1 | ! IM ctes ds clesphys.h SUBROUTINE SW(PSCT, RCO2, PRMU0, PFRAC, |
---|
2 | SUBROUTINE sw_lmdar4(psct, prmu0, pfrac, ppmb, pdp, ppsol, palbd, palbp, & |
---|
3 | ptave, pwv, pqs, pozon, paer, pcldsw, ptau, pomega, pcg, pheat, pheat0, & |
---|
4 | palbpla, ptopsw, psolsw, ptopsw0, psolsw0, zfsup, zfsdn, zfsup0, zfsdn0, & |
---|
5 | tauae, pizae, cgae, ptaua, pomegaa, ptopswad, psolswad, ptopswai, & |
---|
6 | psolswai, ok_ade, ok_aie) |
---|
7 | USE clesphys_mod_h |
---|
8 | USE dimphy |
---|
9 | USE print_control_mod, ONLY: lunout |
---|
10 | USE yomcst_mod_h |
---|
11 | USE phys_constants_mod, ONLY: dobson_u |
---|
12 | IMPLICIT NONE |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | ! ------------------------------------------------------------------ |
---|
17 | |
---|
18 | ! PURPOSE. |
---|
19 | ! -------- |
---|
20 | |
---|
21 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
---|
22 | ! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
---|
23 | |
---|
24 | ! METHOD. |
---|
25 | ! ------- |
---|
26 | |
---|
27 | ! 1. COMPUTES ABSORBER AMOUNTS (SWU) |
---|
28 | ! 2. COMPUTES FLUXES IN 1ST SPECTRAL INTERVAL (SW1S) |
---|
29 | ! 3. COMPUTES FLUXES IN 2ND SPECTRAL INTERVAL (SW2S) |
---|
30 | |
---|
31 | ! REFERENCE. |
---|
32 | ! ---------- |
---|
33 | |
---|
34 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
35 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
36 | |
---|
37 | ! AUTHOR. |
---|
38 | ! ------- |
---|
39 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
40 | |
---|
41 | ! MODIFICATIONS. |
---|
42 | ! -------------- |
---|
43 | ! ORIGINAL : 89-07-14 |
---|
44 | ! 95-01-01 J.-J. MORCRETTE Direct/Diffuse Albedo |
---|
45 | ! 03-11-27 J. QUAAS Introduce aerosol forcings (based on BOUCHER) |
---|
46 | ! ------------------------------------------------------------------ |
---|
47 | |
---|
48 | ! * ARGUMENTS: |
---|
49 | |
---|
50 | REAL (KIND=8) psct ! constante solaire (valeur conseillee: 1370) |
---|
51 | ! IM ctes ds clesphys.h REAL(KIND=8) RCO2 ! concentration CO2 (IPCC: |
---|
52 | ! 353.E-06*44.011/28.97) |
---|
53 | |
---|
54 | REAL (KIND=8) ppsol(kdlon) ! SURFACE PRESSURE (PA) |
---|
55 | REAL (KIND=8) pdp(kdlon, kflev) ! LAYER THICKNESS (PA) |
---|
56 | REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF-LEVEL PRESSURE (MB) |
---|
57 | |
---|
58 | REAL (KIND=8) prmu0(kdlon) ! COSINE OF ZENITHAL ANGLE |
---|
59 | REAL (KIND=8) pfrac(kdlon) ! fraction de la journee |
---|
60 | |
---|
61 | REAL (KIND=8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
---|
62 | REAL (KIND=8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (KG/KG) |
---|
63 | REAL (KIND=8) pqs(kdlon, kflev) ! SATURATED WATER VAPOUR (KG/KG) |
---|
64 | REAL (KIND=8) pozon(kdlon, kflev) ! OZONE CONCENTRATION (KG/KG) |
---|
65 | REAL (KIND=8) paer(kdlon, kflev, 5) ! AEROSOLS' OPTICAL THICKNESS |
---|
66 | |
---|
67 | REAL (KIND=8) palbd(kdlon, 2) ! albedo du sol (lumiere diffuse) |
---|
68 | REAL (KIND=8) palbp(kdlon, 2) ! albedo du sol (lumiere parallele) |
---|
69 | |
---|
70 | REAL (KIND=8) pcldsw(kdlon, kflev) ! CLOUD FRACTION |
---|
71 | REAL (KIND=8) ptau(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS |
---|
72 | REAL (KIND=8) pcg(kdlon, 2, kflev) ! ASYMETRY FACTOR |
---|
73 | REAL (KIND=8) pomega(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
---|
74 | |
---|
75 | REAL (KIND=8) pheat(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) |
---|
76 | REAL (KIND=8) pheat0(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) clear-sky |
---|
77 | REAL (KIND=8) palbpla(kdlon) ! PLANETARY ALBEDO |
---|
78 | REAL (KIND=8) ptopsw(kdlon) ! SHORTWAVE FLUX AT T.O.A. |
---|
79 | REAL (KIND=8) psolsw(kdlon) ! SHORTWAVE FLUX AT SURFACE |
---|
80 | REAL (KIND=8) ptopsw0(kdlon) ! SHORTWAVE FLUX AT T.O.A. (CLEAR-SKY) |
---|
81 | REAL (KIND=8) psolsw0(kdlon) ! SHORTWAVE FLUX AT SURFACE (CLEAR-SKY) |
---|
82 | |
---|
83 | ! * LOCAL VARIABLES: |
---|
84 | |
---|
