[3927] | 1 | |
---|
| 2 | ! $Id: cv_routines.F90 2311 2015-06-25 07:45:24Z emillour $ |
---|
| 3 | |
---|
| 4 | SUBROUTINE cv_param(nd) |
---|
| 5 | IMPLICIT NONE |
---|
| 6 | |
---|
| 7 | ! ------------------------------------------------------------ |
---|
| 8 | ! Set parameters for convectL |
---|
| 9 | ! (includes microphysical parameters and parameters that |
---|
| 10 | ! control the rate of approach to quasi-equilibrium) |
---|
| 11 | ! ------------------------------------------------------------ |
---|
| 12 | |
---|
| 13 | ! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
| 14 | ! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
| 15 | ! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
| 16 | ! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
| 17 | ! *** BETWEEN 0 C AND TLCRIT) *** |
---|
| 18 | ! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
| 19 | ! *** FORMULATION *** |
---|
| 20 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 21 | ! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 22 | ! *** OF CLOUD *** |
---|
| 23 | ! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
| 24 | ! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
| 25 | ! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 26 | ! *** OF RAIN *** |
---|
| 27 | ! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 28 | ! *** OF SNOW *** |
---|
| 29 | ! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
| 30 | ! *** TRANSPORT *** |
---|
| 31 | ! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
| 32 | ! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
| 33 | ! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 34 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 35 | ! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
| 36 | ! *** (DAMP MUST BE LESS THAN 1) *** |
---|
| 37 | |
---|
| 38 | include "cvparam.h" |
---|
| 39 | INTEGER nd |
---|
| 40 | CHARACTER (LEN=20) :: modname = 'cv_routines' |
---|
| 41 | CHARACTER (LEN=80) :: abort_message |
---|
| 42 | |
---|
| 43 | ! noff: integer limit for convection (nd-noff) |
---|
| 44 | ! minorig: First level of convection |
---|
| 45 | |
---|
| 46 | noff = 2 |
---|
| 47 | minorig = 2 |
---|
| 48 | |
---|
| 49 | nl = nd - noff |
---|
| 50 | nlp = nl + 1 |
---|
| 51 | nlm = nl - 1 |
---|
| 52 | |
---|
| 53 | elcrit = 0.0011 |
---|
| 54 | tlcrit = -55.0 |
---|
| 55 | entp = 1.5 |
---|
| 56 | sigs = 0.12 |
---|
| 57 | sigd = 0.05 |
---|
| 58 | omtrain = 50.0 |
---|
| 59 | omtsnow = 5.5 |
---|
| 60 | coeffr = 1.0 |
---|
| 61 | coeffs = 0.8 |
---|
| 62 | dtmax = 0.9 |
---|
| 63 | |
---|
| 64 | cu = 0.70 |
---|
| 65 | |
---|
| 66 | betad = 10.0 |
---|
| 67 | |
---|
| 68 | damp = 0.1 |
---|
| 69 | alpha = 0.2 |
---|
| 70 | |
---|
| 71 | delta = 0.01 ! cld |
---|
| 72 | |
---|
| 73 | RETURN |
---|
| 74 | END SUBROUTINE cv_param |
---|
| 75 | |
---|
| 76 | SUBROUTINE cv_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm) |
---|
| 77 | IMPLICIT NONE |
---|
| 78 | |
---|
| 79 | ! ===================================================================== |
---|
| 80 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
| 81 | ! ===================================================================== |
---|
| 82 | |
---|
| 83 | ! inputs: |
---|
| 84 | INTEGER len, nd, ndp1 |
---|
| 85 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
---|
| 86 | |
---|
| 87 | ! outputs: |
---|
| 88 | REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
---|
| 89 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
---|
| 90 | |
---|
| 91 | ! local variables: |
---|
| 92 | INTEGER k, i |
---|
| 93 | REAL cpx(len, nd) |
---|
| 94 | |
---|
| 95 | include "cvthermo.h" |
---|
| 96 | include "cvparam.h" |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | DO k = 1, nlp |
---|
| 100 | DO i = 1, len |
---|
| 101 | lv(i, k) = lv0 - clmcpv*(t(i,k)-t0) |
---|
| 102 | cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
---|
| 103 | cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
---|
| 104 | tv(i, k) = t(i, k)*(1.0+q(i,k)*epsim1) |
---|
| 105 | END DO |
---|
| 106 | END DO |
---|
| 107 | |
---|
| 108 | ! gz = phi at the full levels (same as p). |
---|
| 109 | |
---|
| 110 | DO i = 1, len |
---|
| 111 | gz(i, 1) = 0.0 |
---|
| 112 | END DO |
---|
| 113 | DO k = 2, nlp |
---|
| 114 | DO i = 1, len |
---|
| 115 | gz(i, k) = gz(i, k-1) + hrd*(tv(i,k-1)+tv(i,k))*(p(i,k-1)-p(i,k))/ph(i, & |
---|
| 116 | k) |
---|
| 117 | END DO |
---|
| 118 | END DO |
---|
| 119 | |
---|
| 120 | ! h = phi + cpT (dry static energy). |
---|
| 121 | ! hm = phi + cp(T-Tbase)+Lq |
---|
| 122 | |
---|
| 123 | DO k = 1, nlp |
---|
| 124 | DO i = 1, len |
---|
| 125 | h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
---|
| 126 | hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
---|
| 127 | END DO |
---|
| 128 | END DO |
---|
| 129 | |
---|
| 130 | RETURN |
---|
| 131 | END SUBROUTINE cv_prelim |
---|
| 132 | |
---|
| 133 | SUBROUTINE cv_feed(len, nd, t, q, qs, p, hm, gz, nk, icb, icbmax, iflag, tnk, & |
---|
| 134 | qnk, gznk, plcl) |
---|
| 135 | IMPLICIT NONE |
---|
| 136 | |
---|
| 137 | ! ================================================================ |
---|
| 138 | ! Purpose: CONVECTIVE FEED |
---|
| 139 | ! ================================================================ |
---|
| 140 | |
---|
| 141 | include "cvparam.h" |
---|
| 142 | |
---|
| 143 | ! inputs: |
---|
| 144 | INTEGER len, nd |
---|
| 145 | REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
---|
| 146 | REAL hm(len, nd), gz(len, nd) |
---|
| 147 | |
---|
| 148 | ! outputs: |
---|
| 149 | INTEGER iflag(len), nk(len), icb(len), icbmax |
---|
| 150 | REAL tnk(len), qnk(len), gznk(len), plcl(len) |
---|
| 151 | |
---|
| 152 | ! local variables: |
---|
| 153 | INTEGER i, k |
---|
| 154 | INTEGER ihmin(len) |
---|
| 155 | REAL work(len) |
---|
| 156 | REAL pnk(len), qsnk(len), rh(len), chi(len) |
---|
| 157 | |
---|
| 158 | ! ------------------------------------------------------------------- |
---|
| 159 | ! --- Find level of minimum moist static energy |
---|
| 160 | ! --- If level of minimum moist static energy coincides with |
---|
| 161 | ! --- or is lower than minimum allowable parcel origin level, |
---|
| 162 | ! --- set iflag to 6. |
---|
| 163 | ! ------------------------------------------------------------------- |
---|
| 164 | |
---|
| 165 | DO i = 1, len |
---|
| 166 | work(i) = 1.0E12 |
---|
| 167 | ihmin(i) = nl |
---|
| 168 | END DO |
---|
| 169 | DO k = 2, nlp |
---|
| 170 | DO i = 1, len |
---|
| 171 | IF ((hm(i,k)<work(i)) .AND. (hm(i,k)<hm(i,k-1))) THEN |
---|
| 172 | work(i) = hm(i, k) |
---|
| 173 | ihmin(i) = k |
---|
| 174 | END IF |
---|
| 175 | END DO |
---|
| 176 | END DO |
---|
| 177 | DO i = 1, len |
---|
| 178 | ihmin(i) = min(ihmin(i), nlm) |
---|
| 179 | IF (ihmin(i)<=minorig) THEN |
---|
| 180 | iflag(i) = 6 |
---|
| 181 | END IF |
---|
| 182 | END DO |
---|
| 183 | |
---|
| 184 | ! ------------------------------------------------------------------- |
---|
| 185 | ! --- Find that model level below the level of minimum moist static |
---|
| 186 | ! --- energy that has the maximum value of moist static energy |
---|
| 187 | ! ------------------------------------------------------------------- |
---|
| 188 | |
---|
| 189 | DO i = 1, len |
---|
| 190 | work(i) = hm(i, minorig) |
---|
| 191 | nk(i) = minorig |
---|
| 192 | END DO |
---|
| 193 | DO k = minorig + 1, nl |
---|
| 194 | DO i = 1, len |
---|
| 195 | IF ((hm(i,k)>work(i)) .AND. (k<=ihmin(i))) THEN |
---|
| 196 | work(i) = hm(i, k) |
---|
| 197 | nk(i) = k |
---|
| 198 | END IF |
---|
| 199 | END DO |
---|
| 200 | END DO |
---|
| 201 | ! ------------------------------------------------------------------- |
---|
| 202 | ! --- Check whether parcel level temperature and specific humidity |
---|
| 203 | ! --- are reasonable |
---|
| 204 | ! ------------------------------------------------------------------- |
---|
| 205 | DO i = 1, len |
---|
| 206 | IF (((t(i,nk(i))<250.0) .OR. (q(i,nk(i))<=0.0) .OR. (p(i,ihmin(i))< & |
---|
| 207 | 400.0)) .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
| 208 | END DO |
---|
| 209 | ! ------------------------------------------------------------------- |
---|
| 210 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
| 211 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
| 212 | ! ------------------------------------------------------------------- |
---|
| 213 | DO i = 1, len |
---|
| 214 | tnk(i) = t(i, nk(i)) |
---|
| 215 | qnk(i) = q(i, nk(i)) |
---|
| 216 | gznk(i) = gz(i, nk(i)) |
---|
| 217 | pnk(i) = p(i, nk(i)) |
---|
| 218 | qsnk(i) = qs(i, nk(i)) |
---|
| 219 | |
---|
