1 | |
---|
2 | ! $Id: cv_routines.f90 5303 2024-10-30 17:34:05Z abarral $ |
---|
3 | |
---|
4 | SUBROUTINE cv_param(nd) |
---|
5 | USE cvthermo_mod_h |
---|
6 | USE cvparam_mod_h |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | ! ------------------------------------------------------------ |
---|
10 | ! Set parameters for convectL |
---|
11 | ! (includes microphysical parameters and parameters that |
---|
12 | ! control the rate of approach to quasi-equilibrium) |
---|
13 | ! ------------------------------------------------------------ |
---|
14 | |
---|
15 | ! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
16 | ! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
17 | ! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
18 | ! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
19 | ! *** BETWEEN 0 C AND TLCRIT) *** |
---|
20 | ! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
21 | ! *** FORMULATION *** |
---|
22 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
23 | ! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
24 | ! *** OF CLOUD *** |
---|
25 | ! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
26 | ! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
27 | ! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
28 | ! *** OF RAIN *** |
---|
29 | ! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
30 | ! *** OF SNOW *** |
---|
31 | ! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
32 | ! *** TRANSPORT *** |
---|
33 | ! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
34 | ! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
35 | ! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
36 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
37 | ! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
38 | ! *** (DAMP MUST BE LESS THAN 1) *** |
---|
39 | |
---|
40 | INTEGER nd |
---|
41 | CHARACTER (LEN=20) :: modname = 'cv_routines' |
---|
42 | CHARACTER (LEN=80) :: abort_message |
---|
43 | |
---|
44 | ! noff: integer limit for convection (nd-noff) |
---|
45 | ! minorig: First level of convection |
---|
46 | |
---|
47 | noff = 2 |
---|
48 | minorig = 2 |
---|
49 | |
---|
50 | nl = nd - noff |
---|
51 | nlp = nl + 1 |
---|
52 | nlm = nl - 1 |
---|
53 | |
---|
54 | elcrit = 0.0011 |
---|
55 | tlcrit = -55.0 |
---|
56 | entp = 1.5 |
---|
57 | sigs = 0.12 |
---|
58 | sigd = 0.05 |
---|
59 | omtrain = 50.0 |
---|
60 | omtsnow = 5.5 |
---|
61 | coeffr = 1.0 |
---|
62 | coeffs = 0.8 |
---|
63 | dtmax = 0.9 |
---|
64 | |
---|
65 | cu = 0.70 |
---|
66 | |
---|
67 | betad = 10.0 |
---|
68 | |
---|
69 | damp = 0.1 |
---|
70 | alpha = 0.2 |
---|
71 | |
---|
72 | delta = 0.01 ! cld |
---|
73 | |
---|
74 | RETURN |
---|
75 | END SUBROUTINE cv_param |
---|
76 | |
---|
77 | SUBROUTINE cv_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm) |
---|
78 | USE cvthermo_mod_h |
---|
79 | USE cvparam_mod_h |
---|
80 | IMPLICIT NONE |
---|
81 | |
---|
82 | ! ===================================================================== |
---|
83 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
84 | ! ===================================================================== |
---|
85 | |
---|
86 | ! inputs: |
---|
87 | INTEGER len, nd, ndp1 |
---|
88 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
---|
89 | |
---|
90 | ! outputs: |
---|
91 | REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
---|
92 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
---|
93 | |
---|
94 | ! local variables: |
---|
95 | INTEGER k, i |
---|
96 | REAL cpx(len, nd) |
---|
97 | |
---|
98 | DO k = 1, nlp |
---|
99 | DO i = 1, len |
---|
100 | lv(i, k) = lv0 - clmcpv*(t(i,k)-t0) |
---|
101 | cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
---|
102 | cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
---|
103 | tv(i, k) = t(i, k)*(1.0+q(i,k)*epsim1) |
---|
104 | END DO |
---|
105 | END DO |
---|
106 | |
---|
107 | ! gz = phi at the full levels (same as p). |
---|
108 | |
---|
109 | DO i = 1, len |
---|
110 | gz(i, 1) = 0.0 |
---|
111 | END DO |
---|
112 | DO k = 2, nlp |
---|
113 | DO i = 1, len |
---|
114 | gz(i, k) = gz(i, k-1) + hrd*(tv(i,k-1)+tv(i,k))*(p(i,k-1)-p(i,k))/ph(i, & |
---|
115 | k) |
---|
116 | END DO |
---|
117 | END DO |
---|
118 | |
---|
119 | ! h = phi + cpT (dry static energy). |
---|
120 | ! hm = phi + cp(T-Tbase)+Lq |
---|
121 | |
---|
122 | DO k = 1, nlp |
---|
123 | DO i = 1, len |
---|
124 | h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
---|
125 | hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
---|
126 | END DO |
---|
127 | END DO |
---|
128 | |
---|
129 | RETURN |
---|
130 | END SUBROUTINE cv_prelim |
---|
131 | |
---|
132 | SUBROUTINE cv_feed(len, nd, t, q, qs, p, hm, gz, nk, icb, icbmax, iflag, tnk, & |
---|
133 | qnk, gznk, plcl) |
---|
134 | USE cvparam_mod_h |
---|
135 | IMPLICIT NONE |
---|
136 | |
---|
137 | ! ================================================================ |
---|
138 | ! Purpose: CONVECTIVE FEED |
---|
139 | ! ================================================================ |
---|
140 | |
---|
141 | |
---|
142 | ! inputs: |
---|
143 | INTEGER len, nd |
---|
144 | REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
---|
145 | REAL hm(len, nd), gz(len, nd) |
---|
146 | |
---|
147 | ! outputs: |
---|
148 | INTEGER iflag(len), nk(len), icb(len), icbmax |
---|
149 | REAL tnk(len), qnk(len), gznk(len), plcl(len) |
---|
150 | |
---|
151 | ! local variables: |
---|
152 | INTEGER i, k |
---|
153 | INTEGER ihmin(len) |
---|
154 | REAL work(len) |
---|
155 | REAL pnk(len), qsnk(len), rh(len), chi(len) |
---|
156 | |
---|
157 | ! ------------------------------------------------------------------- |
---|
158 | ! --- Find level of minimum moist static energy |
---|
159 | ! --- If level of minimum moist static energy coincides with |
---|
160 | ! --- or is lower than minimum allowable parcel origin level, |
---|
161 | ! --- set iflag to 6. |
---|
162 | ! ------------------------------------------------------------------- |
---|
163 | |
---|
164 | DO i = 1, len |
---|
165 | work(i) = 1.0E12 |
---|
166 | ihmin(i) = nl |
---|
167 | END DO |
---|
168 | DO k = 2, nlp |
---|
169 | DO i = 1, len |
---|
170 | IF ((hm(i,k)<work(i)) .AND. (hm(i,k)<hm(i,k-1))) THEN |
---|
171 | work(i) = hm(i, k) |
---|
172 | ihmin(i) = k |
---|
173 | END IF |
---|
174 | END DO |
---|
175 | END DO |
---|
176 | DO i = 1, len |
---|
177 | ihmin(i) = min(ihmin(i), nlm) |
---|
178 | IF (ihmin(i)<=minorig) THEN |
---|
179 | iflag(i) = 6 |
---|
180 | END IF |
---|
181 | END DO |
---|
182 | |
---|
183 | ! ------------------------------------------------------------------- |
---|
184 | ! --- Find that model level below the level of minimum moist static |
---|
185 | ! --- energy that has the maximum value of moist static energy |
---|
186 | ! ------------------------------------------------------------------- |
---|
187 | |
---|
188 | DO i = 1, len |
---|
189 | work(i) = hm(i, minorig) |
---|
190 | nk(i) = minorig |
---|
191 | END DO |
---|
192 | DO k = minorig + 1, nl |
---|
193 | DO i = 1, len |
---|
194 | IF ((hm(i,k)>work(i)) .AND. (k<=ihmin(i))) THEN |
---|
195 | work(i) = hm(i, k) |
---|
196 | nk(i) = k |
---|
197 | END IF |
---|
198 | END DO |
---|
199 | END DO |
---|
200 | ! ------------------------------------------------------------------- |
---|
201 | ! --- Check whether parcel level temperature and specific humidity |
---|
202 | ! --- are reasonable |
---|
203 | ! ------------------------------------------------------------------- |
---|
204 | DO i = 1, len |
---|
205 | IF (((t(i,nk(i))<250.0) .OR. (q(i,nk(i))<=0.0) .OR. (p(i,ihmin(i))< & |
---|
206 | 400.0)) .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
207 | END DO |
---|
208 | ! ------------------------------------------------------------------- |
---|
209 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
210 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
211 | ! ------------------------------------------------------------------- |
---|
212 | DO i = 1, len |
---|
213 | tnk(i) = t(i, nk(i)) |
---|
214 | qnk(i) = q(i, nk(i)) |
---|
215 | gznk(i) = gz(i, nk(i)) |
---|
216 | pnk(i) = p(i, nk(i)) |
---|
217 | qsnk(i) = qs(i, nk(i)) |
---|
218 | |
---|
219 | rh(i) = qnk(i)/qsnk(i) |
