| 1 | ! |
|---|
| 2 | ! $Header$ |
|---|
| 3 | ! |
|---|
| 4 | SUBROUTINE soil_hetero(ptimestep, indice, knon, snow, ptsrf, qsol, & |
|---|
| 5 | lon, lat, ptsoil, pcapcal, pfluxgrd, ztherm_i, conv_ratio) |
|---|
| 6 | |
|---|
| 7 | USE yomcst_mod_h, ONLY: RTT, RPI |
|---|
| 8 | USE dimsoil_mod_h, ONLY: nsoilmx |
|---|
| 9 | USE comsoil_mod_h |
|---|
| 10 | USE compbl_mod_h |
|---|
| 11 | USE dimpft_mod_h |
|---|
| 12 | USE dimphy |
|---|
| 13 | USE mod_phys_lmdz_para |
|---|
| 14 | USE indice_sol_mod |
|---|
| 15 | USE print_control_mod, ONLY: lunout |
|---|
| 16 | USE phys_state_var_mod, ONLY: alpha_soil_tersrf, period_tersrf |
|---|
| 17 | USE surf_param_mod, ONLY: eff_surf_param |
|---|
| 18 | |
|---|
| 19 | IMPLICIT NONE |
|---|
| 20 | |
|---|
| 21 | !======================================================================= |
|---|
| 22 | ! |
|---|
| 23 | ! Auteur: Frederic Hourdin 30/01/92 |
|---|
| 24 | ! ------- |
|---|
| 25 | ! |
|---|
| 26 | ! Object: Computation of : the soil temperature evolution |
|---|
| 27 | ! ------- the surfacic heat capacity "Capcal" |
|---|
| 28 | ! the surface conduction flux pcapcal |
|---|
| 29 | ! |
|---|
| 30 | ! Update: 2021/07 : soil thermal inertia, formerly a constant value, |
|---|
| 31 | ! ------ can also be now a function of soil moisture (F Cheruy's idea) |
|---|
| 32 | ! depending on iflag_inertie, read from physiq.def via conf_phys_m.F90 |
|---|
| 33 | ! ("Stage L3" Eve Rebouillat, with E Vignon, A Sima, F Cheruy) |
|---|
| 34 | ! 2025/04 : A. Maison, adapting the routine for heterogeneous continental sub-surfaces |
|---|
| 35 | ! |
|---|
| 36 | ! Method: Implicit time integration |
|---|
| 37 | ! ------- |
|---|
| 38 | ! Consecutive ground temperatures are related by: |
|---|
| 39 | ! T(k+1) = C(k) + D(k)*T(k) (*) |
|---|
| 40 | ! The coefficients C and D are computed at the t-dt time-step. |
|---|
| 41 | ! Routine structure: |
|---|
| 42 | ! 1) C and D coefficients are computed from the old temperature |
|---|
| 43 | ! 2) new temperatures are computed using (*) |
|---|
| 44 | ! 3) C and D coefficients are computed from the new temperature |
|---|
| 45 | ! profile for the t+dt time-step |
|---|
| 46 | ! 4) the coefficients A and B are computed where the diffusive |
|---|
| 47 | ! fluxes at the t+dt time-step is given by |
|---|
| 48 | ! Fdiff = A + B Ts(t+dt) |
|---|
| 49 | ! or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt |
|---|
| 50 | ! with F0 = A + B (Ts(t)) |
|---|
| 51 | ! Capcal = B*dt |
|---|
| 52 | ! |
|---|
| 53 | ! Interface: |
|---|
| 54 | ! ---------- |
|---|
| 55 | ! |
|---|
| 56 | ! Arguments: |
|---|
| 57 | ! ---------- |
|---|
| 58 | ! ptimestep physical timestep (s) |
|---|
| 59 | ! indice sub-surface index |
|---|
| 60 | ! snow(klon) snow |
|---|
| 61 | ! ptsrf(klon) surface temperature at time-step t (K) |
|---|
| 62 | ! qsol(klon) soil moisture (kg/m2 or mm) |
