source: LMDZ6/trunk/libf/phylmd/read_pstoke0.F90 @ 5260

Last change on this file since 5260 was 5249, checked in by abarral, 5 weeks ago

Replace uses of cpp key NC_DOUBLE

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 14.9 KB
Line 
1
2! $Id: read_pstoke0.F90 5249 2024-10-22 09:35:08Z abarral $
3
4
5
6SUBROUTINE read_pstoke0(irec, zrec, zkon, zkev, airefi, phisfi, t, mfu, mfd, &
7    en_u, de_u, en_d, de_d, coefh, fm_therm, en_therm, frac_impa, frac_nucl, &
8    pyu1, pyv1, ftsol, psrf)
9
10  ! ******************************************************************************
11  ! Frederic HOURDIN, Abderrahmane IDELKADI
12  ! Lecture des parametres physique stockes online necessaires pour
13  ! recalculer offline le transport des traceurs sur la meme grille que
14  ! online
15  ! A FAIRE : une seule routine au lieu de 2 (lectflux, redecoupe)!
16  ! ******************************************************************************
17
18  USE netcdf
19  USE dimphy
20  USE indice_sol_mod
21  USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat, nbp_lev
22
23  IMPLICIT NONE
24
25  include "netcdf.inc"
26
27  INTEGER kon, kev, zkon, zkev
28!  PARAMETER (kon=iim*(jjm-1)+2, kev=llm)
29  REAL :: phisfi(nbp_lon*(nbp_lat-2)+2) !phisfi(kon)
30  REAL,ALLOCATABLE :: phisfi2(:,:) !phisfi2(nbp_lon, nbp_lat)
31  REAL,ALLOCATABLE :: airefi2(:,:) !airefi2(nbp_lon, nbp_lat)
32
33  REAL :: mfu(nbp_lon*(nbp_lat-2)+2,nbp_lev) !mfu(kon, kev)
34  REAL :: mfd(nbp_lon*(nbp_lat-2)+2,nbp_lev) !mfd(kon, kev)
35  REAL :: en_u(nbp_lon*(nbp_lat-2)+2,nbp_lev) !en_u(kon, kev)
36  REAL :: de_u(nbp_lon*(nbp_lat-2)+2,nbp_lev) !de_u(kon, kev)
37  REAL :: en_d(nbp_lon*(nbp_lat-2)+2,nbp_lev) !en_d(kon, kev)
38  REAL :: de_d(nbp_lon*(nbp_lat-2)+2,nbp_lev) !de_d(kon, kev)
39  REAL :: coefh(nbp_lon*(nbp_lat-2)+2,nbp_lev) !coefh(kon, kev)
40
41  ! abd 25 11 02
42  ! Thermiques
43  REAL :: fm_therm(nbp_lon*(nbp_lat-2)+2,nbp_lev) !fm_therm(kon, kev)
44  REAL :: en_therm(nbp_lon*(nbp_lat-2)+2,nbp_lev) !en_therm(kon, kev)
45  REAL :: t(nbp_lon*(nbp_lat-2)+2,nbp_lev) !t(kon, kev)
46
47  REAL,ALLOCATABLE :: mfu2(:,:,:) !mfu2(nbp_lon, nbp_lat, kev)
48  REAL,ALLOCATABLE :: mfd2(:,:,:) !mfd2(nbp_lon, nbp_lat, kev)
49  REAL,ALLOCATABLE :: en_u2(:,:,:) !en_u2(nbp_lon, nbp_lat, kev)
50  REAL,ALLOCATABLE :: de_u2(:,:,:) !de_u2(nbp_lon, nbp_lat, kev)
51  REAL,ALLOCATABLE :: en_d2(:,:,:) !en_d2(nbp_lon, nbp_lat, kev)
52  REAL,ALLOCATABLE :: de_d2(:,:,:) !de_d2(nbp_lon, nbp_lat, kev)
53  REAL,ALLOCATABLE :: coefh2(:,:,:) !coefh2(nbp_lon, nbp_lat, kev)
54  REAL,ALLOCATABLE :: t2(:,:,:) !t2(nbp_lon, nbp_lat, kev)
55  ! Thermiques
56  REAL,ALLOCATABLE :: fm_therm2(:,:,:) !fm_therm2(nbp_lon, nbp_lat, kev)
57  REAL,ALLOCATABLE :: en_therm2(:,:,:) !en_therm2(nbp_lon, nbp_lat, kev)
58
59  REAL,ALLOCATABLE :: pl(:) !pl(kev)
60  INTEGER irec
61  INTEGER xid, yid, zid, tid
62  INTEGER zrec, zim, zjm
63  INTEGER ncrec, nckon, nckev, ncim, ncjm
64
65  REAL :: airefi(nbp_lon*(nbp_lat-2)+2) !airefi(kon)
66  CHARACTER *20 namedim
67
68  ! !! attention !!