| 220 | rh(i) = qnk(i)/qsnk(i) |
---|
| 221 | rh(i) = min(1.0, rh(i)) |
---|
| 222 | chi(i) = tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
| 223 | plcl(i) = pnk(i)*(rh(i)**chi(i)) |
---|
| 224 | IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag(i & |
---|
| 225 | ) = 8 |
---|
| 226 | END DO |
---|
| 227 | ! ------------------------------------------------------------------- |
---|
| 228 | ! --- Calculate first level above lcl (=icb) |
---|
| 229 | ! ------------------------------------------------------------------- |
---|
| 230 | DO i = 1, len |
---|
| 231 | icb(i) = nlm |
---|
| 232 | END DO |
---|
| 233 | |
---|
| 234 | DO k = minorig, nl |
---|
| 235 | DO i = 1, len |
---|
| 236 | IF ((k>=(nk(i)+1)) .AND. (p(i,k)<plcl(i))) icb(i) = min(icb(i), k) |
---|
| 237 | END DO |
---|
| 238 | END DO |
---|
| 239 | |
---|
| 240 | DO i = 1, len |
---|
| 241 | IF ((icb(i)>=nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
| 242 | END DO |
---|
| 243 | |
---|
| 244 | ! Compute icbmax. |
---|
| 245 | |
---|
| 246 | icbmax = 2 |
---|
| 247 | DO i = 1, len |
---|
| 248 | icbmax = max(icbmax, icb(i)) |
---|
| 249 | END DO |
---|
| 250 | |
---|
| 251 | RETURN |
---|
| 252 | END SUBROUTINE cv_feed |
---|
| 253 | |
---|
| 254 | SUBROUTINE cv_undilute1(len, nd, t, q, qs, gz, p, nk, icb, icbmax, tp, tvp, & |
---|
| 255 | clw) |
---|
| 256 | IMPLICIT NONE |
---|
| 257 | |
---|
| 258 | include "cvthermo.h" |
---|
| 259 | include "cvparam.h" |
---|
| 260 | |
---|
| 261 | ! inputs: |
---|
| 262 | INTEGER len, nd |
---|
| 263 | INTEGER nk(len), icb(len), icbmax |
---|
| 264 | REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
---|
| 265 | REAL p(len, nd) |
---|
| 266 | |
---|
| 267 | ! outputs: |
---|
| 268 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
---|
| 269 | |
---|
| 270 | ! local variables: |
---|
| 271 | INTEGER i, k |
---|
| 272 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
| 273 | REAL ah0(len), cpp(len) |
---|
| 274 | REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
| 275 | |
---|
| 276 | ! ------------------------------------------------------------------- |
---|
| 277 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
| 278 | ! --- the actual temperature, and the adiabatic |
---|
| 279 | ! --- liquid water content. The procedure is to solve the equation. |
---|
| 280 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 281 | ! ------------------------------------------------------------------- |
---|
| 282 | |
---|
| 283 | DO i = 1, len |
---|
| 284 | tnk(i) = t(i, nk(i)) |
---|
| 285 | qnk(i) = q(i, nk(i)) |
---|
| 286 | gznk(i) = gz(i, nk(i)) |
---|
| 287 | ticb(i) = t(i, icb(i)) |
---|
| 288 | gzicb(i) = gz(i, icb(i)) |
---|
| 289 | END DO |
---|
| 290 | |
---|
| 291 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
| 292 | |
---|
| 293 | DO i = 1, len |
---|
| 294 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
---|
| 295 | 273.15)) + gznk(i) |
---|
| 296 | cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
---|
| 297 | END DO |
---|
| 298 | |
---|
| 299 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
| 300 | |
---|
| 301 | DO k = minorig, icbmax - 1 |
---|
| 302 | DO i = 1, len |
---|
| 303 | tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))/cpp(i) |
---|
| 304 | tvp(i, k) = tp(i, k)*(1.+qnk(i)*epsi) |
---|
| 305 | END DO |
---|
| 306 | END DO |
---|
| 307 | |
---|
| 308 | ! *** Find lifted parcel quantities above cloud base *** |
---|
| 309 | |
---|
| 310 | DO i = 1, len |
---|
| 311 | tg = ticb(i) |
---|
| 312 | qg = qs(i, icb(i)) |
---|
| 313 | alv = lv0 - clmcpv*(ticb(i)-t0) |
---|
| 314 | |
---|
| 315 | ! First iteration. |
---|
| 316 | |
---|
| 317 | s = cpd + alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 318 | s = 1./s |
---|
| 319 | ahg = cpd*tg + (cl-cpd)*qnk(i)*ticb(i) + alv*qg + gzicb(i) |
---|
| 320 | tg = tg + s*(ah0(i)-ahg) |
---|
| 321 | tg = max(tg, 35.0) |
---|
| 322 | tc = tg - t0 |
---|
| 323 | denom = 243.5 + tc |
---|
| 324 | IF (tc>=0.0) THEN |
---|
| 325 | es = 6.112*exp(17.67*tc/denom) |
---|
| 326 | ELSE |
---|
| 327 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 328 | END IF |
---|
| 329 | qg = eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 330 | |
---|
| 331 | ! Second iteration. |
---|
| 332 | |
---|
| 333 | s = cpd + alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 334 | s = 1./s |
---|
| 335 | ahg = cpd*tg + (cl-cpd)*qnk(i)*ticb(i) + alv*qg + gzicb(i) |
---|
| 336 | tg = tg + s*(ah0(i)-ahg) |
---|
| 337 | tg = max(tg, 35.0) |
---|
| 338 | tc = tg - t0 |
---|
| 339 | denom = 243.5 + tc |
---|
| 340 | IF (tc>=0.0) THEN |
---|
| 341 | es = 6.112*exp(17.67*tc/denom) |
---|
| 342 | ELSE |
---|
| 343 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 344 | END IF |
---|
| 345 | qg = eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 346 | |
---|
| 347 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
| 348 | tp(i, icb(i)) = (ah0(i)-(cl-cpd)*qnk(i)*ticb(i)-gz(i,icb(i))-alv*qg)/cpd |
---|
| 349 | clw(i, icb(i)) = qnk(i) - qg |
---|
| 350 | clw(i, icb(i)) = max(0.0, clw(i,icb(i))) |
---|
| 351 | rg = qg/(1.-qnk(i)) |
---|
| 352 | tvp(i, icb(i)) = tp(i, icb(i))*(1.+rg*epsi) |
---|
| 353 | END DO |
---|
| 354 | |
---|
| 355 | DO k = minorig, icbmax |
---|
| 356 | DO i = 1, len |
---|
| 357 | tvp(i, k) = tvp(i, k) - tp(i, k)*qnk(i) |
---|
| 358 | END DO |
---|
| 359 | END DO |
---|
| 360 | |
---|
| 361 | RETURN |
---|
| 362 | END SUBROUTINE cv_undilute1 |
---|
| 363 | |
---|
| 364 | SUBROUTINE cv_trigger(len, nd, icb, cbmf, tv, tvp, iflag) |
---|
| 365 | IMPLICIT NONE |
---|
| 366 | |
---|
| 367 | ! ------------------------------------------------------------------- |
---|
| 368 | ! --- Test for instability. |
---|
| 369 | ! --- If there was no convection at last time step and parcel |
---|
| 370 | ! --- is stable at icb, then set iflag to 4. |
---|
| 371 | ! ------------------------------------------------------------------- |
---|
| 372 | |
---|
| 373 | include "cvparam.h" |
---|
| 374 | |
---|
| 375 | ! inputs: |
---|
| 376 | INTEGER len, nd, icb(len) |
---|
| 377 | REAL cbmf(len), tv(len, nd), tvp(len, nd) |
---|
| 378 | |
---|
| 379 | ! outputs: |
---|
| 380 | INTEGER iflag(len) ! also an input |
---|
| 381 | |
---|
| 382 | ! local variables: |
---|
| 383 | INTEGER i |
---|
| 384 | |
---|
| 385 | |
---|
| 386 | DO i = 1, len |
---|
| 387 | IF ((cbmf(i)==0.0) .AND. (iflag(i)==0) .AND. (tvp(i, & |
---|
| 388 | icb(i))<=(tv(i,icb(i))-dtmax))) iflag(i) = 4 |
---|
| 389 | END DO |
---|
| 390 | |
---|
| 391 | RETURN |
---|
| 392 | END SUBROUTINE cv_trigger |
---|
| 393 | |
---|
| 394 | SUBROUTINE cv_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, cbmf1, plcl1, & |
---|
| 395 | tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, cpn1, p1, ph1, tv1, & |
---|
| 396 | tp1, tvp1, clw1, iflag, nk, icb, cbmf, plcl, tnk, qnk, gznk, t, q, qs, u, & |
---|
| 397 | v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw, dph) |
---|
| 398 | USE print_control_mod, ONLY: lunout |
---|
| 399 | IMPLICIT NONE |
---|
| 400 | |
---|
| 401 | include "cvparam.h" |
---|
| 402 | |
---|
| 403 | ! inputs: |
---|
| 404 | INTEGER len, ncum, nd, nloc |
---|
| 405 | INTEGER iflag1(len), nk1(len), icb1(len) |
---|
| 406 | REAL cbmf1(len), plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
---|
| 407 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
---|
| 408 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
---|
| 409 | REAL p1(len, nd), ph1(len, nd+1), tv1(len, nd), tp1(len, nd) |
---|
| 410 | REAL tvp1(len, nd), clw1(len, nd) |
---|
| 411 | |
---|
| 412 | ! outputs: |
---|
| 413 | INTEGER iflag(nloc), nk(nloc), icb(nloc) |
---|
| 414 | REAL cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 415 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 416 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
---|
| 417 | REAL p(nloc, nd), ph(nloc, nd+1), tv(nloc, nd), tp(nloc, nd) |
---|
| 418 | REAL tvp(nloc, nd), clw(nloc, nd) |
---|
| 419 | REAL dph(nloc, nd) |
---|
| 420 | |
---|
| 421 | ! local variables: |
---|
| 422 | INTEGER i, k, nn |
---|
| 423 | CHARACTER (LEN=20) :: modname = 'cv_compress' |
---|
| 424 | CHARACTER (LEN=80) :: abort_message |
---|
| 425 | |
---|
| 426 | |
---|
| 427 | DO k = 1, nl + 1 |
---|
| 428 | nn = 0 |
---|
| 429 | DO i = 1, len |
---|
| 430 | IF (iflag1(i)==0) THEN |
---|
| 431 | nn = nn + 1 |
---|
| 432 | t(nn, k) = t1(i, k) |
---|
| 433 | q(nn, k) = q1(i, k) |
---|
| 434 | qs(nn, k) = qs1(i, k) |
---|
| 435 | u(nn, k) = u1(i, k) |
---|
| 436 | v(nn, k) = v1(i, k) |
---|
| 437 | gz(nn, k) = gz1(i, k) |
---|
| 438 | h(nn, k) = h1(i, k) |
---|
| 439 | lv(nn, k) = lv1(i, k) |
