 2164 | sigmaw(igout), cstar(igout), wape(igout), ptop(igout) |
---|
| 2165 | ENDIF |
---|
| 2166 | |
---|
| 2167 | |
---|
| 2168 | ! ---------------------------------------------------------- |
---|
| 2169 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
| 2170 | ! filter out bad wakes. |
---|
| 2171 | ! ---------------------------------------------------------- |
---|
| 2172 | |
---|
| 2173 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 2174 | ! --------------------------------------------------------- |
---|
| 2175 | |
---|
| 2176 | DO i = 1, klon |
---|
| 2177 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
| 2178 | IF (ok_qx_qw(i)) THEN |
---|
| 2179 | ! cc |
---|
| 2180 | z(i) = 0. |
---|
| 2181 | sum_thu(i) = 0. |
---|
| 2182 | sum_tu(i) = 0. |
---|
| 2183 | sum_qu(i) = 0. |
---|
| 2184 | sum_thvu(i) = 0. |
---|
| 2185 | sum_dth(i) = 0. |
---|
| 2186 | sum_half_dth(i) = 0. |
---|
| 2187 | sum_dq(i) = 0. |
---|
| 2188 | sum_rho(i) = 0. |
---|
| 2189 | sum_dtdwn(i) = 0. |
---|
| 2190 | sum_dqdwn(i) = 0. |
---|
| 2191 | |
---|
| 2192 | av_thu(i) = 0. |
---|
| 2193 | av_tu(i) = 0. |
---|
| 2194 | av_qu(i) = 0. |
---|
| 2195 | av_thvu(i) = 0. |
---|
| 2196 | av_dth(i) = 0. |
---|
| 2197 | av_dq(i) = 0. |
---|
| 2198 | av_rho(i) = 0. |
---|
| 2199 | av_dtdwn(i) = 0. |
---|
| 2200 | av_dqdwn(i) = 0. |
---|
| 2201 | |
---|
| 2202 | dthmin(i) = -delta_t_min |
---|
| 2203 | END IF |
---|
| 2204 | END DO |
---|
| 2205 | ! Potential temperatures and humidity |
---|
| 2206 | ! ---------------------------------------------------------- |
---|
| 2207 | |
---|
| 2208 | DO k = 1, klev |
---|
| 2209 | DO i = 1, klon |
---|
| 2210 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2211 | IF (ok_qx_qw(i)) THEN |
---|
| 2212 | ! cc |
---|
| 2213 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 2214 | IF (k==1) THEN |
---|
| 2215 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 2216 | zhh(i, k) = 0 |
---|
| 2217 | ELSE |
---|
| 2218 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 2219 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 2220 | END IF |
---|
| 2221 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 2222 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 2223 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 2224 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 2225 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 2226 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 2227 | #ifdef ISO |
---|
| 2228 | do ixt=1,ntraciso |
---|
| 2229 | xtu(ixt,i,k) = xte(ixt,i,k) - deltaxtw(ixt,i,k)*sigmaw(i) |
---|
| 2230 | enddo !do ixt=1,ntraciso |
---|
| 2231 | #endif |
---|
| 2232 | END IF |
---|
| 2233 | END DO |
---|
| 2234 | END DO |
---|
| 2235 | |
---|
| 2236 | #ifdef ISO |
---|
| 2237 | #ifdef ISOVERIF |
---|
| 2238 | if (iso_hdo.gt.0) then |
---|
| 2239 | call iso_verif_aberrant_enc_vect2D( & |
---|
| 2240 | xtu,qu, & |
---|
| 2241 | 'wake 1834, apres modifs',ntraciso,klon,klev) |
---|
| 2242 | endif |
---|
| 2243 | #endif |
---|
| 2244 | #endif |
---|
| 2245 | |
---|
| 2246 | ! Integrals (and wake top level number) |
---|
| 2247 | ! ----------------------------------------------------------- |
---|
| 2248 | |
---|
| 2249 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 2250 | |
---|
| 2251 | DO i = 1, klon |
---|
| 2252 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2253 | IF (ok_qx_qw(i)) THEN |
---|
| 2254 | ! cc |
---|
| 2255 | z(i) = 1. |
---|
| 2256 | dz(i) = 1. |
---|
| 2257 | dz_half(i) = 1. |
---|
| 2258 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 2259 | sum_dth(i) = 0. |
