1 | SUBROUTINE thermcell_updown_dq(ngrid,nlay,ptimestep,lmax,eup,dup,edn,ddn,masse,trac) |
---|
2 | |
---|
3 | !----------------------------------------------------------------- |
---|
4 | ! thermcell_updown_dq: computes the tendency of tracers associated |
---|
5 | ! with the presence of convective up/down drafts |
---|
6 | ! This routine that has been collectively written during the |
---|
7 | ! "ateliers downdrafts" in 2022/2023 |
---|
8 | ! Maelle, Frédéric, Catherine, Fleur, Florent, Etienne |
---|
9 | !------------------------------------------------------------------ |
---|
10 | |
---|
11 | |
---|
12 | IMPLICIT NONE |
---|
13 | |
---|
14 | ! declarations |
---|
15 | !============================================================== |
---|
16 | |
---|
17 | ! input/output |
---|
18 | |
---|
19 | integer,intent(in) :: ngrid ! number of horizontal grid points |
---|
20 | integer, intent(in) :: nlay ! number of vertical layers |
---|
21 | real,intent(in) :: ptimestep ! time step of the physics [s] |
---|
22 | real,intent(in), dimension(ngrid,nlay) :: eup ! entrainment to updrafts * dz [same unit as flux] |
---|
23 | real,intent(in), dimension(ngrid,nlay) :: dup ! detrainment from updrafts * dz [same unit as flux] |
---|
24 | real,intent(in), dimension(ngrid,nlay) :: edn ! entrainment to downdrafts * dz [same unit as flux] |
---|
25 | real,intent(in), dimension(ngrid,nlay) :: ddn ! detrainment from downdrafts * dz [same unit as flux] |
---|
26 | real,intent(in), dimension(ngrid,nlay) :: masse ! mass of layers = rho dz |
---|
27 | real,intent(inout), dimension(ngrid,nlay) :: trac ! tracer |
---|
28 | integer, intent(in), dimension(ngrid) :: lmax ! max level index at which downdraft are present |
---|
29 | |
---|
30 | |
---|
31 | ! Local |
---|
32 | |
---|
33 | real, dimension(ngrid,nlay+1) :: fup,fdn,fthu,fthd,fthe,fthtot |
---|
34 | real, dimension(ngrid,nlay) :: tracu,tracd,dtrac |
---|
35 | real :: www |
---|
36 | integer ig,ilay |
---|
37 | |
---|
38 | fdn(:,:)=0. |
---|
39 | fup(:,:)=0. |
---|
40 | fthu(:,:)=0. |
---|
41 | fthd(:,:)=0. |
---|
42 | fthe(:,:)=0. |
---|
43 | fthtot(:,:)=0. |
---|
44 | tracd(:,:)=0. |
---|
45 | tracu(:,:)=0. |
---|
46 | |
---|
47 | ! lmax : indice tel que fu(kmax+1)=0 |
---|
48 | |
---|
49 | ! Dans ce cas, pas besoin d'initialiser tracd(lmax) ( =trac(lmax) ) |
---|
50 | |
---|
51 | print*,'ON PASSE BIEN PAR LA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC' |
---|
52 | ! Boucle pour le downdraft |
---|
53 | do ilay=nlay,1,-1 |
---|
54 | do ig=1,ngrid |
---|
55 | if (ilay.le.lmax(ig) .and. lmax(ig)>1) then |
---|
56 | fdn(ig,ilay)=fdn(ig,ilay+1)+edn(ig,ilay)-ddn(ig,ilay) |
---|
57 | if ( 1 == 0 ) then |
---|
58 | tracd(ig,ilay)=( fdn(ig,ilay+1)*tracd(ig,ilay+1) + edn(ig,ilay)*trac(ig,ilay) ) / (fdn(ig,ilay)+ddn(ig,ilay)) |
