1 | ! |
---|
2 | MODULE surf_land_bucket_hetero_mod |
---|
3 | ! |
---|
4 | ! 2025/04 A. Maison (adapted from surf_land_bucket_mod) |
---|
5 | ! Surface land bucket module with heterogeneous continental sub-surfaces |
---|
6 | ! This module is used when no external land model is choosen and iflag_hetero_surf = 1 or 2. |
---|
7 | ! |
---|
8 | IMPLICIT NONE |
---|
9 | |
---|
10 | CONTAINS |
---|
11 | |
---|
12 | SUBROUTINE surf_land_bucket_hetero(itime, jour, knon, knindex, debut, dtime,& |
---|
13 | tsurf, p1lay, tq_cdrag, precip_rain, precip_snow, temp_air, & |
---|
14 | spechum, petAcoef, peqAcoef, petBcoef, peqBcoef, pref, plev, & |
---|
15 | u1, v1, gustiness, rugoro, swnet, lwnet, & |
---|
16 | snow, qsol, agesno, tsoil, & |
---|
17 | qsurf, z0m, z0h, alb1_new, alb2_new, evap, & |
---|
18 | fluxsens, fluxlat, tsurf_new, dflux_s, dflux_l, & |
---|
19 | tsurf_tersrf, tsoil_tersrf, qsurf_tersrf, tsurf_new_tersrf, & |
---|
20 | cdragm_tersrf, cdragh_tersrf, & |
---|
21 | swnet_tersrf, lwnet_tersrf, fluxsens_tersrf, fluxlat_tersrf) |
---|
22 | |
---|
23 | USE clesphys_mod_h |
---|
24 | USE dimsoil_mod_h, ONLY: nsoilmx |
---|
25 | USE YOMCST, ONLY: RD, RG, RCPD, RSIGMA |
---|
26 | USE compbl_mod_h |
---|
27 | USE dimpft_mod_h |
---|
28 | USE limit_read_mod |
---|
29 | USE surface_data |
---|
30 | USE fonte_neige_mod |
---|
31 | USE calcul_fluxs_mod |
---|
32 | USE cpl_mod |
---|
33 | USE dimphy |
---|
34 | USE geometry_mod, ONLY: longitude,latitude |
---|
35 | USE mod_grid_phy_lmdz |
---|
36 | USE mod_phys_lmdz_para |
---|
37 | USE indice_sol_mod |
---|
38 | USE phys_state_var_mod, ONLY: frac_tersrf, ratio_z0m_z0h_tersrf, z0m_tersrf, & |
---|
39 | albedo_tersrf, beta_tersrf, inertie_tersrf, & |
---|
40 | hcond_tersrf |
---|
41 | USE surf_param_mod, ONLY: eff_surf_param, average_surf_var |
---|
42 | USE cdrag_mod |
---|
43 | |
---|
44 | !**************************************************************************************** |
---|
45 | ! Bucket calculations for surface. |
---|
46 | !**************************************************************************************** |
---|
47 | ! |
---|
48 | ! Input variables |
---|
49 | !**************************************************************************************** |
---|
50 | INTEGER, INTENT(IN) :: itime, jour, knon |
---|
51 | INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
---|
52 | LOGICAL, INTENT(IN) :: debut |
---|
53 | REAL, INTENT(IN) :: dtime |
---|
54 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf |
---|
55 | REAL, DIMENSION(klon), INTENT(IN) :: p1lay |
---|
56 | REAL, DIMENSION(klon), INTENT(IN) :: tq_cdrag |
---|
57 | REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow |
---|
58 | REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum |
---|
59 | REAL, DIMENSION(klon), INTENT(IN) :: petAcoef, peqAcoef |
---|
60 | REAL, DIMENSION(klon), INTENT(IN) :: petBcoef, peqBcoef |
---|
61 | REAL, DIMENSION(klon), INTENT(IN) :: pref |
---|
62 | REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness |
---|
63 | REAL, DIMENSION(klon), INTENT(IN) :: rugoro |
---|
64 | REAL, DIMENSION(klon), INTENT(IN) :: swnet, lwnet |
---|
65 | REAL, DIMENSION(klon, nbtersrf), INTENT(IN) :: tsurf_tersrf |
---|
66 | |
---|
67 | |
---|
68 | ! In/Output variables |
---|
69 | !**************************************************************************************** |
---|
70 | REAL, DIMENSION(klon), INTENT(INOUT) :: snow, qsol |
---|
71 | REAL, DIMENSION(klon), INTENT(INOUT) :: agesno |
---|
72 | REAL, DIMENSION(klon, nsoilmx), INTENT(INOUT) :: tsoil |
---|
73 | REAL, DIMENSION(klon), INTENT(INOUT) :: plev |
---|
74 | REAL, DIMENSION(klon, nsoilmx, nbtersrf), INTENT(INOUT) :: tsoil_tersrf |
---|
75 | |
---|
76 | |
---|
77 | ! Output variables |
---|
78 | !**************************************************************************************** |
---|
79 | REAL, DIMENSION(klon), INTENT(OUT) :: qsurf |
---|
80 | REAL, DIMENSION(klon), INTENT(OUT) :: z0m, z0h |
---|
81 | REAL, DIMENSION(klon), INTENT(OUT) :: alb1_new, alb2_new |
---|
82 | REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat |
---|
83 | REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new |
---|
84 | REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l |
---|
85 | ! |
---|
86 | REAL, DIMENSION(klon, nbtersrf), INTENT(OUT) :: tsurf_new_tersrf |
---|
87 | REAL, DIMENSION(klon, nbtersrf), INTENT(OUT) :: qsurf_tersrf |
---|
88 | REAL, DIMENSION(klon, nbtersrf), INTENT(OUT) :: cdragm_tersrf, cdragh_tersrf |
---|
89 | REAL, DIMENSION(klon, nbtersrf), INTENT(OUT) :: swnet_tersrf, lwnet_tersrf |
---|
90 | REAL, DIMENSION(klon, nbtersrf), INTENT(OUT) :: fluxsens_tersrf, fluxlat_tersrf |
---|
91 | |
---|
92 | ! Local variables |
---|
93 | !**************************************************************************************** |
---|
94 | REAL, DIMENSION(klon) :: soilcap, soilflux |
---|
95 | REAL, DIMENSION(klon) :: cal, beta, dif_grnd, capsol |
---|
96 | REAL, DIMENSION(klon) :: alb_neig, alb_lim, icesub |
---|
97 | REAL, DIMENSION(klon) :: zfra |
---|
98 | REAL, DIMENSION(klon) :: radsol |
---|
99 | REAL, DIMENSION(klon) :: u0, v0, u1_lay, v1_lay |
---|
100 | REAL, DIMENSION(klon) :: dummy_riverflow,dummy_coastalflow |
---|
101 | INTEGER :: i, j, k |
---|
102 | ! |
---|
103 | REAL, DIMENSION(klon) :: zlev, geop1, speed, pblh, ri_in, sst |
---|
104 | REAL, DIMENSION(klon) :: beta_eff, inertie_eff, conv_ratio_eff |
---|
105 | REAL, DIMENSION(klon) :: meansqT |
---|
106 | REAL, DIMENSION(klon, nbtersrf) :: z0h_tersrf, emis_tersrf, conv_ratio_tersrf |
---|
107 | REAL, DIMENSION(klon, nbtersrf) :: evap_tersrf |
---|
108 | REAL, DIMENSION(klon, nbtersrf) :: dflux_s_tersrf, dflux_l_tersrf |
---|
109 | REAL, DIMENSION(klon, nbtersrf) :: radsol_tersrf |
---|
110 | REAL, DIMENSION(klon, nbtersrf) :: zri_tersrf |
---|
111 | REAL, PARAMETER :: klon_1D = 1 |
---|
112 | |
---|
113 | ! |
---|
114 | !**************************************************************************************** |
---|
115 | |
---|
