source: LMDZ6/trunk/libf/phylmd/write_histrac.h @ 3871

Last change on this file since 3871 was 3435, checked in by Laurent Fairhead, 6 years ago

"Historic" :-) commit merging the physics branch used for DYNAMICO with the LMDZ trunk.
The same physics branch can now be used seamlessly with the traditional lon-lat LMDZ
dynamical core and DYNAMICO.
Testing consisted in running a lon-lat LMDZ bucket simulation with the NPv6.1 physics package
with the original trunk sources and the merged sources. Tests were succesful in the sense that
numeric continuity was preserved in the restart files from both simulation. Further tests
included running both versions of the physics codes for one year in a LMDZOR setting in which
the restart files also came out identical.

Caution:

  • as the physics package now manages unstructured grids, grid information needs to be transmitted

to the surface scheme ORCHIDEE. This means that the interface defined in surf_land_orchidee_mod.F90
is only compatible with ORCHIDEE version orchidee2.1 and later versions. If previous versions of
ORCHIDEE need to be used, the CPP key ORCHIDEE_NOUNSTRUCT needs to be set at compilation time.
This is done automatically if makelmdz/makelmdz_fcm are called with the veget orchidee2.0 switch

  • due to a limitation in XIOS, the time at which limit conditions will be read in by DYNAMICO will be

delayed by one physic timestep with respect to the time it is read in by the lon-lat model. This is caused
by the line

IF (MOD(itime-1, lmt_pas) == 0 .OR. (jour_lu /= jour .AND. grid_type /= unstructured)) THEN ! time to read

