| 1 | ! |
|---|
| 2 | ! $Header$ |
|---|
| 3 | ! |
|---|
| 4 | SUBROUTINE soil(ptimestep, indice, knon, snow, ptsrf, qsol, & |
|---|
| 5 | lon, lat, ptsoil, pcapcal, pfluxgrd) |
|---|
| 6 | |
|---|
| 7 | USE dimphy |
|---|
| 8 | USE mod_phys_lmdz_para |
|---|
| 9 | USE indice_sol_mod |
|---|
| 10 | USE print_control_mod, ONLY: lunout |
|---|
| 11 | |
|---|
| 12 | IMPLICIT NONE |
|---|
| 13 | |
|---|
| 14 | !======================================================================= |
|---|
| 15 | ! |
|---|
| 16 | ! Auteur: Frederic Hourdin 30/01/92 |
|---|
| 17 | ! ------- |
|---|
| 18 | ! |
|---|
| 19 | ! Object: Computation of : the soil temperature evolution |
|---|
| 20 | ! ------- the surfacic heat capacity "Capcal" |
|---|
| 21 | ! the surface conduction flux pcapcal |
|---|
| 22 | ! |
|---|
| 23 | ! Update: 2021/07 : soil thermal inertia, formerly a constant value, |
|---|
| 24 | ! ------ can also be now a function of soil moisture (F Cheruy's idea) |
|---|
| 25 | ! depending on iflag_inertie, read from physiq.def via conf_phys_m.F90 |
|---|
| 26 | ! ("Stage L3" Eve Rebouillat, with E Vignon, A Sima, F Cheruy) |
|---|
| 27 | ! |
|---|
| 28 | ! Method: Implicit time integration |
|---|
| 29 | ! ------- |
|---|
| 30 | ! Consecutive ground temperatures are related by: |
|---|
| 31 | ! T(k+1) = C(k) + D(k)*T(k) (*) |
|---|
| 32 | ! The coefficients C and D are computed at the t-dt time-step. |
|---|
| 33 | ! Routine structure: |
|---|
| 34 | ! 1) C and D coefficients are computed from the old temperature |
|---|
| 35 | ! 2) new temperatures are computed using (*) |
|---|
| 36 | ! 3) C and D coefficients are computed from the new temperature |
|---|
| 37 | ! profile for the t+dt time-step |
|---|
| 38 | ! 4) the coefficients A and B are computed where the diffusive |
|---|
| 39 | ! fluxes at the t+dt time-step is given by |
|---|
| 40 | ! Fdiff = A + B Ts(t+dt) |
|---|
| 41 | ! or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt |
|---|
| 42 | ! with F0 = A + B (Ts(t)) |
|---|
| 43 | ! Capcal = B*dt |
|---|
| 44 | ! |
|---|
| 45 | ! Interface: |
|---|
| 46 | ! ---------- |
|---|
| 47 | ! |
|---|
| 48 | ! Arguments: |
|---|
| 49 | ! ---------- |
|---|
| 50 | ! ptimestep physical timestep (s) |
|---|
| 51 | ! indice sub-surface index |
|---|
| 52 | ! snow(klon) snow |
|---|
| 53 | ! ptsrf(klon) surface temperature at time-step t (K) |
|---|
| 54 | ! qsol(klon) soil moisture (kg/m2 or mm) |
|---|
| 55 | ! lon(klon) longitude in radian |
|---|
| 56 | ! lat(klon) latitude in radian |
|---|
| 57 | ! ptsoil(klon,nsoilmx) temperature inside the ground (K) |
|---|
| 58 | ! pcapcal(klon) surfacic specific heat (W*m-2*s*K-1) |
|---|
| 59 | ! pfluxgrd(klon) surface diffusive flux from ground (Wm-2) |
|---|
| 60 | ! |
|---|
| 61 | !======================================================================= |