85 | REAL (KIND=8) zoz(kdlon, kflev) |
---|
86 | ! column-density of ozone in layer, in kilo-Dobsons |
---|
87 | |
---|
88 | REAL (KIND=8) zaki(kdlon, 2) |
---|
89 | REAL (KIND=8) zcld(kdlon, kflev) |
---|
90 | REAL (KIND=8) zclear(kdlon) |
---|
91 | REAL (KIND=8) zdsig(kdlon, kflev) |
---|
92 | REAL (KIND=8) zfact(kdlon) |
---|
93 | REAL (KIND=8) zfd(kdlon, kflev+1) |
---|
94 | REAL (KIND=8) zfdown(kdlon, kflev+1) |
---|
95 | REAL (KIND=8) zfu(kdlon, kflev+1) |
---|
96 | REAL (KIND=8) zfup(kdlon, kflev+1) |
---|
97 | REAL (KIND=8) zrmu(kdlon) |
---|
98 | REAL (KIND=8) zsec(kdlon) |
---|
99 | REAL (KIND=8) zud(kdlon, 5, kflev+1) |
---|
100 | REAL (KIND=8) zcldsw0(kdlon, kflev) |
---|
101 | |
---|
102 | REAL (KIND=8) zfsup(kdlon, kflev+1) |
---|
103 | REAL (KIND=8) zfsdn(kdlon, kflev+1) |
---|
104 | REAL (KIND=8) zfsup0(kdlon, kflev+1) |
---|
105 | REAL (KIND=8) zfsdn0(kdlon, kflev+1) |
---|
106 | |
---|
107 | INTEGER inu, jl, jk, i, k, kpl1 |
---|
108 | |
---|
109 | INTEGER swpas ! Every swpas steps, sw is calculated |
---|
110 | PARAMETER (swpas=1) |
---|
111 | |
---|
112 | INTEGER itapsw |
---|
113 | LOGICAL appel1er |
---|
114 | DATA itapsw/0/ |
---|
115 | DATA appel1er/.TRUE./ |
---|
116 | SAVE itapsw, appel1er |
---|
117 | !$OMP THREADPRIVATE(appel1er) |
---|
118 | !$OMP THREADPRIVATE(itapsw) |
---|
119 | ! jq-Introduced for aerosol forcings |
---|
120 | REAL (KIND=8) flag_aer |
---|
121 | LOGICAL ok_ade, ok_aie ! use aerosol forcings or not? |
---|
122 | REAL (KIND=8) tauae(kdlon, kflev, 2) ! aerosol optical properties |
---|
123 | REAL (KIND=8) pizae(kdlon, kflev, 2) ! (see aeropt.F) |
---|
124 | REAL (KIND=8) cgae(kdlon, kflev, 2) ! -"- |
---|
125 | REAL (KIND=8) ptaua(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS (pre-industrial value) |
---|
126 | REAL (KIND=8) pomegaa(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
---|
127 | REAL (KIND=8) ptopswad(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL DIR) |
---|
128 | REAL (KIND=8) psolswad(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL DIR) |
---|
129 | REAL (KIND=8) ptopswai(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL IND) |
---|
130 | REAL (KIND=8) psolswai(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL IND) |
---|
131 | ! jq - Fluxes including aerosol effects |
---|
132 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfsupad(:, :) |
---|
133 | !$OMP THREADPRIVATE(ZFSUPAD) |
---|
134 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfsdnad(:, :) |
---|
135 | !$OMP THREADPRIVATE(ZFSDNAD) |
---|
136 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfsupai(:, :) |
---|
137 | !$OMP THREADPRIVATE(ZFSUPAI) |
---|
138 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfsdnai(:, :) |
---|
139 | !$OMP THREADPRIVATE(ZFSDNAI) |
---|
140 | LOGICAL initialized |
---|
141 | ! ym SAVE ZFSUPAD, ZFSDNAD, ZFSUPAI, ZFSDNAI ! aerosol fluxes |
---|
142 | ! rv |
---|
143 | SAVE flag_aer |
---|
144 | !$OMP THREADPRIVATE(flag_aer) |
---|
145 | DATA initialized/.FALSE./ |
---|
146 | SAVE initialized |
---|
147 | !$OMP THREADPRIVATE(initialized) |
---|
148 | ! jq-end |
---|
149 | REAL tmp_ |
---|
150 | |
---|
151 | IF (.NOT. initialized) THEN |
---|
152 | flag_aer = 0. |
---|
153 | initialized = .TRUE. |
---|
154 | ALLOCATE (zfsupad(kdlon,kflev+1)) |
---|
155 | ALLOCATE (zfsdnad(kdlon,kflev+1)) |
---|
156 | ALLOCATE (zfsupai(kdlon,kflev+1)) |
---|
157 | ALLOCATE (zfsdnai(kdlon,kflev+1)) |
---|
158 | |
---|
159 | zfsupad(:, :) = 0. |
---|
160 | zfsdnad(:, :) = 0. |
---|
161 | zfsupai(:, :) = 0. |
---|
162 | zfsdnai(:, :) = 0. |
---|
163 | END IF |
---|
164 | |
---|
165 | IF (appel1er) THEN |
---|
166 | WRITE (lunout, *) 'SW calling frequency : ', swpas |
---|
167 | WRITE (lunout, *) ' In general, it should be 1' |
---|
168 | appel1er = .FALSE. |
---|
169 | END IF |
---|
170 | ! ------------------------------------------------------------------ |
---|
171 | IF (mod(itapsw,swpas)==0) THEN |
---|
172 | |
---|
173 | tmp_ = 1./(dobson_u*1E3*rg) |