---|
| 2260 | END IF |
---|
| 2261 | END DO |
---|
| 2262 | |
---|
| 2263 | DO k = 1, klev |
---|
| 2264 | DO i = 1, klon |
---|
| 2265 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2266 | IF (ok_qx_qw(i)) THEN |
---|
| 2267 | ! cc |
---|
| 2268 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 2269 | dz_half(i) = -(amax1(ph(i,k+1),0.5*(ptop(i)+ph(i,1)))-ph(i,k))/(rho(i,k)*rg) |
---|
| 2270 | IF (dz(i)>0) THEN |
---|
| 2271 | z(i) = z(i) + dz(i) |
---|
| 2272 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 2273 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 2274 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 2275 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 2276 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 2277 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 2278 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 2279 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 2280 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 2281 | ! |
---|
| 2282 | dthmin(i) = min(dthmin(i), dth(i,k)) |
---|
| 2283 | END IF |
---|
| 2284 | IF (dz_half(i)>0) THEN |
---|
| 2285 | sum_half_dth(i) = sum_half_dth(i) + dth(i, k)*dz_half(i) |
---|
| 2286 | END IF |
---|
| 2287 | END IF |
---|
| 2288 | END DO |
---|
| 2289 | END DO |
---|
| 2290 | |
---|
| 2291 | DO i = 1, klon |
---|
| 2292 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2293 | IF (ok_qx_qw(i)) THEN |
---|
| 2294 | ! cc |
---|
| 2295 | hw0(i) = z(i) |
---|
| 2296 | END IF |
---|
| 2297 | END DO |
---|
| 2298 | |
---|
| 2299 | ! - WAPE and mean forcing computation |
---|
| 2300 | ! ------------------------------------------------------------- |
---|
| 2301 | |
---|
| 2302 | ! Means |
---|
| 2303 | |
---|
| 2304 | DO i = 1, klon |
---|
| 2305 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2306 | IF (ok_qx_qw(i)) THEN |
---|
| 2307 | ! cc |
---|
| 2308 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 2309 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 2310 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 2311 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 2312 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 2313 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 2314 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 2315 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 2316 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 2317 | |
---|
| 2318 | wape2(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
| 2319 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 2320 | END IF |
---|
| 2321 | END DO |
---|
| 2322 | |
---|
| 2323 | |
---|
| 2324 | |
---|
| 2325 | ! Prognostic variable update |
---|
| 2326 | ! ------------------------------------------------------------ |
---|
| 2327 | |
---|
| 2328 | ! Filter out bad wakes |
---|
| 2329 | |
---|
| 2330 | IF (iflag_wk_check_trgl>=1) THEN |
---|
| 2331 | ! Check triangular shape of dth profile |
---|
| 2332 | DO i = 1, klon |
---|
| 2333 | IF (ok_qx_qw(i)) THEN |
---|
| 2334 | !! print *,'wake, hw0(i), dthmin(i) ', hw0(i), dthmin(i) |
---|
| 2335 | !! print *,'wake, 2.*sum_dth(i)/(hw0(i)*dthmin(i)) ', & |
---|
| 2336 | !! 2.*sum_dth(i)/(hw0(i)*dthmin(i)) |
---|
| 2337 | !! print *,'wake, sum_half_dth(i), sum_dth(i) ', & |
---|
| 2338 | !! sum_half_dth(i), sum_dth(i) |
---|
| 2339 | IF ((hw0(i) < 1.) .or. (dthmin(i) >= -delta_t_min) ) THEN |
---|
| 2340 | wape2(i) = -1. |
---|
| 2341 | !! print *,'wake, rej 1' |
---|
| 2342 | ELSE IF (iflag_wk_check_trgl==1.AND.abs(2.*sum_dth(i)/(hw0(i)*dthmin(i)) - 1.) > 0.5) THEN |