---|
| 440 | cpn(nn, k) = cpn1(i, k) |
---|
| 441 | p(nn, k) = p1(i, k) |
---|
| 442 | ph(nn, k) = ph1(i, k) |
---|
| 443 | tv(nn, k) = tv1(i, k) |
---|
| 444 | tp(nn, k) = tp1(i, k) |
---|
| 445 | tvp(nn, k) = tvp1(i, k) |
---|
| 446 | clw(nn, k) = clw1(i, k) |
---|
| 447 | END IF |
---|
| 448 | END DO |
---|
| 449 | END DO |
---|
| 450 | |
---|
| 451 | IF (nn/=ncum) THEN |
---|
| 452 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
---|
| 453 | abort_message = '' |
---|
| 454 | CALL abort_physic(modname, abort_message, 1) |
---|
| 455 | END IF |
---|
| 456 | |
---|
| 457 | nn = 0 |
---|
| 458 | DO i = 1, len |
---|
| 459 | IF (iflag1(i)==0) THEN |
---|
| 460 | nn = nn + 1 |
---|
| 461 | cbmf(nn) = cbmf1(i) |
---|
| 462 | plcl(nn) = plcl1(i) |
---|
| 463 | tnk(nn) = tnk1(i) |
---|
| 464 | qnk(nn) = qnk1(i) |
---|
| 465 | gznk(nn) = gznk1(i) |
---|
| 466 | nk(nn) = nk1(i) |
---|
| 467 | icb(nn) = icb1(i) |
---|
| 468 | iflag(nn) = iflag1(i) |
---|
| 469 | END IF |
---|
| 470 | END DO |
---|
| 471 | |
---|
| 472 | DO k = 1, nl |
---|
| 473 | DO i = 1, ncum |
---|
| 474 | dph(i, k) = ph(i, k) - ph(i, k+1) |
---|
| 475 | END DO |
---|
| 476 | END DO |
---|
| 477 | |
---|
| 478 | RETURN |
---|
| 479 | END SUBROUTINE cv_compress |
---|
| 480 | |
---|
| 481 | SUBROUTINE cv_undilute2(nloc, ncum, nd, icb, nk, tnk, qnk, gznk, t, q, qs, & |
---|
| 482 | gz, p, dph, h, tv, lv, inb, inb1, tp, tvp, clw, hp, ep, sigp, frac) |
---|
| 483 | IMPLICIT NONE |
---|
| 484 | |
---|
| 485 | ! --------------------------------------------------------------------- |
---|
| 486 | ! Purpose: |
---|
| 487 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 488 | ! & |
---|
| 489 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
| 490 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 491 | ! & |
---|
| 492 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
| 493 | ! --------------------------------------------------------------------- |
---|
| 494 | |
---|
| 495 | include "cvthermo.h" |
---|
| 496 | include "cvparam.h" |
---|
| 497 | |
---|
| 498 | ! inputs: |
---|
| 499 | INTEGER ncum, nd, nloc |
---|
| 500 | INTEGER icb(nloc), nk(nloc) |
---|
| 501 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
---|
| 502 | REAL p(nloc, nd), dph(nloc, nd) |
---|
| 503 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 504 | REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
---|
| 505 | |
---|
| 506 | ! outputs: |
---|
| 507 | INTEGER inb(nloc), inb1(nloc) |
---|
| 508 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
---|
| 509 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
---|
| 510 | REAL frac(nloc) |
---|
| 511 | |
---|
| 512 | ! local variables: |
---|
| 513 | INTEGER i, k |
---|
| 514 | REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
---|
| 515 | REAL by, defrac |
---|
| 516 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
| 517 | LOGICAL lcape(nloc) |
---|
| 518 | |
---|
| 519 | ! ===================================================================== |
---|
| 520 | ! --- SOME INITIALIZATIONS |
---|
| 521 | ! ===================================================================== |
---|
| 522 | |
---|
| 523 | DO k = 1, nl |
---|
| 524 | DO i = 1, ncum |
---|
| 525 | ep(i, k) = 0.0 |
---|
| 526 | sigp(i, k) = sigs |
---|
| 527 | END DO |
---|
| 528 | END DO |
---|
| 529 | |
---|
| 530 | ! ===================================================================== |
---|
| 531 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 532 | ! ===================================================================== |
---|
| 533 | |
---|
| 534 | ! --- The procedure is to solve the equation. |
---|
| 535 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 536 | |
---|
| 537 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | DO i = 1, ncum |
---|
| 541 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
---|
| 542 | t0)) + gznk(i) |
---|
| 543 | END DO |
---|
| 544 | |
---|
| 545 | |
---|
| 546 | ! *** Find lifted parcel quantities above cloud base *** |
---|
| 547 | |
---|
| 548 | |
---|
| 549 | DO k = minorig + 1, nl |
---|
| 550 | DO i = 1, ncum |
---|
| 551 | IF (k>=(icb(i)+1)) THEN |
---|
| 552 | tg = t(i, k) |
---|
| 553 | qg = qs(i, k) |
---|
| 554 | alv = lv0 - clmcpv*(t(i,k)-t0) |
---|
| 555 | |
---|
| 556 | ! First iteration. |
---|
| 557 | |
---|
| 558 | s = cpd + alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 559 | s = 1./s |
---|
| 560 | ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
---|
| 561 | tg = tg + s*(ah0(i)-ahg) |
---|
| 562 | tg = max(tg, 35.0) |
---|
| 563 | tc = tg - t0 |
---|
| 564 | denom = 243.5 + tc |
---|
| 565 | IF (tc>=0.0) THEN |
---|
| 566 | es = 6.112*exp(17.67*tc/denom) |
---|
| 567 | ELSE |
---|
| 568 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 569 | END IF |
---|
| 570 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 571 | |
---|
| 572 | ! Second iteration. |
---|
| 573 | |
---|
| 574 | s = cpd + alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 575 | s = 1./s |
---|
| 576 | ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
---|
| 577 | tg = tg + s*(ah0(i)-ahg) |
---|
| 578 | tg = max(tg, 35.0) |
---|
| 579 | tc = tg - t0 |
---|
| 580 | denom = 243.5 + tc |
---|
| 581 | IF (tc>=0.0) THEN |
---|
| 582 | es = 6.112*exp(17.67*tc/denom) |
---|
| 583 | ELSE |
---|
| 584 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 585 | END IF |
---|
| 586 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 587 | |
---|
| 588 | alv = lv0 - clmcpv*(t(i,k)-t0) |
---|
| 589 | ! print*,'cpd dans convect2 ',cpd |
---|
| 590 | ! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 591 | ! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
| 592 | tp(i, k) = (ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
| 593 | ! if (.not.cpd.gt.1000.) then |
---|
| 594 | ! print*,'CPD=',cpd |
---|
| 595 | ! stop |
---|
| 596 | ! endif |
---|
| 597 | clw(i, k) = qnk(i) - qg |
---|
| 598 | clw(i, k) = max(0.0, clw(i,k)) |
---|
| 599 | rg = qg/(1.-qnk(i)) |
---|
| 600 | tvp(i, k) = tp(i, k)*(1.+rg*epsi) |
---|
| 601 | END IF |
---|
| 602 | END DO |
---|
| 603 | END DO |
---|
| 604 | |
---|
| 605 | ! ===================================================================== |
---|
| 606 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 607 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 608 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 609 | ! ===================================================================== |
---|
| 610 | |
---|
| 611 | DO k = minorig + 1, nl |
---|
| 612 | DO i = 1, ncum |
---|
| 613 | IF (k>=(nk(i)+1)) THEN |
---|
| 614 | tca = tp(i, k) - t0 |
---|
| 615 | IF (tca>=0.0) THEN |
---|
| 616 | elacrit = elcrit |
---|
| 617 | ELSE |
---|
| 618 | elacrit = elcrit*(1.0-tca/tlcrit) |
---|
| 619 | END IF |
---|
| 620 | elacrit = max(elacrit, 0.0) |
---|
| 621 | ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) |
---|
| 622 | ep(i, k) = max(ep(i,k), 0.0) |
---|
| 623 | ep(i, k) = min(ep(i,k), 1.0) |
---|
| 624 | sigp(i, k) = sigs |
---|
| 625 | END IF |
---|
| 626 | END DO |
---|
| 627 | END DO |
---|
| 628 | |
---|
| 629 | ! ===================================================================== |
---|
| 630 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 631 | ! --- VIRTUAL TEMPERATURE |
---|
| 632 | ! ===================================================================== |
---|
| 633 | |
---|
| 634 | DO k = minorig + 1, nl |
---|
| 635 | DO i = 1, ncum |
---|
| 636 | IF (k>=(icb(i)+1)) THEN |
---|
| 637 | tvp(i, k) = tvp(i, k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
| 638 | ! print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 639 | ! print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
| 640 | END IF |
---|
| 641 | END DO |
---|
| 642 | END DO |
---|
| 643 | DO i = 1, ncum |
---|
| 644 | tvp(i, nlp) = tvp(i, nl) - (gz(i,nlp)-gz(i,nl))/cpd |
---|
| 645 | END DO |
---|
| 646 | |
---|
| 647 | ! ===================================================================== |
---|
| 648 | ! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
| 649 | ! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
| 650 | ! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
| 651 | ! ===================================================================== |
---|
| 652 | |
---|
| 653 | DO i = 1, ncum |
---|
| 654 | cape(i) = 0.0 |
---|
| 655 | capem(i) = 0.0 |
---|
| 656 | inb(i) = icb(i) + 1 |
---|
| 657 | inb1(i) = inb(i) |
---|
| 658 | END DO |
---|
| 659 | |
---|
| 660 | ! Originial Code |
---|
| 661 | |
---|
| 662 | ! do 530 k=minorig+1,nl-1 |
---|
| 663 | ! do 520 i=1,ncum |
---|
| 664 | ! if(k.ge.(icb(i)+1))then |