116 | ! *** Calculations common to the two flag values *** |
---|
117 | |
---|
118 | ! average albedo |
---|
119 | alb_lim = eff_surf_param(klon, nbtersrf, albedo_tersrf, frac_tersrf, 'ARI') |
---|
120 | |
---|
121 | ! suppose zero surface speed |
---|
122 | u0(:)=0.0 |
---|
123 | v0(:)=0.0 |
---|
124 | u1_lay(:) = u1(:) - u0(:) |
---|
125 | v1_lay(:) = v1(:) - v0(:) |
---|
126 | speed(:) = (u1_lay(:)**2 + v1_lay(:)**2)**0.5 |
---|
127 | ! |
---|
128 | geop1(1:knon) = RD * temp_air(1:knon) / (0.5*(pref(1:knon)+p1lay(1:knon))) & |
---|
129 | * (pref(1:knon)-p1lay(1:knon)) |
---|
130 | zlev(1:knon) = (plev(1:knon)*RD*temp_air(1:knon)/(pref(1:knon)*RG))/2. |
---|
131 | ! |
---|
132 | ! compute roughness lengths |
---|
133 | DO i=1, knon |
---|
134 | DO j=1, nbtersrf |
---|
135 | IF (ratio_z0m_z0h_tersrf(i,j) .NE. 0.) THEN |
---|
136 | z0h_tersrf(i,j) = z0m_tersrf(i,j) / ratio_z0m_z0h_tersrf(i,j) |
---|
137 | ELSE |
---|
138 | z0h_tersrf(i,j) = 1.E-12 |
---|
139 | ENDIF |
---|
140 | ENDDO |
---|
141 | ENDDO |
---|
142 | |
---|
143 | z0m = eff_surf_param(klon, nbtersrf, z0m_tersrf, frac_tersrf, 'CDN', zlev) |
---|
144 | z0h = eff_surf_param(klon, nbtersrf, z0h_tersrf, frac_tersrf, 'CDN', zlev) |
---|
145 | |
---|
146 | DO i=1, knon |
---|
147 | z0m(i) = MAX(1.5e-05,SQRT(z0m(i)**2 + rugoro(i)**2)) |
---|
148 | END DO |
---|
149 | |
---|
150 | ! compute the ratio to convert and print soil depths in meters (conv_ratio = (cond/cap)^0.5 and cap = I^2/cond) |
---|
151 | DO j=1, nbtersrf |
---|
152 | conv_ratio_tersrf(:,j) = hcond_tersrf(:,j)/inertie_tersrf(:,j) |
---|
153 | ENDDO |
---|
154 | |
---|
155 | ! |
---|
156 | ! *** Surface parameter aggregation *** |
---|
157 | ! |
---|
158 | IF (iflag_hetero_surf == 1) THEN |
---|
159 | !* Calcultaion of fluxes |
---|
160 | |
---|
161 | ! calculate total absorbed radiance at surface |
---|
162 | radsol(:) = 0.0 |
---|
163 | radsol(1:knon) = swnet(1:knon) + lwnet(1:knon) |
---|
164 | |
---|
165 | ! calculate constants (needeed for capsol and dif_grnd) |
---|
166 | CALL calbeta(dtime, is_ter, knon, snow, qsol, beta, capsol, dif_grnd) |
---|
167 | IF (type_veget=='betaclim') THEN |
---|
168 | CALL calbeta_clim(knon,jour,latitude(knindex(1:knon)),beta) |
---|
169 | ENDIF |
---|
170 | |
---|
171 | ! mean evapotranspiration coefficient |
---|
172 | beta_eff = eff_surf_param(klon, nbtersrf, beta_tersrf, frac_tersrf, 'ARI') |
---|
173 | beta = beta_eff |
---|
174 | |
---|
175 | ! calculate temperature, heat capacity and conduction flux in soil |
---|
176 | IF (soil_model) THEN |
---|
177 | inertie_eff = eff_surf_param(klon, nbtersrf, inertie_tersrf, frac_tersrf, 'ARI') |
---|
178 | conv_ratio_eff = eff_surf_param(klon, nbtersrf, conv_ratio_tersrf, frac_tersrf, 'ARI') |
---|
179 | ! |
---|
180 | CALL soil_hetero(dtime, is_ter, knon, snow, tsurf, qsol, & |
---|
181 | & longitude(knindex(1:knon)), latitude(knindex(1:knon)), tsoil, soilcap, soilflux, & |
---|
182 | & inertie_eff, conv_ratio_eff) |
---|
183 | ! |
---|
184 | DO i=1, knon |
---|