---|
| 2343 | wape2(i) = -1. |
---|
| 2344 | !! print *,'wake, rej 2' |
---|
| 2345 | ELSE IF (abs(sum_half_dth(i)) < 0.5*abs(sum_dth(i)) ) THEN |
---|
| 2346 | wape2(i) = -1. |
---|
| 2347 | !! print *,'wake, rej 3' |
---|
| 2348 | END IF |
---|
| 2349 | END IF |
---|
| 2350 | END DO |
---|
| 2351 | END IF |
---|
| 2352 | |
---|
| 2353 | |
---|
| 2354 | DO k = 1, klev |
---|
| 2355 | DO i = 1, klon |
---|
| 2356 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
| 2357 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
| 2358 | ! cc |
---|
| 2359 | deltatw(i, k) = 0. |
---|
| 2360 | deltaqw(i, k) = 0. |
---|
| 2361 | dth(i, k) = 0. |
---|
| 2362 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2363 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 2364 | #ifdef ISO |
---|
| 2365 | do ixt=1,ntraciso |
---|
| 2366 | deltaxtw(ixt,i,k) = 0. |
---|
| 2367 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 2368 | enddo !do ixt=1,ntraciso |
---|
| 2369 | #endif |
---|
| 2370 | END IF |
---|
| 2371 | END DO |
---|
| 2372 | END DO |
---|
| 2373 | |
---|
| 2374 | |
---|
| 2375 | DO i = 1, klon |
---|
| 2376 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2377 | IF (ok_qx_qw(i)) THEN |
---|
| 2378 | ! cc |
---|
| 2379 | IF (wape2(i)<0.) THEN |
---|
| 2380 | wape2(i) = 0. |
---|
| 2381 | cstar2(i) = 0. |
---|
| 2382 | hw(i) = hwmin |
---|
| 2383 | !jyg< |
---|
| 2384 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 2385 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 2386 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 2387 | sigmaw(i) = sigmaw_targ |
---|
| 2388 | !>jyg |
---|
| 2389 | fip(i) = 0. |
---|
| 2390 | gwake(i) = .FALSE. |
---|
| 2391 | ELSE |
---|
| 2392 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 2393 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
| 2394 | gwake(i) = .TRUE. |
---|
| 2395 | END IF |
---|
| 2396 | END IF |
---|
| 2397 | END DO |
---|
| 2398 | |
---|
| 2399 | DO i = 1, klon |
---|
| 2400 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2401 | IF (ok_qx_qw(i)) THEN |
---|
| 2402 | ! cc |
---|
| 2403 | ktopw(i) = ktop(i) |
---|
| 2404 | END IF |
---|
| 2405 | END DO |
---|
| 2406 | |
---|
| 2407 | DO i = 1, klon |
---|
| 2408 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2409 | IF (ok_qx_qw(i)) THEN |
---|
| 2410 | ! cc |
---|
| 2411 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
| 2412 | |
---|
| 2413 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 2414 | ! cc heff = 600. |
---|
| 2415 | ! Utilisation de la hauteur hw |
---|
| 2416 | ! c heff = 0.7*hw |
---|
| 2417 | heff(i) = hw(i) |
---|
| 2418 | |
---|
| 2419 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
| 2420 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
| 2421 | fip(i) = alpk*fip(i) |
---|
| 2422 | ! jyg2 |
---|
| 2423 | ELSE |
---|
| 2424 | fip(i) = 0. |
---|
| 2425 | END IF |
---|
| 2426 | END IF |
---|
| 2427 | END DO |
---|
| 2428 | |
---|
| 2429 | ! Limitation de sigmaw |
---|
| 2430 | |
---|
| 2431 | ! cc nrlmd |
---|
| 2432 | ! DO i=1,klon |
---|
| 2433 | ! IF (OK_qx_qw(i)) THEN |
---|
| 2434 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
| 2435 | ! ENDIF |
---|
| 2436 | ! ENDDO |
---|
| 2437 | ! cc |
---|
| 2438 | |
---|
| 2439 | !jyg< |
---|
| 2440 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 2441 | DO i = 1, klon |
---|
| 2442 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2443 | .NOT. ok_qx_qw(i) .OR. (wdens(i) < 2.*wdensmin) |
---|
| 2444 | ENDDO |
---|
| 2445 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 2446 | DO i = 1, klon |
---|