---|
| 665 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 666 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 667 | ! cape(i)=cape(i)+by |
---|
| 668 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
| 669 | ! if(cape(i).gt.0.0)then |
---|
| 670 | ! inb(i)=k+1 |
---|
| 671 | ! capem(i)=cape(i) |
---|
| 672 | ! endif |
---|
| 673 | ! endif |
---|
| 674 | ! 520 continue |
---|
| 675 | ! 530 continue |
---|
| 676 | ! do 540 i=1,ncum |
---|
| 677 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 678 | ! cape(i)=capem(i)+byp |
---|
| 679 | ! defrac=capem(i)-cape(i) |
---|
| 680 | ! defrac=max(defrac,0.001) |
---|
| 681 | ! frac(i)=-cape(i)/defrac |
---|
| 682 | ! frac(i)=min(frac(i),1.0) |
---|
| 683 | ! frac(i)=max(frac(i),0.0) |
---|
| 684 | ! 540 continue |
---|
| 685 | |
---|
| 686 | ! K Emanuel fix |
---|
| 687 | |
---|
| 688 | ! call zilch(byp,ncum) |
---|
| 689 | ! do 530 k=minorig+1,nl-1 |
---|
| 690 | ! do 520 i=1,ncum |
---|
| 691 | ! if(k.ge.(icb(i)+1))then |
---|
| 692 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 693 | ! cape(i)=cape(i)+by |
---|
| 694 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
| 695 | ! if(cape(i).gt.0.0)then |
---|
| 696 | ! inb(i)=k+1 |
---|
| 697 | ! capem(i)=cape(i) |
---|
| 698 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 699 | ! endif |
---|
| 700 | ! endif |
---|
| 701 | ! 520 continue |
---|
| 702 | ! 530 continue |
---|
| 703 | ! do 540 i=1,ncum |
---|
| 704 | ! inb(i)=max(inb(i),inb1(i)) |
---|
| 705 | ! cape(i)=capem(i)+byp(i) |
---|
| 706 | ! defrac=capem(i)-cape(i) |
---|
| 707 | ! defrac=max(defrac,0.001) |
---|
| 708 | ! frac(i)=-cape(i)/defrac |
---|
| 709 | ! frac(i)=min(frac(i),1.0) |
---|
| 710 | ! frac(i)=max(frac(i),0.0) |
---|
| 711 | ! 540 continue |
---|
| 712 | |
---|
| 713 | ! J Teixeira fix |
---|
| 714 | |
---|
| 715 | CALL zilch(byp, ncum) |
---|
| 716 | DO i = 1, ncum |
---|
| 717 | lcape(i) = .TRUE. |
---|
| 718 | END DO |
---|
| 719 | DO k = minorig + 1, nl - 1 |
---|
| 720 | DO i = 1, ncum |
---|
| 721 | IF (cape(i)<0.0) lcape(i) = .FALSE. |
---|
| 722 | IF ((k>=(icb(i)+1)) .AND. lcape(i)) THEN |
---|
| 723 | by = (tvp(i,k)-tv(i,k))*dph(i, k)/p(i, k) |
---|
| 724 | byp(i) = (tvp(i,k+1)-tv(i,k+1))*dph(i, k+1)/p(i, k+1) |
---|
| 725 | cape(i) = cape(i) + by |
---|
| 726 | IF (by>=0.0) inb1(i) = k + 1 |
---|
| 727 | IF (cape(i)>0.0) THEN |
---|
| 728 | inb(i) = k + 1 |
---|
| 729 | capem(i) = cape(i) |
---|
| 730 | END IF |
---|
| 731 | END IF |
---|
| 732 | END DO |
---|
| 733 | END DO |
---|
| 734 | DO i = 1, ncum |
---|
| 735 | cape(i) = capem(i) + byp(i) |
---|
| 736 | defrac = capem(i) - cape(i) |
---|
| 737 | defrac = max(defrac, 0.001) |
---|
| 738 | frac(i) = -cape(i)/defrac |
---|
| 739 | frac(i) = min(frac(i), 1.0) |
---|
| 740 | frac(i) = max(frac(i), 0.0) |
---|
| 741 | END DO |
---|
| 742 | |
---|
| 743 | ! ===================================================================== |
---|
| 744 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 745 | ! ===================================================================== |
---|
| 746 | |
---|
| 747 | ! initialization: |
---|
| 748 | DO i = 1, ncum*nlp |
---|
| 749 | hp(i, 1) = h(i, 1) |
---|
| 750 | END DO |
---|
| 751 | |
---|
| 752 | DO k = minorig + 1, nl |
---|
| 753 | DO i = 1, ncum |
---|
| 754 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
| 755 | hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
---|
| 756 | ) |
---|
| 757 | END IF |
---|
| 758 | END DO |
---|
| 759 | END DO |
---|
| 760 | |
---|
| 761 | RETURN |
---|
| 762 | END SUBROUTINE cv_undilute2 |
---|
| 763 | |
---|
| 764 | SUBROUTINE cv_closure(nloc, ncum, nd, nk, icb, tv, tvp, p, ph, dph, plcl, & |
---|
| 765 | cpn, iflag, cbmf) |
---|
| 766 | IMPLICIT NONE |
---|
| 767 | |
---|
| 768 | ! inputs: |
---|
| 769 | INTEGER ncum, nd, nloc |
---|
| 770 | INTEGER nk(nloc), icb(nloc) |
---|
| 771 | REAL tv(nloc, nd), tvp(nloc, nd), p(nloc, nd), dph(nloc, nd) |
---|
| 772 | REAL ph(nloc, nd+1) ! caution nd instead ndp1 to be consistent... |
---|
| 773 | REAL plcl(nloc), cpn(nloc, nd) |
---|
| 774 | |
---|
| 775 | ! outputs: |
---|
| 776 | INTEGER iflag(nloc) |
---|
| 777 | REAL cbmf(nloc) ! also an input |
---|
| 778 | |
---|
| 779 | ! local variables: |
---|
| 780 | INTEGER i, k, icbmax |
---|
| 781 | REAL dtpbl(nloc), dtmin(nloc), tvpplcl(nloc), tvaplcl(nloc) |
---|
| 782 | REAL work(nloc) |
---|
| 783 | |
---|
| 784 | include "cvthermo.h" |
---|
| 785 | include "cvparam.h" |
---|
| 786 | |
---|
| 787 | ! ------------------------------------------------------------------- |
---|
| 788 | ! Compute icbmax. |
---|
| 789 | ! ------------------------------------------------------------------- |
---|
| 790 | |
---|
| 791 | icbmax = 2 |
---|
| 792 | DO i = 1, ncum |
---|
| 793 | icbmax = max(icbmax, icb(i)) |
---|
| 794 | END DO |
---|
| 795 | |
---|
| 796 | ! ===================================================================== |
---|
| 797 | ! --- CALCULATE CLOUD BASE MASS FLUX |
---|
| 798 | ! ===================================================================== |
---|
| 799 | |
---|
| 800 | ! tvpplcl = parcel temperature lifted adiabatically from level |
---|
| 801 | ! icb-1 to the LCL. |
---|
| 802 | ! tvaplcl = virtual temperature at the LCL. |
---|
| 803 | |
---|
| 804 | DO i = 1, ncum |
---|
| 805 | dtpbl(i) = 0.0 |
---|
| 806 | tvpplcl(i) = tvp(i, icb(i)-1) - rrd*tvp(i, icb(i)-1)*(p(i,icb(i)-1)-plcl( & |
---|
| 807 | i))/(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
---|
| 808 | tvaplcl(i) = tv(i, icb(i)) + (tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i & |
---|
| 809 | ,icb(i)))/(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 810 | END DO |
---|
| 811 | |
---|
| 812 | ! ------------------------------------------------------------------- |
---|
| 813 | ! --- Interpolate difference between lifted parcel and |
---|
| 814 | ! --- environmental temperatures to lifted condensation level |
---|
| 815 | ! ------------------------------------------------------------------- |
---|
| 816 | |
---|
| 817 | ! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
| 818 | |
---|
| 819 | DO k = minorig, icbmax |
---|
| 820 | DO i = 1, ncum |
---|
| 821 | IF ((k>=nk(i)) .AND. (k<=(icb(i)-1))) THEN |
---|
| 822 | dtpbl(i) = dtpbl(i) + (tvp(i,k)-tv(i,k))*dph(i, k) |
---|
| 823 | END IF |
---|
| 824 | END DO |
---|
| 825 | END DO |
---|
| 826 | DO i = 1, ncum |
---|
| 827 | dtpbl(i) = dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
---|
| 828 | dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) |
---|
| 829 | END DO |
---|
| 830 | |
---|
| 831 | ! ------------------------------------------------------------------- |
---|
| 832 | ! --- Adjust cloud base mass flux |
---|
| 833 | ! ------------------------------------------------------------------- |
---|
| 834 | |
---|
| 835 | DO i = 1, ncum |
---|
| 836 | work(i) = cbmf(i) |
---|
| 837 | cbmf(i) = max(0.0, (1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
---|
| 838 | IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN |
---|
| 839 | iflag(i) = 3 |
---|
| 840 | END IF |
---|
| 841 | END DO |
---|
| 842 | |
---|
| 843 | RETURN |
---|
| 844 | END SUBROUTINE cv_closure |
---|
| 845 | |
---|
| 846 | SUBROUTINE cv_mixing(nloc, ncum, nd, icb, nk, inb, inb1, ph, t, q, qs, u, v, & |
---|
| 847 | h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, uent, vent, nent, & |
---|
| 848 | sij, elij) |
---|
| 849 | IMPLICIT NONE |
---|
| 850 | |
---|
| 851 | include "cvthermo.h" |
---|
| 852 | include "cvparam.h" |
---|
| 853 | |
---|
| 854 | ! inputs: |
---|
| 855 | INTEGER ncum, nd, nloc |
---|
| 856 | INTEGER icb(nloc), inb(nloc), inb1(nloc), nk(nloc) |
---|
| 857 | REAL cbmf(nloc), qnk(nloc) |
---|
| 858 | REAL ph(nloc, nd+1) |
---|
| 859 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), lv(nloc, nd) |
---|
| 860 | REAL u(nloc, nd), v(nloc, nd), h(nloc, nd), hp(nloc, nd) |
---|
| 861 | REAL tv(nloc, nd), tvp(nloc, nd), ep(nloc, nd), clw(nloc, nd) |
---|
| 862 | |
---|
| 863 | ! outputs: |
---|
| 864 | INTEGER nent(nloc, nd) |
---|
| 865 | REAL m(nloc, nd), ment(nloc, nd, nd), qent(nloc, nd, nd) |
---|
| 866 | REAL uent(nloc, nd, nd), vent(nloc, nd, nd) |
---|
| 867 | REAL sij(nloc, nd, nd), elij(nloc, nd, nd) |
---|
| 868 | |
---|
| 869 | ! local variables: |
---|
| 870 | INTEGER i, j, k, ij |
---|
| 871 | INTEGER num1, num2 |
---|
| 872 | REAL dbo, qti, bf2, anum, denom, dei, altem, cwat, stemp |
---|
| 873 | REAL alt, qp1, smid, sjmin, sjmax, delp, delm |
---|
| 874 | REAL work(nloc), asij(nloc), smin(nloc), scrit(nloc) |
---|
| 875 | REAL bsum(nloc, nd) |
---|
| 876 | LOGICAL lwork(nloc) |