185 | cal(i) = RCPD / soilcap(i) |
---|
186 | radsol(i) = radsol(i) + soilflux(i) |
---|
187 | END DO |
---|
188 | ELSE |
---|
189 | cal(:) = RCPD * capsol(:) |
---|
190 | IF (klon_glo .EQ. 1) THEN |
---|
191 | cal(:) = 0. |
---|
192 | ENDIF |
---|
193 | ENDIF |
---|
194 | |
---|
195 | ! calculate fluxes |
---|
196 | CALL calcul_fluxs(knon, is_ter, dtime, & |
---|
197 | tsurf, p1lay, cal, beta, tq_cdrag, tq_cdrag, pref, & |
---|
198 | precip_rain, precip_snow, snow, qsurf, & |
---|
199 | radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
200 | 1.,petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
201 | tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
202 | |
---|
203 | |
---|
204 | !* Calculate snow height, run_off, age of snow |
---|
205 | |
---|
206 | CALL fonte_neige( knon, is_ter, knindex, dtime, & |
---|
207 | tsurf, precip_rain, precip_snow, & |
---|
208 | snow, qsol, tsurf_new, evap, icesub) |
---|
209 | |
---|
210 | ! calculate the age of snow |
---|
211 | CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
212 | |
---|
213 | WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
214 | |
---|
215 | DO i=1, knon |
---|
216 | zfra(i) = MAX(0.0,MIN(1.0, snow(i)/(snow(i)+10.0))) |
---|
217 | alb_lim(i) = alb_neig(i) *zfra(i) + alb_lim(i)*(1.0-zfra(i)) |
---|
218 | END DO |
---|
219 | |
---|
220 | |
---|
221 | !* Return albedo : |
---|
222 | ! alb1_new and alb2_new are here given the same values |
---|
223 | |
---|
224 | alb1_new(:) = 0.0 |
---|
225 | alb2_new(:) = 0.0 |
---|
226 | alb1_new(1:knon) = alb_lim(1:knon) |
---|
227 | alb2_new(1:knon) = alb_lim(1:knon) |
---|
228 | |
---|
229 | !* Send to coupler |
---|
230 | ! The run-off from river and coast are not calculated in the bucket modele. |
---|
231 | ! For testing purpose of the coupled modele we put the run-off to zero. |
---|
232 | IF (type_ocean=='couple') THEN |
---|
233 | dummy_riverflow(:) = 0.0 |
---|
234 | dummy_coastalflow(:) = 0.0 |
---|
235 | CALL cpl_send_land_fields(itime, knon, knindex, & |
---|
236 | dummy_riverflow, dummy_coastalflow) |
---|
237 | ENDIF |
---|
238 | |
---|
239 | ! |
---|
240 | ! *** Flux aggregation *** |
---|
241 | ! |
---|
242 | ELSE IF (iflag_hetero_surf == 2) THEN |
---|
243 | ! initialize output tables |
---|
244 | evap_tersrf(:,:) = 0. |
---|
245 | fluxsens_tersrf(:,:) = 0. |
---|
246 | fluxlat_tersrf(:,:) = 0. |
---|
247 | tsurf_new_tersrf(:,:) = 0. |
---|
248 | dflux_s_tersrf(:,:) = 0. |
---|
249 | dflux_l_tersrf(:,:) = 0. |
---|
250 | radsol_tersrf(:,:) = 0. |
---|
251 | swnet_tersrf(:,:) = 0. |
---|
252 | lwnet_tersrf(:,:) = 0. |
---|
253 | ! hyp: surface emissivity = 1 |
---|
254 | emis_tersrf(:,:) = 1. |
---|
255 | |
---|
256 | ! * calculate total absorbed radiance at surface |
---|
257 | DO j=1, nbtersrf |
---|
258 | ! SW |
---|
259 | swnet_tersrf(klon_1D,j) = (1. - albedo_tersrf(klon_1D,j)) / (1. - alb_lim(klon_1D)) * swnet(klon_1D) |
---|
260 | ! LW |
---|
261 | ! first order |
---|
262 | lwnet_tersrf(klon_1D,j) = lwnet(klon_1D) + 4. * emis_tersrf(klon_1D,j) * RSIGMA * tsurf(klon_1D)**3 * & |