---|
220 | rh(i) = min(1.0, rh(i)) |
---|
221 | chi(i) = tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
222 | plcl(i) = pnk(i)*(rh(i)**chi(i)) |
---|
223 | IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag(i & |
---|
224 | ) = 8 |
---|
225 | END DO |
---|
226 | ! ------------------------------------------------------------------- |
---|
227 | ! --- Calculate first level above lcl (=icb) |
---|
228 | ! ------------------------------------------------------------------- |
---|
229 | DO i = 1, len |
---|
230 | icb(i) = nlm |
---|
231 | END DO |
---|
232 | |
---|
233 | DO k = minorig, nl |
---|
234 | DO i = 1, len |
---|
235 | IF ((k>=(nk(i)+1)) .AND. (p(i,k)<plcl(i))) icb(i) = min(icb(i), k) |
---|
236 | END DO |
---|
237 | END DO |
---|
238 | |
---|
239 | DO i = 1, len |
---|
240 | IF ((icb(i)>=nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
241 | END DO |
---|
242 | |
---|
243 | ! Compute icbmax. |
---|
244 | |
---|
245 | icbmax = 2 |
---|
246 | DO i = 1, len |
---|
247 | icbmax = max(icbmax, icb(i)) |
---|
248 | END DO |
---|
249 | |
---|
250 | RETURN |
---|
251 | END SUBROUTINE cv_feed |
---|
252 | |
---|
253 | SUBROUTINE cv_undilute1(len, nd, t, q, qs, gz, p, nk, icb, icbmax, tp, tvp, & |
---|
254 | clw) |
---|
255 | USE cvparam_mod_h |
---|
256 | USE cvthermo_mod_h |
---|
257 | IMPLICIT NONE |
---|
258 | |
---|
259 | ! inputs: |
---|
260 | INTEGER len, nd |
---|
261 | INTEGER nk(len), icb(len), icbmax |
---|
262 | REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
---|
263 | REAL p(len, nd) |
---|
264 | |
---|
265 | ! outputs: |
---|
266 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
---|
267 | |
---|
268 | ! local variables: |
---|
269 | INTEGER i, k |
---|
270 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
271 | REAL ah0(len), cpp(len) |
---|
272 | REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
273 | |
---|
274 | ! ------------------------------------------------------------------- |
---|
275 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
276 | ! --- the actual temperature, and the adiabatic |
---|
277 | ! --- liquid water content. The procedure is to solve the equation. |
---|
278 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
279 | ! ------------------------------------------------------------------- |
---|
280 | |
---|
281 | DO i = 1, len |
---|
282 | tnk(i) = t(i, nk(i)) |
---|
283 | qnk(i) = q(i, nk(i)) |
---|
284 | gznk(i) = gz(i, nk(i)) |
---|
285 | ticb(i) = t(i, icb(i)) |
---|
286 | gzicb(i) = gz(i, icb(i)) |
---|
287 | END DO |
---|
288 | |
---|
289 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
290 | |
---|
291 | DO i = 1, len |
---|
292 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
---|
293 | 273.15)) + gznk(i) |
---|
294 | cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
---|
295 | END DO |
---|
296 | |
---|
297 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
298 | |
---|
299 | DO k = minorig, icbmax - 1 |
---|
300 | DO i = 1, len |
---|
301 | tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))/cpp(i) |
---|
302 | tvp(i, k) = tp(i, k)*(1.+qnk(i)*epsi) |
---|
303 | END DO |
---|
304 | END DO |
---|
305 | |
---|
306 | ! *** Find lifted parcel quantities above cloud base *** |
---|
307 | |
---|
308 | DO i = 1, len |
---|
309 | tg = ticb(i) |
---|
310 | qg = qs(i, icb(i)) |
---|
311 | alv = lv0 - clmcpv*(ticb(i)-t0) |
---|
312 | |
---|
313 | ! First iteration. |
---|
314 | |
---|
315 | s = cpd + alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
316 | s = 1./s |
---|
317 | ahg = cpd*tg + (cl-cpd)*qnk(i)*ticb(i) + alv*qg + gzicb(i) |
---|
318 | tg = tg + s*(ah0(i)-ahg) |
---|
319 | tg = max(tg, 35.0) |
---|
320 | tc = tg - t0 |
---|
321 | denom = 243.5 + tc |
---|
322 | IF (tc>=0.0) THEN |
---|
323 | es = 6.112*exp(17.67*tc/denom) |
---|
324 | ELSE |
---|
325 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
326 | END IF |
---|
327 | qg = eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
328 | |
---|
329 | ! Second iteration. |
---|
330 | |
---|
331 | s = cpd + alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
332 | s = 1./s |
---|
333 | ahg = cpd*tg + (cl-cpd)*qnk(i)*ticb(i) + alv*qg + gzicb(i) |
---|
334 | tg = tg + s*(ah0(i)-ahg) |
---|
335 | tg = max(tg, 35.0) |
---|
336 | tc = tg - t0 |
---|
337 | denom = 243.5 + tc |
---|
338 | IF (tc>=0.0) THEN |
---|
339 | es = 6.112*exp(17.67*tc/denom) |
---|
340 | ELSE |
---|
341 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
342 | END IF |
---|
343 | qg = eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
344 | |
---|
345 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
346 | tp(i, icb(i)) = (ah0(i)-(cl-cpd)*qnk(i)*ticb(i)-gz(i,icb(i))-alv*qg)/cpd |
---|
347 | clw(i, icb(i)) = qnk(i) - qg |
---|
348 | clw(i, icb(i)) = max(0.0, clw(i,icb(i))) |
---|
349 | rg = qg/(1.-qnk(i)) |
---|
350 | tvp(i, icb(i)) = tp(i, icb(i))*(1.+rg*epsi) |
---|
351 | END DO |
---|
352 | |
---|
353 | DO k = minorig, icbmax |
---|
354 | DO i = 1, len |
---|
355 | tvp(i, k) = tvp(i, k) - tp(i, k)*qnk(i) |
---|
356 | END DO |
---|
357 | END DO |
---|
358 | |
---|
359 | RETURN |
---|
360 | END SUBROUTINE cv_undilute1 |
---|
361 | |
---|
362 | SUBROUTINE cv_trigger(len, nd, icb, cbmf, tv, tvp, iflag) |
---|
363 | USE cvparam_mod_h |
---|
364 | IMPLICIT NONE |
---|
365 | |
---|
366 | ! ------------------------------------------------------------------- |
---|
367 | ! --- Test for instability. |
---|
368 | ! --- If there was no convection at last time step and parcel |
---|
369 | ! --- is stable at icb, then set iflag to 4. |
---|
370 | ! ------------------------------------------------------------------- |
---|
371 | |
---|
372 | |
---|
373 | ! inputs: |
---|
374 | INTEGER len, nd, icb(len) |
---|
375 | REAL cbmf(len), tv(len, nd), tvp(len, nd) |
---|
376 | |
---|
377 | ! outputs: |
---|
378 | INTEGER iflag(len) ! also an input |
---|
379 | |
---|
380 | ! local variables: |
---|
381 | INTEGER i |
---|
382 | |
---|
383 | |
---|
384 | DO i = 1, len |
---|
385 | IF ((cbmf(i)==0.0) .AND. (iflag(i)==0) .AND. (tvp(i, & |
---|
386 | icb(i))<=(tv(i,icb(i))-dtmax))) iflag(i) = 4 |
---|
387 | END DO |
---|
388 | |
---|
389 | RETURN |
---|
390 | END SUBROUTINE cv_trigger |
---|
391 | |
---|
392 | SUBROUTINE cv_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, cbmf1, plcl1, & |
---|
393 | tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, cpn1, p1, ph1, tv1, & |
---|
394 | tp1, tvp1, clw1, iflag, nk, icb, cbmf, plcl, tnk, qnk, gznk, t, q, qs, u, & |
---|
395 | v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw, dph) |
---|
396 | USE cvparam_mod_h |
---|
397 | USE print_control_mod, ONLY: lunout |
---|
398 | IMPLICIT NONE |
---|
399 | |
---|
400 | |
---|
401 | ! inputs: |
---|
402 | INTEGER len, ncum, nd, nloc |
---|
403 | INTEGER iflag1(len), nk1(len), icb1(len) |
---|
404 | REAL cbmf1(len), plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
---|
405 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
---|
406 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
---|
407 | REAL p1(len, nd), ph1(len, nd+1), tv1(len, nd), tp1(len, nd) |
---|
408 | REAL tvp1(len, nd), clw1(len, nd) |
---|
409 | |
---|
410 | ! outputs: |
---|
411 | INTEGER iflag(nloc), nk(nloc), icb(nloc) |
---|
412 | REAL cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
413 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
414 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
---|
415 | REAL p(nloc, nd), ph(nloc, nd+1), tv(nloc, nd), tp(nloc, nd) |
---|
416 | REAL tvp(nloc, nd), clw(nloc, nd) |
---|
417 | REAL dph(nloc, nd) |
---|
418 | |
---|
419 | ! local variables: |
---|
420 | INTEGER i, k, nn |
---|
421 | CHARACTER (LEN=20) :: modname = 'cv_compress' |
---|
422 | CHARACTER (LEN=80) :: abort_message |
---|
423 | |
---|
424 | |
---|
425 | DO k = 1, nl + 1 |
---|
426 | nn = 0 |
---|
427 | DO i = 1, len |
---|
428 | IF (iflag1(i)==0) THEN |
---|
429 | nn = nn + 1 |
---|
430 | t(nn, k) = t1(i, k) |
---|
431 | q(nn, k) = q1(i, k) |
---|
432 | qs(nn, k) = qs1(i, k) |
---|
433 | u(nn, k) = u1(i, k) |
---|
434 | v(nn, k) = v1(i, k) |
---|
435 | gz(nn, k) = gz1(i, k) |
---|
436 | h(nn, k) = h1(i, k) |
---|
437 | lv(nn, k) = lv1(i, k) |
---|
438 | cpn(nn, k) = cpn1(i, k) |
