1 | ! |
---|
2 | MODULE surf_landice_mod |
---|
3 | |
---|
4 | IMPLICIT NONE |
---|
5 | |
---|
6 | CONTAINS |
---|
7 | ! |
---|
8 | !**************************************************************************************** |
---|
9 | ! |
---|
10 | SUBROUTINE surf_landice(itime, dtime, knon, knindex, & |
---|
11 | rlon, rlat, debut, lafin, & |
---|
12 | rmu0, lwdownm, albedo, pphi1, & |
---|
13 | swnet, lwnet, tsurf, p1lay, & |
---|
14 | cdragh, cdragm, precip_rain, precip_snow, precip_bs, temp_air, spechum, & |
---|
15 | AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
16 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
17 | AcoefQBS, BcoefQBS, & |
---|
18 | ps, u1, v1, gustiness, rugoro, pctsrf, & |
---|
19 | snow, qsurf, qsol, qbs1, agesno, & |
---|
20 | tsoil, z0m, z0h, SFRWL, alb_dir, alb_dif, evap, fluxsens, fluxlat, fluxbs, & |
---|
21 | tsurf_new, dflux_s, dflux_l, & |
---|
22 | alt, slope, cloudf, & |
---|
23 | snowhgt, qsnow, to_ice, sissnow, & |
---|
24 | alb3, runoff, & |
---|
25 | flux_u1, flux_v1) |
---|
26 | |
---|
27 | USE dimphy |
---|
28 | USE geometry_mod, ONLY : longitude,latitude |
---|
29 | USE surface_data, ONLY : type_ocean, calice, calsno, landice_opt, iflag_albcalc |
---|
30 | USE fonte_neige_mod, ONLY : fonte_neige,run_off_lic,fqcalving_global,ffonte_global,fqfonte_global,runofflic_global |
---|
31 | USE cpl_mod, ONLY : cpl_send_landice_fields |
---|
32 | USE calcul_fluxs_mod |
---|
33 | USE phys_local_var_mod, ONLY : zxrhoslic, zxustartlic, zxqsaltlic |
---|
34 | USE phys_output_var_mod, ONLY : snow_o,zfra_o |
---|
35 | !FC |
---|
36 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
37 | USE lmdz_blowing_snow_ini, ONLY : c_esalt_bs, zeta_bs, pbst_bs, prt_bs, rhoice_bs, rhohard_bs |
---|
38 | USE lmdz_blowing_snow_ini, ONLY : rhofresh_bs, tau_eqsalt_bs, tau_dens0_bs, tau_densmin_bs |
---|
39 | #ifdef CPP_INLANDSIS |
---|
40 | USE surf_inlandsis_mod, ONLY : surf_inlandsis |
---|
41 | #endif |
---|
42 | |
---|
43 | USE indice_sol_mod |
---|
44 | |
---|
45 | ! INCLUDE "indicesol.h" |
---|
46 | INCLUDE "dimsoil.h" |
---|
47 | INCLUDE "YOMCST.h" |
---|
48 | INCLUDE "clesphys.h" |
---|
49 | |
---|
50 | ! Input variables |
---|
51 | !**************************************************************************************** |
---|
52 | INTEGER, INTENT(IN) :: itime, knon |
---|
53 | INTEGER, DIMENSION(klon), INTENT(in) :: knindex |
---|
54 | REAL, INTENT(in) :: dtime |
---|
55 | REAL, DIMENSION(klon), INTENT(IN) :: swnet ! net shortwave radiance |
---|
56 | REAL, DIMENSION(klon), INTENT(IN) :: lwnet ! net longwave radiance |
---|
57 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf |
---|
58 | REAL, DIMENSION(klon), INTENT(IN) :: p1lay |
---|
59 | REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragm |
---|
60 | REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow, precip_bs |
---|
61 | REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum |
---|
62 | REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ |
---|
63 | REAL, DIMENSION(klon), INTENT(IN) :: BcoefH, BcoefQ |
---|
64 | REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV |
---|
65 | REAL, DIMENSION(klon), INTENT(IN) :: AcoefQBS, BcoefQBS |
---|
66 | REAL, DIMENSION(klon), INTENT(IN) :: ps |
---|
67 | REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness, qbs1 |
---|
68 | REAL, DIMENSION(klon), INTENT(IN) :: rugoro |
---|
69 | REAL, DIMENSION(klon,nbsrf), INTENT(IN) :: pctsrf |
---|
70 | |
---|
71 | LOGICAL, INTENT(IN) :: debut !true if first step |
---|