---|
174 | ! cdir collapse |
---|
175 | DO jk = 1, kflev |
---|
176 | DO jl = 1, kdlon |
---|
177 | zcldsw0(jl, jk) = 0.0 |
---|
178 | zoz(jl, jk) = pozon(jl, jk)*tmp_*pdp(jl, jk) |
---|
179 | END DO |
---|
180 | END DO |
---|
181 | |
---|
182 | |
---|
183 | ! clear-sky: |
---|
184 | ! IM ctes ds clesphys.h CALL SWU(PSCT,RCO2,ZCLDSW0,PPMB,PPSOL, |
---|
185 | CALL swu_lmdar4(psct, zcldsw0, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
186 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
187 | inu = 1 |
---|
188 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
189 | pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
190 | zfd, zfu) |
---|
191 | inu = 2 |
---|
192 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
193 | palbp, pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, & |
---|
194 | ptau, zud, pwv, pqs, zfdown, zfup) |
---|
195 | DO jk = 1, kflev + 1 |
---|
196 | DO jl = 1, kdlon |
---|
197 | zfsup0(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
---|
198 | zfsdn0(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
---|
199 | END DO |
---|
200 | END DO |
---|
201 | |
---|
202 | flag_aer = 0.0 |
---|
203 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
204 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
205 | inu = 1 |
---|
206 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
207 | pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
208 | zfd, zfu) |
---|
209 | inu = 2 |
---|
210 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
211 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, & |
---|
212 | zud, pwv, pqs, zfdown, zfup) |
---|
213 | |
---|
214 | ! cloudy-sky: |
---|
215 | |
---|
216 | DO jk = 1, kflev + 1 |
---|
217 | DO jl = 1, kdlon |
---|
218 | zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
---|
219 | zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
---|
220 | END DO |
---|
221 | END DO |
---|
222 | |
---|
223 | |
---|
224 | IF (ok_ade) THEN |
---|
225 | |
---|
226 | ! cloudy-sky + aerosol dir OB |
---|
227 | flag_aer = 1.0 |
---|
228 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
229 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
230 | inu = 1 |
---|
231 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
232 | pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
233 | zfd, zfu) |
---|
234 | inu = 2 |
---|
235 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
236 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, & |
---|
237 | ptau, zud, pwv, pqs, zfdown, zfup) |
---|
238 | DO jk = 1, kflev + 1 |
---|
239 | DO jl = 1, kdlon |
---|
240 | zfsupad(jl, jk) = zfsup(jl, jk) |
---|
241 | zfsdnad(jl, jk) = zfsdn(jl, jk) |
---|
242 | zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
---|
243 | zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
---|
244 | END DO |
---|
245 | END DO |
---|
246 | |
---|
247 | END IF ! ok_ade |
---|
248 | |
---|
249 | IF (ok_aie) THEN |
---|
250 | |
---|
251 | ! jq cloudy-sky + aerosol direct + aerosol indirect |
---|
252 | flag_aer = 1.0 |
---|
253 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
254 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
255 | inu = 1 |
---|
256 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
257 | pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, ptaua, & |
---|
258 | zud, zfd, zfu) |
---|
259 | inu = 2 |
---|
260 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
261 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, & |
---|
262 | ptaua, zud, pwv, pqs, zfdown, zfup) |
---|
263 | DO jk = 1, kflev + 1 |
---|
264 | DO jl = 1, kdlon |
---|
265 | zfsupai(jl, jk) = zfsup(jl, jk) |
---|
266 | zfsdnai(jl, jk) = zfsdn(jl, jk) |
---|
267 | zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
---|
268 | zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
---|
269 | END DO |
---|
270 | END DO |
---|
271 | END IF ! ok_aie |
---|
272 | ! jq -end |
---|
273 | |
---|
274 | itapsw = 0 |
---|