|---|
| 63 | ! lon(klon) longitude in radian |
|---|
| 64 | ! lat(klon) latitude in radian |
|---|
| 65 | ! ptsoil(klon,nsoilmx) temperature inside the ground (K) |
|---|
| 66 | ! pcapcal(klon) surfacic specific heat (W*m-2*s*K-1) |
|---|
| 67 | ! pfluxgrd(klon) surface diffusive flux from ground (Wm-2) |
|---|
| 68 | ! ztherm_i(klon) soil thermal inertia (J.m-2.K.s-1/2) |
|---|
| 69 | ! conv_ratio(klon) ratio to convert soil depths in meters (-) |
|---|
| 70 | ! |
|---|
| 71 | !======================================================================= |
|---|
| 72 | !----------------------------------------------------------------------- |
|---|
| 73 | ! Arguments |
|---|
| 74 | ! --------- |
|---|
| 75 | REAL, INTENT(IN) :: ptimestep |
|---|
| 76 | INTEGER, INTENT(IN) :: indice, knon !, knindex |
|---|
| 77 | REAL, DIMENSION(klon), INTENT(IN) :: snow |
|---|
| 78 | REAL, DIMENSION(klon), INTENT(IN) :: ptsrf |
|---|
| 79 | REAL, DIMENSION(klon), INTENT(IN) :: qsol |
|---|
| 80 | REAL, DIMENSION(klon), INTENT(IN) :: lon |
|---|
| 81 | REAL, DIMENSION(klon), INTENT(IN) :: lat |
|---|
| 82 | REAL, DIMENSION(klon), INTENT(IN) :: ztherm_i |
|---|
| 83 | REAL, DIMENSION(klon), INTENT(IN) :: conv_ratio |
|---|
| 84 | |
|---|
| 85 | REAL, DIMENSION(klon,nsoilmx), INTENT(INOUT) :: ptsoil |
|---|
| 86 | REAL, DIMENSION(klon), INTENT(OUT) :: pcapcal |
|---|
| 87 | REAL, DIMENSION(klon), INTENT(OUT) :: pfluxgrd |
|---|
| 88 | |
|---|
| 89 | !----------------------------------------------------------------------- |
|---|
| 90 | ! Local variables |
|---|
| 91 | ! --------------- |
|---|
| 92 | INTEGER :: ig, jk, ierr |
|---|
| 93 | REAL, DIMENSION(nsoilmx) :: zdz2 |
|---|
| 94 | REAL :: z1s |
|---|
| 95 | REAL, DIMENSION(klon,nsoilmx,nbsrf) :: C_coef, D_coef |
|---|
| 96 | |
|---|
| 97 | ! Local saved variables |
|---|
| 98 | ! --------------------- |
|---|
| 99 | REAL, SAVE :: lambda |
|---|
| 100 | !$OMP THREADPRIVATE(lambda) |
|---|
| 101 | REAL, DIMENSION(nsoilmx), SAVE :: dz1, dz2 |
|---|
| 102 | !$OMP THREADPRIVATE(dz1,dz2) |
|---|
| 103 | LOGICAL, SAVE :: firstcall=.TRUE. |
|---|
| 104 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 105 | |
|---|
| 106 | !----------------------------------------------------------------------- |
|---|
| 107 | ! Depthts: |
|---|
| 108 | ! -------- |
|---|
| 109 | REAL fz,rk,fz1,rk1,rk2 |
|---|
| 110 | fz(rk)=fz1*(alpha_soil_tersrf**rk-1.)/(alpha_soil_tersrf-1.) |
|---|
| 111 | ! |
|---|
| 112 | !----------------------------------------------------------------------- |
|---|
| 113 | ! Calculation of some constants |
|---|
| 114 | ! NB! These constants do not depend on the sub-surfaces |
|---|
| 115 | !----------------------------------------------------------------------- |
|---|
| 116 | |
|---|
| 117 | IF (firstcall) THEN |
|---|
| 118 | !----------------------------------------------------------------------- |