72 | LOGICAL, INTENT(IN) :: lafin !true if last step |
---|
73 | REAL, DIMENSION(klon), INTENT(IN) :: rlon, rlat |
---|
74 | REAL, DIMENSION(klon), INTENT(IN) :: rmu0 |
---|
75 | REAL, DIMENSION(klon), INTENT(IN) :: lwdownm !ylwdown |
---|
76 | REAL, DIMENSION(klon), INTENT(IN) :: albedo !mean albedo |
---|
77 | REAL, DIMENSION(klon), INTENT(IN) :: pphi1 |
---|
78 | REAL, DIMENSION(klon), INTENT(IN) :: alt !mean altitude of the grid box |
---|
79 | REAL, DIMENSION(klon), INTENT(IN) :: slope !mean slope in grid box |
---|
80 | REAL, DIMENSION(klon), INTENT(IN) :: cloudf !total cloud fraction |
---|
81 | |
---|
82 | ! In/Output variables |
---|
83 | !**************************************************************************************** |
---|
84 | REAL, DIMENSION(klon), INTENT(INOUT) :: snow, qsol |
---|
85 | REAL, DIMENSION(klon), INTENT(INOUT) :: agesno |
---|
86 | REAL, DIMENSION(klon, nsoilmx), INTENT(INOUT) :: tsoil |
---|
87 | |
---|
88 | ! Output variables |
---|
89 | !**************************************************************************************** |
---|
90 | REAL, DIMENSION(klon), INTENT(OUT) :: qsurf |
---|
91 | REAL, DIMENSION(klon), INTENT(OUT) :: z0m, z0h |
---|
92 | !albedo SB >>> |
---|
93 | ! REAL, DIMENSION(klon), INTENT(OUT) :: alb1 ! new albedo in visible SW interval |
---|
94 | ! REAL, DIMENSION(klon), INTENT(OUT) :: alb2 ! new albedo in near IR interval |
---|
95 | REAL, DIMENSION(6), INTENT(IN) :: SFRWL |
---|
96 | REAL, DIMENSION(klon,nsw), INTENT(OUT) :: alb_dir,alb_dif |
---|
97 | !albedo SB <<< |
---|
98 | REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat |
---|
99 | REAL, DIMENSION(klon), INTENT(OUT) :: fluxbs |
---|
100 | REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new |
---|
101 | REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l |
---|
102 | REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 |
---|
103 | |
---|
104 | REAL, DIMENSION(klon), INTENT(OUT) :: alb3 |
---|
105 | REAL, DIMENSION(klon), INTENT(OUT) :: qsnow !column water in snow [kg/m2] |
---|
106 | REAL, DIMENSION(klon), INTENT(OUT) :: snowhgt !Snow height (m) |
---|
107 | REAL, DIMENSION(klon), INTENT(OUT) :: to_ice |
---|
108 | REAL, DIMENSION(klon), INTENT(OUT) :: sissnow |
---|
109 | REAL, DIMENSION(klon), INTENT(OUT) :: runoff !Land ice runoff |
---|
110 | |
---|
111 | |
---|
112 | ! Local variables |
---|
113 | !**************************************************************************************** |
---|
114 | REAL, DIMENSION(klon) :: soilcap, soilflux |
---|
115 | REAL, DIMENSION(klon) :: cal, beta, dif_grnd |
---|
116 | REAL, DIMENSION(klon) :: zfra, alb_neig |
---|
117 | REAL, DIMENSION(klon) :: radsol |
---|
118 | REAL, DIMENSION(klon) :: u0, v0, u1_lay, v1_lay, ustar |
---|
119 | INTEGER :: i,j,nt |
---|
120 | REAL, DIMENSION(klon) :: fqfonte,ffonte |
---|
121 | REAL, DIMENSION(klon) :: run_off_lic_frac |
---|
122 | REAL, DIMENSION(klon) :: emis_new !Emissivity |
---|
123 | REAL, DIMENSION(klon) :: swdown,lwdown |
---|
124 | REAL, DIMENSION(klon) :: precip_snow_adv, snow_adv !Snow Drift precip./advection (not used in inlandsis) |
---|
125 | REAL, DIMENSION(klon) :: erod !erosion of surface snow (flux, kg/m2/s like evap) |
---|
126 | REAL, DIMENSION(klon) :: zsl_height, wind_velo !surface layer height, wind spd |
---|
127 | REAL, DIMENSION(klon) :: dens_air, snow_cont_air !air density; snow content air |
---|
128 | REAL, DIMENSION(klon) :: alb_soil !albedo of underlying ice |
---|
129 | REAL, DIMENSION(klon) :: pexner !Exner potential |
---|
130 | REAL :: pref |
---|