---|
439 | p(nn, k) = p1(i, k) |
---|
440 | ph(nn, k) = ph1(i, k) |
---|
441 | tv(nn, k) = tv1(i, k) |
---|
442 | tp(nn, k) = tp1(i, k) |
---|
443 | tvp(nn, k) = tvp1(i, k) |
---|
444 | clw(nn, k) = clw1(i, k) |
---|
445 | END IF |
---|
446 | END DO |
---|
447 | END DO |
---|
448 | |
---|
449 | IF (nn/=ncum) THEN |
---|
450 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
---|
451 | abort_message = '' |
---|
452 | CALL abort_physic(modname, abort_message, 1) |
---|
453 | END IF |
---|
454 | |
---|
455 | nn = 0 |
---|
456 | DO i = 1, len |
---|
457 | IF (iflag1(i)==0) THEN |
---|
458 | nn = nn + 1 |
---|
459 | cbmf(nn) = cbmf1(i) |
---|
460 | plcl(nn) = plcl1(i) |
---|
461 | tnk(nn) = tnk1(i) |
---|
462 | qnk(nn) = qnk1(i) |
---|
463 | gznk(nn) = gznk1(i) |
---|
464 | nk(nn) = nk1(i) |
---|
465 | icb(nn) = icb1(i) |
---|
466 | iflag(nn) = iflag1(i) |
---|
467 | END IF |
---|
468 | END DO |
---|
469 | |
---|
470 | DO k = 1, nl |
---|
471 | DO i = 1, ncum |
---|
472 | dph(i, k) = ph(i, k) - ph(i, k+1) |
---|
473 | END DO |
---|
474 | END DO |
---|
475 | |
---|
476 | RETURN |
---|
477 | END SUBROUTINE cv_compress |
---|
478 | |
---|
479 | SUBROUTINE cv_undilute2(nloc, ncum, nd, icb, nk, tnk, qnk, gznk, t, q, qs, & |
---|
480 | gz, p, dph, h, tv, lv, inb, inb1, tp, tvp, clw, hp, ep, sigp, frac) |
---|
481 | USE cvparam_mod_h |
---|
482 | USE cvthermo_mod_h |
---|
483 | IMPLICIT NONE |
---|
484 | |
---|
485 | ! --------------------------------------------------------------------- |
---|
486 | ! Purpose: |
---|
487 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
488 | ! & |
---|
489 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
490 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
491 | ! & |
---|
492 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
493 | ! --------------------------------------------------------------------- |
---|
494 | |
---|
495 | ! inputs: |
---|
496 | INTEGER ncum, nd, nloc |
---|
497 | INTEGER icb(nloc), nk(nloc) |
---|
498 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
---|
499 | REAL p(nloc, nd), dph(nloc, nd) |
---|
500 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
---|
501 | REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
---|
502 | |
---|
503 | ! outputs: |
---|
504 | INTEGER inb(nloc), inb1(nloc) |
---|
505 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
---|
506 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
---|
507 | REAL frac(nloc) |
---|
508 | |
---|
509 | ! local variables: |
---|
510 | INTEGER i, k |
---|
511 | REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
---|
512 | REAL by, defrac |
---|
513 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
514 | LOGICAL lcape(nloc) |
---|
515 | |
---|
516 | ! ===================================================================== |
---|
517 | ! --- SOME INITIALIZATIONS |
---|
518 | ! ===================================================================== |
---|
519 | |
---|
520 | DO k = 1, nl |
---|
521 | DO i = 1, ncum |
---|
522 | ep(i, k) = 0.0 |
---|
523 | sigp(i, k) = sigs |
---|
524 | END DO |
---|
525 | END DO |
---|
526 | |
---|
527 | ! ===================================================================== |
---|
528 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
529 | ! ===================================================================== |
---|
530 | |
---|
531 | ! --- The procedure is to solve the equation. |
---|
532 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
533 | |
---|
534 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
535 | |
---|
536 | |
---|
537 | DO i = 1, ncum |
---|
538 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
---|
539 | t0)) + gznk(i) |
---|
540 | END DO |
---|
541 | |
---|
542 | |
---|
543 | ! *** Find lifted parcel quantities above cloud base *** |
---|
544 | |
---|
545 | |
---|
546 | DO k = minorig + 1, nl |
---|
547 | DO i = 1, ncum |
---|
548 | IF (k>=(icb(i)+1)) THEN |
---|
549 | tg = t(i, k) |
---|
550 | qg = qs(i, k) |
---|
551 | alv = lv0 - clmcpv*(t(i,k)-t0) |
---|
552 | |
---|
553 | ! First iteration. |
---|
554 | |
---|
555 | s = cpd + alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
556 | s = 1./s |
---|
557 | ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
---|
558 | tg = tg + s*(ah0(i)-ahg) |
---|
559 | tg = max(tg, 35.0) |
---|
560 | tc = tg - t0 |
---|
561 | denom = 243.5 + tc |
---|
562 | IF (tc>=0.0) THEN |
---|
563 | es = 6.112*exp(17.67*tc/denom) |
---|
564 | ELSE |
---|
565 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
566 | END IF |
---|
567 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
568 | |
---|
569 | ! Second iteration. |
---|
570 | |
---|
571 | s = cpd + alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
572 | s = 1./s |
---|
573 | ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
---|
574 | tg = tg + s*(ah0(i)-ahg) |
---|
575 | tg = max(tg, 35.0) |
---|
576 | tc = tg - t0 |
---|
577 | denom = 243.5 + tc |
---|
578 | IF (tc>=0.0) THEN |
---|
579 | es = 6.112*exp(17.67*tc/denom) |
---|
580 | ELSE |
---|
581 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
582 | END IF |
---|
583 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
584 | |
---|
585 | alv = lv0 - clmcpv*(t(i,k)-t0) |
---|
586 | ! print*,'cpd dans convect2 ',cpd |
---|
587 | ! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
588 | ! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
589 | tp(i, k) = (ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
590 | ! if (.not.cpd.gt.1000.) then |
---|
591 | ! print*,'CPD=',cpd |
---|
592 | ! stop |
---|
593 | ! endif |
---|
594 | clw(i, k) = qnk(i) - qg |
---|
595 | clw(i, k) = max(0.0, clw(i,k)) |
---|
596 | rg = qg/(1.-qnk(i)) |
---|
597 | tvp(i, k) = tp(i, k)*(1.+rg*epsi) |
---|
598 | END IF |
---|
599 | END DO |
---|
600 | END DO |
---|
601 | |
---|
602 | ! ===================================================================== |
---|
603 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
604 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
605 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
606 | ! ===================================================================== |
---|
607 | |
---|
608 | DO k = minorig + 1, nl |
---|
609 | DO i = 1, ncum |
---|
610 | IF (k>=(nk(i)+1)) THEN |
---|
611 | tca = tp(i, k) - t0 |
---|
612 | IF (tca>=0.0) THEN |
---|
613 | elacrit = elcrit |
---|
614 | ELSE |
---|
615 | elacrit = elcrit*(1.0-tca/tlcrit) |
---|
616 | END IF |
---|
617 | elacrit = max(elacrit, 0.0) |
---|
618 | ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) |
---|
619 | ep(i, k) = max(ep(i,k), 0.0) |
---|
620 | ep(i, k) = min(ep(i,k), 1.0) |
---|
621 | sigp(i, k) = sigs |
---|
622 | END IF |
---|
623 | END DO |
---|
624 | END DO |
---|
625 | |
---|
626 | ! ===================================================================== |
---|
627 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
628 | ! --- VIRTUAL TEMPERATURE |
---|
629 | ! ===================================================================== |
---|
630 | |
---|
631 | DO k = minorig + 1, nl |
---|
632 | DO i = 1, ncum |
---|
633 | IF (k>=(icb(i)+1)) THEN |
---|
634 | tvp(i, k) = tvp(i, k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
635 | ! print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
636 | ! print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
637 | END IF |
---|
638 | END DO |
---|
639 | END DO |
---|
640 | DO i = 1, ncum |
---|
641 | tvp(i, nlp) = tvp(i, nl) - (gz(i,nlp)-gz(i,nl))/cpd |
---|
642 | END DO |
---|
643 | |
---|
644 | ! ===================================================================== |
---|
645 | ! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
646 | ! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
647 | ! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
648 | ! ===================================================================== |
---|
649 | |
---|
650 | DO i = 1, ncum |
---|
651 | cape(i) = 0.0 |
---|
652 | capem(i) = 0.0 |
---|
653 | inb(i) = icb(i) + 1 |
---|
654 | inb1(i) = inb(i) |
---|
655 | END DO |
---|
656 | |
---|
657 | ! Originial Code |
---|
658 | |
---|
659 | ! do 530 k=minorig+1,nl-1 |
---|
660 | ! do 520 i=1,ncum |
---|
661 | ! if(k.ge.(icb(i)+1))then |
