[1761] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE yamada_c(ngrid,timestep,plev,play & |
---|
| 5 | & ,pu,pv,pt,d_u,d_v,d_t,cd,q2,km,kn,kq,d_t_diss,ustar & |
---|
[2680] | 6 | & ,iflag_pbl) |
---|
[2391] | 7 | USE dimphy, ONLY: klon, klev |
---|
[2311] | 8 | USE print_control_mod, ONLY: prt_level |
---|
[2680] | 9 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 10 | |
---|
[5285] | 11 | USE yomcst_mod_h |
---|
[5274] | 12 | IMPLICIT NONE |
---|
| 13 | |
---|
[1761] | 14 | ! |
---|
| 15 | ! timestep : pas de temps |
---|
| 16 | ! g : g |
---|
| 17 | ! zlev : altitude a chaque niveau (interface inferieure de la couche |
---|
| 18 | ! de meme indice) |
---|
| 19 | ! zlay : altitude au centre de chaque couche |
---|
| 20 | ! u,v : vitesse au centre de chaque couche |
---|
| 21 | ! (en entree : la valeur au debut du pas de temps) |
---|
| 22 | ! teta : temperature potentielle au centre de chaque couche |
---|
| 23 | ! (en entree : la valeur au debut du pas de temps) |
---|
| 24 | ! cd : cdrag |
---|
| 25 | ! (en entree : la valeur au debut du pas de temps) |
---|
| 26 | ! q2 : $q^2$ au bas de chaque couche |
---|
| 27 | ! (en entree : la valeur au debut du pas de temps) |
---|
| 28 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
| 29 | ! km : diffusivite turbulente de quantite de mouvement (au bas de chaque |
---|
| 30 | ! couche) |
---|
| 31 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
| 32 | ! kn : diffusivite turbulente des scalaires (au bas de chaque couche) |
---|
| 33 | ! (en sortie : la valeur a la fin du pas de temps) |
---|
| 34 | ! |
---|
| 35 | ! iflag_pbl doit valoir entre 6 et 9 |
---|
| 36 | ! l=6, on prend systematiquement une longueur d'equilibre |
---|
| 37 | ! iflag_pbl=6 : MY 2.0 |
---|
| 38 | ! iflag_pbl=7 : MY 2.0.Fournier |
---|
| 39 | ! iflag_pbl=8/9 : MY 2.5 |
---|
| 40 | ! iflag_pbl=8 with special obsolete treatments for convergence |
---|
| 41 | ! with Cmpi5 NPv3.1 simulations |
---|
| 42 | ! iflag_pbl=10/11 : New scheme M2 and N2 explicit and dissiptation exact |
---|
| 43 | ! iflag_pbl=12 = 11 with vertical diffusion off q2 |
---|
| 44 | ! |
---|
| 45 | ! 2013/04/01 (FH hourdin@lmd.jussieu.fr) |
---|
| 46 | ! Correction for very stable PBLs (iflag_pbl=10 and 11) |
---|
| 47 | ! iflag_pbl=8 converges numerically with NPv3.1 |
---|
| 48 | ! iflag_pbl=11 -> the model starts with NP from start files created by ce0l |
---|
| 49 | ! -> the model can run with longer time-steps. |
---|
| 50 | !....................................................................... |
---|
| 51 | |
---|
| 52 | REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t |
---|
| 53 | REAL, DIMENSION(klon,klev) :: pu,pv,pt |
---|
| 54 | REAL, DIMENSION(klon,klev) :: d_t_diss |
---|
| 55 | |
---|
| 56 | REAL timestep |
---|
| 57 | real plev(klon,klev+1) |
---|
| 58 | real play(klon,klev) |
---|