131 | REAL, DIMENSION(klon,nsoilmx) :: tsoil0 !modif |
---|
132 | REAL :: dtis ! subtimestep |
---|
133 | LOGICAL :: debut_is, lafin_is ! debut and lafin for inlandsis |
---|
134 | |
---|
135 | CHARACTER (len = 20) :: modname = 'surf_landice' |
---|
136 | CHARACTER (len = 80) :: abort_message |
---|
137 | |
---|
138 | |
---|
139 | REAL,DIMENSION(klon) :: alb1,alb2 |
---|
140 | REAL,DIMENSION(klon) :: precip_totsnow, evap_totsnow |
---|
141 | REAL, DIMENSION (klon,6) :: alb6 |
---|
142 | REAL :: esalt |
---|
143 | REAL :: lambdasalt,fluxsalt, csalt, nunu, aa, bb, cc |
---|
144 | REAL :: tau_dens, maxerosion |
---|
145 | REAL, DIMENSION(klon) :: ws1, rhod, rhos, ustart0, ustart, qsalt, hsalt |
---|
146 | REAL, DIMENSION(klon) :: fluxbs_1, fluxbs_2, bsweight_fresh |
---|
147 | LOGICAL, DIMENSION(klon) :: ok_remaining_freshsnow |
---|
148 | REAL :: ta1, ta2, ta3, z01, z02, z03, coefa, coefb, coefc, coefd |
---|
149 | |
---|
150 | |
---|
151 | ! End definition |
---|
152 | !**************************************************************************************** |
---|
153 | !FC |
---|
154 | !FC |
---|
155 | REAL,SAVE :: alb_vis_sno_lic |
---|
156 | !$OMP THREADPRIVATE(alb_vis_sno_lic) |
---|
157 | REAL,SAVE :: alb_nir_sno_lic |
---|
158 | !$OMP THREADPRIVATE(alb_nir_sno_lic) |
---|
159 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
160 | !$OMP THREADPRIVATE(firstcall) |
---|
161 | |
---|
162 | |
---|
163 | !FC firtscall initializations |
---|
164 | !****************************************************************************************** |
---|
165 | IF (firstcall) THEN |
---|
166 | alb_vis_sno_lic=0.77 |
---|
167 | CALL getin_p('alb_vis_sno_lic',alb_vis_sno_lic) |
---|
168 | PRINT*, 'alb_vis_sno_lic',alb_vis_sno_lic |
---|
169 | alb_nir_sno_lic=0.77 |
---|
170 | CALL getin_p('alb_nir_sno_lic',alb_nir_sno_lic) |
---|
171 | PRINT*, 'alb_nir_sno_lic',alb_nir_sno_lic |
---|
172 | |
---|
173 | firstcall=.false. |
---|
174 | ENDIF |
---|
175 | !****************************************************************************************** |
---|
176 | |
---|
177 | ! Initialize output variables |
---|
178 | alb3(:) = 999999. |
---|
179 | alb2(:) = 999999. |
---|
180 | alb1(:) = 999999. |
---|
181 | fluxbs(:)=0. |
---|
182 | runoff(:) = 0. |
---|
183 | !**************************************************************************************** |
---|
184 | ! Calculate total absorbed radiance at surface |
---|
185 | ! |
---|
186 | !**************************************************************************************** |
---|
187 | radsol(:) = 0.0 |
---|
188 | radsol(1:knon) = swnet(1:knon) + lwnet(1:knon) |
---|
189 | |
---|
190 | !**************************************************************************************** |
---|
191 | |
---|
192 | !**************************************************************************************** |
---|
193 | ! landice_opt = 0 : soil_model, calcul_flux, fonte_neige, ... |
---|
194 | ! landice_opt = 1 : prepare and call INterace Lmdz SISvat (INLANDSIS) |
---|
195 | !**************************************************************************************** |
---|
196 | |
---|
197 | |
---|
198 | IF (landice_opt .EQ. 1) THEN |
---|
199 | |
---|
200 | !**************************************************************************************** |
---|
201 | ! CALL to INLANDSIS interface |
---|
202 | !**************************************************************************************** |
---|
203 | #ifdef CPP_INLANDSIS |
---|
204 | |
---|
205 | debut_is=debut |
---|
206 | lafin_is=.false. |