---|
59 | else |
---|
60 | www=fdn(ig,ilay+1)/ (fdn(ig,ilay)+ddn(ig,ilay)) |
---|
61 | tracd(ig,ilay)=www*tracd(ig,ilay+1) + (1.-www)*trac(ig,ilay) |
---|
62 | endif |
---|
63 | endif |
---|
64 | enddo |
---|
65 | enddo |
---|
66 | |
---|
67 | !Boucle pour l'updraft |
---|
68 | do ilay=1,nlay,1 |
---|
69 | do ig=1,ngrid |
---|
70 | if (ilay.le.lmax(ig) .and. lmax(ig)>1) then |
---|
71 | fup(ig,ilay+1)=fup(ig,ilay)+eup(ig,ilay)-dup(ig,ilay) |
---|
72 | if (ilay == 1 ) then |
---|
73 | tracu(ig,ilay)=trac(ig,ilay) |
---|
74 | else |
---|
75 | !tracu(ig,ilay)=( fup(ig,ilay)*tracu(ig,ilay-1) + eup(ig,ilay)*trac(ig,ilay) ) / (fup(ig,ilay+1)+dup(ig,ilay)) |
---|
76 | !eup(ig,ilay)=fup(ig,ilay+1)-fup(ig,ilay)+dup(ig,ilay) |
---|
77 | !tracu(ig,ilay)=( fup(ig,ilay)*tracu(ig,ilay-1) + (fup(ig,ilay+1)-fup(ig,ilay)+dup(ig,ilay))*trac(ig,ilay) ) / (fup(ig,ilay+1)+dup(ig,ilay)) |
---|
78 | www=fup(ig,ilay)/(fup(ig,ilay+1)+dup(ig,ilay)) |
---|
79 | !1-www=(fup(ig,ilay+1)+dup(ig,ilay)-fup(ig,ilay))/(fup(ig,ilay+1)+dup(ig,ilay)) |
---|
80 | tracu(ig,ilay)=www*tracu(ig,ilay-1)+(1.-www)*trac(ig,ilay) |
---|
81 | endif |
---|
82 | endif |
---|
83 | enddo |
---|
84 | enddo |
---|
85 | !Boucle pour calculer le flux up |
---|
86 | do ilay=2,nlay,1 |
---|
87 | do ig=1,ngrid |
---|
88 | fthu(ig,ilay)=fup(ig,ilay)*tracu(ig,ilay-1) |
---|
89 | fthd(ig,ilay)=-fdn(ig,ilay)*tracd(ig,ilay) |
---|
90 | !!!!ATTENTION HYPOTHESE de FLUX COMPENSATOIRE DESCENDANT ET DONC comme schema amont on va chercher trac au dessus!!!!! |
---|
91 | !!!! si ce n'est pas le cas on stoppe le code !!!! |
---|
92 | if (fup(ig,ilay)-fdn(ig,ilay) .lt. 0.) then |
---|
93 | write(*,*) 'flux compensatoire montant, cas non traite par thermcell_updown_dq' |
---|
94 | stop |
---|
95 | endif |
---|
96 | fthe(ig,ilay)=-(fup(ig,ilay)-fdn(ig,ilay))*trac(ig,ilay) |
---|
97 | fthtot(ig,ilay)=fthu(ig,ilay)+fthd(ig,ilay)+fthe(ig,ilay) |
---|
98 | enddo |
---|
99 | enddo |
---|
100 | !Boucle pour calculer trac |
---|
101 | do ilay=1,nlay,1 |
---|
102 | do ig=1,ngrid |
---|
103 | dtrac(ig,ilay)=(fthtot(ig,ilay)-fthtot(ig,ilay+1))*(ptimestep/masse(ig,ilay)) |
---|
104 | ! trac(ig,ilay)=trac(ig,ilay) + (fthtot(ig,ilay)-fthtot(ig,ilay+1))*(ptimestep/masse(ig,ilay)) |
---|
105 | enddo |
---|
106 | enddo |
---|
107 | if (1==0) then |
---|
108 | do ilay=1,nlay,1 |
---|
109 | do ig=1,ngrid |
---|
110 | trac(ig,ilay)=trac(ig,ilay) + (fup(ig,ilay)*tracu(ig,ilay-1)-fup(ig,ilay+1)*tracu(ig,ilay) + & |
---|
111 | & (fup(ig,ilay+1)+fdn(ig,ilay+1))*trac(ig,ilay+1) - (fup(ig,ilay)+fdn(ig,ilay))*trac(ig,ilay) + & |
---|
112 | & fdn(ig,ilay+1)*tracd(ig,ilay+1)-fdn(ig,ilay)*tracd(ig,ilay))*(ptimestep/masse(ig,ilay)) |
---|
113 | enddo |
---|
114 | enddo |