| 59 | real ustar(klon) |
---|
| 60 | real kmin,qmin,pblhmin(klon),coriol(klon) |
---|
| 61 | REAL zlev(klon,klev+1) |
---|
| 62 | REAL zlay(klon,klev) |
---|
| 63 | REAL zu(klon,klev) |
---|
| 64 | REAL zv(klon,klev) |
---|
| 65 | REAL zt(klon,klev) |
---|
| 66 | REAL teta(klon,klev) |
---|
| 67 | REAL cd(klon) |
---|
| 68 | REAL q2(klon,klev+1),qpre |
---|
| 69 | REAL unsdz(klon,klev) |
---|
| 70 | REAL unsdzdec(klon,klev+1) |
---|
| 71 | |
---|
[2680] | 72 | REAL km(klon,klev) |
---|
[1761] | 73 | REAL kmpre(klon,klev+1),tmp2 |
---|
| 74 | REAL mpre(klon,klev+1) |
---|
[2680] | 75 | REAL kn(klon,klev) |
---|
| 76 | REAL kq(klon,klev) |
---|
[1761] | 77 | real ff(klon,klev+1),delta(klon,klev+1) |
---|
| 78 | real aa(klon,klev+1),aa0,aa1 |
---|
| 79 | integer iflag_pbl,ngrid |
---|
| 80 | integer nlay,nlev |
---|
| 81 | |
---|
| 82 | logical first |
---|
| 83 | integer ipas |
---|
| 84 | save first,ipas |
---|
| 85 | !FH/IM data first,ipas/.true.,0/ |
---|
| 86 | data first,ipas/.false.,0/ |
---|
| 87 | !$OMP THREADPRIVATE( first,ipas) |
---|
[2680] | 88 | INTEGER, SAVE :: iflag_tke_diff=0 |
---|
| 89 | !$OMP THREADPRIVATE(iflag_tke_diff) |
---|
[1761] | 90 | |
---|
[2680] | 91 | |
---|
[1761] | 92 | integer ig,k |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | real ri,zrif,zalpha,zsm,zsn |
---|
| 96 | real rif(klon,klev+1),sm(klon,klev+1),alpha(klon,klev) |
---|
| 97 | |
---|
| 98 | real m2(klon,klev+1),dz(klon,klev+1),zq,n2(klon,klev+1) |
---|
| 99 | REAL, DIMENSION(klon,klev+1) :: km2,kn2,sqrtq |
---|
| 100 | real dtetadz(klon,klev+1) |
---|
| 101 | real m2cstat,mcstat,kmcstat |
---|
| 102 | real l(klon,klev+1) |
---|
| 103 | real leff(klon,klev+1) |
---|
| 104 | real,allocatable,save :: l0(:) |
---|
| 105 | !$OMP THREADPRIVATE(l0) |
---|
| 106 | real sq(klon),sqz(klon),zz(klon,klev+1) |
---|
| 107 | integer iter |
---|
| 108 | |
---|
| 109 | real ric,rifc,b1,kap |
---|
| 110 | save ric,rifc,b1,kap |
---|
| 111 | data ric,rifc,b1,kap/0.195,0.191,16.6,0.4/ |
---|
| 112 | !$OMP THREADPRIVATE(ric,rifc,b1,kap) |
---|
| 113 | real frif,falpha,fsm |
---|
| 114 | real fl,zzz,zl0,zq2,zn2 |
---|
| 115 | |
---|
| 116 | real rino(klon,klev+1),smyam(klon,klev),styam(klon,klev) |
---|
| 117 | real lyam(klon,klev),knyam(klon,klev) |
---|
| 118 | real w2yam(klon,klev),t2yam(klon,klev) |
---|
| 119 | logical,save :: firstcall=.true. |
---|
[2391] | 120 | !$OMP THREADPRIVATE(firstcall) |
---|
| 121 | CHARACTER(len=20),PARAMETER :: modname="yamada_c" |
---|
[1761] | 122 | REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt |
---|
| 123 | REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt |
---|
| 124 | REAL, DIMENSION(klon,klev) :: exner,masse |
---|
| 125 | REAL, DIMENSION(klon,klev+1) :: masseb,q2old,q2neg |
---|
[2680] | 126 | LOGICAL okiophys |
---|
[1761] | 127 | |
---|
| 128 | frif(ri)=0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156)) |