275 | END IF |
---|
276 | itapsw = itapsw + 1 |
---|
277 | |
---|
278 | DO k = 1, kflev |
---|
279 | kpl1 = k + 1 |
---|
280 | DO i = 1, kdlon |
---|
281 | pheat(i, k) = -(zfsup(i,kpl1)-zfsup(i,k)) - (zfsdn(i,k)-zfsdn(i,kpl1)) |
---|
282 | pheat(i, k) = pheat(i, k)*rday*rg/rcpd/pdp(i, k) |
---|
283 | pheat0(i, k) = -(zfsup0(i,kpl1)-zfsup0(i,k)) - & |
---|
284 | (zfsdn0(i,k)-zfsdn0(i,kpl1)) |
---|
285 | pheat0(i, k) = pheat0(i, k)*rday*rg/rcpd/pdp(i, k) |
---|
286 | END DO |
---|
287 | END DO |
---|
288 | DO i = 1, kdlon |
---|
289 | palbpla(i) = zfsup(i, kflev+1)/(zfsdn(i,kflev+1)+1.0E-20) |
---|
290 | |
---|
291 | psolsw(i) = zfsdn(i, 1) - zfsup(i, 1) |
---|
292 | ptopsw(i) = zfsdn(i, kflev+1) - zfsup(i, kflev+1) |
---|
293 | |
---|
294 | psolsw0(i) = zfsdn0(i, 1) - zfsup0(i, 1) |
---|
295 | ptopsw0(i) = zfsdn0(i, kflev+1) - zfsup0(i, kflev+1) |
---|
296 | ! -OB |
---|
297 | psolswad(i) = zfsdnad(i, 1) - zfsupad(i, 1) |
---|
298 | ptopswad(i) = zfsdnad(i, kflev+1) - zfsupad(i, kflev+1) |
---|
299 | |
---|
300 | psolswai(i) = zfsdnai(i, 1) - zfsupai(i, 1) |
---|
301 | ptopswai(i) = zfsdnai(i, kflev+1) - zfsupai(i, kflev+1) |
---|
302 | ! -fin |
---|
303 | END DO |
---|
304 | |
---|
305 | RETURN |
---|
306 | END SUBROUTINE sw_lmdar4 |
---|
307 | |
---|
308 | ! IM ctes ds clesphys.h SUBROUTINE SWU |
---|
309 | ! (PSCT,RCO2,PCLDSW,PPMB,PPSOL,PRMU0,PFRAC, |
---|
310 | SUBROUTINE swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
311 | paki, pcld, pclear, pdsig, pfact, prmu, psec, pud) |
---|
312 | USE radopt_mod_h |
---|
313 | USE radepsi_mod_h |
---|
314 | USE clesphys_mod_h |
---|
315 | USE dimphy |
---|
316 | USE radiation_ar4_param, ONLY: zpdh2o, zpdumg, zprh2o, zprumg, rtdh2o, & |
---|
317 | rtdumg, rth2o, rtumg |
---|
318 | USE yomcst_mod_h |
---|
319 | IMPLICIT NONE |
---|
320 | |
---|
321 | |
---|
322 | ! * ARGUMENTS: |
---|
323 | |
---|
324 | REAL (KIND=8) psct |
---|
325 | ! IM ctes ds clesphys.h REAL(KIND=8) RCO2 |
---|
326 | REAL (KIND=8) pcldsw(kdlon, kflev) |
---|
327 | REAL (KIND=8) ppmb(kdlon, kflev+1) |
---|
328 | REAL (KIND=8) ppsol(kdlon) |
---|
329 | REAL (KIND=8) prmu0(kdlon) |
---|
330 | REAL (KIND=8) pfrac(kdlon) |
---|
331 | REAL (KIND=8) ptave(kdlon, kflev) |
---|
332 | REAL (KIND=8) pwv(kdlon, kflev) |
---|
333 | |
---|
334 | REAL (KIND=8) paki(kdlon, 2) |
---|
335 | REAL (KIND=8) pcld(kdlon, kflev) |
---|
336 | REAL (KIND=8) pclear(kdlon) |
---|
337 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
338 | REAL (KIND=8) pfact(kdlon) |
---|
339 | REAL (KIND=8) prmu(kdlon) |
---|
340 | REAL (KIND=8) psec(kdlon) |
---|
341 | REAL (KIND=8) pud(kdlon, 5, kflev+1) |
---|
342 | |
---|
343 | ! * LOCAL VARIABLES: |
---|
344 | |
---|
345 | INTEGER iind(2) |
---|
346 | REAL (KIND=8) zc1j(kdlon, kflev+1) |
---|
347 | REAL (KIND=8) zclear(kdlon) |
---|
348 | REAL (KIND=8) zcloud(kdlon) |
---|
349 | REAL (KIND=8) zn175(kdlon) |
---|
350 | REAL (KIND=8) zn190(kdlon) |
---|
351 | REAL (KIND=8) zo175(kdlon) |
---|
352 | REAL (KIND=8) zo190(kdlon) |
---|
353 | REAL (KIND=8) zsign(kdlon) |
---|
354 | REAL (KIND=8) zr(kdlon, 2) |
---|
355 | REAL (KIND=8) zsigo(kdlon) |
---|
356 | REAL (KIND=8) zud(kdlon, 2) |
---|
357 | REAL (KIND=8) zrth, zrtu, zwh2o, zdsco2, zdsh2o, zfppw |
---|
358 | INTEGER jl, jk, jkp1, jkl, jklp1, ja |
---|
359 | |
---|
360 | ! ------------------------------------------------------------------ |
---|
361 | |
---|
362 | ! * 1. COMPUTES AMOUNTS OF ABSORBERS |
---|
363 | ! ----------------------------- |
---|
364 | |
---|
365 | |
---|
366 | iind(1) = 1 |
---|
367 | iind(2) = 2 |
---|
368 | |
---|
369 | ! * 1.1 INITIALIZES QUANTITIES |
---|
370 | ! ---------------------- |
---|
371 | |
---|
372 | |
---|
373 | DO jl = 1, kdlon |
---|
374 | pud(jl, 1, kflev+1) = 0. |
---|
375 | pud(jl, 2, kflev+1) = 0. |
---|
376 | pud(jl, 3, kflev+1) = 0. |
---|
377 | pud(jl, 4, kflev+1) = 0. |
---|
378 | pud(jl, 5, kflev+1) = 0. |
---|
379 | pfact(jl) = prmu0(jl)*pfrac(jl)*psct |
---|