|---|
| 62 | INCLUDE "YOMCST.h" |
|---|
| 63 | INCLUDE "dimsoil.h" |
|---|
| 64 | INCLUDE "comsoil.h" |
|---|
| 65 | !----------------------------------------------------------------------- |
|---|
| 66 | ! Arguments |
|---|
| 67 | ! --------- |
|---|
| 68 | REAL, INTENT(IN) :: ptimestep |
|---|
| 69 | INTEGER, INTENT(IN) :: indice, knon !, knindex |
|---|
| 70 | REAL, DIMENSION(klon), INTENT(IN) :: snow |
|---|
| 71 | REAL, DIMENSION(klon), INTENT(IN) :: ptsrf |
|---|
| 72 | REAL, DIMENSION(klon), INTENT(IN) :: qsol |
|---|
| 73 | REAL, DIMENSION(klon), INTENT(IN) :: lon |
|---|
| 74 | REAL, DIMENSION(klon), INTENT(IN) :: lat |
|---|
| 75 | |
|---|
| 76 | REAL, DIMENSION(klon,nsoilmx), INTENT(INOUT) :: ptsoil |
|---|
| 77 | REAL, DIMENSION(klon), INTENT(OUT) :: pcapcal |
|---|
| 78 | REAL, DIMENSION(klon), INTENT(OUT) :: pfluxgrd |
|---|
| 79 | |
|---|
| 80 | !----------------------------------------------------------------------- |
|---|
| 81 | ! Local variables |
|---|
| 82 | ! --------------- |
|---|
| 83 | INTEGER :: ig, jk, ierr |
|---|
| 84 | REAL :: min_period,dalph_soil |
|---|
| 85 | REAL, DIMENSION(nsoilmx) :: zdz2 |
|---|
| 86 | REAL :: z1s |
|---|
| 87 | REAL, DIMENSION(klon) :: ztherm_i |
|---|
| 88 | REAL, DIMENSION(klon,nsoilmx,nbsrf) :: C_coef, D_coef |
|---|
| 89 | |
|---|
| 90 | ! Local saved variables |
|---|
| 91 | ! --------------------- |
|---|
| 92 | REAL, SAVE :: lambda |
|---|
| 93 | !$OMP THREADPRIVATE(lambda) |
|---|
| 94 | REAL, DIMENSION(nsoilmx), SAVE :: dz1, dz2 |
|---|
| 95 | !$OMP THREADPRIVATE(dz1,dz2) |
|---|
| 96 | LOGICAL, SAVE :: firstcall=.TRUE. |
|---|
| 97 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 98 | |
|---|
| 99 | !----------------------------------------------------------------------- |
|---|
| 100 | ! Depthts: |
|---|
| 101 | ! -------- |
|---|
| 102 | REAL fz,rk,fz1,rk1,rk2 |
|---|
| 103 | fz(rk)=fz1*(dalph_soil**rk-1.)/(dalph_soil-1.) |
|---|
| 104 | |
|---|
| 105 | |
|---|
| 106 | !----------------------------------------------------------------------- |
|---|
| 107 | ! Calculation of some constants |
|---|
| 108 | ! NB! These constants do not depend on the sub-surfaces |
|---|
| 109 | !----------------------------------------------------------------------- |
|---|
| 110 | |
|---|
| 111 | IF (firstcall) THEN |
|---|
| 112 | !----------------------------------------------------------------------- |
|---|
| 113 | ! ground levels |
|---|
| 114 | ! grnd=z/l where l is the skin depth of the diurnal cycle: |
|---|
| 115 | !----------------------------------------------------------------------- |
|---|
| 116 | |
|---|
| 117 | min_period=1800. ! en secondes |
|---|
| 118 | dalph_soil=2. ! rapport entre les epaisseurs de 2 couches succ. |
|---|
| 119 | !$OMP MASTER |
|---|
| 120 | IF (is_mpi_root) THEN |
|---|