---|
| 129 | falpha(ri)=1.318*(0.2231-ri)/(0.2341-ri) |
---|
| 130 | fsm(ri)=1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri)) |
---|
| 131 | fl(zzz,zl0,zq2,zn2)= & |
---|
| 132 | & max(min(l0(ig)*kap*zlev(ig,k)/(kap*zlev(ig,k)+l0(ig)) & |
---|
| 133 | & ,0.5*sqrt(q2(ig,k))/sqrt(max(n2(ig,k),1.e-10))) ,1.) |
---|
| 134 | |
---|
| 135 | |
---|
[2680] | 136 | okiophys=klon==1 |
---|
[1761] | 137 | if (firstcall) then |
---|
[2680] | 138 | CALL getin_p('iflag_tke_diff',iflag_tke_diff) |
---|
[1761] | 139 | allocate(l0(klon)) |
---|
| 140 | firstcall=.false. |
---|
| 141 | endif |
---|
| 142 | |
---|
[2680] | 143 | IF (ngrid<=0) RETURN ! Bizarre : on n a pas ce probeleme pour coef_diff_turb |
---|
[1761] | 144 | |
---|
| 145 | nlay=klev |
---|
| 146 | nlev=klev+1 |
---|
| 147 | |
---|
[2680] | 148 | |
---|
[1761] | 149 | !------------------------------------------------------------------------- |
---|
| 150 | ! Computation of conservative source terms from the turbulent tendencies |
---|
| 151 | !------------------------------------------------------------------------- |
---|
| 152 | |
---|
| 153 | |
---|
[2680] | 154 | zalpha=0.5 ! Anciennement 0.5. Essayer de voir pourquoi ? |
---|
| 155 | zu(:,:)=pu(:,:)+zalpha*d_u(:,:) |
---|
| 156 | zv(:,:)=pv(:,:)+zalpha*d_v(:,:) |
---|
| 157 | zt(:,:)=pt(:,:)+zalpha*d_t(:,:) |
---|
| 158 | |
---|
[1761] | 159 | do k=1,klev |
---|
| 160 | exner(:,k)=(play(:,k)/plev(:,1))**RKAPPA |
---|
| 161 | masse(:,k)=(plev(:,k)-plev(:,k+1))/RG |
---|
[2680] | 162 | teta(:,k)=zt(:,k)/exner(:,k) |
---|
[1761] | 163 | enddo |
---|
| 164 | |
---|
| 165 | ! Atmospheric mass at layer interfaces, where the TKE is computed |
---|
| 166 | masseb(:,:)=0. |
---|
| 167 | do k=1,klev |
---|
| 168 | masseb(:,k)=masseb(:,k)+masse(:,k) |
---|
| 169 | masseb(:,k+1)=masseb(:,k+1)+masse(:,k) |
---|
| 170 | enddo |
---|
| 171 | masseb(:,:)=0.5*masseb(:,:) |
---|
| 172 | |
---|
| 173 | zlev(:,1)=0. |
---|
| 174 | zlay(:,1)=RCPD*teta(:,1)*(1.-exner(:,1)) |
---|
| 175 | do k=1,klev-1 |
---|
| 176 | zlay(:,k+1)=zlay(:,k)+0.5*RCPD*(teta(:,k)+teta(:,k+1))*(exner(:,k)-exner(:,k+1))/RG |
---|
| 177 | zlev(:,k)=0.5*(zlay(:,k)+zlay(:,k+1)) ! PASBO |
---|
| 178 | enddo |
---|
| 179 | |
---|
| 180 | fluxu(:,klev+1)=0. |
---|
| 181 | fluxv(:,klev+1)=0. |
---|
| 182 | fluxt(:,klev+1)=0. |
---|
| 183 | |
---|
| 184 | do k=klev,1,-1 |
---|
| 185 | fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k) |
---|
| 186 | fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k) |
---|
| 187 | fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k) ! Flux de theta |
---|
| 188 | enddo |
---|
| 189 | |
---|
| 190 | dddu(:,1)=2*zu(:,1)*fluxu(:,1) |
---|
| 191 | dddv(:,1)=2*zv(:,1)*fluxv(:,1) |
---|
| 192 | dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1) |
---|
| 193 | |
---|
| 194 | do k=2,klev |
---|