---|
662 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
663 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
664 | ! cape(i)=cape(i)+by |
---|
665 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
666 | ! if(cape(i).gt.0.0)then |
---|
667 | ! inb(i)=k+1 |
---|
668 | ! capem(i)=cape(i) |
---|
669 | ! endif |
---|
670 | ! endif |
---|
671 | ! 520 continue |
---|
672 | ! 530 continue |
---|
673 | ! do 540 i=1,ncum |
---|
674 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
675 | ! cape(i)=capem(i)+byp |
---|
676 | ! defrac=capem(i)-cape(i) |
---|
677 | ! defrac=max(defrac,0.001) |
---|
678 | ! frac(i)=-cape(i)/defrac |
---|
679 | ! frac(i)=min(frac(i),1.0) |
---|
680 | ! frac(i)=max(frac(i),0.0) |
---|
681 | ! 540 continue |
---|
682 | |
---|
683 | ! K Emanuel fix |
---|
684 | |
---|
685 | ! call zilch(byp,ncum) |
---|
686 | ! do 530 k=minorig+1,nl-1 |
---|
687 | ! do 520 i=1,ncum |
---|
688 | ! if(k.ge.(icb(i)+1))then |
---|
689 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
690 | ! cape(i)=cape(i)+by |
---|
691 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
692 | ! if(cape(i).gt.0.0)then |
---|
693 | ! inb(i)=k+1 |
---|
694 | ! capem(i)=cape(i) |
---|
695 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
696 | ! endif |
---|
697 | ! endif |
---|
698 | ! 520 continue |
---|
699 | ! 530 continue |
---|
700 | ! do 540 i=1,ncum |
---|
701 | ! inb(i)=max(inb(i),inb1(i)) |
---|
702 | ! cape(i)=capem(i)+byp(i) |
---|
703 | ! defrac=capem(i)-cape(i) |
---|
704 | ! defrac=max(defrac,0.001) |
---|
705 | ! frac(i)=-cape(i)/defrac |
---|
706 | ! frac(i)=min(frac(i),1.0) |
---|
707 | ! frac(i)=max(frac(i),0.0) |
---|
708 | ! 540 continue |
---|
709 | |
---|
710 | ! J Teixeira fix |
---|
711 | |
---|
712 | CALL zilch(byp, ncum) |
---|
713 | DO i = 1, ncum |
---|
714 | lcape(i) = .TRUE. |
---|
715 | END DO |
---|
716 | DO k = minorig + 1, nl - 1 |
---|
717 | DO i = 1, ncum |
---|
718 | IF (cape(i)<0.0) lcape(i) = .FALSE. |
---|
719 | IF ((k>=(icb(i)+1)) .AND. lcape(i)) THEN |
---|
720 | by = (tvp(i,k)-tv(i,k))*dph(i, k)/p(i, k) |
---|
721 | byp(i) = (tvp(i,k+1)-tv(i,k+1))*dph(i, k+1)/p(i, k+1) |
---|
722 | cape(i) = cape(i) + by |
---|
723 | IF (by>=0.0) inb1(i) = k + 1 |
---|
724 | IF (cape(i)>0.0) THEN |
---|
725 | inb(i) = k + 1 |
---|
726 | capem(i) = cape(i) |
---|
727 | END IF |
---|
728 | END IF |
---|
729 | END DO |
---|
730 | END DO |
---|
731 | DO i = 1, ncum |
---|
732 | cape(i) = capem(i) + byp(i) |
---|
733 | defrac = capem(i) - cape(i) |
---|
734 | defrac = max(defrac, 0.001) |
---|
735 | frac(i) = -cape(i)/defrac |
---|
736 | frac(i) = min(frac(i), 1.0) |
---|
737 | frac(i) = max(frac(i), 0.0) |
---|
738 | END DO |
---|
739 | |
---|
740 | ! ===================================================================== |
---|
741 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
742 | ! ===================================================================== |
---|
743 | |
---|
744 | ! initialization: |
---|
745 | DO i = 1, ncum*nlp |
---|
746 | hp(i, 1) = h(i, 1) |
---|
747 | END DO |
---|
748 | |
---|
749 | DO k = minorig + 1, nl |
---|
750 | DO i = 1, ncum |
---|
751 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
752 | hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
---|
753 | ) |
---|
754 | END IF |
---|
755 | END DO |
---|
756 | END DO |
---|
757 | |
---|
758 | RETURN |
---|
759 | END SUBROUTINE cv_undilute2 |
---|
760 | |
---|
761 | SUBROUTINE cv_closure(nloc, ncum, nd, nk, icb, tv, tvp, p, ph, dph, plcl, & |
---|
762 | cpn, iflag, cbmf) |
---|
763 | USE cvthermo_mod_h |
---|
764 | USE cvparam_mod_h |
---|
765 | IMPLICIT NONE |
---|
766 | |
---|
767 | ! inputs: |
---|
768 | INTEGER ncum, nd, nloc |
---|
769 | INTEGER nk(nloc), icb(nloc) |
---|
770 | REAL tv(nloc, nd), tvp(nloc, nd), p(nloc, nd), dph(nloc, nd) |
---|
771 | REAL ph(nloc, nd+1) ! caution nd instead ndp1 to be consistent... |
---|
772 | REAL plcl(nloc), cpn(nloc, nd) |
---|
773 | |
---|
774 | ! outputs: |
---|
775 | INTEGER iflag(nloc) |
---|
776 | REAL cbmf(nloc) ! also an input |
---|
777 | |
---|
778 | ! local variables: |
---|
779 | INTEGER i, k, icbmax |
---|
780 | REAL dtpbl(nloc), dtmin(nloc), tvpplcl(nloc), tvaplcl(nloc) |
---|
781 | REAL work(nloc) |
---|
782 | |
---|
783 | ! ------------------------------------------------------------------- |
---|
784 | ! Compute icbmax. |
---|
785 | ! ------------------------------------------------------------------- |
---|
786 | |
---|
787 | icbmax = 2 |
---|
788 | DO i = 1, ncum |
---|
789 | icbmax = max(icbmax, icb(i)) |
---|
790 | END DO |
---|
791 | |
---|
792 | ! ===================================================================== |
---|
793 | ! --- CALCULATE CLOUD BASE MASS FLUX |
---|
794 | ! ===================================================================== |
---|
795 | |
---|
796 | ! tvpplcl = parcel temperature lifted adiabatically from level |
---|
797 | ! icb-1 to the LCL. |
---|
798 | ! tvaplcl = virtual temperature at the LCL. |
---|
799 | |
---|
800 | DO i = 1, ncum |
---|
801 | dtpbl(i) = 0.0 |
---|
802 | tvpplcl(i) = tvp(i, icb(i)-1) - rrd*tvp(i, icb(i)-1)*(p(i,icb(i)-1)-plcl( & |
---|
803 | i))/(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
---|
804 | tvaplcl(i) = tv(i, icb(i)) + (tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i & |
---|
805 | ,icb(i)))/(p(i,icb(i))-p(i,icb(i)+1)) |
---|
806 | END DO |
---|
807 | |
---|
808 | ! ------------------------------------------------------------------- |
---|
809 | ! --- Interpolate difference between lifted parcel and |
---|
810 | ! --- environmental temperatures to lifted condensation level |
---|
811 | ! ------------------------------------------------------------------- |
---|
812 | |
---|
813 | ! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
814 | |
---|
815 | DO k = minorig, icbmax |
---|
816 | DO i = 1, ncum |
---|
817 | IF ((k>=nk(i)) .AND. (k<=(icb(i)-1))) THEN |
---|
818 | dtpbl(i) = dtpbl(i) + (tvp(i,k)-tv(i,k))*dph(i, k) |
---|
819 | END IF |
---|
820 | END DO |
---|
821 | END DO |
---|
822 | DO i = 1, ncum |
---|
823 | dtpbl(i) = dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
---|
824 | dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) |
---|
825 | END DO |
---|
826 | |
---|
827 | ! ------------------------------------------------------------------- |
---|
828 | ! --- Adjust cloud base mass flux |
---|
829 | ! ------------------------------------------------------------------- |
---|
830 | |
---|
831 | DO i = 1, ncum |
---|
832 | work(i) = cbmf(i) |
---|
833 | cbmf(i) = max(0.0, (1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
---|
834 | IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN |
---|
835 | iflag(i) = 3 |
---|
836 | END IF |
---|
837 | END DO |
---|
838 | |
---|
839 | RETURN |
---|
840 | END SUBROUTINE cv_closure |
---|
841 | |
---|
842 | SUBROUTINE cv_mixing(nloc, ncum, nd, icb, nk, inb, inb1, ph, t, q, qs, u, v, & |
---|
843 | h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, uent, vent, nent, & |
---|
844 | sij, elij) |
---|
845 | USE cvparam_mod_h |
---|
846 | USE cvthermo_mod_h |
---|
847 | IMPLICIT NONE |
---|
848 | |
---|
849 | |
---|
850 | ! inputs: |
---|
851 | INTEGER ncum, nd, nloc |
---|
852 | INTEGER icb(nloc), inb(nloc), inb1(nloc), nk(nloc) |
---|
853 | REAL cbmf(nloc), qnk(nloc) |
---|
854 | REAL ph(nloc, nd+1) |
---|
855 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), lv(nloc, nd) |
---|
856 | REAL u(nloc, nd), v(nloc, nd), h(nloc, nd), hp(nloc, nd) |
---|
857 | REAL tv(nloc, nd), tvp(nloc, nd), ep(nloc, nd), clw(nloc, nd) |
---|
858 | |
---|
859 | ! outputs: |
---|
860 | INTEGER nent(nloc, nd) |
---|
861 | REAL m(nloc, nd), ment(nloc, nd, nd), qent(nloc, nd, nd) |
---|
862 | REAL uent(nloc, nd, nd), vent(nloc, nd, nd) |
---|
863 | REAL sij(nloc, nd, nd), elij(nloc, nd, nd) |
---|
864 | |
---|
865 | ! local variables: |
---|
866 | INTEGER i, j, k, ij |
---|
867 | INTEGER num1, num2 |
---|
868 | REAL dbo, qti, bf2, anum, denom, dei, altem, cwat, stemp |
---|
869 | REAL alt, qp1, smid, sjmin, sjmax, delp, delm |
---|
870 | REAL work(nloc), asij(nloc), smin(nloc), scrit(nloc) |
---|
871 | REAL bsum(nloc, nd) |
---|
872 | LOGICAL lwork(nloc) |
---|
873 | |
---|