380 | prmu(jl) = sqrt(1224.*prmu0(jl)*prmu0(jl)+1.)/35. |
---|
381 | psec(jl) = 1./prmu(jl) |
---|
382 | zc1j(jl, kflev+1) = 0. |
---|
383 | END DO |
---|
384 | |
---|
385 | ! * 1.3 AMOUNTS OF ABSORBERS |
---|
386 | ! -------------------- |
---|
387 | |
---|
388 | |
---|
389 | DO jl = 1, kdlon |
---|
390 | zud(jl, 1) = 0. |
---|
391 | zud(jl, 2) = 0. |
---|
392 | zo175(jl) = ppsol(jl)**(zpdumg+1.) |
---|
393 | zo190(jl) = ppsol(jl)**(zpdh2o+1.) |
---|
394 | zsigo(jl) = ppsol(jl) |
---|
395 | zclear(jl) = 1. |
---|
396 | zcloud(jl) = 0. |
---|
397 | END DO |
---|
398 | |
---|
399 | DO jk = 1, kflev |
---|
400 | jkp1 = jk + 1 |
---|
401 | jkl = kflev + 1 - jk |
---|
402 | jklp1 = jkl + 1 |
---|
403 | DO jl = 1, kdlon |
---|
404 | zrth = (rth2o/ptave(jl,jk))**rtdh2o |
---|
405 | zrtu = (rtumg/ptave(jl,jk))**rtdumg |
---|
406 | zwh2o = max(pwv(jl,jk), zepscq) |
---|
407 | zsign(jl) = 100.*ppmb(jl, jkp1) |
---|
408 | pdsig(jl, jk) = (zsigo(jl)-zsign(jl))/ppsol(jl) |
---|
409 | zn175(jl) = zsign(jl)**(zpdumg+1.) |
---|
410 | zn190(jl) = zsign(jl)**(zpdh2o+1.) |
---|
411 | zdsco2 = zo175(jl) - zn175(jl) |
---|
412 | zdsh2o = zo190(jl) - zn190(jl) |
---|
413 | pud(jl, 1, jk) = 1./(10.*rg*(zpdh2o+1.))/(zprh2o**zpdh2o)*zdsh2o*zwh2o* & |
---|
414 | zrth |
---|
415 | pud(jl, 2, jk) = 1./(10.*rg*(zpdumg+1.))/(zprumg**zpdumg)*zdsco2*rco2* & |
---|
416 | zrtu |
---|
417 | zfppw = 1.6078*zwh2o/(1.+0.608*zwh2o) |
---|
418 | pud(jl, 4, jk) = pud(jl, 1, jk)*zfppw |
---|
419 | pud(jl, 5, jk) = pud(jl, 1, jk)*(1.-zfppw) |
---|
420 | zud(jl, 1) = zud(jl, 1) + pud(jl, 1, jk) |
---|
421 | zud(jl, 2) = zud(jl, 2) + pud(jl, 2, jk) |
---|
422 | zsigo(jl) = zsign(jl) |
---|
423 | zo175(jl) = zn175(jl) |
---|
424 | zo190(jl) = zn190(jl) |
---|
425 | |
---|
426 | IF (novlp==1) THEN |
---|
427 | zclear(jl) = zclear(jl)*(1.-max(pcldsw(jl,jkl),zcloud(jl)))/(1.-min( & |
---|
428 | zcloud(jl),1.-zepsec)) |
---|
429 | zc1j(jl, jkl) = 1.0 - zclear(jl) |
---|
430 | zcloud(jl) = pcldsw(jl, jkl) |
---|
431 | ELSE IF (novlp==2) THEN |
---|
432 | zcloud(jl) = max(pcldsw(jl,jkl), zcloud(jl)) |
---|
433 | zc1j(jl, jkl) = zcloud(jl) |
---|
434 | ELSE IF (novlp==3) THEN |
---|
435 | zclear(jl) = zclear(jl)*(1.-pcldsw(jl,jkl)) |
---|
436 | zcloud(jl) = 1.0 - zclear(jl) |
---|
437 | zc1j(jl, jkl) = zcloud(jl) |
---|
438 | END IF |
---|
439 | END DO |
---|
440 | END DO |
---|
441 | DO jl = 1, kdlon |
---|
442 | pclear(jl) = 1. - zc1j(jl, 1) |
---|
443 | END DO |
---|
444 | DO jk = 1, kflev |
---|
445 | DO jl = 1, kdlon |
---|
446 | IF (pclear(jl)<1.) THEN |
---|
447 | pcld(jl, jk) = pcldsw(jl, jk)/(1.-pclear(jl)) |
---|
448 | ELSE |
---|
449 | pcld(jl, jk) = 0. |
---|
450 | END IF |
---|
451 | END DO |
---|
452 | END DO |
---|
453 | |
---|
454 | ! * 1.4 COMPUTES CLEAR-SKY GREY ABSORPTION COEFFICIENTS |
---|
455 | ! ----------------------------------------------- |
---|
456 | |
---|
457 | |
---|
458 | DO ja = 1, 2 |
---|
459 | DO jl = 1, kdlon |
---|
460 | zud(jl, ja) = zud(jl, ja)*psec(jl) |
---|
461 | END DO |
---|
462 | END DO |
---|
463 | |
---|
464 | CALL swtt1_lmdar4(2, 2, iind, zud, zr) |
---|
465 | |
---|
466 | DO ja = 1, 2 |
---|
467 | DO jl = 1, kdlon |
---|
468 | paki(jl, ja) = -log(zr(jl,ja))/zud(jl, ja) |
---|
469 | END DO |
---|
470 | END DO |
---|
471 | |
---|
472 | |
---|
473 | ! ------------------------------------------------------------------ |
---|
474 | |
---|
475 | RETURN |
---|
476 | END SUBROUTINE swu_lmdar4 |
---|
477 | SUBROUTINE sw1s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
478 | pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, pud, & |
---|
479 | pfd, pfu) |
---|
480 | USE dimphy |
---|
481 | USE radiation_ar4_param, ONLY: rsun, rray |
---|
482 | USE infotrac_phy, ONLY: type_trac |
---|
483 | USE lmdz_reprobus_wrappers, ONLY: rsuntime, ok_suntime |
---|
484 | USE print_control_mod, ONLY: lunout |
---|
485 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
486 | |
---|
487 | IMPLICIT NONE |
---|
488 | |
---|