| 195 | dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k) |
---|
| 196 | dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k) |
---|
| 197 | dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k) |
---|
| 198 | enddo |
---|
| 199 | dddu(:,klev+1)=0. |
---|
| 200 | dddv(:,klev+1)=0. |
---|
| 201 | dddt(:,klev+1)=0. |
---|
| 202 | |
---|
| 203 | #ifdef IOPHYS |
---|
[2680] | 204 | if (okiophys) then |
---|
[1761] | 205 | call iophys_ecrit('zlay',klev,'Geop','m',zlay) |
---|
| 206 | call iophys_ecrit('teta',klev,'teta','K',teta) |
---|
| 207 | call iophys_ecrit('temp',klev,'temp','K',zt) |
---|
| 208 | call iophys_ecrit('pt',klev,'temp','K',pt) |
---|
[2680] | 209 | call iophys_ecrit('pu',klev,'u','m/s',pu) |
---|
| 210 | call iophys_ecrit('pv',klev,'v','m/s',pv) |
---|
[1761] | 211 | call iophys_ecrit('d_u',klev,'d_u','m/s2',d_u) |
---|
| 212 | call iophys_ecrit('d_v',klev,'d_v','m/s2',d_v) |
---|
| 213 | call iophys_ecrit('d_t',klev,'d_t','K/s',d_t) |
---|
| 214 | call iophys_ecrit('exner',klev,'exner','',exner) |
---|
| 215 | call iophys_ecrit('masse',klev,'masse','',masse) |
---|
| 216 | call iophys_ecrit('masseb',klev,'masseb','',masseb) |
---|
| 217 | endif |
---|
| 218 | #endif |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | |
---|
| 222 | ipas=ipas+1 |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | !....................................................................... |
---|
| 226 | ! les increments verticaux |
---|
| 227 | !....................................................................... |
---|
| 228 | ! |
---|
| 229 | !!!!!! allerte !!!!!c |
---|
| 230 | !!!!!! zlev n'est pas declare a nlev !!!!!c |
---|
| 231 | !!!!!! ----> |
---|
| 232 | DO ig=1,ngrid |
---|
| 233 | zlev(ig,nlev)=zlay(ig,nlay) & |
---|
| 234 | & +( zlay(ig,nlay) - zlev(ig,nlev-1) ) |
---|
| 235 | ENDDO |
---|
| 236 | !!!!!! <---- |
---|
| 237 | !!!!!! allerte !!!!!c |
---|
| 238 | ! |
---|
| 239 | DO k=1,nlay |
---|
| 240 | DO ig=1,ngrid |
---|
| 241 | unsdz(ig,k)=1.E+0/(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 242 | ENDDO |
---|
| 243 | ENDDO |
---|
| 244 | DO ig=1,ngrid |
---|
| 245 | unsdzdec(ig,1)=1.E+0/(zlay(ig,1)-zlev(ig,1)) |
---|
| 246 | ENDDO |
---|
| 247 | DO k=2,nlay |
---|
| 248 | DO ig=1,ngrid |
---|
| 249 | unsdzdec(ig,k)=1.E+0/(zlay(ig,k)-zlay(ig,k-1)) |
---|
| 250 | ENDDO |
---|
| 251 | ENDDO |
---|
| 252 | DO ig=1,ngrid |
---|
| 253 | unsdzdec(ig,nlay+1)=1.E+0/(zlev(ig,nlay+1)-zlay(ig,nlay)) |
---|
| 254 | ENDDO |
---|
| 255 | ! |
---|
| 256 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 257 | ! Computing M^2, N^2, Richardson numbers, stability functions |
---|
| 258 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | do k=2,klev |
---|
| 262 | do ig=1,ngrid |
---|
| 263 | dz(ig,k)=zlay(ig,k)-zlay(ig,k-1) |
---|
| 264 | m2(ig,k)=((zu(ig,k)-zu(ig,k-1))**2+(zv(ig,k)-zv(ig,k-1))**2)/(dz(ig,k)*dz(ig,k)) |