|---|
| 119 | ! ground levels |
|---|
| 120 | ! grnd=z/l where l is the skin depth of the diurnal cycle: |
|---|
| 121 | !----------------------------------------------------------------------- |
|---|
| 122 | ! la premiere couche represente un dixieme de cycle diurne |
|---|
| 123 | fz1=SQRT(period_tersrf/RPI) |
|---|
| 124 | |
|---|
| 125 | DO jk=1,nsoilmx |
|---|
| 126 | rk1=jk |
|---|
| 127 | rk2=jk-1 |
|---|
| 128 | dz2(jk)=fz(rk1)-fz(rk2) |
|---|
| 129 | ENDDO |
|---|
| 130 | DO jk=1,nsoilmx-1 |
|---|
| 131 | rk1=jk+.5 |
|---|
| 132 | rk2=jk-.5 |
|---|
| 133 | dz1(jk)=1./(fz(rk1)-fz(rk2)) |
|---|
| 134 | ENDDO |
|---|
| 135 | lambda=fz(.5)*dz1(1) |
|---|
| 136 | WRITE(lunout,*) 'surface index:', indice |
|---|
| 137 | WRITE(lunout,*)'full layers, intermediate layers (seconds)' |
|---|
| 138 | DO jk=1,nsoilmx |
|---|
| 139 | rk=jk |
|---|
| 140 | rk1=jk+.5 |
|---|
| 141 | rk2=jk-.5 |
|---|
| 142 | WRITE(lunout,*)'fz=', & |
|---|
| 143 | fz(rk1)*fz(rk2)*RPI,fz(rk)*fz(rk)*RPI |
|---|
| 144 | ENDDO |
|---|
| 145 | WRITE(lunout,*)'full layers, intermediate layers (meters)' |
|---|
| 146 | DO jk=1,nsoilmx |
|---|
| 147 | rk=jk |
|---|
| 148 | rk2=jk-.5 |
|---|
| 149 | WRITE(lunout,*)'fz=', & |
|---|
| 150 | fz(rk2)*conv_ratio, fz(rk)*conv_ratio |
|---|
| 151 | ENDDO |
|---|
| 152 | firstcall =.FALSE. |
|---|
| 153 | END IF |
|---|
| 154 | |
|---|
| 155 | !----------------------------------------------------------------------- |
|---|
| 156 | ! 1) |
|---|
| 157 | ! Calculation of Cgrf and Dgrd coefficients using soil temperature from |
|---|
| 158 | ! previous time step. |
|---|
| 159 | ! |
|---|
| 160 | ! These variables are recalculated on the local compressed grid instead |
|---|
| 161 | ! of saved in restart file. |
|---|
| 162 | !----------------------------------------------------------------------- |
|---|
| 163 | DO jk=1,nsoilmx |
|---|
| 164 | zdz2(jk)=dz2(jk)/ptimestep |
|---|
| 165 | ENDDO |
|---|
| 166 | |
|---|
| 167 | DO ig=1,knon |
|---|
| 168 | z1s = zdz2(nsoilmx)+dz1(nsoilmx-1) |
|---|
| 169 | C_coef(ig,nsoilmx-1,indice)= & |
|---|
| 170 | zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1s |
|---|
| 171 | D_coef(ig,nsoilmx-1,indice)=dz1(nsoilmx-1)/z1s |
|---|
| 172 | ENDDO |
|---|
| 173 | |
|---|
| 174 | DO jk=nsoilmx-1,2,-1 |
|---|
| 175 | DO ig=1,knon |
|---|
| 176 | z1s = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk) & |
|---|
| 177 | *(1.-D_coef(ig,jk,indice))) |
|---|
| 178 | C_coef(ig,jk-1,indice)= & |
|---|
| 179 | (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*C_coef(ig,jk,indice)) * z1s |
|---|
| 180 | D_coef(ig,jk-1,indice)=dz1(jk-1)*z1s |
|---|
| 181 | ENDDO |
|---|
| 182 | ENDDO |
|---|
| 183 | |
|---|
| 184 | !----------------------------------------------------------------------- |
|---|
| 185 | ! 2) |
|---|
| 186 | ! Computation of the soil temperatures using the Cgrd and Dgrd |