874 | ! ===================================================================== |
---|
875 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
876 | ! ===================================================================== |
---|
877 | |
---|
878 | DO i = 1, ncum*nlp |
---|
879 | nent(i, 1) = 0 |
---|
880 | m(i, 1) = 0.0 |
---|
881 | END DO |
---|
882 | |
---|
883 | DO k = 1, nlp |
---|
884 | DO j = 1, nlp |
---|
885 | DO i = 1, ncum |
---|
886 | qent(i, k, j) = q(i, j) |
---|
887 | uent(i, k, j) = u(i, j) |
---|
888 | vent(i, k, j) = v(i, j) |
---|
889 | elij(i, k, j) = 0.0 |
---|
890 | ment(i, k, j) = 0.0 |
---|
891 | sij(i, k, j) = 0.0 |
---|
892 | END DO |
---|
893 | END DO |
---|
894 | END DO |
---|
895 | |
---|
896 | ! ------------------------------------------------------------------- |
---|
897 | ! --- Calculate rates of mixing, m(i) |
---|
898 | ! ------------------------------------------------------------------- |
---|
899 | |
---|
900 | CALL zilch(work, ncum) |
---|
901 | |
---|
902 | DO j = minorig + 1, nl |
---|
903 | DO i = 1, ncum |
---|
904 | IF ((j>=(icb(i)+1)) .AND. (j<=inb(i))) THEN |
---|
905 | k = min(j, inb1(i)) |
---|
906 | dbo = abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) + & |
---|
907 | entp*0.04*(ph(i,k)-ph(i,k+1)) |
---|
908 | work(i) = work(i) + dbo |
---|
909 | m(i, j) = cbmf(i)*dbo |
---|
910 | END IF |
---|
911 | END DO |
---|
912 | END DO |
---|
913 | DO k = minorig + 1, nl |
---|
914 | DO i = 1, ncum |
---|
915 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
---|
916 | m(i, k) = m(i, k)/work(i) |
---|
917 | END IF |
---|
918 | END DO |
---|
919 | END DO |
---|
920 | |
---|
921 | |
---|
922 | ! ===================================================================== |
---|
923 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
924 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
925 | ! --- FRACTION (sij) |
---|
926 | ! ===================================================================== |
---|
927 | |
---|
928 | |
---|
929 | DO i = minorig + 1, nl |
---|
930 | DO j = minorig + 1, nl |
---|
931 | DO ij = 1, ncum |
---|
932 | IF ((i>=(icb(ij)+1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & |
---|
933 | inb(ij))) THEN |
---|
934 | qti = qnk(ij) - ep(ij, i)*clw(ij, i) |
---|
935 | bf2 = 1. + lv(ij, j)*lv(ij, j)*qs(ij, j)/(rrv*t(ij,j)*t(ij,j)*cpd) |
---|
936 | anum = h(ij, j) - hp(ij, i) + (cpv-cpd)*t(ij, j)*(qti-q(ij,j)) |
---|
937 | denom = h(ij, i) - hp(ij, i) + (cpd-cpv)*(q(ij,i)-qti)*t(ij, j) |
---|
938 | dei = denom |
---|
939 | IF (abs(dei)<0.01) dei = 0.01 |
---|
940 | sij(ij, i, j) = anum/dei |
---|
941 | sij(ij, i, i) = 1.0 |
---|
942 | altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
---|
943 | altem = altem/bf2 |
---|
944 | cwat = clw(ij, j)*(1.-ep(ij,j)) |
---|
945 | stemp = sij(ij, i, j) |
---|
946 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
947 | anum = anum - lv(ij, j)*(qti-qs(ij,j)-cwat*bf2) |
---|
948 | denom = denom + lv(ij, j)*(q(ij,i)-qti) |
---|
949 | IF (abs(denom)<0.01) denom = 0.01 |
---|
950 | sij(ij, i, j) = anum/denom |
---|
951 | altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
---|
952 | altem = altem - (bf2-1.)*cwat |
---|
953 | END IF |
---|
954 | IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
---|
955 | qent(ij, i, j) = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti |
---|
956 | uent(ij, i, j) = sij(ij, i, j)*u(ij, i) + & |
---|
957 | (1.-sij(ij,i,j))*u(ij, nk(ij)) |
---|
958 | vent(ij, i, j) = sij(ij, i, j)*v(ij, i) + & |
---|
959 | (1.-sij(ij,i,j))*v(ij, nk(ij)) |
---|
960 | elij(ij, i, j) = altem |
---|
961 | elij(ij, i, j) = max(0.0, elij(ij,i,j)) |
---|
962 | ment(ij, i, j) = m(ij, i)/(1.-sij(ij,i,j)) |
---|
963 | nent(ij, i) = nent(ij, i) + 1 |
---|
964 | END IF |
---|
965 | sij(ij, i, j) = max(0.0, sij(ij,i,j)) |
---|
966 | sij(ij, i, j) = min(1.0, sij(ij,i,j)) |
---|
967 | END IF |
---|
968 | END DO |
---|
969 | END DO |
---|
970 | |
---|
971 | ! *** If no air can entrain at level i assume that updraft detrains |
---|
972 | ! *** |
---|
973 | ! *** at that level and calculate detrained air flux and properties |
---|
974 | ! *** |
---|
975 | |
---|
976 | DO ij = 1, ncum |
---|
977 | IF ((i>=(icb(ij)+1)) .AND. (i<=inb(ij)) .AND. (nent(ij,i)==0)) THEN |
---|
978 | ment(ij, i, i) = m(ij, i) |
---|
979 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
980 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
981 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
982 | elij(ij, i, i) = clw(ij, i) |
---|
983 | sij(ij, i, i) = 1.0 |
---|
984 | END IF |
---|
985 | END DO |
---|
986 | END DO |
---|
987 | |
---|
988 | DO i = 1, ncum |
---|
989 | sij(i, inb(i), inb(i)) = 1.0 |
---|
990 | END DO |
---|
991 | |
---|
992 | ! ===================================================================== |
---|
993 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
994 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
995 | ! ===================================================================== |
---|
996 | |
---|
997 | CALL zilch(bsum, ncum*nlp) |
---|
998 | DO ij = 1, ncum |
---|
999 | lwork(ij) = .FALSE. |
---|
1000 | END DO |
---|
1001 | DO i = minorig + 1, nl |
---|
1002 | |
---|
1003 | num1 = 0 |
---|
1004 | DO ij = 1, ncum |
---|
1005 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) num1 = num1 + 1 |
---|
1006 | END DO |
---|
1007 | IF (num1<=0) GO TO 789 |
---|
1008 | |
---|
1009 | DO ij = 1, ncum |
---|
1010 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) THEN |
---|
1011 | lwork(ij) = (nent(ij,i)/=0) |
---|
1012 | qp1 = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
1013 | anum = h(ij, i) - hp(ij, i) - lv(ij, i)*(qp1-qs(ij,i)) |
---|
1014 | denom = h(ij, i) - hp(ij, i) + lv(ij, i)*(q(ij,i)-qp1) |
---|
1015 | IF (abs(denom)<0.01) denom = 0.01 |
---|
1016 | scrit(ij) = anum/denom |
---|
1017 | alt = qp1 - qs(ij, i) + scrit(ij)*(q(ij,i)-qp1) |
---|
1018 | IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 |
---|
1019 | asij(ij) = 0.0 |
---|
1020 | smin(ij) = 1.0 |
---|
1021 | END IF |
---|
1022 | END DO |
---|
1023 | DO j = minorig, nl |
---|
1024 | |
---|
1025 | num2 = 0 |
---|
1026 | DO ij = 1, ncum |
---|
1027 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
1028 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 |
---|
1029 | END DO |
---|
1030 | IF (num2<=0) GO TO 783 |
---|
1031 | |
---|
1032 | DO ij = 1, ncum |
---|
1033 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
1034 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
1035 | IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
---|
1036 | IF (j>i) THEN |
---|
1037 | smid = min(sij(ij,i,j), scrit(ij)) |
---|
1038 | sjmax = smid |
---|
1039 | sjmin = smid |
---|
1040 | IF (smid<smin(ij) .AND. sij(ij,i,j+1)<smid) THEN |
---|
1041 | smin(ij) = smid |
---|
1042 | sjmax = min(sij(ij,i,j+1), sij(ij,i,j), scrit(ij)) |
---|
1043 | sjmin = max(sij(ij,i,j-1), sij(ij,i,j)) |
---|
1044 | sjmin = min(sjmin, scrit(ij)) |
---|
1045 | END IF |
---|
1046 | ELSE |
---|
1047 | sjmax = max(sij(ij,i,j+1), scrit(ij)) |
---|
1048 | smid = max(sij(ij,i,j), scrit(ij)) |
---|
1049 | sjmin = 0.0 |
---|
1050 | IF (j>1) sjmin = sij(ij, i, j-1) |
---|
1051 | sjmin = max(sjmin, scrit(ij)) |
---|
1052 | END IF |
---|
1053 | delp = abs(sjmax-smid) |
---|
1054 | delm = abs(sjmin-smid) |
---|
1055 | asij(ij) = asij(ij) + (delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
---|
1056 | ment(ij, i, j) = ment(ij, i, j)*(delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
---|
1057 | END IF |
---|
1058 | END IF |
---|
1059 | END DO |
---|
1060 | 783 END DO |
---|
1061 | DO ij = 1, ncum |
---|
1062 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN |
---|
1063 | asij(ij) = max(1.0E-21, asij(ij)) |
---|
1064 | asij(ij) = 1.0/asij(ij) |
---|
1065 | bsum(ij, i) = 0.0 |
---|
1066 | END IF |
---|
1067 | END DO |
---|
1068 | DO j = minorig, nl + 1 |
---|
1069 | DO ij = 1, ncum |
---|
1070 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
1071 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
1072 | ment(ij, i, j) = ment(ij, i, j)*asij(ij) |
---|
1073 | bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) |
---|
1074 | END IF |
---|
1075 | END DO |
---|
1076 | END DO |
---|
1077 | DO ij = 1, ncum |