---|
| 265 | dtetadz(ig,k)=(teta(ig,k)-teta(ig,k-1))/dz(ig,k) |
---|
| 266 | n2(ig,k)=RG*2.*dtetadz(ig,k)/(teta(ig,k-1)+teta(ig,k)) |
---|
| 267 | ! n2(ig,k)=0. |
---|
| 268 | ri=n2(ig,k)/max(m2(ig,k),1.e-10) |
---|
| 269 | if (ri.lt.ric) then |
---|
| 270 | rif(ig,k)=frif(ri) |
---|
| 271 | else |
---|
| 272 | rif(ig,k)=rifc |
---|
| 273 | endif |
---|
[2680] | 274 | if(rif(ig,k)<0.16) then |
---|
[1761] | 275 | alpha(ig,k)=falpha(rif(ig,k)) |
---|
| 276 | sm(ig,k)=fsm(rif(ig,k)) |
---|
| 277 | else |
---|
| 278 | alpha(ig,k)=1.12 |
---|
| 279 | sm(ig,k)=0.085 |
---|
| 280 | endif |
---|
| 281 | zz(ig,k)=b1*m2(ig,k)*(1.-rif(ig,k))*sm(ig,k) |
---|
| 282 | enddo |
---|
| 283 | enddo |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | |
---|
| 287 | !==================================================================== |
---|
| 288 | ! Computing the mixing length |
---|
| 289 | !==================================================================== |
---|
| 290 | |
---|
| 291 | ! Mise a jour de l0 |
---|
| 292 | if (iflag_pbl==8.or.iflag_pbl==10) then |
---|
| 293 | |
---|
| 294 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 295 | ! Iterative computation of l0 |
---|
| 296 | ! This version is kept for iflag_pbl only for convergence |
---|
| 297 | ! with NPv3.1 Cmip5 simulations |
---|
| 298 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 299 | |
---|
| 300 | do ig=1,ngrid |
---|
| 301 | sq(ig)=1.e-10 |
---|
| 302 | sqz(ig)=1.e-10 |
---|
| 303 | enddo |
---|
| 304 | do k=2,klev-1 |
---|
| 305 | do ig=1,ngrid |
---|
| 306 | zq=sqrt(q2(ig,k)) |
---|
| 307 | sqz(ig)=sqz(ig)+zq*zlev(ig,k)*(zlay(ig,k)-zlay(ig,k-1)) |
---|
| 308 | sq(ig)=sq(ig)+zq*(zlay(ig,k)-zlay(ig,k-1)) |
---|
| 309 | enddo |
---|
| 310 | enddo |
---|
| 311 | do ig=1,ngrid |
---|
| 312 | l0(ig)=0.2*sqz(ig)/sq(ig) |
---|
| 313 | enddo |
---|
| 314 | do k=2,klev |
---|
| 315 | do ig=1,ngrid |
---|
| 316 | l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
---|
| 317 | enddo |
---|
| 318 | enddo |
---|
| 319 | ! print*,'L0 cas 8 ou 10 ',l0 |
---|
| 320 | |
---|
| 321 | else |
---|
| 322 | |
---|
| 323 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 324 | ! In all other case, the assymptotic mixing length l0 is imposed (100m) |
---|
| 325 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 326 | |
---|
| 327 | l0(:)=150. |
---|
| 328 | do k=2,klev |
---|
| 329 | do ig=1,ngrid |
---|
| 330 | l(ig,k)=fl(zlev(ig,k),l0(ig),q2(ig,k),n2(ig,k)) |
---|
| 331 | enddo |
---|
| 332 | enddo |
---|
| 333 | ! print*,'L0 cas autres ',l0 |
---|
| 334 | |
---|
| 335 | endif |
---|
| 336 | |
---|
| 337 | |
---|
| 338 | #ifdef IOPHYS |
---|
[2680] | 339 | if (okiophys) then |
---|
[1761] | 340 | call iophys_ecrit('rif',klev,'Flux Richardson','m',rif(:,1:klev)) |
---|
| 341 | call iophys_ecrit('m2',klev,'m2 ','m/s',m2(:,1:klev)) |
---|