in limit_read_mod.F90

Work still needed on COSP integration and XML files for DYNAMICO

EM, YM, LF

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 5.5 KB
Line 
1!$Id $
2!***************************************
3!  ECRITURE DU FICHIER :  histrac.nc
4!***************************************
5  IF (ecrit_tra > 0.) THEN
6     
7     itau_w = itau_phy + nstep + start_time * day_step / iphysiq
8     
9     CALL histwrite_phy(nid_tra,.FALSE.,"phis",itau_w,pphis)
10     CALL histwrite_phy(nid_tra,.FALSE.,"aire",itau_w,cell_area)
11     CALL histwrite_phy(nid_tra,.FALSE.,"zmasse",itau_w,zmasse)
12! RomP >>>
13     CALL histwrite_phy(nid_tra,.FALSE.,"sourceBE",itau_w,sourceBE)
14! RomP <<<
15
16!TRACEURS
17!----------------
18     DO it=1,nbtr
19!!        iiq=niadv(it+2)                                                           ! jyg
20        iiq=niadv(it+nqo)                                                           ! jyg
21
22! CONCENTRATIONS
23        CALL histwrite_phy(nid_tra,.FALSE.,tname(iiq),itau_w,tr_seri(:,:,it))
24
25! TD LESSIVAGE       
26      IF (lessivage .AND. aerosol(it)) THEN
27        CALL histwrite_phy(nid_tra,.FALSE.,"fl"//tname(iiq),itau_w,flestottr(:,:,it))
28        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_ls_"//tname(iiq),itau_w,d_tr_ls(:,:,it))
29        IF(iflag_lscav .EQ. 3 .OR. iflag_lscav .EQ. 4) then
30          CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_insc_"//tname(iiq),itau_w,d_tr_insc(:,:,it))
31          CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_bcscav_"//tname(iiq),itau_w,d_tr_bcscav(:,:,it))
32          CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_evls_"//tname(iiq),itau_w,d_tr_evapls(:,:,it))
33          CALL histwrite_phy(nid_tra,.FALSE.,"qpr_ls_"//tname(iiq),itau_w,qPrls(:,it))
34        ENDIF
35      ENDIF
36
37! TD THERMIQUES
38        IF (iflag_thermals.gt.0) THEN
39           CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_th_"//tname(iiq),itau_w,d_tr_th(:,:,it))
40        ENDIF
41
42! TD CONVECTION
43        IF (iflag_con.GE.2) THEN
44           CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_cv_"//tname(iiq),itau_w,d_tr_cv(:,:,it))
45        ENDIF
46
47! TD COUCHE-LIMITE
48      IF (iflag_vdf_trac>=0) THEN
49        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_cl_"//tname(iiq),itau_w,d_tr_cl(:,:,it))
50        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_dry_"//tname(iiq),itau_w,d_tr_dry(:,it))
51        CALL histwrite_phy(nid_tra,.FALSE.,"flux_tr_dry_"//tname(iiq),itau_w,flux_tr_dry(:,it))
52      ENDIF
53
54! TD radio-decroissance
55        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_dec_"//tname(iiq),itau_w,d_tr_dec(:,:,it))
56
57! RomP >>>
58        IF (iflag_con.EQ.30) THEN
59        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_cvMA_"//tname(iiq),itau_w,dtrcvMA(:,:,it))
60        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_trsp_"//tname(iiq),itau_w,d_tr_trsp(:,:,it))
61        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_sscav_"//tname(iiq),itau_w,d_tr_sscav(:,:,it))
62        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_sat_"//tname(iiq),itau_w,d_tr_sat(:,:,it))
63        CALL histwrite_phy(nid_tra,.FALSE.,"d_tr_uscav_"//tname(iiq),itau_w,d_tr_uscav(:,:,it))
64        CALL histwrite_phy(nid_tra,.FALSE.,"tr_pr_"//tname(iiq),itau_w,qPr(:,:,it))
65        CALL histwrite_phy(nid_tra,.FALSE.,"tr_aa_"//tname(iiq),itau_w,qPa(:,:,it))
66        CALL histwrite_phy(nid_tra,.FALSE.,"tr_mel_"//tname(iiq),itau_w,qMel(:,:,it))
67        CALL histwrite_phy(nid_tra,.FALSE.,"tr_di_"//tname(iiq),itau_w,qDi(:,:,it))
68        CALL histwrite_phy(nid_tra,.FALSE.,"tr_trspdi_"//tname(iiq),itau_w,qTrdi(:,:,it))
69        CALL histwrite_phy(nid_tra,.FALSE.,"zmfd1a_"//tname(iiq),itau_w,zmfd1a(:,:,it))
70        CALL histwrite_phy(nid_tra,.FALSE.,"zmfphi2_"//tname(iiq),itau_w,zmfphi2(:,:,it))
71        CALL histwrite_phy(nid_tra,.FALSE.,"zmfdam_"//tname(iiq),itau_w,zmfdam(:,:,it))
72        ENDIF
73        CALL histwrite_phy(nid_tra,.FALSE.,"dtrdyn_"//tname(iiq),itau_w,d_tr_dyn(:,:,it))
74! RomP <<<
75     ENDDO
76!---------------
77!
78!
79! VENT (niveau 1)   
80     CALL histwrite_phy(nid_tra,.FALSE.,"pyu1",itau_w,yu1)
81     CALL histwrite_phy(nid_tra,.FALSE.,"pyv1",itau_w,yv1)
82!
83! TEMPERATURE DU SOL
84     zx_tmp_fi2d(:)=ftsol(:,1)         
85     CALL histwrite_phy(nid_tra,.FALSE.,"ftsol1",itau_w,zx_tmp_fi2d)
86     zx_tmp_fi2d(:)=ftsol(:,2)
87     CALL histwrite_phy(nid_tra,.FALSE.,"ftsol2",itau_w,zx_tmp_fi2d)
88     zx_tmp_fi2d(:)=ftsol(:,3)
89     CALL histwrite_phy(nid_tra,.FALSE.,"ftsol3",itau_w,zx_tmp_fi2d)
90     zx_tmp_fi2d(:)=ftsol(:,4)
91     CALL histwrite_phy(nid_tra,.FALSE.,"ftsol4",itau_w,zx_tmp_fi2d)
92!     
93! NATURE DU SOL
94     zx_tmp_fi2d(:)=pctsrf(:,1)
95     CALL histwrite_phy(nid_tra,.FALSE.,"psrf1",itau_w,zx_tmp_fi2d)
96     zx_tmp_fi2d(:)=pctsrf(:,2)
97     CALL histwrite_phy(nid_tra,.FALSE.,"psrf2",itau_w,zx_tmp_fi2d)
98     zx_tmp_fi2d(:)=pctsrf(:,3)
99     CALL histwrite_phy(nid_tra,.FALSE.,"psrf3",itau_w,zx_tmp_fi2d)
100     zx_tmp_fi2d(:)=pctsrf(:,4)
101     CALL histwrite_phy(nid_tra,.FALSE.,"psrf4",itau_w,zx_tmp_fi2d)
102 
103! DIVERS   
104     CALL histwrite_phy(nid_tra,.FALSE.,"Mint",itau_w,Mint(:,:))
105     CALL histwrite_phy(nid_tra,.FALSE.,"frac_impa",itau_w,frac_impa(:,:))   
106     CALL histwrite_phy(nid_tra,.FALSE.,"frac_nucl",itau_w,frac_nucl(:,:))
107
108
109     CALL histwrite_phy(nid_tra,.FALSE.,"pplay",itau_w,pplay)     
110     CALL histwrite_phy(nid_tra,.FALSE.,"T",itau_w,t_seri)     
111     CALL histwrite_phy(nid_tra,.FALSE.,"mfu",itau_w,pmfu)
112     CALL histwrite_phy(nid_tra,.FALSE.,"mfd",itau_w,pmfd)
113     CALL histwrite_phy(nid_tra,.FALSE.,"en_u",itau_w,pen_u)
114     CALL histwrite_phy(nid_tra,.FALSE.,"en_d",itau_w,pen_d)
115     CALL histwrite_phy(nid_tra,.FALSE.,"de_d",itau_w,pde_d)
116     CALL histwrite_phy(nid_tra,.FALSE.,"de_u",itau_w,pde_u)
117     CALL histwrite_phy(nid_tra,.FALSE.,"coefh",itau_w,coefh)
118
119     IF (ok_sync) THEN
120!$OMP MASTER
121        CALL histsync(nid_tra)
122!$OMP END MASTER
123     ENDIF
124
125  ENDIF !ecrit_tra>0.
126
Note: See TracBrowser for help on using the repository browser.