---|
| 877 | |
---|
| 878 | ! ===================================================================== |
---|
| 879 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 880 | ! ===================================================================== |
---|
| 881 | |
---|
| 882 | DO i = 1, ncum*nlp |
---|
| 883 | nent(i, 1) = 0 |
---|
| 884 | m(i, 1) = 0.0 |
---|
| 885 | END DO |
---|
| 886 | |
---|
| 887 | DO k = 1, nlp |
---|
| 888 | DO j = 1, nlp |
---|
| 889 | DO i = 1, ncum |
---|
| 890 | qent(i, k, j) = q(i, j) |
---|
| 891 | uent(i, k, j) = u(i, j) |
---|
| 892 | vent(i, k, j) = v(i, j) |
---|
| 893 | elij(i, k, j) = 0.0 |
---|
| 894 | ment(i, k, j) = 0.0 |
---|
| 895 | sij(i, k, j) = 0.0 |
---|
| 896 | END DO |
---|
| 897 | END DO |
---|
| 898 | END DO |
---|
| 899 | |
---|
| 900 | ! ------------------------------------------------------------------- |
---|
| 901 | ! --- Calculate rates of mixing, m(i) |
---|
| 902 | ! ------------------------------------------------------------------- |
---|
| 903 | |
---|
| 904 | CALL zilch(work, ncum) |
---|
| 905 | |
---|
| 906 | DO j = minorig + 1, nl |
---|
| 907 | DO i = 1, ncum |
---|
| 908 | IF ((j>=(icb(i)+1)) .AND. (j<=inb(i))) THEN |
---|
| 909 | k = min(j, inb1(i)) |
---|
| 910 | dbo = abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) + & |
---|
| 911 | entp*0.04*(ph(i,k)-ph(i,k+1)) |
---|
| 912 | work(i) = work(i) + dbo |
---|
| 913 | m(i, j) = cbmf(i)*dbo |
---|
| 914 | END IF |
---|
| 915 | END DO |
---|
| 916 | END DO |
---|
| 917 | DO k = minorig + 1, nl |
---|
| 918 | DO i = 1, ncum |
---|
| 919 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
---|
| 920 | m(i, k) = m(i, k)/work(i) |
---|
| 921 | END IF |
---|
| 922 | END DO |
---|
| 923 | END DO |
---|
| 924 | |
---|
| 925 | |
---|
| 926 | ! ===================================================================== |
---|
| 927 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 928 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 929 | ! --- FRACTION (sij) |
---|
| 930 | ! ===================================================================== |
---|
| 931 | |
---|
| 932 | |
---|
| 933 | DO i = minorig + 1, nl |
---|
| 934 | DO j = minorig + 1, nl |
---|
| 935 | DO ij = 1, ncum |
---|
| 936 | IF ((i>=(icb(ij)+1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & |
---|
| 937 | inb(ij))) THEN |
---|
| 938 | qti = qnk(ij) - ep(ij, i)*clw(ij, i) |
---|
| 939 | bf2 = 1. + lv(ij, j)*lv(ij, j)*qs(ij, j)/(rrv*t(ij,j)*t(ij,j)*cpd) |
---|
| 940 | anum = h(ij, j) - hp(ij, i) + (cpv-cpd)*t(ij, j)*(qti-q(ij,j)) |
---|
| 941 | denom = h(ij, i) - hp(ij, i) + (cpd-cpv)*(q(ij,i)-qti)*t(ij, j) |
---|
| 942 | dei = denom |
---|
| 943 | IF (abs(dei)<0.01) dei = 0.01 |
---|
| 944 | sij(ij, i, j) = anum/dei |
---|
| 945 | sij(ij, i, i) = 1.0 |
---|
| 946 | altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
---|
| 947 | altem = altem/bf2 |
---|
| 948 | cwat = clw(ij, j)*(1.-ep(ij,j)) |
---|
| 949 | stemp = sij(ij, i, j) |
---|
| 950 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
| 951 | anum = anum - lv(ij, j)*(qti-qs(ij,j)-cwat*bf2) |
---|
| 952 | denom = denom + lv(ij, j)*(q(ij,i)-qti) |
---|
| 953 | IF (abs(denom)<0.01) denom = 0.01 |
---|
| 954 | sij(ij, i, j) = anum/denom |
---|
| 955 | altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
---|
| 956 | altem = altem - (bf2-1.)*cwat |
---|
| 957 | END IF |
---|
| 958 | IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
---|
| 959 | qent(ij, i, j) = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti |
---|
| 960 | uent(ij, i, j) = sij(ij, i, j)*u(ij, i) + & |
---|
| 961 | (1.-sij(ij,i,j))*u(ij, nk(ij)) |
---|
| 962 | vent(ij, i, j) = sij(ij, i, j)*v(ij, i) + & |
---|
| 963 | (1.-sij(ij,i,j))*v(ij, nk(ij)) |
---|
| 964 | elij(ij, i, j) = altem |
---|
| 965 | elij(ij, i, j) = max(0.0, elij(ij,i,j)) |
---|
| 966 | ment(ij, i, j) = m(ij, i)/(1.-sij(ij,i,j)) |
---|
| 967 | nent(ij, i) = nent(ij, i) + 1 |
---|
| 968 | END IF |
---|
| 969 | sij(ij, i, j) = max(0.0, sij(ij,i,j)) |
---|
| 970 | sij(ij, i, j) = min(1.0, sij(ij,i,j)) |
---|
| 971 | END IF |
---|
| 972 | END DO |
---|
| 973 | END DO |
---|
| 974 | |
---|
| 975 | ! *** If no air can entrain at level i assume that updraft detrains |
---|
| 976 | ! *** |
---|
| 977 | ! *** at that level and calculate detrained air flux and properties |
---|
| 978 | ! *** |
---|
| 979 | |
---|
| 980 | DO ij = 1, ncum |
---|
| 981 | IF ((i>=(icb(ij)+1)) .AND. (i<=inb(ij)) .AND. (nent(ij,i)==0)) THEN |
---|
| 982 | ment(ij, i, i) = m(ij, i) |
---|
| 983 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
| 984 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
| 985 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
| 986 | elij(ij, i, i) = clw(ij, i) |
---|
| 987 | sij(ij, i, i) = 1.0 |
---|
| 988 | END IF |
---|
| 989 | END DO |
---|
| 990 | END DO |
---|
| 991 | |
---|
| 992 | DO i = 1, ncum |
---|
| 993 | sij(i, inb(i), inb(i)) = 1.0 |
---|
| 994 | END DO |
---|
| 995 | |
---|
| 996 | ! ===================================================================== |
---|
| 997 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 998 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 999 | ! ===================================================================== |
---|
| 1000 | |
---|
| 1001 | CALL zilch(bsum, ncum*nlp) |
---|
| 1002 | DO ij = 1, ncum |
---|
| 1003 | lwork(ij) = .FALSE. |
---|
| 1004 | END DO |
---|
| 1005 | DO i = minorig + 1, nl |
---|
| 1006 | |
---|
| 1007 | num1 = 0 |
---|
| 1008 | DO ij = 1, ncum |
---|
| 1009 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) num1 = num1 + 1 |
---|
| 1010 | END DO |
---|
| 1011 | IF (num1<=0) GO TO 789 |
---|
| 1012 | |
---|
| 1013 | DO ij = 1, ncum |
---|
| 1014 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) THEN |
---|
| 1015 | lwork(ij) = (nent(ij,i)/=0) |
---|
| 1016 | qp1 = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
| 1017 | anum = h(ij, i) - hp(ij, i) - lv(ij, i)*(qp1-qs(ij,i)) |
---|
| 1018 | denom = h(ij, i) - hp(ij, i) + lv(ij, i)*(q(ij,i)-qp1) |
---|
| 1019 | IF (abs(denom)<0.01) denom = 0.01 |
---|
| 1020 | scrit(ij) = anum/denom |
---|
| 1021 | alt = qp1 - qs(ij, i) + scrit(ij)*(q(ij,i)-qp1) |
---|
| 1022 | IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 |
---|
| 1023 | asij(ij) = 0.0 |
---|
| 1024 | smin(ij) = 1.0 |
---|
| 1025 | END IF |
---|
| 1026 | END DO |
---|
| 1027 | DO j = minorig, nl |
---|
| 1028 | |
---|
| 1029 | num2 = 0 |
---|
| 1030 | DO ij = 1, ncum |
---|
| 1031 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
| 1032 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 |
---|
| 1033 | END DO |
---|
| 1034 | IF (num2<=0) GO TO 783 |
---|
| 1035 | |
---|
| 1036 | DO ij = 1, ncum |
---|
| 1037 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
| 1038 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
| 1039 | IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
---|
| 1040 | IF (j>i) THEN |
---|
| 1041 | smid = min(sij(ij,i,j), scrit(ij)) |
---|
| 1042 | sjmax = smid |
---|
| 1043 | sjmin = smid |
---|
| 1044 | IF (smid<smin(ij) .AND. sij(ij,i,j+1)<smid) THEN |
---|
| 1045 | smin(ij) = smid |
---|
| 1046 | sjmax = min(sij(ij,i,j+1), sij(ij,i,j), scrit(ij)) |
---|
| 1047 | sjmin = max(sij(ij,i,j-1), sij(ij,i,j)) |
---|
| 1048 | sjmin = min(sjmin, scrit(ij)) |
---|
| 1049 | END IF |
---|
| 1050 | ELSE |
---|
| 1051 | sjmax = max(sij(ij,i,j+1), scrit(ij)) |
---|
| 1052 | smid = max(sij(ij,i,j), scrit(ij)) |
---|
| 1053 | sjmin = 0.0 |
---|
| 1054 | IF (j>1) sjmin = sij(ij, i, j-1) |
---|
| 1055 | sjmin = max(sjmin, scrit(ij)) |
---|
| 1056 | END IF |
---|
| 1057 | delp = abs(sjmax-smid) |
---|
| 1058 | delm = abs(sjmin-smid) |
---|
| 1059 | asij(ij) = asij(ij) + (delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
---|
| 1060 | ment(ij, i, j) = ment(ij, i, j)*(delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
---|
| 1061 | END IF |
---|
| 1062 | END IF |
---|
| 1063 | END DO |
---|
| 1064 | 783 END DO |
---|
| 1065 | DO ij = 1, ncum |
---|
| 1066 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN |
---|
| 1067 | asij(ij) = max(1.0E-21, asij(ij)) |
---|
| 1068 | asij(ij) = 1.0/asij(ij) |
---|
| 1069 | bsum(ij, i) = 0.0 |
---|
| 1070 | END IF |
---|
| 1071 | END DO |
---|
| 1072 | DO j = minorig, nl + 1 |
---|
| 1073 | DO ij = 1, ncum |
---|
| 1074 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
| 1075 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
| 1076 | ment(ij, i, j) = ment(ij, i, j)*asij(ij) |
---|
| 1077 | bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) |
---|
| 1078 | END IF |
---|
| 1079 | END DO |
---|
| 1080 | END DO |
---|