69  ! attention il y a aussi le pb de def kon
70  ! dim de phis??
71
72  REAL :: frac_impa(nbp_lon*(nbp_lat-2)+2,nbp_lev) !frac_impa(kon, kev)
73  REAL :: frac_nucl(nbp_lon*(nbp_lat-2)+2,nbp_lev) !frac_nucl(kon, kev)
74  REAL,ALLOCATABLE :: frac_impa2(:,:,:) !frac_impa2(nbp_lon, nbp_lat, kev)
75  REAL,ALLOCATABLE :: frac_nucl2(:,:,:) !frac_nucl2(nbp_lon, nbp_lat, kev)
76  REAL :: pyu1(nbp_lon*(nbp_lat-2)+2) !pyu1(kon)
77  REAL :: pyv1(nbp_lon*(nbp_lat-2)+2) !pyv1(kon)
78  REAL,ALLOCATABLE :: pyu12(:,:), pyv12(:,:) !pyu12(nbp_lon, nbp_lat), pyv12(nbp_lon, nbp_lat)
79  REAL :: ftsol(nbp_lon*(nbp_lat-2)+2,nbp_lev) !ftsol(kon, nbsrf)
80  REAL :: psrf(nbp_lon*(nbp_lat-2)+2,nbp_lev) !psrf(kon, nbsrf)
81  REAL,ALLOCATABLE :: ftsol1(:),ftsol2(:) !ftsol1(kon), ftsol2(kon)
82  REAL,ALLOCATABLE :: ftsol3(:),ftsol4(:) !ftsol3(kon), ftsol4(kon)
83  REAL,ALLOCATABLE :: psrf1(:), psrf2(:) !psrf1(kon), psrf2(kon)
84  REAL,ALLOCATABLE :: psrf3(:), psrf4(:) !psrf3(kon), psrf4(kon)
85  REAL,ALLOCATABLE :: ftsol12(:,:) !ftsol12(nbp_lon, nbp_lat)
86  REAL,ALLOCATABLE :: ftsol22(:,:) !ftsol22(nbp_lon, nbp_lat)
87  REAL,ALLOCATABLE :: ftsol32(:,:) !ftsol32(nbp_lon, nbp_lat)
88  REAL,ALLOCATABLE :: ftsol42(:,:) !ftsol42(nbp_lon, nbp_lat)
89  REAL,ALLOCATABLE :: psrf12(:,:) !psrf12(nbp_lon, nbp_lat)
90  REAL,ALLOCATABLE :: psrf22(:,:) !psrf22(nbp_lon, nbp_lat)
91  REAL,ALLOCATABLE :: psrf32(:,:) !psrf32(nbp_lon, nbp_lat)
92  REAL,ALLOCATABLE :: psrf42(:,:) !psrf42(nbp_lon, nbp_lat)
93
94  INTEGER,SAVE :: ncidp
95  INTEGER,SAVE :: varidmfu, varidmfd, varidps, varidenu, variddeu
96  INTEGER,SAVE :: varidt
97  INTEGER,SAVE :: varidend, varidded, varidch, varidfi, varidfn
98  ! therm
99  INTEGER,SAVE :: varidfmth, varidenth
100  INTEGER,SAVE :: varidyu1, varidyv1, varidpl, varidai, varididvt
101  INTEGER,SAVE :: varidfts1, varidfts2, varidfts3, varidfts4
102  INTEGER,SAVE :: varidpsr1, varidpsr2, varidpsr3, varidpsr4
103
104  INTEGER l, i
105  INTEGER start(4), count(4), status
106  REAL rcode
107  LOGICAL,SAVE :: first=.TRUE.
108
109  ! Allocate arrays
110  kon=nbp_lon*(nbp_lat-2)+2
111  kev=nbp_lev
112
113  ALLOCATE(phisfi2(nbp_lon, nbp_lat))
114  ALLOCATE(airefi2(nbp_lon, nbp_lat))
115  ALLOCATE(mfu2(nbp_lon, nbp_lat, kev))
116  ALLOCATE(mfd2(nbp_lon, nbp_lat, kev))
117  ALLOCATE(en_u2(nbp_lon, nbp_lat, kev))
118  ALLOCATE(de_u2(nbp_lon, nbp_lat, kev))
119  ALLOCATE(en_d2(nbp_lon, nbp_lat, kev))
120  ALLOCATE(de_d2(nbp_lon, nbp_lat, kev))
121  ALLOCATE(coefh2(nbp_lon, nbp_lat, kev))
122  ALLOCATE(t2(nbp_lon, nbp_lat, kev))
123  ALLOCATE(fm_therm2(nbp_lon, nbp_lat, kev))
124  ALLOCATE(en_therm2(nbp_lon, nbp_lat, kev))
125  ALLOCATE(pl(kev))
126  ALLOCATE(frac_impa2(nbp_lon, nbp_lat, kev))
127  ALLOCATE(frac_nucl2(nbp_lon, nbp_lat, kev))
128  ALLOCATE(pyu12(nbp_lon, nbp_lat), pyv12(nbp_lon, nbp_lat))