489 | ! ------------------------------------------------------------------ |
---|
490 | ! PURPOSE. |
---|
491 | ! -------- |
---|
492 | |
---|
493 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
---|
494 | ! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
---|
495 | |
---|
496 | ! METHOD. |
---|
497 | ! ------- |
---|
498 | |
---|
499 | ! 1. COMPUTES UPWARD AND DOWNWARD FLUXES CORRESPONDING TO |
---|
500 | ! CONTINUUM SCATTERING |
---|
501 | ! 2. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
---|
502 | |
---|
503 | ! REFERENCE. |
---|
504 | ! ---------- |
---|
505 | |
---|
506 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
507 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
508 | |
---|
509 | ! AUTHOR. |
---|
510 | ! ------- |
---|
511 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
512 | |
---|
513 | ! MODIFICATIONS. |
---|
514 | ! -------------- |
---|
515 | ! ORIGINAL : 89-07-14 |
---|
516 | ! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
---|
517 | ! ------------------------------------------------------------------ |
---|
518 | |
---|
519 | ! * ARGUMENTS: |
---|
520 | |
---|
521 | INTEGER knu |
---|
522 | ! -OB |
---|
523 | REAL (KIND=8) flag_aer |
---|
524 | REAL (KIND=8) tauae(kdlon, kflev, 2) |
---|
525 | REAL (KIND=8) pizae(kdlon, kflev, 2) |
---|
526 | REAL (KIND=8) cgae(kdlon, kflev, 2) |
---|
527 | REAL (KIND=8) paer(kdlon, kflev, 5) |
---|
528 | REAL (KIND=8) palbd(kdlon, 2) |
---|
529 | REAL (KIND=8) palbp(kdlon, 2) |
---|
530 | REAL (KIND=8) pcg(kdlon, 2, kflev) |
---|
531 | REAL (KIND=8) pcld(kdlon, kflev) |
---|
532 | REAL (KIND=8) pcldsw(kdlon, kflev) |
---|
533 | REAL (KIND=8) pclear(kdlon) |
---|
534 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
535 | REAL (KIND=8) pomega(kdlon, 2, kflev) |
---|
536 | REAL (KIND=8) poz(kdlon, kflev) |
---|
537 | REAL (KIND=8) prmu(kdlon) |
---|
538 | REAL (KIND=8) psec(kdlon) |
---|
539 | REAL (KIND=8) ptau(kdlon, 2, kflev) |
---|
540 | REAL (KIND=8) pud(kdlon, 5, kflev+1) |
---|
541 | |
---|
542 | REAL (KIND=8) pfd(kdlon, kflev+1) |
---|
543 | REAL (KIND=8) pfu(kdlon, kflev+1) |
---|
544 | |
---|
545 | ! * LOCAL VARIABLES: |
---|
546 | |
---|
547 | INTEGER iind(4) |
---|
548 | |
---|
549 | REAL (KIND=8) zcgaz(kdlon, kflev) |
---|
550 | REAL (KIND=8) zdiff(kdlon) |
---|
551 | REAL (KIND=8) zdirf(kdlon) |
---|
552 | REAL (KIND=8) zpizaz(kdlon, kflev) |
---|
553 | REAL (KIND=8) zrayl(kdlon) |
---|
554 | REAL (KIND=8) zray1(kdlon, kflev+1) |
---|
555 | REAL (KIND=8) zray2(kdlon, kflev+1) |
---|
556 | REAL (KIND=8) zrefz(kdlon, 2, kflev+1) |
---|
557 | REAL (KIND=8) zrj(kdlon, 6, kflev+1) |
---|
558 | REAL (KIND=8) zrj0(kdlon, 6, kflev+1) |
---|
559 | REAL (KIND=8) zrk(kdlon, 6, kflev+1) |
---|
560 | REAL (KIND=8) zrk0(kdlon, 6, kflev+1) |
---|
561 | REAL (KIND=8) zrmue(kdlon, kflev+1) |
---|
562 | REAL (KIND=8) zrmu0(kdlon, kflev+1) |
---|
563 | REAL (KIND=8) zr(kdlon, 4) |
---|
564 | REAL (KIND=8) ztauaz(kdlon, kflev) |
---|
565 | REAL (KIND=8) ztra1(kdlon, kflev+1) |
---|
566 | REAL (KIND=8) ztra2(kdlon, kflev+1) |
---|
567 | REAL (KIND=8) zw(kdlon, 4) |
---|
568 | |
---|
569 | INTEGER jl, jk, k, jaj, ikm1, ikl |
---|
570 | |
---|
571 | ! If running with Reporbus, overwrite default values of RSUN. |
---|
572 | ! Otherwise keep default values from radiation_AR4_param module. |
---|
573 | IF (type_trac=='repr') THEN |
---|
574 | IF (CPPKEY_REPROBUS) THEN |
---|
575 | IF (ok_suntime) THEN |
---|
576 | rsun(1) = rsuntime(1) |
---|
577 | rsun(2) = rsuntime(2) |
---|
578 | END IF |
---|
579 | WRITE (lunout, *) 'RSUN(1): ', rsun(1) |
---|
580 | END IF |
---|
581 | END IF |
---|
582 | |
---|
583 | ! ------------------------------------------------------------------ |
---|
584 | |
---|
585 | ! * 1. FIRST SPECTRAL INTERVAL (0.25-0.68 MICRON) |
---|
586 | ! ----------------------- ------------------ |
---|
587 | |
---|
588 | |
---|
589 | |
---|
590 | ! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
---|