---|
207 | ! Suppose zero surface speed |
---|
208 | u0(:) = 0.0 |
---|
209 | v0(:) = 0.0 |
---|
210 | |
---|
211 | |
---|
212 | CALL calcul_flux_wind(knon, dtime, & |
---|
213 | u0, v0, u1, v1, gustiness, cdragm, & |
---|
214 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
215 | p1lay, temp_air, & |
---|
216 | flux_u1, flux_v1) |
---|
217 | |
---|
218 | |
---|
219 | ! Set constants and compute some input for SISVAT |
---|
220 | ! = 1000 hPa |
---|
221 | ! and calculate incoming flux for SW and LW interval: swdown, lwdown |
---|
222 | swdown(:) = 0.0 |
---|
223 | lwdown(:) = 0.0 |
---|
224 | snow_cont_air(:) = 0. ! the snow content in air is not a prognostic variable of the model |
---|
225 | alb_soil(:) = 0.4 ! before albedo(:) but here it is the ice albedo that we have to set |
---|
226 | ustar(:) = 0. |
---|
227 | pref = 100000. |
---|
228 | DO i = 1, knon |
---|
229 | swdown(i) = swnet(i)/(1-albedo(i)) |
---|
230 | lwdown(i) = lwdownm(i) |
---|
231 | wind_velo(i) = u1(i)**2 + v1(i)**2 |
---|
232 | wind_velo(i) = wind_velo(i)**0.5 |
---|
233 | pexner(i) = (p1lay(i)/pref)**(RD/RCPD) |
---|
234 | dens_air(i) = p1lay(i)/RD/temp_air(i) ! dry air density |
---|
235 | zsl_height(i) = pphi1(i)/RG |
---|
236 | tsoil0(i,:) = tsoil(i,:) |
---|
237 | ustar(i)= (cdragm(i)*(wind_velo(i)**2))**0.5 |
---|
238 | END DO |
---|
239 | |
---|
240 | |
---|
241 | |
---|
242 | dtis=dtime |
---|
243 | |
---|
244 | IF (lafin) THEN |
---|
245 | lafin_is=.true. |
---|
246 | END IF |
---|
247 | |
---|
248 | CALL surf_inlandsis(knon, rlon, rlat, knindex, itime, dtis, debut_is, lafin_is,& |
---|
249 | rmu0, swdown, lwdown, albedo, pexner, ps, p1lay, precip_rain, precip_snow, & |
---|
250 | zsl_height, wind_velo, ustar, temp_air, dens_air, spechum, tsurf,& |
---|
251 | rugoro, snow_cont_air, alb_soil, alt, slope, cloudf, & |
---|
252 | radsol, qsol, tsoil0, snow, zfra, snowhgt, qsnow, to_ice, sissnow,agesno, & |
---|
253 | AcoefH, AcoefQ, BcoefH, BcoefQ, cdragm, cdragh, & |
---|
254 | run_off_lic, fqfonte, ffonte, evap, erod, fluxsens, fluxlat,dflux_s, dflux_l, & |
---|
255 | tsurf_new, alb1, alb2, alb3, alb6, & |
---|
256 | emis_new, z0m, z0h, qsurf) |
---|
257 | |
---|
258 | debut_is=.false. |
---|
259 | |
---|
260 | |
---|
261 | ! Treatment of snow melting and calving |
---|
262 | |
---|
263 | ! for consistency with standard LMDZ, add calving to run_off_lic |
---|
264 | run_off_lic(:)=run_off_lic(:) + to_ice(:) |
---|
265 | |
---|
266 | DO i = 1, knon |
---|
267 | ffonte_global(knindex(i),is_lic) = ffonte(i) |
---|
268 | fqfonte_global(knindex(i),is_lic) = fqfonte(i)! net melting= melting - refreezing |
---|
269 | fqcalving_global(knindex(i),is_lic) = to_ice(i) ! flux |
---|
270 | runofflic_global(knindex(i)) = run_off_lic(i) |
---|
271 | ENDDO |
---|
272 | ! Here, we assume that the calving term is equal to the to_ice term |
---|
273 | ! (no ice accumulation) |
---|
274 | |
---|
275 | |
---|
276 | #else |
---|
277 | abort_message='Pb de coherence: landice_opt = 1 mais CPP_INLANDSIS = .false.' |
---|
278 | CALL abort_physic(modname,abort_message,1) |
---|
279 | #endif |
---|
280 | |
---|
281 | |
---|
282 | ELSE |
---|
283 | |
---|
284 | !**************************************************************************************** |
---|
285 | ! Soil calculations |
---|
286 | ! |
---|
287 | !**************************************************************************************** |
---|
288 | |
---|
289 | ! EV: use calbeta |
---|
290 | CALL calbeta(dtime, is_lic, knon, snow, qsol, beta, cal, dif_grnd) |
---|
291 | |