| 2447 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2448 | .NOT. ok_qx_qw(i) |
---|
| 2449 | ENDDO |
---|
| 2450 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 2451 | !>jyg |
---|
| 2452 | |
---|
| 2453 | DO k = 1, klev |
---|
| 2454 | DO i = 1, klon |
---|
| 2455 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2456 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
| 2457 | IF (kill_wake(i)) THEN |
---|
| 2458 | ! cc |
---|
| 2459 | dtls(i, k) = 0. |
---|
| 2460 | dqls(i, k) = 0. |
---|
| 2461 | deltatw(i, k) = 0. |
---|
| 2462 | deltaqw(i, k) = 0. |
---|
| 2463 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2464 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
| 2465 | #ifdef ISO |
---|
| 2466 | do ixt=1,ntraciso |
---|
| 2467 | dxtls(ixt,i,k) = 0. |
---|
| 2468 | deltaxtw(ixt,i,k) = 0. |
---|
| 2469 | d_deltaxtw2(ixt,i,k) = -deltaxtw0(ixt,i,k) |
---|
| 2470 | enddo !do ixt=1,ntraciso |
---|
| 2471 | #endif |
---|
| 2472 | END IF ! (kill_wake(i)) |
---|
| 2473 | END DO |
---|
| 2474 | END DO |
---|
| 2475 | |
---|
| 2476 | DO i = 1, klon |
---|
| 2477 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2478 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
| 2479 | IF (kill_wake(i)) THEN |
---|
| 2480 | ktopw(i) = 0 |
---|
| 2481 | wape(i) = 0. |
---|
| 2482 | cstar(i) = 0. |
---|
| 2483 | !!jyg Outside subroutine "Wake" hw, wdens and sigmaw are zero when there are no wakes |
---|
| 2484 | !! hw(i) = hwmin !jyg |
---|
| 2485 | !! sigmaw(i) = sigmad !jyg |
---|
| 2486 | hw(i) = 0. !jyg |
---|
| 2487 | fip(i) = 0. |
---|
| 2488 | !! sigmaw(i) = 0. !jyg |
---|
| 2489 | sigmaw_targ = 0. |
---|
| 2490 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 2491 | sigmaw(i) = sigmaw_targ |
---|
| 2492 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 2493 | !! awdens(i) = 0. |
---|
| 2494 | !! wdens(i) = 0. |
---|
| 2495 | wdens_targ = 0. |
---|
| 2496 | d_wdens2(i) = wdens_targ - wdens(i) |
---|
| 2497 | wdens(i) = wdens_targ |
---|
| 2498 | wdens_targ = 0. |
---|
| 2499 | d_awdens2(i) = wdens_targ - awdens(i) |
---|
| 2500 | awdens(i) = wdens_targ |
---|
| 2501 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 2502 | ELSE ! (kill_wake(i)) |
---|
| 2503 | wape(i) = wape2(i) |
---|
| 2504 | cstar(i) = cstar2(i) |
---|
| 2505 | END IF ! (kill_wake(i)) |
---|
| 2506 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
| 2507 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
| 2508 | END DO |
---|
| 2509 | |
---|
| 2510 | IF (prt_level>=10) THEN |
---|
| 2511 | PRINT *, 'wake-6, wape wape2 ktopw OK_qx_qw =', & |
---|
| 2512 | wape(igout),wape2(igout),ktopw(igout),OK_qx_qw(igout) |
---|
| 2513 | ENDIF |
---|
| 2514 | |
---|
| 2515 | |
---|
| 2516 | ! ----------------------------------------------------------------- |
---|
| 2517 | ! Get back to tendencies per second |
---|
| 2518 | |
---|
| 2519 | DO k = 1, klev |
---|
| 2520 | DO i = 1, klon |
---|
| 2521 | |
---|
| 2522 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
| 2523 | !jyg< |
---|
| 2524 | !! IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
| 2525 | IF (ok_qx_qw(i)) THEN |
---|
| 2526 | !>jyg |
---|
| 2527 | ! cc |
---|
| 2528 | dtls(i, k) = dtls(i, k)/dtime |
---|
| 2529 | dqls(i, k) = dqls(i, k)/dtime |
---|
| 2530 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
| 2531 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
| 2532 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
| 2533 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
| 2534 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
| 2535 | #ifdef ISO |