| 121 | OPEN(99,file='soil.def',status='old',form='formatted',iostat=ierr) |
|---|
| 122 | IF (ierr == 0) THEN ! Read file only if it exists |
|---|
| 123 | READ(99,*) min_period |
|---|
| 124 | READ(99,*) dalph_soil |
|---|
| 125 | WRITE(lunout,*)'Discretization for the soil model' |
|---|
| 126 | WRITE(lunout,*)'First level e-folding depth',min_period, & |
|---|
| 127 | ' dalph',dalph_soil |
|---|
| 128 | CLOSE(99) |
|---|
| 129 | END IF |
|---|
| 130 | ENDIF |
|---|
| 131 | !$OMP END MASTER |
|---|
| 132 | CALL bcast(min_period) |
|---|
| 133 | CALL bcast(dalph_soil) |
|---|
| 134 | |
|---|
| 135 | ! la premiere couche represente un dixieme de cycle diurne |
|---|
| 136 | fz1=SQRT(min_period/3.14) |
|---|
| 137 | |
|---|
| 138 | DO jk=1,nsoilmx |
|---|
| 139 | rk1=jk |
|---|
| 140 | rk2=jk-1 |
|---|
| 141 | dz2(jk)=fz(rk1)-fz(rk2) |
|---|
| 142 | ENDDO |
|---|
| 143 | DO jk=1,nsoilmx-1 |
|---|
| 144 | rk1=jk+.5 |
|---|
| 145 | rk2=jk-.5 |
|---|
| 146 | dz1(jk)=1./(fz(rk1)-fz(rk2)) |
|---|
| 147 | ENDDO |
|---|
| 148 | lambda=fz(.5)*dz1(1) |
|---|
| 149 | WRITE(lunout,*)'full layers, intermediate layers (seconds)' |
|---|
| 150 | DO jk=1,nsoilmx |
|---|
| 151 | rk=jk |
|---|
| 152 | rk1=jk+.5 |
|---|
| 153 | rk2=jk-.5 |
|---|
| 154 | WRITE(lunout,*)'fz=', & |
|---|
| 155 | fz(rk1)*fz(rk2)*3.14,fz(rk)*fz(rk)*3.14 |
|---|
| 156 | ENDDO |
|---|
| 157 | |
|---|
| 158 | firstcall =.FALSE. |
|---|
| 159 | END IF |
|---|
| 160 | |
|---|
| 161 | |
|---|
| 162 | !----------------------------------------------------------------------- |
|---|
| 163 | ! Calcul de l'inertie thermique a partir de la variable rnat. |
|---|
| 164 | ! on initialise a inertie_sic meme au-dessus d'un point de mer au cas |
|---|
| 165 | ! ou le point de mer devienne point de glace au pas suivant |
|---|
| 166 | ! on corrige si on a un point de terre avec ou sans glace |
|---|
| 167 | ! |
|---|
| 168 | ! iophys can be used to write the ztherm_i variable in a phys.nc file |
|---|
| 169 | ! and check the results; to do so, add "CALL iophys_ini" in physiq_mod |
|---|
| 170 | ! and add knindex to the list of inputs in all the calls to soil.F90 |
|---|
| 171 | ! (and to soil.F90 itself !) |
|---|
| 172 | !----------------------------------------------------------------------- |
|---|
| 173 | |
|---|
| 174 | IF (indice == is_sic) THEN |
|---|
| 175 | DO ig = 1, knon |
|---|
| 176 | ztherm_i(ig) = inertie_sic |
|---|
| 177 | ENDDO |
|---|
| 178 | IF (iflag_sic == 0) THEN |
|---|
| 179 | DO ig = 1, knon |
|---|
| 180 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
|---|
| 181 | ENDDO |
|---|
| 182 | ! Otherwise sea-ice keeps the same inertia, even when covered by snow |
|---|
| 183 | ENDIF |
|---|
| 184 | ! CALL iophys_ecrit_index('ztherm_sic', 1, 'ztherm_sic', 'USI', & |
|---|
| 185 | ! knon, knindex, ztherm_i) |