---|
292 | |
---|
293 | ! use soil model and recalculate properly cal |
---|
294 | IF (soil_model) THEN |
---|
295 | CALL soil(dtime, is_lic, knon, snow, tsurf, qsol, & |
---|
296 | & longitude(knindex(1:knon)), latitude(knindex(1:knon)), tsoil, soilcap, soilflux) |
---|
297 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
298 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
299 | ELSE |
---|
300 | cal = RCPD * calice |
---|
301 | WHERE (snow > 0.0) cal = RCPD * calsno |
---|
302 | ENDIF |
---|
303 | |
---|
304 | |
---|
305 | !**************************************************************************************** |
---|
306 | ! Calulate fluxes |
---|
307 | ! |
---|
308 | !**************************************************************************************** |
---|
309 | ! beta(:) = 1.0 |
---|
310 | ! dif_grnd(:) = 0.0 |
---|
311 | |
---|
312 | ! Suppose zero surface speed |
---|
313 | u0(:)=0.0 |
---|
314 | v0(:)=0.0 |
---|
315 | u1_lay(:) = u1(:) - u0(:) |
---|
316 | v1_lay(:) = v1(:) - v0(:) |
---|
317 | |
---|
318 | CALL calcul_fluxs(knon, is_lic, dtime, & |
---|
319 | tsurf, p1lay, cal, beta, cdragh, cdragh, ps, & |
---|
320 | precip_rain, precip_snow, snow, qsurf, & |
---|
321 | radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
322 | 1.,AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
323 | tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
324 | |
---|
325 | CALL calcul_flux_wind(knon, dtime, & |
---|
326 | u0, v0, u1, v1, gustiness, cdragm, & |
---|
327 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
328 | p1lay, temp_air, & |
---|
329 | flux_u1, flux_v1) |
---|
330 | |
---|
331 | |
---|
332 | !**************************************************************************************** |
---|
333 | ! Calculate albedo |
---|
334 | ! |
---|
335 | !**************************************************************************************** |
---|
336 | |
---|
337 | ! |
---|
338 | !IM: plusieurs choix/tests sur l'albedo des "glaciers continentaux" |
---|
339 | ! alb1(1 : knon) = 0.6 !IM cf FH/GK |
---|
340 | ! alb1(1 : knon) = 0.82 |
---|
341 | ! alb1(1 : knon) = 0.77 !211003 Ksta0.77 |
---|
342 | ! alb1(1 : knon) = 0.8 !KstaTER0.8 & LMD_ARMIP5 |
---|
343 | !IM: KstaTER0.77 & LMD_ARMIP6 |
---|
344 | |
---|
345 | ! Attantion: alb1 and alb2 are not the same! |
---|
346 | alb1(1:knon) = alb_vis_sno_lic |
---|
347 | alb2(1:knon) = alb_nir_sno_lic |
---|
348 | |
---|
349 | |
---|
350 | !**************************************************************************************** |
---|
351 | ! Rugosity |
---|
352 | ! |
---|
353 | !**************************************************************************************** |
---|
354 | |
---|
355 | if (z0m_landice .GT. 0.) then |
---|
356 | z0m(1:knon) = z0m_landice |
---|
357 | z0h(1:knon) = z0h_landice |
---|
358 | else |
---|
359 | ! parameterization of z0=f(T) following measurements in Adelie Land by Amory et al 2018 |
---|
360 | coefa = 0.1658 !0.1862 !Ant |
---|
361 | coefb = -50.3869 !-55.7718 !Ant |
---|
362 | ta1 = 253.15 !255. Ant |
---|
363 | ta2 = 273.15 |
---|
364 | ta3 = 273.15+3 |
---|
365 | z01 = exp(coefa*ta1 + coefb) !~0.2 ! ~0.25 mm |
---|
366 | z02 = exp(coefa*ta2 + coefb) !~6 !~7 mm |
---|
367 | z03 = z01 |
---|
368 | coefc = log(z03/z02)/(ta3-ta2) |
---|
369 | coefd = log(z03)-coefc*ta3 |
---|
370 | do j=1,knon |
---|
371 | if (temp_air(j) .lt. ta1) then |
---|
372 | z0m(j) = z01 |
---|
373 | else if (temp_air(j).ge.ta1 .and. temp_air(j).lt.ta2) then |
---|
374 | z0m(j) = exp(coefa*temp_air(j) + coefb) |
---|