| 1081 | DO ij = 1, ncum |
---|
| 1082 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & |
---|
| 1083 | i)<1.0E-18) .AND. lwork(ij)) THEN |
---|
| 1084 | nent(ij, i) = 0 |
---|
| 1085 | ment(ij, i, i) = m(ij, i) |
---|
| 1086 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
| 1087 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
| 1088 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
| 1089 | elij(ij, i, i) = clw(ij, i) |
---|
| 1090 | sij(ij, i, i) = 1.0 |
---|
| 1091 | END IF |
---|
| 1092 | END DO |
---|
| 1093 | 789 END DO |
---|
| 1094 | |
---|
| 1095 | RETURN |
---|
| 1096 | END SUBROUTINE cv_mixing |
---|
| 1097 | |
---|
| 1098 | SUBROUTINE cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph, h, lv, & |
---|
| 1099 | ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, water, evap) |
---|
| 1100 | IMPLICIT NONE |
---|
| 1101 | |
---|
| 1102 | |
---|
| 1103 | include "cvthermo.h" |
---|
| 1104 | include "cvparam.h" |
---|
| 1105 | |
---|
| 1106 | ! inputs: |
---|
| 1107 | INTEGER ncum, nd, nloc |
---|
| 1108 | INTEGER inb(nloc) |
---|
| 1109 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd) |
---|
| 1110 | REAL gz(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 1111 | REAL p(nloc, nd), ph(nloc, nd+1), h(nloc, nd) |
---|
| 1112 | REAL lv(nloc, nd), ep(nloc, nd), sigp(nloc, nd), clw(nloc, nd) |
---|
| 1113 | REAL m(nloc, nd), ment(nloc, nd, nd), elij(nloc, nd, nd) |
---|
| 1114 | |
---|
| 1115 | ! outputs: |
---|
| 1116 | INTEGER iflag(nloc) ! also an input |
---|
| 1117 | REAL mp(nloc, nd), qp(nloc, nd), up(nloc, nd), vp(nloc, nd) |
---|
| 1118 | REAL water(nloc, nd), evap(nloc, nd), wt(nloc, nd) |
---|
| 1119 | |
---|
| 1120 | ! local variables: |
---|
| 1121 | INTEGER i, j, k, ij, num1 |
---|
| 1122 | INTEGER jtt(nloc) |
---|
| 1123 | REAL awat, coeff, qsm, afac, sigt, b6, c6, revap |
---|
| 1124 | REAL dhdp, fac, qstm, rat |
---|
| 1125 | REAL wdtrain(nloc) |
---|
| 1126 | LOGICAL lwork(nloc) |
---|
| 1127 | |
---|
| 1128 | ! ===================================================================== |
---|
| 1129 | ! --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
| 1130 | ! ===================================================================== |
---|
| 1131 | |
---|
| 1132 | ! Initializations: |
---|
| 1133 | |
---|
| 1134 | DO i = 1, ncum |
---|
| 1135 | DO k = 1, nl + 1 |
---|
| 1136 | wt(i, k) = omtsnow |
---|
| 1137 | mp(i, k) = 0.0 |
---|
| 1138 | evap(i, k) = 0.0 |
---|
| 1139 | water(i, k) = 0.0 |
---|
| 1140 | END DO |
---|
| 1141 | END DO |
---|
| 1142 | |
---|
| 1143 | DO i = 1, ncum |
---|
| 1144 | qp(i, 1) = q(i, 1) |
---|
| 1145 | up(i, 1) = u(i, 1) |
---|
| 1146 | vp(i, 1) = v(i, 1) |
---|
| 1147 | END DO |
---|
| 1148 | |
---|
| 1149 | DO k = 2, nl + 1 |
---|
| 1150 | DO i = 1, ncum |
---|
| 1151 | qp(i, k) = q(i, k-1) |
---|
| 1152 | up(i, k) = u(i, k-1) |
---|
| 1153 | vp(i, k) = v(i, k-1) |
---|
| 1154 | END DO |
---|
| 1155 | END DO |
---|
| 1156 | |
---|
| 1157 | |
---|
| 1158 | ! *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 1159 | ! *** downdraft calculation *** |
---|
| 1160 | |
---|
| 1161 | |
---|
| 1162 | ! *** Integrate liquid water equation to find condensed water *** |
---|
| 1163 | ! *** and condensed water flux *** |
---|
| 1164 | |
---|
| 1165 | |
---|
| 1166 | DO i = 1, ncum |
---|
| 1167 | jtt(i) = 2 |
---|
| 1168 | IF (ep(i,inb(i))<=0.0001) iflag(i) = 2 |
---|
| 1169 | IF (iflag(i)==0) THEN |
---|
| 1170 | lwork(i) = .TRUE. |
---|
| 1171 | ELSE |
---|
| 1172 | lwork(i) = .FALSE. |
---|
| 1173 | END IF |
---|
| 1174 | END DO |
---|
| 1175 | |
---|
| 1176 | ! *** Begin downdraft loop *** |
---|
| 1177 | |
---|
| 1178 | |
---|
| 1179 | CALL zilch(wdtrain, ncum) |
---|
| 1180 | DO i = nl + 1, 1, -1 |
---|
| 1181 | |
---|
| 1182 | num1 = 0 |
---|
| 1183 | DO ij = 1, ncum |
---|
| 1184 | IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 |
---|
| 1185 | END DO |
---|
| 1186 | IF (num1<=0) GO TO 899 |
---|
| 1187 | |
---|
| 1188 | |
---|
| 1189 | ! *** Calculate detrained precipitation *** |
---|
| 1190 | |
---|
| 1191 | DO ij = 1, ncum |
---|
| 1192 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
| 1193 | wdtrain(ij) = g*ep(ij, i)*m(ij, i)*clw(ij, i) |
---|
| 1194 | END IF |
---|
| 1195 | END DO |
---|
| 1196 | |
---|
| 1197 | IF (i>1) THEN |
---|
| 1198 | DO j = 1, i - 1 |
---|
| 1199 | DO ij = 1, ncum |
---|
| 1200 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
| 1201 | awat = elij(ij, j, i) - (1.-ep(ij,i))*clw(ij, i) |
---|
| 1202 | awat = max(0.0, awat) |
---|
| 1203 | wdtrain(ij) = wdtrain(ij) + g*awat*ment(ij, j, i) |
---|
| 1204 | END IF |
---|
| 1205 | END DO |
---|
| 1206 | END DO |
---|
| 1207 | END IF |
---|
| 1208 | |
---|
| 1209 | ! *** Find rain water and evaporation using provisional *** |
---|
| 1210 | ! *** estimates of qp(i)and qp(i-1) *** |
---|
| 1211 | |
---|
| 1212 | |
---|
| 1213 | ! *** Value of terminal velocity and coeffecient of evaporation for snow |
---|
| 1214 | ! *** |
---|
| 1215 | |
---|
| 1216 | DO ij = 1, ncum |
---|
| 1217 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
| 1218 | coeff = coeffs |
---|
| 1219 | wt(ij, i) = omtsnow |
---|
| 1220 | |
---|
| 1221 | ! *** Value of terminal velocity and coeffecient of evaporation for |
---|
| 1222 | ! rain *** |
---|
| 1223 | |
---|
| 1224 | IF (t(ij,i)>273.0) THEN |
---|
| 1225 | coeff = coeffr |
---|
| 1226 | wt(ij, i) = omtrain |
---|
| 1227 | END IF |
---|
| 1228 | qsm = 0.5*(q(ij,i)+qp(ij,i+1)) |
---|
| 1229 | afac = coeff*ph(ij, i)*(qs(ij,i)-qsm)/(1.0E4+2.0E3*ph(ij,i)*qs(ij,i)) |
---|
| 1230 | afac = max(afac, 0.0) |
---|
| 1231 | sigt = sigp(ij, i) |
---|
| 1232 | sigt = max(0.0, sigt) |
---|
| 1233 | sigt = min(1.0, sigt) |
---|
| 1234 | b6 = 100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij, i) |
---|
| 1235 | c6 = (water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij, i) |
---|
| 1236 | revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
| 1237 | evap(ij, i) = sigt*afac*revap |
---|
| 1238 | water(ij, i) = revap*revap |
---|
| 1239 | |
---|
| 1240 | ! *** Calculate precipitating downdraft mass flux under *** |
---|
| 1241 | ! *** hydrostatic approximation *** |
---|
| 1242 | |
---|
| 1243 | IF (i>1) THEN |
---|
| 1244 | dhdp = (h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
---|
| 1245 | dhdp = max(dhdp, 10.0) |
---|
| 1246 | mp(ij, i) = 100.*ginv*lv(ij, i)*sigd*evap(ij, i)/dhdp |
---|
| 1247 | mp(ij, i) = max(mp(ij,i), 0.0) |
---|
| 1248 | |
---|
| 1249 | ! *** Add small amount of inertia to downdraft *** |
---|
| 1250 | |
---|
| 1251 | fac = 20.0/(ph(ij,i-1)-ph(ij,i)) |
---|
| 1252 | mp(ij, i) = (fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
---|
| 1253 | |
---|
| 1254 | ! *** Force mp to decrease linearly to zero |
---|
| 1255 | ! *** |
---|
| 1256 | ! *** between about 950 mb and the surface |
---|
| 1257 | ! *** |
---|
| 1258 | |
---|
| 1259 | IF (p(ij,i)>(0.949*p(ij,1))) THEN |
---|
| 1260 | jtt(ij) = max(jtt(ij), i) |
---|
| 1261 | mp(ij, i) = mp(ij, jtt(ij))*(p(ij,1)-p(ij,i))/ & |
---|
| 1262 | (p(ij,1)-p(ij,jtt(ij))) |
---|
| 1263 | END IF |
---|
| 1264 | END IF |
---|
| 1265 | |
---|
| 1266 | ! *** Find mixing ratio of precipitating downdraft *** |
---|
| 1267 | |
---|
| 1268 | IF (i/=inb(ij)) THEN |
---|
| 1269 | IF (i==1) THEN |
---|
| 1270 | qstm = qs(ij, 1) |
---|
| 1271 | ELSE |
---|
| 1272 | qstm = qs(ij, i-1) |
---|
| 1273 | END IF |
---|
| 1274 | IF (mp(ij,i)>mp(ij,i+1)) THEN |
---|
| 1275 | rat = mp(ij, i+1)/mp(ij, i) |
---|
| 1276 | qp(ij, i) = qp(ij, i+1)*rat + q(ij, i)*(1.0-rat) + & |
---|
| 1277 | 100.*ginv*sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
---|
| 1278 | up(ij, i) = up(ij, i+1)*rat + u(ij, i)*(1.-rat) |
---|
| 1279 | vp(ij, i) = vp(ij, i+1)*rat + v(ij, i)*(1.-rat) |
---|
| 1280 | ELSE |
---|
| 1281 | IF (mp(ij,i+1)>0.0) THEN |
---|
| 1282 | qp(ij, i) = (gz(ij,i+1)-gz(ij,i)+qp(ij,i+1)*(lv(ij,i+1)+t(ij, & |
---|
| 1283 | i+1)*(cl-cpd))+cpd*(t(ij,i+1)-t(ij, & |
---|
| 1284 | i)))/(lv(ij,i)+t(ij,i)*(cl-cpd)) |
---|
| 1285 | up(ij, i) = up(ij, i+1) |
---|
| 1286 | vp(ij, i) = vp(ij, i+1) |
---|
| 1287 | END IF |
---|
| 1288 | END IF |
---|
| 1289 | qp(ij, i) = min(qp(ij,i), qstm) |
---|
| 1290 | qp(ij, i) = max(qp(ij,i), 0.0) |
---|
| 1291 | END IF |
---|
| 1292 | END IF |
---|
| 1293 | END DO |
---|
| 1294 | 899 END DO |
---|
| 1295 | |
---|
| 1296 | RETURN |
---|
| 1297 | END SUBROUTINE cv_unsat |
---|
| 1298 | |
---|
| 1299 | SUBROUTINE cv_yield(nloc, ncum, nd, nk, icb, inb, delt, t, q, u, v, gz, p, & |
---|
| 1300 | ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, water, evap, & |
---|
| 1301 | ment, qent, uent, vent, nent, elij, tv, tvp, iflag, wd, qprime, tprime, & |