---|
115 | endif |
---|
116 | ! Il reste a coder : |
---|
117 | ! d(rho trac)/dt = - d/dz(rho w'trac') |
---|
118 | ! d(trac)/dt = -1/rho * d/dz(rho w'trac') |
---|
119 | ! hydrostatique : dp - rho g dz |
---|
120 | ! dz = - dp / (rho g) |
---|
121 | ! 1 / dz = - (rho g ) / dp |
---|
122 | |
---|
123 | ! d(trac)/dt = -1/rho * d/dp(rho w'trac') * (- rho g ) |
---|
124 | ! d(trac)/dt = d/dp(rho w'trac') * g |
---|
125 | |
---|
126 | |
---|
127 | ! ----> calculer d/dz(w'trac') |
---|
128 | ! w'trac' = alpha_up*(w_up-w_bar)*(trac_up-trac_bar) |
---|
129 | ! + alpha_down*(w_down-w_bar)*(trac_down-trac_bar) |
---|
130 | ! + (1-alpha_up-alpha_down)*(w_env-w_bar)*(trac_env-trac_bar) |
---|
131 | ! avec w_bar=0=alpha_up*w_up+alpha_down*w_dn+(1-alpha_up-alpha_down)w_env |
---|
132 | ! -> w_env= - (alpha_up*w_up+alpha_down*w_dn)/(1-alpha_up-alpha_down) |
---|
133 | ! et on a : trac_bar=alpha_up*trac_up + alpha_down*trac_dn + (1-alpha_up-alpha_down)trac_env |
---|
134 | ! |
---|
135 | ! w'trac' = alpha_up*w_up*(trac_up-trac_bar) |
---|
136 | ! + alpha_down*w_down*(trac_down-trac_bar) |
---|
137 | ! + (1-alpha_up-alpha_down)*w_env*(trac_env-trac_bar) |
---|
138 | |
---|
139 | ! rho*w'trac' = rho*alpha_up*w_up*(trac_up-trac_bar) |
---|
140 | ! + rho*alpha_down*w_down*(trac_down-trac_bar) |
---|
141 | ! + rho*(1-alpha_up-alpha_down)*w_env*(trac_env-trac_bar) |
---|
142 | ! |
---|
143 | |
---|
144 | ! rho*w'trac' = fup*(trac_up-trac_bar) |
---|
145 | ! + fdn*(trac_down-trac_bar) |
---|
146 | ! - rho*(alpha_up*w_up+alpha_down*w_dn)*(trac_env-trac_bar) |
---|
147 | |
---|
148 | ! - rho*(alpha_up*w_up+alpha_down*w_dn)*((trac_bar-alpha_up*trac_up-alpha_down*trac_down) /(1-alpha_up-alpha_down)- trac_bar) |
---|
149 | ! - rho*(alpha_up*w_up+alpha_down*w_dn)*(trac_bar*(1/(1-alpha_up-alpha_down)-1) - (alpha_up*trac_up+alpha_down*trac_down) /(1-alpha_up-alpha_down)) |
---|
150 | |
---|
151 | ! rho*w'trac' = fup*(trac_up-trac_bar) |
---|
152 | ! + fdn*(trac_down-trac_bar) |
---|
153 | ! - (fup+fdn)*(trac_env-trac_bar) |
---|
154 | |
---|
155 | |
---|
156 | ! rho*w'trac' = fup*(trac_up-trac_bar) |
---|
157 | ! + fdn*(trac_down-trac_bar) |
---|
158 | ! - (fup+fdn)*( (trac_bar-alpha_up*trac_up-alpha_down*trac_down) /(1-alpha_up-alpha_down) - trac_bar) |
---|
159 | |
---|
160 | !!! hypoth??se : alpha_up+alpha_down << 1 -> 1/(1-alpha_up-alpha_down) ~ 1 |
---|
161 | |
---|
162 | ! rho*w'trac' = fup*(trac_up-trac_bar) |
---|
163 | |
---|
164 | ! + fdn*(trac_down-trac_bar) |
---|
165 | ! + (fup+fdn)*(alpha_up*trac_up+alpha_down*trac_down) |
---|
166 | |
---|
167 | ! d(trac)/dt= -1/rho d/dz(rho*w'trac') |
---|
168 | ! choix de schema temporel (euler explicite) |
---|
169 | ! (trac(t,k)-trac(t-1,k))/dt = f(t-1,k) |
---|