|---|
| 186 | ELSE IF (indice == is_lic) THEN |
|---|
| 187 | DO ig = 1, knon |
|---|
| 188 | ztherm_i(ig) = inertie_lic |
|---|
| 189 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
|---|
| 190 | ENDDO |
|---|
| 191 | ! CALL iophys_ecrit_index('ztherm_lic', 1, 'ztherm_lic', 'USI', & |
|---|
| 192 | ! knon, knindex, ztherm_i) |
|---|
| 193 | ELSE IF (indice == is_ter) THEN |
|---|
| 194 | ! |
|---|
| 195 | ! La relation entre l'inertie thermique du sol et qsol change d'apres |
|---|
| 196 | ! iflag_inertie, defini dans physiq.def, et appele via comsoil.h |
|---|
| 197 | ! |
|---|
| 198 | DO ig = 1, knon |
|---|
| 199 | ! iflag_inertie=0 correspond au cas inertie=constant, comme avant |
|---|
| 200 | IF (iflag_inertie==0) THEN |
|---|
| 201 | ztherm_i(ig) = inertie_sol |
|---|
| 202 | ELSE IF (iflag_inertie == 1) THEN |
|---|
| 203 | ! I = a_qsol * qsol + b modele lineaire deduit d'une |
|---|
| 204 | ! regression lineaire I = a_mrsos * mrsos + b obtenue sur |
|---|
| 205 | ! sorties MO d'une simulation LMDZOR(CMIP6) sur l'annee 2000 |
|---|
| 206 | ! sur tous les points avec frac_snow=0 |
|---|
| 207 | ! Difference entre qsol et mrsos prise en compte par un |
|---|
| 208 | ! facteur d'echelle sur le coefficient directeur de regression: |
|---|
| 209 | ! fact = 35./150. = mrsos_max/qsol_max |
|---|
| 210 | ! et a_qsol = a_mrsos * fact (car a = dI/dHumidite) |
|---|
| 211 | ztherm_i(ig) = 30.0 *35.0/150.0 *qsol(ig) +770.0 |
|---|
| 212 | ! AS : pour qsol entre 0 - 150, on a I entre 770 - 1820 |
|---|
| 213 | ELSE IF (iflag_inertie == 2) THEN |
|---|
| 214 | ! deux regressions lineaires, sur les memes sorties, |
|---|
| 215 | ! distinguant le type de sol : sable ou autre (limons/argile) |
|---|
| 216 | ! Implementation simple : regression type "sable" seulement pour |
|---|
| 217 | ! Sahara, defini par une "boite" lat/lon (NB : en radians !! ) |
|---|
| 218 | IF (lon(ig)>-0.35 .AND. lon(ig)<0.70 .AND. lat(ig)>0.17 .AND. lat(ig)<0.52) THEN |
|---|
| 219 | ! Valeurs theoriquement entre 728 et 2373 ; qsol valeurs basses |
|---|
| 220 | ztherm_i(ig) = 47. *35.0/150.0 *qsol(ig) +728. ! boite type "sable" pour Sahara |
|---|
| 221 | ELSE |
|---|
| 222 | ! Valeurs theoriquement entre 550 et 1940 ; qsol valeurs moyennes et hautes |
|---|
| 223 | ztherm_i(ig) = 41. *35.0/150.0 *qsol(ig) +505. |
|---|
| 224 | ENDIF |
|---|
| 225 | ELSE IF (iflag_inertie == 3) THEN |
|---|
| 226 | ! AS : idee a tester : |
|---|
| 227 | ! si la relation doit etre une droite, |
|---|
| 228 | ! definissons-la en fonction des valeurs min et max de qsol (0:150), |
|---|
| 229 | ! et de l'inertie (900 : 2000 ou 2400 ; choix ici: 2000) |
|---|
| 230 | ! I = I_min + qsol * (I_max - I_min)/(qsol_max - qsol_min) |
|---|
| 231 | ztherm_i(ig) = 900. + qsol(ig) * (2000. - 900.)/150. |
|---|
| 232 | ELSE |
|---|