---|
1078 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & |
---|
1079 | i)<1.0E-18) .AND. lwork(ij)) THEN |
---|
1080 | nent(ij, i) = 0 |
---|
1081 | ment(ij, i, i) = m(ij, i) |
---|
1082 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
1083 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
1084 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
1085 | elij(ij, i, i) = clw(ij, i) |
---|
1086 | sij(ij, i, i) = 1.0 |
---|
1087 | END IF |
---|
1088 | END DO |
---|
1089 | 789 END DO |
---|
1090 | |
---|
1091 | RETURN |
---|
1092 | END SUBROUTINE cv_mixing |
---|
1093 | |
---|
1094 | SUBROUTINE cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph, h, lv, & |
---|
1095 | ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, water, evap) |
---|
1096 | USE cvparam_mod_h |
---|
1097 | USE cvthermo_mod_h |
---|
1098 | IMPLICIT NONE |
---|
1099 | |
---|
1100 | |
---|
1101 | ! inputs: |
---|
1102 | INTEGER ncum, nd, nloc |
---|
1103 | INTEGER inb(nloc) |
---|
1104 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd) |
---|
1105 | REAL gz(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
1106 | REAL p(nloc, nd), ph(nloc, nd+1), h(nloc, nd) |
---|
1107 | REAL lv(nloc, nd), ep(nloc, nd), sigp(nloc, nd), clw(nloc, nd) |
---|
1108 | REAL m(nloc, nd), ment(nloc, nd, nd), elij(nloc, nd, nd) |
---|
1109 | |
---|
1110 | ! outputs: |
---|
1111 | INTEGER iflag(nloc) ! also an input |
---|
1112 | REAL mp(nloc, nd), qp(nloc, nd), up(nloc, nd), vp(nloc, nd) |
---|
1113 | REAL water(nloc, nd), evap(nloc, nd), wt(nloc, nd) |
---|
1114 | |
---|
1115 | ! local variables: |
---|
1116 | INTEGER i, j, k, ij, num1 |
---|
1117 | INTEGER jtt(nloc) |
---|
1118 | REAL awat, coeff, qsm, afac, sigt, b6, c6, revap |
---|
1119 | REAL dhdp, fac, qstm, rat |
---|
1120 | REAL wdtrain(nloc) |
---|
1121 | LOGICAL lwork(nloc) |
---|
1122 | |
---|
1123 | ! ===================================================================== |
---|
1124 | ! --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
1125 | ! ===================================================================== |
---|
1126 | |
---|
1127 | ! Initializations: |
---|
1128 | |
---|
1129 | DO i = 1, ncum |
---|
1130 | DO k = 1, nl + 1 |
---|
1131 | wt(i, k) = omtsnow |
---|
1132 | mp(i, k) = 0.0 |
---|
1133 | evap(i, k) = 0.0 |
---|
1134 | water(i, k) = 0.0 |
---|
1135 | END DO |
---|
1136 | END DO |
---|
1137 | |
---|
1138 | DO i = 1, ncum |
---|
1139 | qp(i, 1) = q(i, 1) |
---|
1140 | up(i, 1) = u(i, 1) |
---|
1141 | vp(i, 1) = v(i, 1) |
---|
1142 | END DO |
---|
1143 | |
---|
1144 | DO k = 2, nl + 1 |
---|
1145 | DO i = 1, ncum |
---|
1146 | qp(i, k) = q(i, k-1) |
---|
1147 | up(i, k) = u(i, k-1) |
---|
1148 | vp(i, k) = v(i, k-1) |
---|
1149 | END DO |
---|
1150 | END DO |
---|
1151 | |
---|
1152 | |
---|
1153 | ! *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
1154 | ! *** downdraft calculation *** |
---|
1155 | |
---|
1156 | |
---|
1157 | ! *** Integrate liquid water equation to find condensed water *** |
---|
1158 | ! *** and condensed water flux *** |
---|
1159 | |
---|
1160 | |
---|
1161 | DO i = 1, ncum |
---|
1162 | jtt(i) = 2 |
---|
1163 | IF (ep(i,inb(i))<=0.0001) iflag(i) = 2 |
---|
1164 | IF (iflag(i)==0) THEN |
---|
1165 | lwork(i) = .TRUE. |
---|
1166 | ELSE |
---|
1167 | lwork(i) = .FALSE. |
---|
1168 | END IF |
---|
1169 | END DO |
---|
1170 | |
---|
1171 | ! *** Begin downdraft loop *** |
---|
1172 | |
---|
1173 | |
---|
1174 | CALL zilch(wdtrain, ncum) |
---|
1175 | DO i = nl + 1, 1, -1 |
---|
1176 | |
---|
1177 | num1 = 0 |
---|
1178 | DO ij = 1, ncum |
---|
1179 | IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 |
---|
1180 | END DO |
---|
1181 | IF (num1<=0) GO TO 899 |
---|
1182 | |
---|
1183 | |
---|
1184 | ! *** Calculate detrained precipitation *** |
---|
1185 | |
---|
1186 | DO ij = 1, ncum |
---|
1187 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1188 | wdtrain(ij) = g*ep(ij, i)*m(ij, i)*clw(ij, i) |
---|
1189 | END IF |
---|
1190 | END DO |
---|
1191 | |
---|
1192 | IF (i>1) THEN |
---|
1193 | DO j = 1, i - 1 |
---|
1194 | DO ij = 1, ncum |
---|
1195 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1196 | awat = elij(ij, j, i) - (1.-ep(ij,i))*clw(ij, i) |
---|
1197 | awat = max(0.0, awat) |
---|
1198 | wdtrain(ij) = wdtrain(ij) + g*awat*ment(ij, j, i) |
---|
1199 | END IF |
---|
1200 | END DO |
---|
1201 | END DO |
---|
1202 | END IF |
---|
1203 | |
---|
1204 | ! *** Find rain water and evaporation using provisional *** |
---|
1205 | ! *** estimates of qp(i)and qp(i-1) *** |
---|
1206 | |
---|
1207 | |
---|
1208 | ! *** Value of terminal velocity and coeffecient of evaporation for snow |
---|
1209 | ! *** |
---|
1210 | |
---|
1211 | DO ij = 1, ncum |
---|
1212 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1213 | coeff = coeffs |
---|
1214 | wt(ij, i) = omtsnow |
---|
1215 | |
---|
1216 | ! *** Value of terminal velocity and coeffecient of evaporation for |
---|
1217 | ! rain *** |
---|
1218 | |
---|
1219 | IF (t(ij,i)>273.0) THEN |
---|
1220 | coeff = coeffr |
---|
1221 | wt(ij, i) = omtrain |
---|
1222 | END IF |
---|
1223 | qsm = 0.5*(q(ij,i)+qp(ij,i+1)) |
---|
1224 | afac = coeff*ph(ij, i)*(qs(ij,i)-qsm)/(1.0E4+2.0E3*ph(ij,i)*qs(ij,i)) |
---|
1225 | afac = max(afac, 0.0) |
---|
1226 | sigt = sigp(ij, i) |
---|
1227 | sigt = max(0.0, sigt) |
---|
1228 | sigt = min(1.0, sigt) |
---|
1229 | b6 = 100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij, i) |
---|
1230 | c6 = (water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij, i) |
---|
1231 | revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
1232 | evap(ij, i) = sigt*afac*revap |
---|
1233 | water(ij, i) = revap*revap |
---|
1234 | |
---|
1235 | ! *** Calculate precipitating downdraft mass flux under *** |
---|
1236 | ! *** hydrostatic approximation *** |
---|
1237 | |
---|
1238 | IF (i>1) THEN |
---|
1239 | dhdp = (h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
---|
1240 | dhdp = max(dhdp, 10.0) |
---|
1241 | mp(ij, i) = 100.*ginv*lv(ij, i)*sigd*evap(ij, i)/dhdp |
---|
1242 | mp(ij, i) = max(mp(ij,i), 0.0) |
---|
1243 | |
---|
1244 | ! *** Add small amount of inertia to downdraft *** |
---|
1245 | |
---|
1246 | fac = 20.0/(ph(ij,i-1)-ph(ij,i)) |
---|
1247 | mp(ij, i) = (fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
---|
1248 | |
---|
1249 | ! *** Force mp to decrease linearly to zero |
---|
1250 | ! *** |
---|
1251 | ! *** between about 950 mb and the surface |
---|
1252 | ! *** |
---|
1253 | |
---|
1254 | IF (p(ij,i)>(0.949*p(ij,1))) THEN |
---|
1255 | jtt(ij) = max(jtt(ij), i) |
---|
1256 | mp(ij, i) = mp(ij, jtt(ij))*(p(ij,1)-p(ij,i))/ & |
---|
1257 | (p(ij,1)-p(ij,jtt(ij))) |
---|
1258 | END IF |
---|
1259 | END IF |
---|
1260 | |
---|
1261 | ! *** Find mixing ratio of precipitating downdraft *** |
---|
1262 | |
---|
1263 | IF (i/=inb(ij)) THEN |
---|
1264 | IF (i==1) THEN |
---|
1265 | qstm = qs(ij, 1) |
---|
1266 | ELSE |
---|
1267 | qstm = qs(ij, i-1) |
---|
1268 | END IF |
---|
1269 | IF (mp(ij,i)>mp(ij,i+1)) THEN |
---|
1270 | rat = mp(ij, i+1)/mp(ij, i) |
---|
1271 | qp(ij, i) = qp(ij, i+1)*rat + q(ij, i)*(1.0-rat) + & |
---|
1272 | 100.*ginv*sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
---|
1273 | up(ij, i) = up(ij, i+1)*rat + u(ij, i)*(1.-rat) |
---|
1274 | vp(ij, i) = vp(ij, i+1)*rat + v(ij, i)*(1.-rat) |
---|
1275 | ELSE |
---|
1276 | IF (mp(ij,i+1)>0.0) THEN |
---|
1277 | qp(ij, i) = (gz(ij,i+1)-gz(ij,i)+qp(ij,i+1)*(lv(ij,i+1)+t(ij, & |
---|
1278 | i+1)*(cl-cpd))+cpd*(t(ij,i+1)-t(ij, & |
---|
1279 | i)))/(lv(ij,i)+t(ij,i)*(cl-cpd)) |
---|
1280 | up(ij, i) = up(ij, i+1) |
---|
1281 | vp(ij, i) = vp(ij, i+1) |
---|
1282 | END IF |
---|
1283 | END IF |
---|
1284 | qp(ij, i) = min(qp(ij,i), qstm) |
---|
1285 | qp(ij, i) = max(qp(ij,i), 0.0) |
---|
1286 | END IF |
---|
1287 | END IF |
---|
1288 | END DO |
---|
1289 | 899 END DO |
---|
1290 | |
---|
1291 | RETURN |
---|
1292 | END SUBROUTINE cv_unsat |
---|
1293 | |
---|
1294 | SUBROUTINE cv_yield(nloc, ncum, nd, nk, icb, inb, delt, t, q, u, v, gz, p, & |
---|
1295 | ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, water, evap, & |
---|
1296 | ment, qent, uent, vent, nent, elij, tv, tvp, iflag, wd, qprime, tprime, & |
---|