170 | ! (trac(t,k)-trac(t-1,k))/dt = f(t,k) ---> euler implicite |
---|
171 | ! -----> on choisit explicite en temps |
---|
172 | |
---|
173 | !dans le cas d'une ascendance sans downdraft : |
---|
174 | ! d/dz(rho*w'trac') = fup(k)*qa(k-1) -fup(k+1)*qa(k) |
---|
175 | |
---|
176 | !(rho*w'trac'(k+1)-rho*w'trac'(k))/dz = fup(k)tracu(k-1)-fup(k+1)tracup(k) + (fup+fdn)(k+1)*trac_env(k+1) - (fup+fdn)(k)*trac_env(k) + fdn(k+1) tracdn(k+1) |
---|
177 | ! - fdn(k) tracdn(k) |
---|
178 | |
---|
179 | ! en continue on a : d(trac)/dt = -1/rho * d/dz(rho w'trac') |
---|
180 | ! en discretis?? on a : |
---|
181 | ! (trac(t,k)-trac(t-1,k))/dt = -1/rho * rho*w'trac'(k+1)-rho*w'trac'(k))/dz |
---|
182 | ! trac(t,k) = trac(t-1,k) - dt/rho * (rho*w'trac'(k+1)-rho*w'trac'(k))/dz |
---|
183 | ! trac(t,k) = trac(t-1,k) - dt/rho * [fup(k)tracu(k-1)-fup(k+1)tracup(k) + (fup+fdn)(k+1)*trac_env(k+1) - |
---|
184 | ! (fup+fdn)(k)*trac_env(k) + fdn(k+1) tracdn(k+1) - fdn(k) tracdn(k)] |
---|
185 | |
---|
186 | |
---|
187 | |
---|
188 | ! d(trac)/dt = d/dp(rho w'trac') * g |
---|
189 | ! -1/rho * d/dz(rho w'trac') = g*d/dp(rho w'trac') = g * [fup(k)tracu(k-1)-fup(k+1)tracup(k) + (fup+fdn)(k+1)*trac_env(k+1) - |
---|
190 | ! (fup+fdn)(k)*trac_env(k) + fdn(k+1) tracdn(k+1) - fdn(k) tracdn(k)] |
---|
191 | |
---|
192 | |
---|
193 | |
---|
194 | ! choix de sch??ma spatial |
---|
195 | ! d/dz(rho*w'trac') = (rho*w'trac'(k+1)-rho*w'trac'(k))*dz |
---|
196 | ! d/dz(rho*w'trac') = (rho*w'trac'(k)-rho*w'trac'(k-1))*dz |
---|
197 | |
---|
198 | |
---|
199 | |
---|
200 | ! d/dz(rho*w'trac') = rho w'trac'(k+1)-rho w'trac'(k) |
---|
201 | |
---|
202 | !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
203 | ! Initialisations : |
---|
204 | !------------------ |
---|
205 | |
---|
206 | |
---|
207 | ! |
---|
208 | RETURN |
---|
209 | END |
---|
210 | |
---|
211 | !========================================================================= |
---|
212 | |
---|
213 | SUBROUTINE thermcell_down(ngrid,nlay,po,pt,pu,pv,pplay,pplev, & |
---|
214 | & lmax,fup,eup,dup,theta) |
---|
215 | |
---|
216 | !-------------------------------------------------------------- |
---|
217 | !thermcell_down: calcul des propri??t??s du panache descendant. |
---|
218 | !-------------------------------------------------------------- |
---|
219 | |
---|
220 | |
---|
221 | USE thermcell_ini_mod, ONLY : prt_level,RLvCp,RKAPPA,RETV |
---|
222 | IMPLICIT NONE |
---|
223 | |
---|
224 | ! arguments |
---|
225 | |
---|
226 | integer,intent(in) :: ngrid,nlay |
---|
227 | real,intent(in), dimension(ngrid,nlay) :: po,pt,pu,pv,pplay,eup,dup |
---|
228 | real,intent(in), dimension(ngrid,nlay) :: theta |
---|
229 | real,intent(in), dimension(ngrid,nlay+1) :: pplev,fup |
---|
230 | integer, intent(in), dimension(ngrid) :: lmax |