[2680] | 342 | call iophys_ecrit('Km2app',klev,'m2 conserv','m/s',km(:,1:klev)*m2(:,1:klev)) |
---|
[1761] | 343 | call iophys_ecrit('Km',klev,'Km','m2/s',km(:,1:klev)) |
---|
| 344 | endif |
---|
| 345 | #endif |
---|
| 346 | |
---|
| 347 | |
---|
| 348 | IF (iflag_pbl<20) then |
---|
| 349 | ! For diagnostics only |
---|
| 350 | RETURN |
---|
| 351 | |
---|
| 352 | ELSE |
---|
| 353 | |
---|
| 354 | ! print*,'OK1' |
---|
| 355 | |
---|
| 356 | ! Evolution of TKE under source terms K M2 and K N2 |
---|
| 357 | leff(:,:)=max(l(:,:),1.) |
---|
[2680] | 358 | |
---|
| 359 | !################################################################## |
---|
| 360 | !# IF (iflag_pbl==29) THEN |
---|
| 361 | !# STOP'Ne pas utiliser iflag_pbl=29' |
---|
| 362 | !# km2(:,:)=km(:,:)*m2(:,:) |
---|
| 363 | !# kn2(:,:)=kn2(:,:)*rif(:,:) |
---|
| 364 | !# ELSEIF (iflag_pbl==25) THEN |
---|
| 365 | ! VERSION AVEC LA TKE EN MILIEU DE COUCHE |
---|
| 366 | !# STOP'Ne pas utiliser iflag_pbl=25' |
---|
| 367 | !# DO k=1,klev |
---|
| 368 | !# km2(:,k)=-0.5*(dddu(:,k)+dddv(:,k)+dddu(:,k+1)+dddv(:,k+1)) & |
---|
| 369 | !# & /(masse(:,k)*timestep) |
---|
| 370 | !# kn2(:,k)=rcpd*0.5*(dddt(:,k)+dddt(:,k+1))/(masse(:,k)*timestep) |
---|
| 371 | !# leff(:,k)=0.5*(leff(:,k)+leff(:,k+1)) |
---|
| 372 | !# ENDDO |
---|
| 373 | !# km2(:,klev+1)=0. ; kn2(:,klev+1)=0. |
---|
| 374 | !# ELSE |
---|
| 375 | !################################################################# |
---|
| 376 | |
---|
[1761] | 377 | km2(:,:)=-(dddu(:,:)+dddv(:,:))/(masseb(:,:)*timestep) |
---|
| 378 | kn2(:,:)=rcpd*dddt(:,:)/(masseb(:,:)*timestep) |
---|
[2680] | 379 | ! ENDIF |
---|
[1761] | 380 | q2neg(:,:)=q2(:,:)+timestep*(km2(:,:)-kn2(:,:)) |
---|
| 381 | q2(:,:)=min(max(q2neg(:,:),1.e-10),1.e4) |
---|
| 382 | |
---|
[2680] | 383 | |
---|
| 384 | #ifdef IOPHYS |
---|
| 385 | if (okiophys) then |
---|
| 386 | call iophys_ecrit('km2',klev,'m2 conserv','m/s',km2(:,1:klev)) |
---|
| 387 | call iophys_ecrit('kn2',klev,'n2 conserv','m/s',kn2(:,1:klev)) |
---|
| 388 | endif |
---|
| 389 | #endif |
---|
| 390 | |
---|
[1761] | 391 | ! Dissipation of TKE |
---|
| 392 | q2old(:,:)=q2(:,:) |
---|
| 393 | q2(:,:)=1./(1./sqrt(q2(:,:))+timestep/(2*leff(:,:)*b1)) |
---|
| 394 | q2(:,:)=q2(:,:)*q2(:,:) |
---|
[2680] | 395 | ! IF (iflag_pbl<=24) THEN |
---|
[1761] | 396 | DO k=1,klev |
---|
| 397 | d_t_diss(:,k)=(masseb(:,k)*(q2neg(:,k)-q2(:,k))+masseb(:,k+1)*(q2neg(:,k+1)-q2(:,k+1)))/(2.*rcpd*masse(:,k)) |
---|
| 398 | ENDDO |
---|
[2680] | 399 | |
---|
| 400 | !################################################################### |
---|
| 401 | ! ELSE IF (iflag_pbl<=27) THEN |
---|
| 402 | ! DO k=1,klev |
---|
| 403 | ! d_t_diss(:,k)=(q2neg(:,k)-q2(:,k))/rcpd |
---|
| 404 | ! ENDDO |
---|
| 405 | ! ENDIF |
---|
[1761] | 406 | ! print*,'iflag_pbl ',d_t_diss |
---|
[2680] | 407 | !################################################################### |