1297 | precip, cbmf, ft, fq, fu, fv, ma, qcondc) |
---|
1298 | USE cvparam_mod_h |
---|
1299 | USE cvthermo_mod_h |
---|
1300 | IMPLICIT NONE |
---|
1301 | |
---|
1302 | |
---|
1303 | ! inputs |
---|
1304 | INTEGER ncum, nd, nloc |
---|
1305 | INTEGER nk(nloc), icb(nloc), inb(nloc) |
---|
1306 | INTEGER nent(nloc, nd) |
---|
1307 | REAL delt |
---|
1308 | REAL t(nloc, nd), q(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
1309 | REAL gz(nloc, nd) |
---|
1310 | REAL p(nloc, nd), ph(nloc, nd+1), h(nloc, nd) |
---|
1311 | REAL hp(nloc, nd), lv(nloc, nd) |
---|
1312 | REAL cpn(nloc, nd), ep(nloc, nd), clw(nloc, nd), frac(nloc) |
---|
1313 | REAL m(nloc, nd), mp(nloc, nd), qp(nloc, nd) |
---|
1314 | REAL up(nloc, nd), vp(nloc, nd) |
---|
1315 | REAL wt(nloc, nd), water(nloc, nd), evap(nloc, nd) |
---|
1316 | REAL ment(nloc, nd, nd), qent(nloc, nd, nd), elij(nloc, nd, nd) |
---|
1317 | REAL uent(nloc, nd, nd), vent(nloc, nd, nd) |
---|
1318 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
1319 | |
---|
1320 | ! outputs |
---|
1321 | INTEGER iflag(nloc) ! also an input |
---|
1322 | REAL cbmf(nloc) ! also an input |
---|
1323 | REAL wd(nloc), tprime(nloc), qprime(nloc) |
---|
1324 | REAL precip(nloc) |
---|
1325 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
1326 | REAL ma(nloc, nd) |
---|
1327 | REAL qcondc(nloc, nd) |
---|
1328 | |
---|
1329 | ! local variables |
---|
1330 | INTEGER i, j, ij, k, num1 |
---|
1331 | REAL dpinv, cpinv, awat, fqold, ftold, fuold, fvold, delti |
---|
1332 | REAL work(nloc), am(nloc), amp1(nloc), ad(nloc) |
---|
1333 | REAL ents(nloc), uav(nloc), vav(nloc), lvcp(nloc, nd) |
---|
1334 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
---|
1335 | REAL siga(nloc, nd), ax(nloc, nd), mac(nloc, nd) ! cld |
---|
1336 | |
---|
1337 | |
---|
1338 | ! -- initializations: |
---|
1339 | |
---|
1340 | delti = 1.0/delt |
---|
1341 | |
---|
1342 | DO i = 1, ncum |
---|
1343 | precip(i) = 0.0 |
---|
1344 | wd(i) = 0.0 |
---|
1345 | tprime(i) = 0.0 |
---|
1346 | qprime(i) = 0.0 |
---|
1347 | DO k = 1, nl + 1 |
---|
1348 | ft(i, k) = 0.0 |
---|
1349 | fu(i, k) = 0.0 |
---|
1350 | fv(i, k) = 0.0 |
---|
1351 | fq(i, k) = 0.0 |
---|
1352 | lvcp(i, k) = lv(i, k)/cpn(i, k) |
---|
1353 | qcondc(i, k) = 0.0 ! cld |
---|
1354 | qcond(i, k) = 0.0 ! cld |
---|
1355 | nqcond(i, k) = 0.0 ! cld |
---|
1356 | END DO |
---|
1357 | END DO |
---|
1358 | |
---|
1359 | |
---|
1360 | ! *** Calculate surface precipitation in mm/day *** |
---|
1361 | |
---|
1362 | DO i = 1, ncum |
---|
1363 | IF (iflag(i)<=1) THEN |
---|
1364 | ! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
1365 | ! c & /(rowl*g) |
---|
1366 | ! c precip(i)=precip(i)*delt/86400. |
---|
1367 | precip(i) = wt(i, 1)*sigd*water(i, 1)*86400/g |
---|
1368 | END IF |
---|
1369 | END DO |
---|
1370 | |
---|
1371 | |
---|
1372 | ! *** Calculate downdraft velocity scale and surface temperature and *** |
---|
1373 | ! *** water vapor fluctuations *** |
---|
1374 | |
---|
1375 | DO i = 1, ncum |
---|
1376 | wd(i) = betad*abs(mp(i,icb(i)))*0.01*rrd*t(i, icb(i))/(sigd*p(i,icb(i))) |
---|
1377 | qprime(i) = 0.5*(qp(i,1)-q(i,1)) |
---|
1378 | tprime(i) = lv0*qprime(i)/cpd |
---|
1379 | END DO |
---|
1380 | |
---|
1381 | ! *** Calculate tendencies of lowest level potential temperature *** |
---|
1382 | ! *** and mixing ratio *** |
---|
1383 | |
---|
1384 | DO i = 1, ncum |
---|
1385 | work(i) = 0.01/(ph(i,1)-ph(i,2)) |
---|
1386 | am(i) = 0.0 |
---|
1387 | END DO |
---|
1388 | DO k = 2, nl |
---|
1389 | DO i = 1, ncum |
---|
1390 | IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN |
---|
1391 | am(i) = am(i) + m(i, k) |
---|
1392 | END IF |
---|
1393 | END DO |
---|
1394 | END DO |
---|
1395 | DO i = 1, ncum |
---|
1396 | IF ((g*work(i)*am(i))>=delti) iflag(i) = 1 |
---|
1397 | ft(i, 1) = ft(i, 1) + g*work(i)*am(i)*(t(i,2)-t(i,1)+(gz(i,2)-gz(i, & |
---|
1398 | 1))/cpn(i,1)) |
---|
1399 | ft(i, 1) = ft(i, 1) - lvcp(i, 1)*sigd*evap(i, 1) |
---|
1400 | ft(i, 1) = ft(i, 1) + sigd*wt(i, 2)*(cl-cpd)*water(i, 2)*(t(i,2)-t(i,1))* & |
---|
1401 | work(i)/cpn(i, 1) |
---|
1402 | fq(i, 1) = fq(i, 1) + g*mp(i, 2)*(qp(i,2)-q(i,1))*work(i) + & |
---|
1403 | sigd*evap(i, 1) |
---|
1404 | fq(i, 1) = fq(i, 1) + g*am(i)*(q(i,2)-q(i,1))*work(i) |
---|
1405 | fu(i, 1) = fu(i, 1) + g*work(i)*(mp(i,2)*(up(i,2)-u(i,1))+am(i)*(u(i, & |
---|
1406 | 2)-u(i,1))) |
---|
1407 | fv(i, 1) = fv(i, 1) + g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1))+am(i)*(v(i, & |
---|
1408 | 2)-v(i,1))) |
---|
1409 | END DO |
---|
1410 | DO j = 2, nl |
---|
1411 | DO i = 1, ncum |
---|
1412 | IF (j<=inb(i)) THEN |
---|
1413 | fq(i, 1) = fq(i, 1) + g*work(i)*ment(i, j, 1)*(qent(i,j,1)-q(i,1)) |
---|
1414 | fu(i, 1) = fu(i, 1) + g*work(i)*ment(i, j, 1)*(uent(i,j,1)-u(i,1)) |
---|
1415 | fv(i, 1) = fv(i, 1) + g*work(i)*ment(i, j, 1)*(vent(i,j,1)-v(i,1)) |
---|
1416 | END IF |
---|
1417 | END DO |
---|
1418 | END DO |
---|
1419 | |
---|
1420 | ! *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
1421 | ! *** at levels above the lowest level *** |
---|
1422 | |
---|
1423 | ! *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
1424 | ! *** through each level *** |
---|
1425 | |
---|
1426 | DO i = 2, nl + 1 |
---|
1427 | |
---|
1428 | num1 = 0 |
---|
1429 | DO ij = 1, ncum |
---|
1430 | IF (i<=inb(ij)) num1 = num1 + 1 |
---|
1431 | END DO |
---|
1432 | IF (num1<=0) GO TO 1500 |
---|
1433 | |
---|
1434 | CALL zilch(amp1, ncum) |
---|
1435 | CALL zilch(ad, ncum) |
---|
1436 | |
---|
1437 | DO k = i + 1, nl + 1 |
---|
1438 | DO ij = 1, ncum |
---|
1439 | IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij)+1))) THEN |
---|
1440 | amp1(ij) = amp1(ij) + m(ij, k) |
---|
1441 | END IF |
---|
1442 | END DO |
---|
1443 | END DO |
---|
1444 | |
---|
1445 | DO k = 1, i |
---|
1446 | DO j = i + 1, nl + 1 |
---|
1447 | DO ij = 1, ncum |
---|
1448 | IF ((j<=(inb(ij)+1)) .AND. (i<=inb(ij))) THEN |
---|
1449 | amp1(ij) = amp1(ij) + ment(ij, k, j) |
---|
1450 | END IF |
---|
1451 | END DO |
---|
1452 | END DO |
---|
1453 | END DO |
---|
1454 | DO k = 1, i - 1 |
---|
1455 | DO j = i, nl + 1 |
---|
1456 | DO ij = 1, ncum |
---|
1457 | IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN |
---|
1458 | ad(ij) = ad(ij) + ment(ij, j, k) |
---|
1459 | END IF |
---|
1460 | END DO |
---|
1461 | END DO |
---|
1462 | END DO |
---|
1463 | |
---|
1464 | DO ij = 1, ncum |
---|
1465 | IF (i<=inb(ij)) THEN |
---|
1466 | dpinv = 0.01/(ph(ij,i)-ph(ij,i+1)) |
---|
1467 | cpinv = 1.0/cpn(ij, i) |
---|
1468 | |
---|
1469 | ft(ij, i) = ft(ij, i) + g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij, & |
---|
1470 | i)+(gz(ij,i+1)-gz(ij,i))*cpinv)-ad(ij)*(t(ij,i)-t(ij, & |
---|
1471 | i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) - sigd*lvcp(ij, i)*evap(ij, i) |
---|
1472 | ft(ij, i) = ft(ij, i) + g*dpinv*ment(ij, i, i)*(hp(ij,i)-h(ij,i)+t(ij & |
---|
1473 | ,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
---|
1474 | ft(ij, i) = ft(ij, i) + sigd*wt(ij, i+1)*(cl-cpd)*water(ij, i+1)*(t( & |
---|
1475 | ij,i+1)-t(ij,i))*dpinv*cpinv |
---|
1476 | fq(ij, i) = fq(ij, i) + g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij, & |
---|
1477 | i))-ad(ij)*(q(ij,i)-q(ij,i-1))) |
---|
1478 | fu(ij, i) = fu(ij, i) + g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij, & |
---|
1479 | i))-ad(ij)*(u(ij,i)-u(ij,i-1))) |
---|
1480 | fv(ij, i) = fv(ij, i) + g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij, & |
---|
1481 | i))-ad(ij)*(v(ij,i)-v(ij,i-1))) |
---|
1482 | END IF |
---|
1483 | END DO |
---|
1484 | DO k = 1, i - 1 |
---|
1485 | DO ij = 1, ncum |
---|
1486 | IF (i<=inb(ij)) THEN |
---|
1487 | awat = elij(ij, k, i) - (1.-ep(ij,i))*clw(ij, i) |
---|
1488 | awat = max(awat, 0.0) |
---|
1489 | fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-awat-q & |
---|
1490 | (ij,i)) |
---|
1491 | fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
---|
1492 | )) |
---|
1493 | fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
---|
1494 | )) |
---|
1495 | ! (saturated updrafts resulting from mixing) ! cld |
---|
1496 | qcond(ij, i) = qcond(ij, i) + (elij(ij,k,i)-awat) ! cld |
---|
1497 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
1498 | END IF |
---|
1499 | END DO |
---|