| 233 | WRITE (lunout,*) "Le choix iflag_inertie = ",iflag_inertie," n'est pas defini. Veuillez choisir un entier entre 0 et 3" |
|---|
| 234 | ENDIF |
|---|
| 235 | ! |
|---|
| 236 | ! Fin de l'introduction de la relation entre l'inertie thermique du sol et qsol |
|---|
| 237 | !------------------------------------------- |
|---|
| 238 | !AS : donc le moindre flocon de neige sur un point de grid |
|---|
| 239 | ! fait que l'inertie du point passe a la valeur pour neige ! |
|---|
| 240 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
|---|
| 241 | |
|---|
| 242 | ENDDO |
|---|
| 243 | ! CALL iophys_ecrit_index('ztherm_ter', 1, 'ztherm_ter', 'USI', & |
|---|
| 244 | ! knon, knindex, ztherm_i) |
|---|
| 245 | ELSE IF (indice == is_oce) THEN |
|---|
| 246 | DO ig = 1, knon |
|---|
| 247 | ! This is just in case, but SST should be used by the model anyway |
|---|
| 248 | ztherm_i(ig) = inertie_sic |
|---|
| 249 | ENDDO |
|---|
| 250 | ! CALL iophys_ecrit_index('ztherm_oce', 1, 'ztherm_oce', 'USI', & |
|---|
| 251 | ! knon, knindex, ztherm_i) |
|---|
| 252 | ELSE |
|---|
| 253 | WRITE(lunout,*) "valeur d indice non prevue", indice |
|---|
| 254 | call abort_physic("soil", "", 1) |
|---|
| 255 | ENDIF |
|---|
| 256 | |
|---|
| 257 | |
|---|
| 258 | !----------------------------------------------------------------------- |
|---|
| 259 | ! 1) |
|---|
| 260 | ! Calculation of Cgrf and Dgrd coefficients using soil temperature from |
|---|
| 261 | ! previous time step. |
|---|
| 262 | ! |
|---|
| 263 | ! These variables are recalculated on the local compressed grid instead |
|---|
| 264 | ! of saved in restart file. |
|---|
| 265 | !----------------------------------------------------------------------- |
|---|
| 266 | DO jk=1,nsoilmx |
|---|
| 267 | zdz2(jk)=dz2(jk)/ptimestep |
|---|
| 268 | ENDDO |
|---|
| 269 | |
|---|
| 270 | DO ig=1,knon |
|---|
| 271 | z1s = zdz2(nsoilmx)+dz1(nsoilmx-1) |
|---|
| 272 | C_coef(ig,nsoilmx-1,indice)= & |
|---|
| 273 | zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1s |
|---|
| 274 | D_coef(ig,nsoilmx-1,indice)=dz1(nsoilmx-1)/z1s |
|---|
| 275 | ENDDO |
|---|
| 276 | |
|---|
| 277 | DO jk=nsoilmx-1,2,-1 |
|---|
| 278 | DO ig=1,knon |
|---|
| 279 | z1s = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk) & |
|---|
| 280 | *(1.-D_coef(ig,jk,indice))) |
|---|
| 281 | C_coef(ig,jk-1,indice)= & |
|---|
| 282 | (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*C_coef(ig,jk,indice)) * z1s |
|---|
| 283 | D_coef(ig,jk-1,indice)=dz1(jk-1)*z1s |
|---|
| 284 | ENDDO |
|---|
| 285 | ENDDO |
|---|
| 286 | |
|---|
| 287 | !----------------------------------------------------------------------- |
|---|
| 288 | ! 2) |
|---|
| 289 | ! Computation of the soil temperatures using the Cgrd and Dgrd |
|---|
| 290 | ! coefficient computed above |
|---|