---|
| 1302 | precip, cbmf, ft, fq, fu, fv, ma, qcondc) |
---|
| 1303 | IMPLICIT NONE |
---|
| 1304 | |
---|
| 1305 | include "cvthermo.h" |
---|
| 1306 | include "cvparam.h" |
---|
| 1307 | |
---|
| 1308 | ! inputs |
---|
| 1309 | INTEGER ncum, nd, nloc |
---|
| 1310 | INTEGER nk(nloc), icb(nloc), inb(nloc) |
---|
| 1311 | INTEGER nent(nloc, nd) |
---|
| 1312 | REAL delt |
---|
| 1313 | REAL t(nloc, nd), q(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 1314 | REAL gz(nloc, nd) |
---|
| 1315 | REAL p(nloc, nd), ph(nloc, nd+1), h(nloc, nd) |
---|
| 1316 | REAL hp(nloc, nd), lv(nloc, nd) |
---|
| 1317 | REAL cpn(nloc, nd), ep(nloc, nd), clw(nloc, nd), frac(nloc) |
---|
| 1318 | REAL m(nloc, nd), mp(nloc, nd), qp(nloc, nd) |
---|
| 1319 | REAL up(nloc, nd), vp(nloc, nd) |
---|
| 1320 | REAL wt(nloc, nd), water(nloc, nd), evap(nloc, nd) |
---|
| 1321 | REAL ment(nloc, nd, nd), qent(nloc, nd, nd), elij(nloc, nd, nd) |
---|
| 1322 | REAL uent(nloc, nd, nd), vent(nloc, nd, nd) |
---|
| 1323 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
| 1324 | |
---|
| 1325 | ! outputs |
---|
| 1326 | INTEGER iflag(nloc) ! also an input |
---|
| 1327 | REAL cbmf(nloc) ! also an input |
---|
| 1328 | REAL wd(nloc), tprime(nloc), qprime(nloc) |
---|
| 1329 | REAL precip(nloc) |
---|
| 1330 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
| 1331 | REAL ma(nloc, nd) |
---|
| 1332 | REAL qcondc(nloc, nd) |
---|
| 1333 | |
---|
| 1334 | ! local variables |
---|
| 1335 | INTEGER i, j, ij, k, num1 |
---|
| 1336 | REAL dpinv, cpinv, awat, fqold, ftold, fuold, fvold, delti |
---|
| 1337 | REAL work(nloc), am(nloc), amp1(nloc), ad(nloc) |
---|
| 1338 | REAL ents(nloc), uav(nloc), vav(nloc), lvcp(nloc, nd) |
---|
| 1339 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
---|
| 1340 | REAL siga(nloc, nd), ax(nloc, nd), mac(nloc, nd) ! cld |
---|
| 1341 | |
---|
| 1342 | |
---|
| 1343 | ! -- initializations: |
---|
| 1344 | |
---|
| 1345 | delti = 1.0/delt |
---|
| 1346 | |
---|
| 1347 | DO i = 1, ncum |
---|
| 1348 | precip(i) = 0.0 |
---|
| 1349 | wd(i) = 0.0 |
---|
| 1350 | tprime(i) = 0.0 |
---|
| 1351 | qprime(i) = 0.0 |
---|
| 1352 | DO k = 1, nl + 1 |
---|
| 1353 | ft(i, k) = 0.0 |
---|
| 1354 | fu(i, k) = 0.0 |
---|
| 1355 | fv(i, k) = 0.0 |
---|
| 1356 | fq(i, k) = 0.0 |
---|
| 1357 | lvcp(i, k) = lv(i, k)/cpn(i, k) |
---|
| 1358 | qcondc(i, k) = 0.0 ! cld |
---|
| 1359 | qcond(i, k) = 0.0 ! cld |
---|
| 1360 | nqcond(i, k) = 0.0 ! cld |
---|
| 1361 | END DO |
---|
| 1362 | END DO |
---|
| 1363 | |
---|
| 1364 | |
---|
| 1365 | ! *** Calculate surface precipitation in mm/day *** |
---|
| 1366 | |
---|
| 1367 | DO i = 1, ncum |
---|
| 1368 | IF (iflag(i)<=1) THEN |
---|
| 1369 | ! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
| 1370 | ! c & /(rowl*g) |
---|
| 1371 | ! c precip(i)=precip(i)*delt/86400. |
---|
| 1372 | precip(i) = wt(i, 1)*sigd*water(i, 1)*86400/g |
---|
| 1373 | END IF |
---|
| 1374 | END DO |
---|
| 1375 | |
---|
| 1376 | |
---|
| 1377 | ! *** Calculate downdraft velocity scale and surface temperature and *** |
---|
| 1378 | ! *** water vapor fluctuations *** |
---|
| 1379 | |
---|
| 1380 | DO i = 1, ncum |
---|
| 1381 | wd(i) = betad*abs(mp(i,icb(i)))*0.01*rrd*t(i, icb(i))/(sigd*p(i,icb(i))) |
---|
| 1382 | qprime(i) = 0.5*(qp(i,1)-q(i,1)) |
---|
| 1383 | tprime(i) = lv0*qprime(i)/cpd |
---|
| 1384 | END DO |
---|
| 1385 | |
---|
| 1386 | ! *** Calculate tendencies of lowest level potential temperature *** |
---|
| 1387 | ! *** and mixing ratio *** |
---|
| 1388 | |
---|
| 1389 | DO i = 1, ncum |
---|
| 1390 | work(i) = 0.01/(ph(i,1)-ph(i,2)) |
---|
| 1391 | am(i) = 0.0 |
---|
| 1392 | END DO |
---|
| 1393 | DO k = 2, nl |
---|
| 1394 | DO i = 1, ncum |
---|
| 1395 | IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN |
---|
| 1396 | am(i) = am(i) + m(i, k) |
---|
| 1397 | END IF |
---|
| 1398 | END DO |
---|
| 1399 | END DO |
---|
| 1400 | DO i = 1, ncum |
---|
| 1401 | IF ((g*work(i)*am(i))>=delti) iflag(i) = 1 |
---|
| 1402 | ft(i, 1) = ft(i, 1) + g*work(i)*am(i)*(t(i,2)-t(i,1)+(gz(i,2)-gz(i, & |
---|
| 1403 | 1))/cpn(i,1)) |
---|
| 1404 | ft(i, 1) = ft(i, 1) - lvcp(i, 1)*sigd*evap(i, 1) |
---|
| 1405 | ft(i, 1) = ft(i, 1) + sigd*wt(i, 2)*(cl-cpd)*water(i, 2)*(t(i,2)-t(i,1))* & |
---|
| 1406 | work(i)/cpn(i, 1) |
---|
| 1407 | fq(i, 1) = fq(i, 1) + g*mp(i, 2)*(qp(i,2)-q(i,1))*work(i) + & |
---|
| 1408 | sigd*evap(i, 1) |
---|
| 1409 | fq(i, 1) = fq(i, 1) + g*am(i)*(q(i,2)-q(i,1))*work(i) |
---|
| 1410 | fu(i, 1) = fu(i, 1) + g*work(i)*(mp(i,2)*(up(i,2)-u(i,1))+am(i)*(u(i, & |
---|
| 1411 | 2)-u(i,1))) |
---|
| 1412 | fv(i, 1) = fv(i, 1) + g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1))+am(i)*(v(i, & |
---|
| 1413 | 2)-v(i,1))) |
---|
| 1414 | END DO |
---|
| 1415 | DO j = 2, nl |
---|
| 1416 | DO i = 1, ncum |
---|
| 1417 | IF (j<=inb(i)) THEN |
---|
| 1418 | fq(i, 1) = fq(i, 1) + g*work(i)*ment(i, j, 1)*(qent(i,j,1)-q(i,1)) |
---|
| 1419 | fu(i, 1) = fu(i, 1) + g*work(i)*ment(i, j, 1)*(uent(i,j,1)-u(i,1)) |
---|
| 1420 | fv(i, 1) = fv(i, 1) + g*work(i)*ment(i, j, 1)*(vent(i,j,1)-v(i,1)) |
---|
| 1421 | END IF |
---|
| 1422 | END DO |
---|
| 1423 | END DO |
---|
| 1424 | |
---|
| 1425 | ! *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
| 1426 | ! *** at levels above the lowest level *** |
---|
| 1427 | |
---|
| 1428 | ! *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
| 1429 | ! *** through each level *** |
---|
| 1430 | |
---|
| 1431 | DO i = 2, nl + 1 |
---|
| 1432 | |
---|
| 1433 | num1 = 0 |
---|
| 1434 | DO ij = 1, ncum |
---|
| 1435 | IF (i<=inb(ij)) num1 = num1 + 1 |
---|
| 1436 | END DO |
---|
| 1437 | IF (num1<=0) GO TO 1500 |
---|
| 1438 | |
---|
| 1439 | CALL zilch(amp1, ncum) |
---|
| 1440 | CALL zilch(ad, ncum) |
---|
| 1441 | |
---|
| 1442 | DO k = i + 1, nl + 1 |
---|
| 1443 | DO ij = 1, ncum |
---|
| 1444 | IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij)+1))) THEN |
---|
| 1445 | amp1(ij) = amp1(ij) + m(ij, k) |
---|
| 1446 | END IF |
---|
| 1447 | END DO |
---|
| 1448 | END DO |
---|
| 1449 | |
---|
| 1450 | DO k = 1, i |
---|
| 1451 | DO j = i + 1, nl + 1 |
---|
| 1452 | DO ij = 1, ncum |
---|
| 1453 | IF ((j<=(inb(ij)+1)) .AND. (i<=inb(ij))) THEN |
---|
| 1454 | amp1(ij) = amp1(ij) + ment(ij, k, j) |
---|
| 1455 | END IF |
---|
| 1456 | END DO |
---|
| 1457 | END DO |
---|
| 1458 | END DO |
---|
| 1459 | DO k = 1, i - 1 |
---|
| 1460 | DO j = i, nl + 1 |
---|
| 1461 | DO ij = 1, ncum |
---|
| 1462 | IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN |
---|
| 1463 | ad(ij) = ad(ij) + ment(ij, j, k) |
---|
| 1464 | END IF |
---|
| 1465 | END DO |
---|
| 1466 | END DO |
---|
| 1467 | END DO |
---|
| 1468 | |
---|
| 1469 | DO ij = 1, ncum |
---|
| 1470 | IF (i<=inb(ij)) THEN |
---|
| 1471 | dpinv = 0.01/(ph(ij,i)-ph(ij,i+1)) |
---|
| 1472 | cpinv = 1.0/cpn(ij, i) |
---|
| 1473 | |
---|
| 1474 | ft(ij, i) = ft(ij, i) + g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij, & |
---|
| 1475 | i)+(gz(ij,i+1)-gz(ij,i))*cpinv)-ad(ij)*(t(ij,i)-t(ij, & |
---|
| 1476 | i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) - sigd*lvcp(ij, i)*evap(ij, i) |
---|
| 1477 | ft(ij, i) = ft(ij, i) + g*dpinv*ment(ij, i, i)*(hp(ij,i)-h(ij,i)+t(ij & |
---|
| 1478 | ,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
---|
| 1479 | ft(ij, i) = ft(ij, i) + sigd*wt(ij, i+1)*(cl-cpd)*water(ij, i+1)*(t( & |
---|
| 1480 | ij,i+1)-t(ij,i))*dpinv*cpinv |
---|
| 1481 | fq(ij, i) = fq(ij, i) + g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij, & |
---|
| 1482 | i))-ad(ij)*(q(ij,i)-q(ij,i-1))) |
---|
| 1483 | fu(ij, i) = fu(ij, i) + g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij, & |
---|
| 1484 | i))-ad(ij)*(u(ij,i)-u(ij,i-1))) |
---|
| 1485 | fv(ij, i) = fv(ij, i) + g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij, & |
---|
| 1486 | i))-ad(ij)*(v(ij,i)-v(ij,i-1))) |
---|
| 1487 | END IF |
---|
| 1488 | END DO |
---|
| 1489 | DO k = 1, i - 1 |
---|
| 1490 | DO ij = 1, ncum |
---|
| 1491 | IF (i<=inb(ij)) THEN |
---|
| 1492 | awat = elij(ij, k, i) - (1.-ep(ij,i))*clw(ij, i) |
---|
| 1493 | awat = max(awat, 0.0) |
---|
| 1494 | fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-awat-q & |
---|
| 1495 | (ij,i)) |
---|
| 1496 | fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
---|
| 1497 | )) |
---|
| 1498 | fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
---|
| 1499 | )) |
---|
| 1500 | ! (saturated updrafts resulting from mixing) ! cld |
---|
| 1501 | qcond(ij, i) = qcond(ij, i) + (elij(ij,k,i)-awat) ! cld |
---|
| 1502 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
| 1503 | END IF |
---|