---|
| 2536 | do ixt=1,ntraciso |
---|
| 2537 | dxtls(ixt,i, k) = dxtls(ixt,i, k)/dtime |
---|
| 2538 | d_deltaxtw2(ixt,i, k) = d_deltaxtw2(ixt,i, k)/dtime |
---|
| 2539 | enddo |
---|
| 2540 | #endif |
---|
| 2541 | END IF |
---|
| 2542 | END DO |
---|
| 2543 | END DO |
---|
| 2544 | !jyg< |
---|
| 2545 | DO i = 1, klon |
---|
| 2546 | d_sigmaw2(i) = d_sigmaw2(i)/dtime |
---|
| 2547 | d_awdens2(i) = d_awdens2(i)/dtime |
---|
| 2548 | d_wdens2(i) = d_wdens2(i)/dtime |
---|
| 2549 | ENDDO |
---|
| 2550 | !>jyg |
---|
| 2551 | |
---|
| 2552 | |
---|
| 2553 | |
---|
| 2554 | RETURN |
---|
| 2555 | END SUBROUTINE wake |
---|
| 2556 | |
---|
| 2557 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 2558 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 2559 | ! ------------------------------------------------------ |
---|
[4374] | 2560 | ! D\'etermination du coefficient alpha tel que les tendances |
---|
[3927] | 2561 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
| 2562 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
| 2563 | ! ------------------------------------------------------ |
---|
| 2564 | IMPLICIT NONE |
---|
| 2565 | |
---|
| 2566 | ! Input |
---|
| 2567 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
| 2568 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
| 2569 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
| 2570 | LOGICAL wk_adv(nlon) |
---|
| 2571 | INTEGER nl, nlon |
---|
| 2572 | ! Output |
---|
| 2573 | REAL alpha(nlon) |
---|
| 2574 | ! Internal variables |
---|
| 2575 | REAL zeta(nlon, nl) |
---|
| 2576 | REAL alpha1(nlon) |
---|
| 2577 | REAL x, a, b, c, discrim |
---|
| 2578 | REAL epsilon |
---|
| 2579 | ! DATA epsilon/1.e-15/ |
---|
| 2580 | INTEGER i,k |
---|
| 2581 | |
---|
| 2582 | DO k = 1, nl |
---|
| 2583 | DO i = 1, nlon |
---|
| 2584 | IF (wk_adv(i)) THEN |
---|
| 2585 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
| 2586 | zeta(i, k) = 0. |
---|
| 2587 | ELSE |
---|
| 2588 | zeta(i, k) = 1. |
---|
| 2589 | END IF |
---|
| 2590 | END IF |
---|
| 2591 | END DO |
---|
| 2592 | DO i = 1, nlon |
---|
| 2593 | IF (wk_adv(i)) THEN |
---|
| 2594 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
| 2595 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i) * & |
---|
| 2596 | (deltaqw(i,k)+d_deltaqw(i,k)) |
---|
| 2597 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
| 2598 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
| 2599 | deltaqw(i, k)*d_sigmaw(i) |
---|
| 2600 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
| 2601 | discrim = b*b - 4.*a*c |
---|
| 2602 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
| 2603 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
| 2604 | alpha1(i) = 1. |
---|
| 2605 | ELSE |
---|
| 2606 | IF (x>=0.) THEN |
---|
| 2607 | alpha1(i) = 1. |
---|
| 2608 | ELSE |
---|
| 2609 | IF (a>0.) THEN |
---|
| 2610 | alpha1(i) = 0.9*min( (2.*c)/(-b+sqrt(discrim)), & |
---|
| 2611 | (-b+sqrt(discrim))/(2.*a) ) |
---|
| 2612 | ELSE IF (a==0.) THEN |
---|
| 2613 | alpha1(i) = 0.9*(-c/b) |
---|
| 2614 | ELSE |
---|
| 2615 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
| 2616 | alpha1(i) = 0.9*max( (2.*c)/(-b+sqrt(discrim)), & |
---|
| 2617 | (-b+sqrt(discrim))/(2.*a)) |
---|
| 2618 | END IF |
---|
| 2619 | END IF |
---|
| 2620 | END IF |
---|
| 2621 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
| 2622 | END IF |
---|
| 2623 | END DO |
---|
| 2624 | END DO |
---|
| 2625 | |
---|
| 2626 | RETURN |
---|
| 2627 | END SUBROUTINE wake_vec_modulation |
---|
| 2628 | |
---|
| 2629 | |
---|
| 2630 | |
---|
| 2631 | |
---|