591 | ! ----------------------------------------- |
---|
592 | |
---|
593 | |
---|
594 | DO jl = 1, kdlon |
---|
595 | zrayl(jl) = rray(knu, 1) + prmu(jl)*(rray(knu,2)+prmu(jl)*(rray(knu, & |
---|
596 | 3)+prmu(jl)*(rray(knu,4)+prmu(jl)*(rray(knu,5)+prmu(jl)*rray(knu,6))))) |
---|
597 | END DO |
---|
598 | |
---|
599 | |
---|
600 | ! ------------------------------------------------------------------ |
---|
601 | |
---|
602 | ! * 2. CONTINUUM SCATTERING CALCULATIONS |
---|
603 | ! --------------------------------- |
---|
604 | |
---|
605 | |
---|
606 | ! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
---|
607 | ! -------------------------------- |
---|
608 | |
---|
609 | |
---|
610 | CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
---|
611 | zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
---|
612 | ztauaz, ztra1, ztra2) |
---|
613 | |
---|
614 | ! * 2.2 CLOUDY FRACTION OF THE COLUMN |
---|
615 | ! ----------------------------- |
---|
616 | |
---|
617 | |
---|
618 | CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
---|
619 | zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
---|
620 | ztra2) |
---|
621 | |
---|
622 | ! ------------------------------------------------------------------ |
---|
623 | |
---|
624 | ! * 3. OZONE ABSORPTION |
---|
625 | ! ---------------- |
---|
626 | |
---|
627 | |
---|
628 | iind(1) = 1 |
---|
629 | iind(2) = 3 |
---|
630 | iind(3) = 1 |
---|
631 | iind(4) = 3 |
---|
632 | |
---|
633 | ! * 3.1 DOWNWARD FLUXES |
---|
634 | ! --------------- |
---|
635 | |
---|
636 | |
---|
637 | jaj = 2 |
---|
638 | |
---|
639 | DO jl = 1, kdlon |
---|
640 | zw(jl, 1) = 0. |
---|
641 | zw(jl, 2) = 0. |
---|
642 | zw(jl, 3) = 0. |
---|
643 | zw(jl, 4) = 0. |
---|
644 | pfd(jl, kflev+1) = ((1.-pclear(jl))*zrj(jl,jaj,kflev+1)+pclear(jl)*zrj0( & |
---|
645 | jl,jaj,kflev+1))*rsun(knu) |
---|
646 | END DO |
---|
647 | DO jk = 1, kflev |
---|
648 | ikl = kflev + 1 - jk |
---|
649 | DO jl = 1, kdlon |
---|
650 | zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikl)/zrmue(jl, ikl) |
---|
651 | zw(jl, 2) = zw(jl, 2) + poz(jl, ikl)/zrmue(jl, ikl) |
---|
652 | zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikl)/zrmu0(jl, ikl) |
---|
653 | zw(jl, 4) = zw(jl, 4) + poz(jl, ikl)/zrmu0(jl, ikl) |
---|
654 | END DO |
---|
655 | |
---|
656 | CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
---|
657 | |
---|
658 | DO jl = 1, kdlon |
---|
659 | zdiff(jl) = zr(jl, 1)*zr(jl, 2)*zrj(jl, jaj, ikl) |
---|
660 | zdirf(jl) = zr(jl, 3)*zr(jl, 4)*zrj0(jl, jaj, ikl) |
---|
661 | pfd(jl, ikl) = ((1.-pclear(jl))*zdiff(jl)+pclear(jl)*zdirf(jl))* & |
---|
662 | rsun(knu) |
---|
663 | END DO |
---|
664 | END DO |
---|
665 | |
---|
666 | ! * 3.2 UPWARD FLUXES |
---|
667 | ! ------------- |
---|
668 | |
---|
669 | |
---|
670 | DO jl = 1, kdlon |
---|
671 | pfu(jl, 1) = ((1.-pclear(jl))*zdiff(jl)*palbd(jl,knu)+pclear(jl)*zdirf(jl & |
---|
672 | )*palbp(jl,knu))*rsun(knu) |
---|
673 | END DO |
---|
674 | |
---|
675 | DO jk = 2, kflev + 1 |
---|
676 | ikm1 = jk - 1 |
---|
677 | DO jl = 1, kdlon |
---|
678 | zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikm1)*1.66 |
---|
679 | zw(jl, 2) = zw(jl, 2) + poz(jl, ikm1)*1.66 |
---|
680 | zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikm1)*1.66 |
---|
681 | zw(jl, 4) = zw(jl, 4) + poz(jl, ikm1)*1.66 |
---|
682 | END DO |
---|
683 | |
---|
684 | CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
---|
685 | |
---|
686 | DO jl = 1, kdlon |
---|
687 | zdiff(jl) = zr(jl, 1)*zr(jl, 2)*zrk(jl, jaj, jk) |
---|
688 | zdirf(jl) = zr(jl, 3)*zr(jl, 4)*zrk0(jl, jaj, jk) |
---|
689 | pfu(jl, jk) = ((1.-pclear(jl))*zdiff(jl)+pclear(jl)*zdirf(jl))* & |
---|
690 | rsun(knu) |
---|
691 | END DO |
---|
692 | END DO |
---|
693 | |
---|
694 | ! ------------------------------------------------------------------ |
---|
695 | |
---|
696 | RETURN |
---|
697 | END SUBROUTINE sw1s_lmdar4 |
---|
698 | SUBROUTINE sw2s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, paki, palbd, & |