| 1504 | END DO |
---|
| 1505 | END DO |
---|
| 1506 | DO k = i, nl + 1 |
---|
| 1507 | DO ij = 1, ncum |
---|
| 1508 | IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN |
---|
| 1509 | fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-q(ij,i & |
---|
| 1510 | )) |
---|
| 1511 | fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
---|
| 1512 | )) |
---|
| 1513 | fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
---|
| 1514 | )) |
---|
| 1515 | END IF |
---|
| 1516 | END DO |
---|
| 1517 | END DO |
---|
| 1518 | DO ij = 1, ncum |
---|
| 1519 | IF (i<=inb(ij)) THEN |
---|
| 1520 | fq(ij, i) = fq(ij, i) + sigd*evap(ij, i) + g*(mp(ij,i+1)*(qp(ij, & |
---|
| 1521 | i+1)-q(ij,i))-mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
---|
| 1522 | fu(ij, i) = fu(ij, i) + g*(mp(ij,i+1)*(up(ij,i+1)-u(ij, & |
---|
| 1523 | i))-mp(ij,i)*(up(ij,i)-u(ij,i-1)))*dpinv |
---|
| 1524 | fv(ij, i) = fv(ij, i) + g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij, & |
---|
| 1525 | i))-mp(ij,i)*(vp(ij,i)-v(ij,i-1)))*dpinv |
---|
| 1526 | ! (saturated downdrafts resulting from mixing) ! cld |
---|
| 1527 | DO k = i + 1, inb(ij) ! cld |
---|
| 1528 | qcond(ij, i) = qcond(ij, i) + elij(ij, k, i) ! cld |
---|
| 1529 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
| 1530 | END DO ! cld |
---|
| 1531 | ! (particular case: no detraining level is found) ! cld |
---|
| 1532 | IF (nent(ij,i)==0) THEN ! cld |
---|
| 1533 | qcond(ij, i) = qcond(ij, i) + (1.-ep(ij,i))*clw(ij, i) ! cld |
---|
| 1534 | nqcond(ij, i) = nqcond(ij, i) + 1. ! cld |
---|
| 1535 | END IF ! cld |
---|
| 1536 | IF (nqcond(ij,i)/=0.) THEN ! cld |
---|
| 1537 | qcond(ij, i) = qcond(ij, i)/nqcond(ij, i) ! cld |
---|
| 1538 | END IF ! cld |
---|
| 1539 | END IF |
---|
| 1540 | END DO |
---|
| 1541 | 1500 END DO |
---|
| 1542 | |
---|
| 1543 | ! *** Adjust tendencies at top of convection layer to reflect *** |
---|
| 1544 | ! *** actual position of the level zero cape *** |
---|
| 1545 | |
---|
| 1546 | DO ij = 1, ncum |
---|
| 1547 | fqold = fq(ij, inb(ij)) |
---|
| 1548 | fq(ij, inb(ij)) = fq(ij, inb(ij))*(1.-frac(ij)) |
---|
| 1549 | fq(ij, inb(ij)-1) = fq(ij, inb(ij)-1) + frac(ij)*fqold*((ph(ij, & |
---|
| 1550 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
---|
| 1551 | inb(ij))))*lv(ij, inb(ij))/lv(ij, inb(ij)-1) |
---|
| 1552 | ftold = ft(ij, inb(ij)) |
---|
| 1553 | ft(ij, inb(ij)) = ft(ij, inb(ij))*(1.-frac(ij)) |
---|
| 1554 | ft(ij, inb(ij)-1) = ft(ij, inb(ij)-1) + frac(ij)*ftold*((ph(ij, & |
---|
| 1555 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
---|
| 1556 | inb(ij))))*cpn(ij, inb(ij))/cpn(ij, inb(ij)-1) |
---|
| 1557 | fuold = fu(ij, inb(ij)) |
---|
| 1558 | fu(ij, inb(ij)) = fu(ij, inb(ij))*(1.-frac(ij)) |
---|
| 1559 | fu(ij, inb(ij)-1) = fu(ij, inb(ij)-1) + frac(ij)*fuold*((ph(ij, & |
---|
| 1560 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
| 1561 | fvold = fv(ij, inb(ij)) |
---|
| 1562 | fv(ij, inb(ij)) = fv(ij, inb(ij))*(1.-frac(ij)) |
---|
| 1563 | fv(ij, inb(ij)-1) = fv(ij, inb(ij)-1) + frac(ij)*fvold*((ph(ij, & |
---|
| 1564 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
| 1565 | END DO |
---|
| 1566 | |
---|
| 1567 | ! *** Very slightly adjust tendencies to force exact *** |
---|
| 1568 | ! *** enthalpy, momentum and tracer conservation *** |
---|
| 1569 | |
---|
| 1570 | DO ij = 1, ncum |
---|
| 1571 | ents(ij) = 0.0 |
---|
| 1572 | uav(ij) = 0.0 |
---|
| 1573 | vav(ij) = 0.0 |
---|
| 1574 | DO i = 1, inb(ij) |
---|
| 1575 | ents(ij) = ents(ij) + (cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)- & |
---|
| 1576 | ph(ij,i+1)) |
---|
| 1577 | uav(ij) = uav(ij) + fu(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1578 | vav(ij) = vav(ij) + fv(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1579 | END DO |
---|
| 1580 | END DO |
---|
| 1581 | DO ij = 1, ncum |
---|
| 1582 | ents(ij) = ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1583 | uav(ij) = uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1584 | vav(ij) = vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1585 | END DO |
---|
| 1586 | DO ij = 1, ncum |
---|
| 1587 | DO i = 1, inb(ij) |
---|
| 1588 | ft(ij, i) = ft(ij, i) - ents(ij)/cpn(ij, i) |
---|
| 1589 | fu(ij, i) = (1.-cu)*(fu(ij,i)-uav(ij)) |
---|
| 1590 | fv(ij, i) = (1.-cu)*(fv(ij,i)-vav(ij)) |
---|
| 1591 | END DO |
---|
| 1592 | END DO |
---|
| 1593 | |
---|
| 1594 | DO k = 1, nl + 1 |
---|
| 1595 | DO i = 1, ncum |
---|
| 1596 | IF ((q(i,k)+delt*fq(i,k))<0.0) iflag(i) = 10 |
---|
| 1597 | END DO |
---|
| 1598 | END DO |
---|
| 1599 | |
---|
| 1600 | |
---|
| 1601 | DO i = 1, ncum |
---|
| 1602 | IF (iflag(i)>2) THEN |
---|
| 1603 | precip(i) = 0.0 |
---|
| 1604 | cbmf(i) = 0.0 |
---|
| 1605 | END IF |
---|
| 1606 | END DO |
---|
| 1607 | DO k = 1, nl |
---|
| 1608 | DO i = 1, ncum |
---|
| 1609 | IF (iflag(i)>2) THEN |
---|
| 1610 | ft(i, k) = 0.0 |
---|
| 1611 | fq(i, k) = 0.0 |
---|
| 1612 | fu(i, k) = 0.0 |
---|
| 1613 | fv(i, k) = 0.0 |
---|
| 1614 | qcondc(i, k) = 0.0 ! cld |
---|
| 1615 | END IF |
---|
| 1616 | END DO |
---|
| 1617 | END DO |
---|
| 1618 | |
---|
| 1619 | DO k = 1, nl + 1 |
---|
| 1620 | DO i = 1, ncum |
---|
| 1621 | ma(i, k) = 0. |
---|
| 1622 | END DO |
---|
| 1623 | END DO |
---|
| 1624 | DO k = nl, 1, -1 |
---|
| 1625 | DO i = 1, ncum |
---|
| 1626 | ma(i, k) = ma(i, k+1) + m(i, k) |
---|
| 1627 | END DO |
---|
| 1628 | END DO |
---|
| 1629 | |
---|
| 1630 | |
---|
| 1631 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
---|
| 1632 | ! *** of condensed water *** ! cld |
---|
| 1633 | ! ! cld |
---|
| 1634 | DO ij = 1, ncum ! cld |
---|
| 1635 | DO i = 1, nd ! cld |
---|
| 1636 | mac(ij, i) = 0.0 ! cld |
---|
| 1637 | wa(ij, i) = 0.0 ! cld |
---|
| 1638 | siga(ij, i) = 0.0 ! cld |
---|
| 1639 | END DO ! cld |
---|
| 1640 | DO i = nk(ij), inb(ij) ! cld |
---|
| 1641 | DO k = i + 1, inb(ij) + 1 ! cld |
---|
| 1642 | mac(ij, i) = mac(ij, i) + m(ij, k) ! cld |
---|
| 1643 | END DO ! cld |
---|
| 1644 | END DO ! cld |
---|
| 1645 | DO i = icb(ij), inb(ij) - 1 ! cld |
---|
| 1646 | ax(ij, i) = 0. ! cld |
---|
| 1647 | DO j = icb(ij), i ! cld |
---|
| 1648 | ax(ij, i) = ax(ij, i) + rrd*(tvp(ij,j)-tv(ij,j)) & ! cld |
---|
| 1649 | *(ph(ij,j)-ph(ij,j+1))/p(ij, j) ! cld |
---|
| 1650 | END DO ! cld |
---|
| 1651 | IF (ax(ij,i)>0.0) THEN ! cld |
---|
| 1652 | wa(ij, i) = sqrt(2.*ax(ij,i)) ! cld |
---|
| 1653 | END IF ! cld |
---|
| 1654 | END DO ! cld |
---|
| 1655 | DO i = 1, nl ! cld |
---|
| 1656 | IF (wa(ij,i)>0.0) & ! cld |
---|
| 1657 | siga(ij, i) = mac(ij, i)/wa(ij, i) & ! cld |
---|
| 1658 | *rrd*tvp(ij, i)/p(ij, i)/100./delta ! cld |
---|
| 1659 | siga(ij, i) = min(siga(ij,i), 1.0) ! cld |
---|
| 1660 | qcondc(ij, i) = siga(ij, i)*clw(ij, i)*(1.-ep(ij,i)) & ! cld |
---|
| 1661 | +(1.-siga(ij,i))*qcond(ij, i) ! cld |
---|
| 1662 | END DO ! cld |
---|
| 1663 | END DO ! cld |
---|
| 1664 | |
---|
| 1665 | RETURN |
---|
| 1666 | END SUBROUTINE cv_yield |
---|
| 1667 | |
---|
| 1668 | SUBROUTINE cv_uncompress(nloc, len, ncum, nd, idcum, iflag, precip, cbmf, ft, & |
---|
| 1669 | fq, fu, fv, ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, ma1, & |
---|
| 1670 | qcondc1) |
---|
| 1671 | IMPLICIT NONE |
---|
| 1672 | |
---|
| 1673 | include "cvparam.h" |
---|
| 1674 | |
---|
| 1675 | ! inputs: |
---|
| 1676 | INTEGER len, ncum, nd, nloc |
---|
| 1677 | INTEGER idcum(nloc) |
---|
| 1678 | INTEGER iflag(nloc) |
---|
| 1679 | REAL precip(nloc), cbmf(nloc) |
---|
| 1680 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
| 1681 | REAL ma(nloc, nd) |
---|
| 1682 | REAL qcondc(nloc, nd) !cld |
---|
| 1683 | |
---|
| 1684 | ! outputs: |
---|
| 1685 | INTEGER iflag1(len) |
---|
| 1686 | REAL precip1(len), cbmf1(len) |
---|
| 1687 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
---|
| 1688 | REAL ma1(len, nd) |
---|
| 1689 | REAL qcondc1(len, nd) !cld |
---|
| 1690 | |
---|
| 1691 | ! local variables: |
---|
| 1692 | INTEGER i, k |
---|
| 1693 | |
---|
| 1694 | DO i = 1, ncum |
---|
| 1695 | precip1(idcum(i)) = precip(i) |
---|
| 1696 | cbmf1(idcum(i)) = cbmf(i) |
---|
| 1697 | iflag1(idcum(i)) = iflag(i) |
---|
| 1698 | END DO |
---|
| 1699 | |
---|
| 1700 | DO k = 1, nl |
---|
| 1701 | DO i = 1, ncum |
---|
| 1702 | ft1(idcum(i), k) = ft(i, k) |
---|
| 1703 | fq1(idcum(i), k) = fq(i, k) |
---|
| 1704 | fu1(idcum(i), k) = fu(i, k) |
---|
| 1705 | fv1(idcum(i), k) = fv(i, k) |
---|
| 1706 | ma1(idcum(i), k) = ma(i, k) |
---|
| 1707 | qcondc1(idcum(i), k) = qcondc(i, k) |
---|
| 1708 | END DO |
---|
| 1709 | END DO |
---|
| 1710 | |
---|
| 1711 | RETURN |
---|
| 1712 | END SUBROUTINE cv_uncompress |
---|
| 1713 | |
---|