---|
[1761] | 408 | |
---|
| 409 | |
---|
| 410 | ! Compuation of stability functions |
---|
[2680] | 411 | ! IF (iflag_pbl/=29) THEN |
---|
[1761] | 412 | DO k=1,klev |
---|
| 413 | DO ig=1,ngrid |
---|
| 414 | IF (ABS(km2(ig,k))<=1.e-20) THEN |
---|
| 415 | rif(ig,k)=0. |
---|
| 416 | ELSE |
---|
| 417 | rif(ig,k)=min(kn2(ig,k)/km2(ig,k),rifc) |
---|
| 418 | ENDIF |
---|
| 419 | IF (rif(ig,k).lt.0.16) THEN |
---|
| 420 | alpha(ig,k)=falpha(rif(ig,k)) |
---|
| 421 | sm(ig,k)=fsm(rif(ig,k)) |
---|
| 422 | else |
---|
| 423 | alpha(ig,k)=1.12 |
---|
| 424 | sm(ig,k)=0.085 |
---|
| 425 | endif |
---|
| 426 | ENDDO |
---|
| 427 | ENDDO |
---|
[2680] | 428 | ! ENDIF |
---|
[1761] | 429 | |
---|
| 430 | ! Computation of turbulent diffusivities |
---|
[2680] | 431 | ! IF (25<=iflag_pbl.and.iflag_pbl<=28) THEN |
---|
| 432 | ! DO k=2,klev |
---|
| 433 | ! sqrtq(:,k)=sqrt(0.5*(q2(:,k)+q2(:,k-1))) |
---|
| 434 | ! ENDDO |
---|
| 435 | ! ELSE |
---|
| 436 | kq(:,:)=0. |
---|
| 437 | DO k=1,klev |
---|
| 438 | ! Coefficient au milieu des couches pour diffuser la TKE |
---|
| 439 | kq(:,k)=0.5*leff(:,k)*sqrt(q2(:,k))*0.2 |
---|
[1761] | 440 | ENDDO |
---|
[2680] | 441 | |
---|
| 442 | #ifdef IOPHYS |
---|
| 443 | if (okiophys) then |
---|
| 444 | call iophys_ecrit('q2b',klev,'KTE inter','m2/s',q2(:,1:klev)) |
---|
| 445 | endif |
---|
| 446 | #endif |
---|
| 447 | |
---|
| 448 | IF (iflag_tke_diff==1) THEN |
---|
| 449 | CALL vdif_q2(timestep, RG, RD, ngrid, plev, pt, kq, q2) |
---|
| 450 | ENDIF |
---|
| 451 | |
---|
| 452 | km(:,:)=0. |
---|
| 453 | kn(:,:)=0. |
---|
| 454 | DO k=1,klev |
---|
| 455 | km(:,k)=leff(:,k)*sqrt(q2(:,k))*sm(:,k) |
---|
| 456 | kn(:,k)=km(:,k)*alpha(:,k) |
---|
[1761] | 457 | ENDDO |
---|
| 458 | |
---|
| 459 | |
---|
| 460 | #ifdef IOPHYS |
---|
[2680] | 461 | if (okiophys) then |
---|
[1761] | 462 | call iophys_ecrit('mixingl',klev,'Mixing length','m',leff(:,1:klev)) |
---|
| 463 | call iophys_ecrit('rife',klev,'Flux Richardson','m',rif(:,1:klev)) |
---|
| 464 | call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
---|
| 465 | call iophys_ecrit('q2neg',klev,'KTE non bornee','m2/s',q2neg(:,1:klev)) |
---|
| 466 | call iophys_ecrit('alpha',klev,'alpha','',alpha(:,1:klev)) |
---|
| 467 | call iophys_ecrit('sm',klev,'sm','',sm(:,1:klev)) |
---|
| 468 | call iophys_ecrit('q2f',klev,'KTE finale','m2/s',q2(:,1:klev)) |
---|
| 469 | call iophys_ecrit('kmf',klev,'Kz final','m2/s',km(:,1:klev)) |
---|
| 470 | call iophys_ecrit('knf',klev,'Kz final','m2/s',kn(:,1:klev)) |
---|
| 471 | call iophys_ecrit('kqf',klev,'Kz final','m2/s',kq(:,1:klev)) |
---|
| 472 | endif |
---|
| 473 | #endif |
---|
| 474 | |
---|
[2680] | 475 | |
---|
[1761] | 476 | ENDIF |
---|
| 477 | |
---|
| 478 | |
---|
| 479 | ! print*,'OK2' |
---|
| 480 | RETURN |
---|
[5390] | 481 | END SUBROUTINE yamada_c |
---|