129  ALLOCATE(ftsol1(kon), ftsol2(kon))
130  ALLOCATE(ftsol3(kon), ftsol4(kon))
131  ALLOCATE(psrf1(kon), psrf2(kon))
132  ALLOCATE(psrf3(kon), psrf4(kon))
133  ALLOCATE(ftsol12(nbp_lon, nbp_lat))
134  ALLOCATE(ftsol22(nbp_lon, nbp_lat))
135  ALLOCATE(ftsol32(nbp_lon, nbp_lat))
136  ALLOCATE(ftsol42(nbp_lon, nbp_lat))
137  ALLOCATE(psrf12(nbp_lon, nbp_lat))
138  ALLOCATE(psrf22(nbp_lon, nbp_lat))
139  ALLOCATE(psrf32(nbp_lon, nbp_lat))
140  ALLOCATE(psrf42(nbp_lon, nbp_lat))
141
142  ! ---------------------------------------------
143  ! Initialisation de la lecture des fichiers
144  ! ---------------------------------------------
145
146  IF (irec==0) THEN
147
148    rcode = nf90_open('phystoke.nc', nf90_nowrite, ncidp)
149
150    rcode = nf90_inq_varid(ncidp, 'phis', varidps)
151    PRINT *, 'ncidp,varidps', ncidp, varidps
152
153    rcode = nf90_inq_varid(ncidp, 'sig_s', varidpl)
154    PRINT *, 'ncidp,varidpl', ncidp, varidpl
155
156    rcode = nf90_inq_varid(ncidp, 'aire', varidai)
157    PRINT *, 'ncidp,varidai', ncidp, varidai
158
159    rcode = nf90_inq_varid(ncidp, 't', varidt)
160    PRINT *, 'ncidp,varidt', ncidp, varidt
161
162    rcode = nf90_inq_varid(ncidp, 'mfu', varidmfu)
163    PRINT *, 'ncidp,varidmfu', ncidp, varidmfu
164
165    rcode = nf90_inq_varid(ncidp, 'mfd', varidmfd)
166    PRINT *, 'ncidp,varidmfd', ncidp, varidmfd
167
168    rcode = nf90_inq_varid(ncidp, 'en_u', varidenu)
169    PRINT *, 'ncidp,varidenu', ncidp, varidenu
170
171    rcode = nf90_inq_varid(ncidp, 'de_u', variddeu)
172    PRINT *, 'ncidp,variddeu', ncidp, variddeu
173
174    rcode = nf90_inq_varid(ncidp, 'en_d', varidend)
175    PRINT *, 'ncidp,varidend', ncidp, varidend
176
177    rcode = nf90_inq_varid(ncidp, 'de_d', varidded)
178    PRINT *, 'ncidp,varidded', ncidp, varidded
179
180    rcode = nf90_inq_varid(ncidp, 'coefh', varidch)
181    PRINT *, 'ncidp,varidch', ncidp, varidch
182
183    ! Thermiques
184    rcode = nf90_inq_varid(ncidp, 'fm_th', varidfmth)
185    PRINT *, 'ncidp,varidfmth', ncidp, varidfmth
186
187    rcode = nf90_inq_varid(ncidp, 'en_th', varidenth)
188    PRINT *, 'ncidp,varidenth', ncidp, varidenth
189
190    rcode = nf90_inq_varid(ncidp, 'frac_impa', varidfi)
191    PRINT *, 'ncidp,varidfi', ncidp, varidfi
192
193    rcode = nf90_inq_varid(ncidp, 'frac_nucl', varidfn)
194    PRINT *, 'ncidp,varidfn', ncidp, varidfn
195
196    rcode = nf90_inq_varid(ncidp, 'pyu1', varidyu1)
197    PRINT *, 'ncidp,varidyu1', ncidp, varidyu1
198
199    rcode = nf90_inq_varid(ncidp, 'pyv1', varidyv1)
200    PRINT *, 'ncidp,varidyv1', ncidp, varidyv1
201
202    rcode = nf90_inq_varid(ncidp, 'ftsol1', varidfts1)
203    PRINT *, 'ncidp,varidfts1', ncidp, varidfts1
204
205    rcode = nf90_inq_varid(ncidp, 'ftsol2', varidfts2)