375 | else if (temp_air(j).ge.ta2 .and. temp_air(j).lt.ta3) then |
---|
376 | ! if st > 0, melting induce smooth surface |
---|
377 | z0m(j) = exp(coefc*temp_air(j) + coefd) |
---|
378 | else |
---|
379 | z0m(j) = z03 |
---|
380 | endif |
---|
381 | z0h(j)=z0m(j) |
---|
382 | enddo |
---|
383 | |
---|
384 | endif |
---|
385 | |
---|
386 | |
---|
387 | !**************************************************************************************** |
---|
388 | ! Simple blowing snow param |
---|
389 | !**************************************************************************************** |
---|
390 | ! we proceed in 2 steps: |
---|
391 | ! first we erode - if possible -the accumulated snow during the time step |
---|
392 | ! then we update the density of the underlying layer and see if we can also erode |
---|
393 | ! this layer |
---|
394 | |
---|
395 | |
---|
396 | if (ok_bs) then |
---|
397 | fluxbs(:)=0. |
---|
398 | do j=1,knon |
---|
399 | ws1(j)=(u1(j)**2+v1(j)**2)**0.5 |
---|
400 | ustar(j)=(cdragm(j)*(u1(j)**2+v1(j)**2))**0.5 |
---|
401 | rhod(j)=p1lay(j)/RD/temp_air(j) |
---|
402 | ustart0(j) =(log(2.868)-log(1.625))/0.085*sqrt(cdragm(j)) |
---|
403 | enddo |
---|
404 | |
---|
405 | ! 1st step: erosion of fresh snow accumulated during the time step |
---|
406 | do j=1, knon |
---|
407 | if (precip_snow(j) .GT. 0.) then |
---|
408 | rhos(j)=rhofresh_bs |
---|
409 | ! blowing snow flux formula used in MAR |
---|
410 | ustart(j)=ustart0(j)*exp(max(rhoice_bs/rhofresh_bs-rhoice_bs/rhos(j),0.))*exp(max(0.,rhos(j)-rhohard_bs)) |
---|
411 | ! we have multiplied by exp to prevent erosion when rhos>rhohard_bs |
---|
412 | ! computation of qbs at the top of the saltation layer |
---|
413 | ! default formulation from MAR model (Amory et al. 2021, Gallee et al. 2001) |
---|
414 | esalt=1./(c_esalt_bs*max(1.e-6,ustar(j))) |
---|
415 | hsalt(j)=0.08436*(max(1.e-6,ustar(j))**1.27) |
---|
416 | qsalt(j)=(max(ustar(j)**2-ustart(j)**2,0.))/(RG*hsalt(j))*esalt |
---|
417 | ! calculation of erosion (flux positive towards the surface here) |
---|
418 | ! consistent with implicit resolution of turbulent mixing equation |
---|
419 | ! Nemoto and Nishimura 2004 show that steady-state saltation is achieved within a time tau_eqsalt_bs of about 10s |
---|
420 | ! we thus prevent snowerosion (snow particle transfer from the saltation layer to the first model level) |
---|
421 | ! integrated over tau_eqsalt_bs to exceed the total mass of snow particle in the saltation layer |
---|
422 | ! (rho*qsalt*hsalt) |
---|
423 | ! during this first step we also lower bound the erosion to the amount of fresh snow accumulated during the time step |
---|
424 | maxerosion=min(precip_snow(j),hsalt(j)*qsalt(j)*rhod(j)/tau_eqsalt_bs) |
---|
425 | |
---|
426 | fluxbs_1(j)=rhod(j)*ws1(j)*cdragh(j)*zeta_bs*(AcoefQBS(j)-qsalt(j)) & |
---|
427 | / (1.-rhod(j)*ws1(j)*cdragh(j)*zeta_bs*BcoefQBS(j)*dtime) |
---|
428 | fluxbs_1(j)=max(-maxerosion,fluxbs_1(j)) |
---|
429 | |
---|
430 | if (precip_snow(j) .gt. abs(fluxbs_1(j))) then |
---|
431 | ok_remaining_freshsnow(j)=.true. |
---|
432 | bsweight_fresh(j)=1. |
---|
433 | else |
---|
434 | ok_remaining_freshsnow(j)=.false. |
---|
435 | bsweight_fresh(j)=exp(-(abs(fluxbs_1(j))-precip_snow(j))/precip_snow(j)) |
---|
436 | endif |
---|
437 | else |
---|
438 | ok_remaining_freshsnow(j)=.false. |
---|
439 | fluxbs_1(j)=0. |
---|
440 | bsweight_fresh(j)=0. |
---|
441 | endif |
---|
442 | enddo |
---|
443 | |
---|
444 | |
---|
445 | ! we now compute the snow age of the overlying layer (snow surface after erosion of the fresh snow accumulated during the time step) |