|---|
| 187 | ! coefficient computed above |
|---|
| 188 | ! |
|---|
| 189 | !----------------------------------------------------------------------- |
|---|
| 190 | |
|---|
| 191 | ! Surface temperature |
|---|
| 192 | DO ig=1,knon |
|---|
| 193 | ptsoil(ig,1)=(lambda*C_coef(ig,1,indice)+ptsrf(ig))/ & |
|---|
| 194 | (lambda*(1.-D_coef(ig,1,indice))+1.) |
|---|
| 195 | ENDDO |
|---|
| 196 | |
|---|
| 197 | ! Other temperatures |
|---|
| 198 | DO jk=1,nsoilmx-1 |
|---|
| 199 | DO ig=1,knon |
|---|
| 200 | ptsoil(ig,jk+1)=C_coef(ig,jk,indice)+D_coef(ig,jk,indice) & |
|---|
| 201 | *ptsoil(ig,jk) |
|---|
| 202 | ENDDO |
|---|
| 203 | ENDDO |
|---|
| 204 | |
|---|
| 205 | IF (indice == is_sic) THEN |
|---|
| 206 | DO ig = 1 , knon |
|---|
| 207 | ptsoil(ig,nsoilmx) = RTT - 1.8 |
|---|
| 208 | END DO |
|---|
| 209 | ENDIF |
|---|
| 210 | |
|---|
| 211 | !----------------------------------------------------------------------- |
|---|
| 212 | ! 3) |
|---|
| 213 | ! Calculate the Cgrd and Dgrd coefficient corresponding to actual soil |
|---|
| 214 | ! temperature |
|---|
| 215 | !----------------------------------------------------------------------- |
|---|
| 216 | DO ig=1,knon |
|---|
| 217 | z1s = zdz2(nsoilmx)+dz1(nsoilmx-1) |
|---|
| 218 | C_coef(ig,nsoilmx-1,indice) = zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1s |
|---|
| 219 | D_coef(ig,nsoilmx-1,indice) = dz1(nsoilmx-1)/z1s |
|---|
| 220 | ENDDO |
|---|
| 221 | |
|---|
| 222 | DO jk=nsoilmx-1,2,-1 |
|---|
| 223 | DO ig=1,knon |
|---|
| 224 | z1s = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk) & |
|---|
| 225 | *(1.-D_coef(ig,jk,indice))) |
|---|
| 226 | C_coef(ig,jk-1,indice) = & |
|---|
| 227 | (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*C_coef(ig,jk,indice)) * z1s |
|---|
| 228 | D_coef(ig,jk-1,indice) = dz1(jk-1)*z1s |
|---|
| 229 | ENDDO |
|---|
| 230 | ENDDO |
|---|
| 231 | |
|---|
| 232 | !----------------------------------------------------------------------- |
|---|
| 233 | ! 4) |
|---|
| 234 | ! Computation of the surface diffusive flux from ground and |
|---|
| 235 | ! calorific capacity of the ground |
|---|
| 236 | !----------------------------------------------------------------------- |
|---|
| 237 | DO ig=1,knon |
|---|
| 238 | pfluxgrd(ig) = ztherm_i(ig)*dz1(1)* & |
|---|
| 239 | (C_coef(ig,1,indice)+(D_coef(ig,1,indice)-1.)*ptsoil(ig,1)) |
|---|
| 240 | pcapcal(ig) = ztherm_i(ig)* & |
|---|
| 241 | (dz2(1)+ptimestep*(1.-D_coef(ig,1,indice))*dz1(1)) |
|---|
| 242 | z1s = lambda*(1.-D_coef(ig,1,indice))+1. |
|---|
| 243 | pcapcal(ig) = pcapcal(ig)/z1s |
|---|
| 244 | pfluxgrd(ig) = pfluxgrd(ig) & |
|---|
| 245 | + pcapcal(ig) * (ptsoil(ig,1) * z1s & |
|---|
| 246 | - lambda * C_coef(ig,1,indice) & |
|---|
| 247 | - ptsrf(ig)) & |
|---|
| 248 | /ptimestep |
|---|
| 249 | ENDDO |
|---|
| 250 | |
|---|
| 251 | END SUBROUTINE soil_hetero |
|---|