206    PRINT *, 'ncidp,varidfts2', ncidp, varidfts2
207
208    rcode = nf90_inq_varid(ncidp, 'ftsol3', varidfts3)
209    PRINT *, 'ncidp,varidfts3', ncidp, varidfts3
210
211    rcode = nf90_inq_varid(ncidp, 'ftsol4', varidfts4)
212    PRINT *, 'ncidp,varidfts4', ncidp, varidfts4
213
214    rcode = nf90_inq_varid(ncidp, 'psrf1', varidpsr1)
215    PRINT *, 'ncidp,varidpsr1', ncidp, varidpsr1
216
217    rcode = nf90_inq_varid(ncidp, 'psrf2', varidpsr2)
218    PRINT *, 'ncidp,varidpsr2', ncidp, varidpsr2
219
220    rcode = nf90_inq_varid(ncidp, 'psrf3', varidpsr3)
221    PRINT *, 'ncidp,varidpsr3', ncidp, varidpsr3
222
223    rcode = nf90_inq_varid(ncidp, 'psrf4', varidpsr4)
224    PRINT *, 'ncidp,varidpsr4', ncidp, varidpsr4
225
226    ! ID pour les dimensions
227
228    status = nf_inq_dimid(ncidp, 'y', yid)
229    status = nf_inq_dimid(ncidp, 'x', xid)
230    status = nf_inq_dimid(ncidp, 'sig_s', zid)
231    status = nf_inq_dimid(ncidp, 'time_counter', tid)
232
233    ! lecture des dimensions
234
235    status = nf_inq_dim(ncidp, yid, namedim, ncjm)
236    status = nf_inq_dim(ncidp, xid, namedim, ncim)
237    status = nf_inq_dim(ncidp, zid, namedim, nckev)
238    status = nf_inq_dim(ncidp, tid, namedim, ncrec)
239
240    zrec = ncrec
241    zkev = nckev
242    zim = ncim
243    zjm = ncjm
244
245    zkon = zim*(zjm-2) + 2
246
247    WRITE (*, *) 'read_pstoke : zrec = ', zrec
248    WRITE (*, *) 'read_pstoke : kev = ', zkev
249    WRITE (*, *) 'read_pstoke : zim = ', zim
250    WRITE (*, *) 'read_pstoke : zjm = ', zjm
251    WRITE (*, *) 'read_pstoke : kon = ', zkon
252
253    ! niveaux de pression
254
255    status = nf_get_vara_real(ncidp, varidpl, 1, kev, pl)
256
257    ! lecture de aire et phis
258
259    start(1) = 1
260    start(2) = 1
261    start(3) = 1
262    start(4) = 0
263
264    count(1) = zim
265    count(2) = zjm
266    count(3) = 1
267    count(4) = 0
268
269
270    ! **** Geopotentiel au sol ***************************************
271    ! phis
272    status = nf90_get_var(ncidp, varidps, phisfi2, start, count)
273    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, phisfi2, phisfi)
274
275    ! **** Aires des mails aux sol ************************************
276    ! aire
277    status = nf90_get_var(ncidp, varidai, airefi2, start, count)
278    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, airefi2, airefi)
279  ELSE
280
281    PRINT *, 'ok1'
282
283    ! ---------------------
284    ! lecture des champs
285    ! ---------------------
286
287    PRINT *, 'WARNING!!! Il n y a pas de test de coherence'
288    PRINT *, 'sur le nombre de niveaux verticaux dans le fichier nc'
289
290    start(1) = 1
291    start(2) = 1
292    start(3) = 1
293    start(4) = irec
294
295    count(1) = zim
296    count(2) = zjm
297    count(3) = kev