---|
263 | (tsurf(klon_1D) - tsurf_tersrf(klon_1D,j)) |
---|
264 | ENDDO |
---|
265 | ! LW second order corrections |
---|
266 | !- net = dwn -up; up=sig( T4 + 4sum%T3T' + 6sum%T2T'2 +...) |
---|
267 | IF (iflag_order2_sollw == 1) THEN |
---|
268 | meansqT(:) = 0. ! as working buffer |
---|
269 | ! |
---|
270 | DO j=1, nbtersrf |
---|
271 | meansqT(klon_1D) = meansqT(klon_1D) + (tsurf_tersrf(klon_1D,j) - tsurf(klon_1D))**2 * frac_tersrf(klon_1D,j) |
---|
272 | ENDDO |
---|
273 | DO j=1, nbtersrf |
---|
274 | lwnet_tersrf(klon_1D,j) = lwnet_tersrf(klon_1D,j) + 6. * RSIGMA * tsurf(klon_1D)**2 * (meansqT(klon_1D) - & |
---|
275 | (tsurf(klon_1D) - tsurf_tersrf(klon_1D,j))**2) |
---|
276 | ENDDO |
---|
277 | ENDIF |
---|
278 | ! net radiation |
---|
279 | radsol_tersrf(:,:) = swnet_tersrf(:,:) + lwnet_tersrf(:,:) |
---|
280 | |
---|
281 | ! * compute evapotranspiration coefficient |
---|
282 | capsol(:) = 1.0/(2.5578E+06*0.15) |
---|
283 | dif_grnd(:) = 0. |
---|
284 | |
---|
285 | ! unused variables in cdrag routine |
---|
286 | pblh(:) = 0. |
---|
287 | ri_in(:) = 0. |
---|
288 | sst(:) = 0. |
---|
289 | |
---|
290 | ! Loop on sub-surfaces |
---|
291 | DO j=1, nbtersrf |
---|
292 | ! * drag coefficients |
---|
293 | CALL cdrag(knon, is_ter, speed, temp_air, spechum, geop1, pref, pblh, & |
---|
294 | tsurf_tersrf(:,j), qsurf_tersrf(:,j), z0m_tersrf(:,j), z0h_tersrf(:,j), ri_in, 0, & |
---|
295 | cdragm_tersrf(:,j), cdragh_tersrf(:,j), zri_tersrf(:,j), plev, precip_rain, sst, p1lay) |
---|
296 | |
---|
297 | ! * calculate temperature, heat capacity and conduction flux in soil |
---|
298 | IF (soil_model) THEN |
---|
299 | ! |
---|
300 | CALL soil_hetero(dtime, is_ter, knon, snow, tsurf_tersrf(:,j), qsol, & |
---|
301 | longitude(knindex(1:knon)), latitude(knindex(1:knon)), tsoil_tersrf(:,:,j), soilcap, soilflux, & |
---|
302 | inertie_tersrf(:,j), conv_ratio_tersrf(:,j)) |
---|
303 | ! |
---|
304 | cal(:) = RCPD / soilcap(:) |
---|
305 | radsol_tersrf(:,j) = radsol_tersrf(:,j) + soilflux(:) |
---|
306 | ! |
---|
307 | ELSE |
---|
308 | cal = RCPD * capsol |
---|
309 | IF (klon_glo .EQ. 1) THEN |
---|
310 | cal = 0. |
---|
311 | ENDIF |
---|
312 | ENDIF |
---|
313 | |
---|
314 | ! * calcultaion of fluxes |
---|
315 | CALL calcul_fluxs(knon, is_ter, dtime, & |
---|
316 | tsurf_tersrf(klon_1D,j), p1lay, cal, beta_tersrf(klon_1D,j), cdragh_tersrf(klon_1D,j), cdragh_tersrf(klon_1D,j), pref, & |
---|
317 | precip_rain, precip_snow, snow, qsurf_tersrf(klon_1D,j), & |
---|
318 | radsol_tersrf(klon_1D,j), dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
319 | 1.,petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
320 | tsurf_new_tersrf(klon_1D,j), evap_tersrf(klon_1D,j), fluxlat_tersrf(klon_1D,j), fluxsens_tersrf(klon_1D,j), & |
---|
321 | dflux_s_tersrf(klon_1D,j), dflux_l_tersrf(klon_1D,j)) |
---|
322 | |
---|
323 | ! if snow > 0 |
---|
324 | ! calculate snow height, run_off, age of snow |
---|
325 | CALL fonte_neige( knon, is_ter, knindex, dtime, & |