| 291 | ! |
|---|
| 292 | !----------------------------------------------------------------------- |
|---|
| 293 | |
|---|
| 294 | ! Surface temperature |
|---|
| 295 | DO ig=1,knon |
|---|
| 296 | ptsoil(ig,1)=(lambda*C_coef(ig,1,indice)+ptsrf(ig))/ & |
|---|
| 297 | (lambda*(1.-D_coef(ig,1,indice))+1.) |
|---|
| 298 | ENDDO |
|---|
| 299 | |
|---|
| 300 | ! Other temperatures |
|---|
| 301 | DO jk=1,nsoilmx-1 |
|---|
| 302 | DO ig=1,knon |
|---|
| 303 | ptsoil(ig,jk+1)=C_coef(ig,jk,indice)+D_coef(ig,jk,indice) & |
|---|
| 304 | *ptsoil(ig,jk) |
|---|
| 305 | ENDDO |
|---|
| 306 | ENDDO |
|---|
| 307 | |
|---|
| 308 | IF (indice == is_sic) THEN |
|---|
| 309 | DO ig = 1 , knon |
|---|
| 310 | ptsoil(ig,nsoilmx) = RTT - 1.8 |
|---|
| 311 | END DO |
|---|
| 312 | ENDIF |
|---|
| 313 | |
|---|
| 314 | !----------------------------------------------------------------------- |
|---|
| 315 | ! 3) |
|---|
| 316 | ! Calculate the Cgrd and Dgrd coefficient corresponding to actual soil |
|---|
| 317 | ! temperature |
|---|
| 318 | !----------------------------------------------------------------------- |
|---|
| 319 | DO ig=1,knon |
|---|
| 320 | z1s = zdz2(nsoilmx)+dz1(nsoilmx-1) |
|---|
| 321 | C_coef(ig,nsoilmx-1,indice) = zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1s |
|---|
| 322 | D_coef(ig,nsoilmx-1,indice) = dz1(nsoilmx-1)/z1s |
|---|
| 323 | ENDDO |
|---|
| 324 | |
|---|
| 325 | DO jk=nsoilmx-1,2,-1 |
|---|
| 326 | DO ig=1,knon |
|---|
| 327 | z1s = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk) & |
|---|
| 328 | *(1.-D_coef(ig,jk,indice))) |
|---|
| 329 | C_coef(ig,jk-1,indice) = & |
|---|
| 330 | (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*C_coef(ig,jk,indice)) * z1s |
|---|
| 331 | D_coef(ig,jk-1,indice) = dz1(jk-1)*z1s |
|---|
| 332 | ENDDO |
|---|
| 333 | ENDDO |
|---|
| 334 | |
|---|
| 335 | !----------------------------------------------------------------------- |
|---|
| 336 | ! 4) |
|---|
| 337 | ! Computation of the surface diffusive flux from ground and |
|---|
| 338 | ! calorific capacity of the ground |
|---|
| 339 | !----------------------------------------------------------------------- |
|---|
| 340 | DO ig=1,knon |
|---|
| 341 | pfluxgrd(ig) = ztherm_i(ig)*dz1(1)* & |
|---|
| 342 | (C_coef(ig,1,indice)+(D_coef(ig,1,indice)-1.)*ptsoil(ig,1)) |
|---|
| 343 | pcapcal(ig) = ztherm_i(ig)* & |
|---|
| 344 | (dz2(1)+ptimestep*(1.-D_coef(ig,1,indice))*dz1(1)) |
|---|
| 345 | z1s = lambda*(1.-D_coef(ig,1,indice))+1. |
|---|
| 346 | pcapcal(ig) = pcapcal(ig)/z1s |
|---|
| 347 | pfluxgrd(ig) = pfluxgrd(ig) & |
|---|
| 348 | + pcapcal(ig) * (ptsoil(ig,1) * z1s & |
|---|
| 349 | - lambda * C_coef(ig,1,indice) & |
|---|
| 350 | - ptsrf(ig)) & |
|---|
| 351 | /ptimestep |
|---|
| 352 | ENDDO |
|---|
| 353 | |
|---|
| 354 | END SUBROUTINE soil |
|---|