298    count(4) = 1
299
300    ! **** Temperature ********************************************
301    ! A FAIRE : Es-ce necessaire ?
302
303    ! abder t
304    status = nf90_get_var(ncidp, varidt, t2, start, count)
305    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, t2, t)
306
307    ! **** Flux pour la convection (Tiedtk)
308    ! ********************************************
309    ! mfu
310    status = nf90_get_var(ncidp, varidmfu, mfu2, start, count)
311    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, mfu2, mfu)
312
313    ! mfd
314    status = nf90_get_var(ncidp, varidmfd, mfd2, start, count)
315    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, mfd2, mfd)
316
317    ! en_u
318    status = nf90_get_var(ncidp, varidenu, en_u2, start, count)
319    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, en_u2, en_u)
320
321    ! de_u
322    status = nf90_get_var(ncidp, variddeu, de_u2, start, count)
323    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, de_u2, de_u)
324
325    ! en_d
326    status = nf90_get_var(ncidp, varidend, en_d2, start, count)
327    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, en_d2, en_d)
328
329    ! de_d
330    status = nf90_get_var(ncidp, varidded, de_d2, start, count)
331    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, de_d2, de_d)
332
333    ! **** Coefficient de mellange turbulent
334    ! *******************************************
335    ! coefh
336    PRINT *, 'LECTURE de coefh a irec =', irec
337    status = nf90_get_var(ncidp, varidch, coefh2, start, count)
338    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, coefh2, coefh)
339    ! call dump2d(iip1,jjp1,coefh2(1,2),'COEFH2READ   ')
340    ! call dump2d(iim ,jjm ,coefh (2,2),'COEFH2READ   ')
341
342    ! **** Flux ascendants et entrant dans le thermique
343    ! **********************************
344    ! Thermiques
345    PRINT *, 'LECTURE de fm_therm a irec =', irec
346    status = nf90_get_var(ncidp, varidfmth, fm_therm2, start, count)
347    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, fm_therm2, fm_therm)
348    PRINT *, 'LECTURE de en_therm a irec =', irec
349    status = nf90_get_var(ncidp, varidenth, en_therm2, start, count)
350    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, en_therm2, en_therm)
351
352    ! **** Coefficients de lessivage
353    ! *******************************************
354    ! frac_impa
355    status = nf90_get_var(ncidp, varidfi, frac_impa2, start, count)
356    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, frac_impa2, frac_impa)
357
358    ! frac_nucl
359
360    status = nf90_get_var(ncidp, varidfn, frac_nucl2, start, count)
361    CALL gr_ecrit_fi(kev, kon, nbp_lon, nbp_lat, frac_nucl2, frac_nucl)
362