1500 | END DO |
---|
1501 | DO k = i, nl + 1 |
---|
1502 | DO ij = 1, ncum |
---|
1503 | IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN |
---|
1504 | fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-q(ij,i & |
---|
1505 | )) |
---|
1506 | fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
---|
1507 | )) |
---|
1508 | fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
---|
1509 | )) |
---|
1510 | END IF |
---|
1511 | END DO |
---|
1512 | END DO |
---|
1513 | DO ij = 1, ncum |
---|
1514 | IF (i<=inb(ij)) THEN |
---|
1515 | fq(ij, i) = fq(ij, i) + sigd*evap(ij, i) + g*(mp(ij,i+1)*(qp(ij, & |
---|
1516 | i+1)-q(ij,i))-mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
---|
1517 | fu(ij, i) = fu(ij, i) + g*(mp(ij,i+1)*(up(ij,i+1)-u(ij, & |
---|
1518 | i))-mp(ij,i)*(up(ij,i)-u(ij,i-1)))*dpinv |
---|
1519 | fv(ij, i) = fv(ij, i) + g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij, & |
---|
1520 | i))-mp(ij,i)*(vp(ij,i)-v(ij,i-1)))*dpinv |
---|
1521 | ! (saturated downdrafts resulting from mixing) ! cld |
---|
1522 | DO k = i + 1, inb(ij) ! cld |
---|
1523 | qcond(ij, i) = qcond(ij, i) + elij(ij, k, i) ! cld |
---|
1524 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
1525 | END DO ! cld |
---|
1526 | ! (particular case: no detraining level is found) ! cld |
---|
1527 | IF (nent(ij,i)==0) THEN ! cld |
---|
1528 | qcond(ij, i) = qcond(ij, i) + (1.-ep(ij,i))*clw(ij, i) ! cld |
---|
1529 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
1530 | END IF ! cld |
---|
1531 | IF (nqcond(ij,i)/=0.) THEN ! cld |
---|
1532 | qcond(ij, i) = qcond(ij, i)/nqcond(ij, i) ! cld |
---|
1533 | END IF ! cld |
---|
1534 | END IF |
---|
1535 | END DO |
---|
1536 | 1500 END DO |
---|
1537 | |
---|
1538 | ! *** Adjust tendencies at top of convection layer to reflect *** |
---|
1539 | ! *** actual position of the level zero cape *** |
---|
1540 | |
---|
1541 | DO ij = 1, ncum |
---|
1542 | fqold = fq(ij, inb(ij)) |
---|
1543 | fq(ij, inb(ij)) = fq(ij, inb(ij))*(1.-frac(ij)) |
---|
1544 | fq(ij, inb(ij)-1) = fq(ij, inb(ij)-1) + frac(ij)*fqold*((ph(ij, & |
---|
1545 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
---|
1546 | inb(ij))))*lv(ij, inb(ij))/lv(ij, inb(ij)-1) |
---|
1547 | ftold = ft(ij, inb(ij)) |
---|
1548 | ft(ij, inb(ij)) = ft(ij, inb(ij))*(1.-frac(ij)) |
---|
1549 | ft(ij, inb(ij)-1) = ft(ij, inb(ij)-1) + frac(ij)*ftold*((ph(ij, & |
---|
1550 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
---|
1551 | inb(ij))))*cpn(ij, inb(ij))/cpn(ij, inb(ij)-1) |
---|
1552 | fuold = fu(ij, inb(ij)) |
---|
1553 | fu(ij, inb(ij)) = fu(ij, inb(ij))*(1.-frac(ij)) |
---|
1554 | fu(ij, inb(ij)-1) = fu(ij, inb(ij)-1) + frac(ij)*fuold*((ph(ij, & |
---|
1555 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
1556 | fvold = fv(ij, inb(ij)) |
---|
1557 | fv(ij, inb(ij)) = fv(ij, inb(ij))*(1.-frac(ij)) |
---|
1558 | fv(ij, inb(ij)-1) = fv(ij, inb(ij)-1) + frac(ij)*fvold*((ph(ij, & |
---|
1559 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
1560 | END DO |
---|
1561 | |
---|
1562 | ! *** Very slightly adjust tendencies to force exact *** |
---|
1563 | ! *** enthalpy, momentum and tracer conservation *** |
---|
1564 | |
---|
1565 | DO ij = 1, ncum |
---|
1566 | ents(ij) = 0.0 |
---|
1567 | uav(ij) = 0.0 |
---|
1568 | vav(ij) = 0.0 |
---|
1569 | DO i = 1, inb(ij) |
---|
1570 | ents(ij) = ents(ij) + (cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)- & |
---|
1571 | ph(ij,i+1)) |
---|
1572 | uav(ij) = uav(ij) + fu(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
---|
1573 | vav(ij) = vav(ij) + fv(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
---|
1574 | END DO |
---|
1575 | END DO |
---|
1576 | DO ij = 1, ncum |
---|
1577 | ents(ij) = ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1578 | uav(ij) = uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1579 | vav(ij) = vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1580 | END DO |
---|
1581 | DO ij = 1, ncum |
---|
1582 | DO i = 1, inb(ij) |
---|
1583 | ft(ij, i) = ft(ij, i) - ents(ij)/cpn(ij, i) |
---|
1584 | fu(ij, i) = (1.-cu)*(fu(ij,i)-uav(ij)) |
---|
1585 | fv(ij, i) = (1.-cu)*(fv(ij,i)-vav(ij)) |
---|
1586 | END DO |
---|
1587 | END DO |
---|
1588 | |
---|
1589 | DO k = 1, nl + 1 |
---|
1590 | DO i = 1, ncum |
---|
1591 | IF ((q(i,k)+delt*fq(i,k))<0.0) iflag(i) = 10 |
---|
1592 | END DO |
---|
1593 | END DO |
---|
1594 | |
---|
1595 | |
---|
1596 | DO i = 1, ncum |
---|
1597 | IF (iflag(i)>2) THEN |
---|
1598 | precip(i) = 0.0 |
---|
1599 | cbmf(i) = 0.0 |
---|
1600 | END IF |
---|
1601 | END DO |
---|
1602 | DO k = 1, nl |
---|
1603 | DO i = 1, ncum |
---|
1604 | IF (iflag(i)>2) THEN |
---|
1605 | ft(i, k) = 0.0 |
---|
1606 | fq(i, k) = 0.0 |
---|
1607 | fu(i, k) = 0.0 |
---|
1608 | fv(i, k) = 0.0 |
---|
1609 | qcondc(i, k) = 0.0 ! cld |
---|
1610 | END IF |
---|
1611 | END DO |
---|
1612 | END DO |
---|
1613 | |
---|
1614 | DO k = 1, nl + 1 |
---|
1615 | DO i = 1, ncum |
---|
1616 | ma(i, k) = 0. |
---|
1617 | END DO |
---|
1618 | END DO |
---|
1619 | DO k = nl, 1, -1 |
---|
1620 | DO i = 1, ncum |
---|
1621 | ma(i, k) = ma(i, k+1) + m(i, k) |
---|
1622 | END DO |
---|
1623 | END DO |
---|
1624 | |
---|
1625 | |
---|
1626 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
---|
1627 | ! *** of condensed water *** ! cld |
---|
1628 | ! ! cld |
---|
1629 | DO ij = 1, ncum ! cld |
---|
1630 | DO i = 1, nd ! cld |
---|
1631 | mac(ij, i) = 0.0 ! cld |
---|
1632 | wa(ij, i) = 0.0 ! cld |
---|
1633 | siga(ij, i) = 0.0 ! cld |
---|
1634 | END DO ! cld |
---|
1635 | DO i = nk(ij), inb(ij) ! cld |
---|
1636 | DO k = i + 1, inb(ij) + 1 ! cld |
---|
1637 | mac(ij, i) = mac(ij, i) + m(ij, k) ! cld |
---|
1638 | END DO ! cld |
---|
1639 | END DO ! cld |
---|
1640 | DO i = icb(ij), inb(ij) - 1 ! cld |
---|
1641 | ax(ij, i) = 0. ! cld |
---|
1642 | DO j = icb(ij), i ! cld |
---|
1643 | ax(ij, i) = ax(ij, i) + rrd*(tvp(ij,j)-tv(ij,j)) & ! cld |
---|
1644 | *(ph(ij,j)-ph(ij,j+1))/p(ij, j) ! cld |
---|
1645 | END DO ! cld |
---|
1646 | IF (ax(ij,i)>0.0) THEN ! cld |
---|
1647 | wa(ij, i) = sqrt(2.*ax(ij,i)) ! cld |
---|
1648 | END IF ! cld |
---|
1649 | END DO ! cld |
---|
1650 | DO i = 1, nl ! cld |
---|
1651 | IF (wa(ij,i)>0.0) & ! cld |
---|
1652 | siga(ij, i) = mac(ij, i)/wa(ij, i) & ! cld |
---|
1653 | *rrd*tvp(ij, i)/p(ij, i)/100./delta ! cld |
---|
1654 | siga(ij, i) = min(siga(ij,i), 1.0) ! cld |
---|
1655 | qcondc(ij, i) = siga(ij, i)*clw(ij, i)*(1.-ep(ij,i)) & ! cld |
---|
1656 | +(1.-siga(ij,i))*qcond(ij, i) ! cld |
---|
1657 | END DO ! cld |
---|
1658 | END DO ! cld |
---|
1659 | |
---|
1660 | RETURN |
---|
1661 | END SUBROUTINE cv_yield |
---|
1662 | |
---|
1663 | SUBROUTINE cv_uncompress(nloc, len, ncum, nd, idcum, iflag, precip, cbmf, ft, & |
---|
1664 | fq, fu, fv, ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, ma1, & |
---|
1665 | qcondc1) |
---|
1666 | USE cvparam_mod_h |
---|
1667 | IMPLICIT NONE |
---|
1668 | |
---|
1669 | |
---|
1670 | ! inputs: |
---|
1671 | INTEGER len, ncum, nd, nloc |
---|
1672 | INTEGER idcum(nloc) |
---|
1673 | INTEGER iflag(nloc) |
---|
1674 | REAL precip(nloc), cbmf(nloc) |
---|
1675 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
1676 | REAL ma(nloc, nd) |
---|
1677 | REAL qcondc(nloc, nd) !cld |
---|
1678 | |
---|
1679 | ! outputs: |
---|
1680 | INTEGER iflag1(len) |
---|
1681 | REAL precip1(len), cbmf1(len) |
---|
1682 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
---|
1683 | REAL ma1(len, nd) |
---|
1684 | REAL qcondc1(len, nd) !cld |
---|
1685 | |
---|
1686 | ! local variables: |
---|
1687 | INTEGER i, k |
---|
1688 | |
---|
1689 | DO i = 1, ncum |
---|
1690 | precip1(idcum(i)) = precip(i) |
---|
1691 | cbmf1(idcum(i)) = cbmf(i) |
---|
1692 | iflag1(idcum(i)) = iflag(i) |
---|
1693 | END DO |
---|
1694 | |
---|
1695 | DO k = 1, nl |
---|
1696 | DO i = 1, ncum |
---|
1697 | ft1(idcum(i), k) = ft(i, k) |
---|
1698 | fq1(idcum(i), k) = fq(i, k) |
---|
1699 | fu1(idcum(i), k) = fu(i, k) |
---|
1700 | fv1(idcum(i), k) = fv(i, k) |
---|
1701 | ma1(idcum(i), k) = ma(i, k) |
---|
1702 | qcondc1(idcum(i), k) = qcondc(i, k) |
---|
1703 | END DO |
---|
1704 | END DO |
---|
1705 | |
---|
1706 | RETURN |
---|
1707 | END SUBROUTINE cv_uncompress |
---|
1708 | |
---|