---|
446 | ! this is done through the routine albsno |
---|
447 | CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)+fluxbs_1(:)) |
---|
448 | |
---|
449 | ! 2nd step: |
---|
450 | ! computation of threshold friction velocity |
---|
451 | ! which depends on surface snow density |
---|
452 | do j = 1, knon |
---|
453 | if (ok_remaining_freshsnow(j)) then |
---|
454 | fluxbs_2(j)=0. |
---|
455 | else |
---|
456 | ! we start eroding the underlying layer |
---|
457 | ! estimation of snow density |
---|
458 | ! snow density increases with snow age and |
---|
459 | ! increases even faster in case of sedimentation of blowing snow or rain |
---|
460 | tau_dens=max(tau_densmin_bs, tau_dens0_bs*exp(-abs(precip_bs(j))/pbst_bs - & |
---|
461 | abs(precip_rain(j))/prt_bs)*exp(-max(tsurf(j)-RTT,0.))) |
---|
462 | rhos(j)=rhofresh_bs+(rhohard_bs-rhofresh_bs)*(1.-exp(-agesno(j)*86400.0/tau_dens)) |
---|
463 | ! blowing snow flux formula used in MAR |
---|
464 | ustart(j)=ustart0(j)*exp(max(rhoice_bs/rhofresh_bs-rhoice_bs/rhos(j),0.))*exp(max(0.,rhos(j)-rhohard_bs)) |
---|
465 | ! we have multiplied by exp to prevent erosion when rhos>rhohard_bs |
---|
466 | ! computation of qbs at the top of the saltation layer |
---|
467 | ! default formulation from MAR model (Amory et al. 2021, Gallee et al. 2001) |
---|
468 | esalt=1./(c_esalt_bs*max(1.e-6,ustar(j))) |
---|
469 | hsalt(j)=0.08436*(max(1.e-6,ustar(j))**1.27) |
---|
470 | qsalt(j)=(max(ustar(j)**2-ustart(j)**2,0.))/(RG*hsalt(j))*esalt |
---|
471 | ! calculation of erosion (flux positive towards the surface here) |
---|
472 | ! consistent with implicit resolution of turbulent mixing equation |
---|
473 | ! Nemoto and Nishimura 2004 show that steady-state saltation is achieved within a time tau_eqsalt_bs of about 10s |
---|
474 | ! we thus prevent snowerosion (snow particle transfer from the saltation layer to the first model level) |
---|
475 | ! integrated over tau_eqsalt_bs to exceed the total mass of snow particle in the saltation layer |
---|
476 | ! (rho*qsalt*hsalt) |
---|
477 | maxerosion=hsalt(j)*qsalt(j)*rhod(j)/tau_eqsalt_bs |
---|
478 | fluxbs_2(j)=rhod(j)*ws1(j)*cdragh(j)*zeta_bs*(AcoefQBS(j)-qsalt(j)) & |
---|
479 | / (1.-rhod(j)*ws1(j)*cdragh(j)*zeta_bs*BcoefQBS(j)*dtime) |
---|
480 | fluxbs_2(j)=max(-maxerosion,fluxbs_2(j)) |
---|
481 | endif |
---|
482 | enddo |
---|
483 | |
---|
484 | |
---|
485 | |
---|
486 | |
---|
487 | ! final flux and outputs |
---|
488 | do j=1, knon |
---|
489 | ! total flux is the erosion of fresh snow + |
---|
490 | ! a fraction of the underlying snow (if all the fresh snow has been eroded) |
---|
491 | ! the calculation of the fraction is quite delicate since we do not know |
---|
492 | ! how much time was needed to erode the fresh snow. We assume that this time |
---|
493 | ! is dt*exp(-(abs(fluxbs1)-precipsnow)/precipsnow)=dt*bsweight_fresh |
---|
494 | |
---|
495 | fluxbs(j)=fluxbs_1(j)+fluxbs_2(j)*(1.-bsweight_fresh(j)) |
---|
496 | i = knindex(j) |
---|
497 | zxustartlic(i) = ustart(j) |
---|
498 | zxrhoslic(i) = rhos(j) |
---|
499 | zxqsaltlic(i)=qsalt(j) |
---|
500 | enddo |
---|
501 | |
---|
502 | |
---|
503 | else ! not ok_bs |
---|
504 | ! those lines are useful to calculate the snow age |
---|
505 | CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
506 | |
---|
507 | endif ! if ok_bs |
---|
508 | |
---|
509 | |
---|
510 | |
---|
511 | !**************************************************************************************** |
---|