363    ! **** Vents aux sol ********************************************
364
365    start(3) = irec
366    start(4) = 0
367    count(3) = 1
368    count(4) = 0
369
370    ! pyu1
371    PRINT *, 'LECTURE de yu1 a irec =', irec
372    status = nf90_get_var(ncidp, varidyu1, pyu12, start, count)
373    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, pyu12, pyu1)
374
375    ! pyv1
376    PRINT *, 'LECTURE de yv1 a irec =', irec
377    status = nf90_get_var(ncidp, varidyv1, pyv12, start, count)
378    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, pyv12, pyv1)
379
380    ! **** Temerature au sol ********************************************
381    ! ftsol1
382    PRINT *, 'LECTURE de ftsol1 a irec =', irec
383    status = nf90_get_var(ncidp, varidfts1, ftsol12, start, count)
384    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, ftsol12, ftsol1)
385
386    ! ftsol2
387    PRINT *, 'LECTURE de ftsol2 a irec =', irec
388    status = nf90_get_var(ncidp, varidfts2, ftsol22, start, count)
389    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, ftsol22, ftsol2)
390
391    ! ftsol3
392    PRINT *, 'LECTURE de ftsol3 a irec =', irec
393    status = nf90_get_var(ncidp, varidfts3, ftsol32, start, count)
394    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, ftsol32, ftsol3)
395
396    ! ftsol4
397    status = nf90_get_var(ncidp, varidfts4, ftsol42, start, count)
398    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, ftsol42, ftsol4)
399
400    ! **** Nature sol ********************************************
401    ! psrf1
402    status = nf90_get_var(ncidp, varidpsr1, psrf12, start, count)
403    ! call dump2d(iip1-1,jjm+1,psrf12,'PSRF1NC')
404    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, psrf12, psrf1)
405
406    ! psrf2
407    status = nf90_get_var(ncidp, varidpsr2, psrf22, start, count)
408    ! call dump2d(iip1-1,jjm+1,psrf22,'PSRF2NC')
409    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, psrf22, psrf2)
410
411    ! psrf3
412    status = nf90_get_var(ncidp, varidpsr3, psrf32, start, count)
413    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, psrf32, psrf3)
414
415    ! psrf4
416    status = nf90_get_var(ncidp, varidpsr4, psrf42, start, count)
417    CALL gr_ecrit_fi(1, kon, nbp_lon, nbp_lat, psrf42, psrf4)
418
419    DO i = 1, kon
420
421      psrf(i, 1) = psrf1(i)
422      psrf(i, 2) = psrf2(i)
423      psrf(i, 3) = psrf3(i)
424      ! test abderr
425      ! print*,'Dans read_pstoke psrf3 =',psrf3(i),i
426      psrf(i, 4) = psrf4(i)
427
428      ftsol(i, 1) = ftsol1(i)
429      ftsol(i, 2) = ftsol2(i)
430      ftsol(i, 3) = ftsol3(i)
431      ftsol(i, 4) = ftsol4(i)
432
433    END DO
434
435  END IF
436
437  RETURN
438
439END SUBROUTINE read_pstoke0
440
Note: See TracBrowser for help on using the repository browser.