---|
326 | tsurf_tersrf(:,j), precip_rain, precip_snow, & |
---|
327 | snow, qsol, tsurf_new_tersrf(:,j), evap_tersrf(:,j), icesub) |
---|
328 | |
---|
329 | ENDDO ! loop on sub-surfaces |
---|
330 | |
---|
331 | ! calculate the age of snow |
---|
332 | CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
333 | WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
334 | |
---|
335 | DO i=1, knon |
---|
336 | zfra(i) = MAX(0.0,MIN(1.0, snow(i)/(snow(i)+10.0))) |
---|
337 | alb_lim(i) = alb_neig(i) *zfra(i) + alb_lim(i)*(1.0-zfra(i)) |
---|
338 | END DO |
---|
339 | |
---|
340 | ! return albedo : |
---|
341 | ! alb1_new and alb2_new are here given the same values |
---|
342 | alb1_new(:) = 0.0 |
---|
343 | alb2_new(:) = 0.0 |
---|
344 | alb1_new(1:knon) = alb_lim(1:knon) |
---|
345 | alb2_new(1:knon) = alb_lim(1:knon) |
---|
346 | |
---|
347 | ! send to coupler |
---|
348 | ! the run-off from river and coast are not calculated in the bucket modele. |
---|
349 | ! for testing purpose of the coupled modele we put the run-off to zero. |
---|
350 | IF (type_ocean=='couple') THEN |
---|
351 | dummy_riverflow(:) = 0.0 |
---|
352 | dummy_coastalflow(:) = 0.0 |
---|
353 | CALL cpl_send_land_fields(itime, knon, knindex, & |
---|
354 | dummy_riverflow, dummy_coastalflow) |
---|
355 | ENDIF |
---|
356 | |
---|
357 | ! * average of fluxes and surface variables |
---|
358 | qsurf = average_surf_var(klon, nbtersrf, qsurf_tersrf, frac_tersrf, 'ARI') |
---|
359 | tsurf_new = average_surf_var(klon, nbtersrf, tsurf_new_tersrf, frac_tersrf, 'ARI') |
---|
360 | evap = average_surf_var(klon, nbtersrf, evap_tersrf, frac_tersrf, 'ARI') |
---|
361 | fluxlat = average_surf_var(klon, nbtersrf, fluxlat_tersrf, frac_tersrf, 'ARI') |
---|
362 | fluxsens = average_surf_var(klon, nbtersrf, fluxsens_tersrf, frac_tersrf, 'ARI') |
---|
363 | dflux_l = average_surf_var(klon, nbtersrf, dflux_l_tersrf, frac_tersrf, 'ARI') |
---|
364 | dflux_s = average_surf_var(klon, nbtersrf, dflux_s_tersrf, frac_tersrf, 'ARI') |
---|
365 | DO k=1, nsoilmx |
---|
366 | tsoil(:,k) = average_surf_var(klon, nbtersrf, tsoil_tersrf(:,k,:), frac_tersrf, 'ARI') |
---|
367 | ENDDO |
---|
368 | |
---|
369 | ! order 2 correction to tsurf_new, for radiation computations (main atm effect of Ts) |
---|
370 | IF (iflag_order2_sollw == 1) THEN |
---|
371 | meansqT(:) = 0. ! as working buffer |
---|
372 | DO j=1, nbtersrf |
---|
373 | meansqT(klon_1D) = meansqT(klon_1D)+(tsurf_tersrf(klon_1D,j)-tsurf_new(klon_1D))**2 *frac_tersrf(klon_1D,j) |
---|
374 | ENDDO |
---|
375 | tsurf_new(:) = tsurf_new(:)+1.5*meansqT(:)/tsurf_new(:) |
---|
376 | ENDIF ! iflag_order2_sollw == 1 |
---|
377 | |
---|
378 | ENDIF ! iflag_hetero_surf |
---|
379 | ! |
---|
380 | !* End |
---|
381 | ! |
---|
382 | END SUBROUTINE surf_land_bucket_hetero |
---|
383 | ! |
---|
384 | !**************************************************************************************** |
---|
385 | ! |
---|
386 | END MODULE surf_land_bucket_hetero_mod |
---|