512 | ! Calculate snow amount |
---|
513 | ! |
---|
514 | !**************************************************************************************** |
---|
515 | IF (ok_bs) THEN |
---|
516 | precip_totsnow(:)=precip_snow(:)+precip_bs(:) |
---|
517 | evap_totsnow(:)=evap(:)-fluxbs(:) ! flux bs is positive towards the surface (snow erosion) |
---|
518 | ELSE |
---|
519 | precip_totsnow(:)=precip_snow(:) |
---|
520 | evap_totsnow(:)=evap(:) |
---|
521 | ENDIF |
---|
522 | |
---|
523 | |
---|
524 | CALL fonte_neige(knon, is_lic, knindex, dtime, & |
---|
525 | tsurf, precip_rain, precip_totsnow, & |
---|
526 | snow, qsol, tsurf_new, evap_totsnow) |
---|
527 | |
---|
528 | |
---|
529 | WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
530 | zfra(1:knon) = MAX(0.0,MIN(1.0,snow(1:knon)/(snow(1:knon)+10.0))) |
---|
531 | |
---|
532 | |
---|
533 | END IF ! landice_opt |
---|
534 | |
---|
535 | |
---|
536 | !**************************************************************************************** |
---|
537 | ! Send run-off on land-ice to coupler if coupled ocean. |
---|
538 | ! run_off_lic has been calculated in fonte_neige or surf_inlandsis |
---|
539 | ! If landice_opt>=2, corresponding call is done from surf_land_orchidee |
---|
540 | !**************************************************************************************** |
---|
541 | IF (type_ocean=='couple' .AND. landice_opt .LT. 2) THEN |
---|
542 | ! Compress fraction where run_off_lic is active (here all pctsrf(is_lic)) |
---|
543 | run_off_lic_frac(:)=0.0 |
---|
544 | DO j = 1, knon |
---|
545 | i = knindex(j) |
---|
546 | run_off_lic_frac(j) = pctsrf(i,is_lic) |
---|
547 | ENDDO |
---|
548 | |
---|
549 | CALL cpl_send_landice_fields(itime, knon, knindex, run_off_lic, run_off_lic_frac) |
---|
550 | ENDIF |
---|
551 | |
---|
552 | ! transfer runoff rate [kg/m2/s](!) to physiq for output |
---|
553 | runoff(1:knon)=run_off_lic(1:knon)/dtime |
---|
554 | |
---|
555 | snow_o=0. |
---|
556 | zfra_o = 0. |
---|
557 | DO j = 1, knon |
---|
558 | i = knindex(j) |
---|
559 | snow_o(i) = snow(j) |
---|
560 | zfra_o(i) = zfra(j) |
---|
561 | ENDDO |
---|
562 | |
---|
563 | |
---|
564 | !albedo SB >>> |
---|
565 | select case(NSW) |
---|
566 | case(2) |
---|
567 | alb_dir(1:knon,1)=alb1(1:knon) |
---|
568 | alb_dir(1:knon,2)=alb2(1:knon) |
---|
569 | case(4) |
---|
570 | alb_dir(1:knon,1)=alb1(1:knon) |
---|
571 | alb_dir(1:knon,2)=alb2(1:knon) |
---|
572 | alb_dir(1:knon,3)=alb2(1:knon) |
---|
573 | alb_dir(1:knon,4)=alb2(1:knon) |
---|
574 | case(6) |
---|
575 | alb_dir(1:knon,1)=alb1(1:knon) |
---|
576 | alb_dir(1:knon,2)=alb1(1:knon) |
---|
577 | alb_dir(1:knon,3)=alb1(1:knon) |
---|
578 | alb_dir(1:knon,4)=alb2(1:knon) |
---|
579 | alb_dir(1:knon,5)=alb2(1:knon) |
---|
580 | alb_dir(1:knon,6)=alb2(1:knon) |
---|
581 | |
---|
582 | IF ((landice_opt .EQ. 1) .AND. (iflag_albcalc .EQ. 2)) THEN |
---|
583 | alb_dir(1:knon,1)=alb6(1:knon,1) |
---|
584 | alb_dir(1:knon,2)=alb6(1:knon,2) |
---|
585 | alb_dir(1:knon,3)=alb6(1:knon,3) |
---|
586 | alb_dir(1:knon,4)=alb6(1:knon,4) |
---|
587 | alb_dir(1:knon,5)=alb6(1:knon,5) |
---|
588 | alb_dir(1:knon,6)=alb6(1:knon,6) |
---|
589 | ENDIF |
---|
590 | |
---|
591 | end select |
---|
592 | alb_dif=alb_dir |
---|
593 | !albedo SB <<< |
---|
594 | |
---|
595 | |
---|
596 | END SUBROUTINE surf_landice |
---|
597 | ! |
---|
598 | !**************************************************************************************** |
---|
599 | ! |
---|
600 | END MODULE surf_landice_mod |
---|
601 | |
---|
602 | |
---|
603 | |
---|