---|
231 | |
---|
232 | |
---|
233 | |
---|
234 | ! Local |
---|
235 | |
---|
236 | real, dimension(ngrid,nlay) :: edn,ddn,thetad |
---|
237 | real, dimension(ngrid,nlay+1) :: fdn |
---|
238 | |
---|
239 | integer ig,ilay |
---|
240 | real dqsat_dT |
---|
241 | logical mask(ngrid,nlay) |
---|
242 | |
---|
243 | edn(:,:)=0. |
---|
244 | ddn(:,:)=0. |
---|
245 | fdn(:,:)=0. |
---|
246 | thetad(:,:)=0. |
---|
247 | |
---|
248 | ! lmax : indice tel que fu(kmax+1)=0 |
---|
249 | |
---|
250 | ! Dans ce cas, pas besoin d'initialiser thetad(lmax) ( =theta(lmax) ) |
---|
251 | |
---|
252 | ! FH MODIFS APRES REUNIONS POUR COMMISSIONS |
---|
253 | ! quelques erreurs de declaration |
---|
254 | ! probleme si lmax=1 ce qui a l'air d'??tre le cas en d??but de simu. Devrait ??tre 0 ? |
---|
255 | ! Remarques : |
---|
256 | ! on pourrait ??crire la formule de thetad |
---|
257 | ! www=fdn(ig,ilay+1)/ (fdn(ig,ilay)+ddn(ig,ilay)) |
---|
258 | ! thetad(ig,ilay)= www * thetad(ig,ilay+1) + (1.-www) * theta(ig,ilay) |
---|
259 | ! Elle a l'avantage de bien montr?? la conservation, l'id??e fondamentale dans le |
---|
260 | ! transport qu'on ne fait que sommer des "sources" au travers d'un "propagateur" |
---|
261 | ! (Green) |
---|
262 | ! Elle montre aussi beaucoup plus clairement pourquoi on n'a pas ?? se souccier (trop) |
---|
263 | ! de la possible nulit?? du d??nominateur |
---|
264 | |
---|
265 | |
---|
266 | do ilay=nlay,1,-1 |
---|
267 | do ig=1,ngrid |
---|
268 | if (ilay.le.lmax(ig).and.lmax(ig)>1) then |
---|
269 | edn(ig,ilay)=0.5*dup(ig,ilay) |
---|
270 | ddn(ig,ilay)=0.5*eup(ig,ilay) |
---|
271 | fdn(ig,ilay)=fdn(ig,ilay+1)+edn(ig,ilay)-ddn(ig,ilay) |
---|
272 | thetad(ig,ilay)=( fdn(ig,ilay+1)*thetad(ig,ilay+1) + edn(ig,ilay)*theta(ig,ilay) ) / (fdn(ig,ilay)+ddn(ig,ilay)) |
---|
273 | endif |
---|
274 | enddo |
---|
275 | enddo |
---|
276 | |
---|
277 | ! Suite du travail : |
---|
278 | ! Ecrire la conservervation de theta_l dans le panache descendant |
---|
279 | ! Eventuellement faire la transformation theta_l -> theta_v |
---|
280 | ! Si l'air est sec (et qu'on oublie le c??t?? theta_v) on peut |
---|
281 | ! se contenter de conserver theta. |
---|
282 | ! |
---|
283 | ! Connaissant thetadn, on peut calculer la flotabilit??. |
---|
284 | ! Connaissant la flotabilit??, on peut calculer w de proche en proche |
---|
285 | ! On peut calculer le detrainement de facon ?? garder alpha*rho = cste |
---|
286 | ! On en d??duit l'entrainement lat??ral |
---|
287 | ! C'est le mod??le des mini-projets. |
---|
288 | |
---|
289 | !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
290 | ! Initialisations : |
---|
291 | !------------------ |
---|
292 | |
---|
293 | |
---|
294 | ! |
---|
295 | RETURN |
---|
296 | END |
---|