---|
699 | palbp, pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, & |
---|
700 | pud, pwv, pqs, pfdown, pfup) |
---|
701 | USE radepsi_mod_h |
---|
702 | USE dimphy |
---|
703 | USE radiation_ar4_param, ONLY: rsun, rray |
---|
704 | USE infotrac_phy, ONLY: type_trac |
---|
705 | USE lmdz_reprobus_wrappers, ONLY: rsuntime, ok_suntime |
---|
706 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
707 | |
---|
708 | IMPLICIT NONE |
---|
709 | |
---|
710 | ! ------------------------------------------------------------------ |
---|
711 | ! PURPOSE. |
---|
712 | ! -------- |
---|
713 | |
---|
714 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN THE |
---|
715 | ! SECOND SPECTRAL INTERVAL FOLLOWING FOUQUART AND BONNEL (1980). |
---|
716 | |
---|
717 | ! METHOD. |
---|
718 | ! ------- |
---|
719 | |
---|
720 | ! 1. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING TO |
---|
721 | ! CONTINUUM SCATTERING |
---|
722 | ! 2. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING FOR |
---|
723 | ! A GREY MOLECULAR ABSORPTION |
---|
724 | ! 3. LAPLACE TRANSFORM ON THE PREVIOUS TO GET EFFECTIVE AMOUNTS |
---|
725 | ! OF ABSORBERS |
---|
726 | ! 4. APPLY H2O AND U.M.G. TRANSMISSION FUNCTIONS |
---|
727 | ! 5. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
---|
728 | |
---|
729 | ! REFERENCE. |
---|
730 | ! ---------- |
---|
731 | |
---|
732 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
733 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
734 | |
---|
735 | ! AUTHOR. |
---|
736 | ! ------- |
---|
737 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
738 | |
---|
739 | ! MODIFICATIONS. |
---|
740 | ! -------------- |
---|
741 | ! ORIGINAL : 89-07-14 |
---|
742 | ! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
---|
743 | ! ------------------------------------------------------------------ |
---|
744 | ! * ARGUMENTS: |
---|
745 | |
---|
746 | INTEGER knu |
---|
747 | ! -OB |
---|
748 | REAL (KIND=8) flag_aer |
---|
749 | REAL (KIND=8) tauae(kdlon, kflev, 2) |
---|
750 | REAL (KIND=8) pizae(kdlon, kflev, 2) |
---|
751 | REAL (KIND=8) cgae(kdlon, kflev, 2) |
---|
752 | REAL (KIND=8) paer(kdlon, kflev, 5) |
---|
753 | REAL (KIND=8) paki(kdlon, 2) |
---|
754 | REAL (KIND=8) palbd(kdlon, 2) |
---|
755 | REAL (KIND=8) palbp(kdlon, 2) |
---|
756 | REAL (KIND=8) pcg(kdlon, 2, kflev) |
---|
757 | REAL (KIND=8) pcld(kdlon, kflev) |
---|
758 | REAL (KIND=8) pcldsw(kdlon, kflev) |
---|
759 | REAL (KIND=8) pclear(kdlon) |
---|
760 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
761 | REAL (KIND=8) pomega(kdlon, 2, kflev) |
---|
762 | REAL (KIND=8) poz(kdlon, kflev) |
---|
763 | REAL (KIND=8) pqs(kdlon, kflev) |
---|
764 | REAL (KIND=8) prmu(kdlon) |
---|
765 | REAL (KIND=8) psec(kdlon) |
---|
766 | REAL (KIND=8) ptau(kdlon, 2, kflev) |
---|
767 | REAL (KIND=8) pud(kdlon, 5, kflev+1) |
---|
768 | REAL (KIND=8) pwv(kdlon, kflev) |
---|
769 | |
---|
770 | REAL (KIND=8) pfdown(kdlon, kflev+1) |
---|
771 | REAL (KIND=8) pfup(kdlon, kflev+1) |
---|
772 | |
---|
773 | ! * LOCAL VARIABLES: |
---|
774 | |
---|
775 | INTEGER iind2(2), iind3(3) |
---|
776 | REAL (KIND=8) zcgaz(kdlon, kflev) |
---|
777 | REAL (KIND=8) zfd(kdlon, kflev+1) |
---|
778 | REAL (KIND=8) zfu(kdlon, kflev+1) |
---|
779 | REAL (KIND=8) zg(kdlon) |
---|
780 | REAL (KIND=8) zgg(kdlon) |
---|
781 | REAL (KIND=8) zpizaz(kdlon, kflev) |
---|
782 | REAL (KIND=8) zrayl(kdlon) |
---|
783 | REAL (KIND=8) zray1(kdlon, kflev+1) |
---|
784 | REAL (KIND=8) zray2(kdlon, kflev+1) |
---|
785 | REAL (KIND=8) zref(kdlon) |
---|
786 | REAL (KIND=8) zrefz(kdlon, 2, kflev+1) |
---|
787 | REAL (KIND=8) zre1(kdlon) |
---|
788 | REAL (KIND=8) zre2(kdlon) |
---|
789 | REAL (KIND=8) zrj(kdlon, 6, kflev+1) |
---|
790 | REAL (KIND=8) zrj0(kdlon, 6, kflev+1) |
---|
791 | REAL (KIND=8) zrk(kdlon, 6, kflev+1) |
---|
792 | REAL (KIND=8) zrk0(kdlon, 6, kflev+1) |
---|
793 | REAL (KIND=8) zrl(kdlon, 8) |
---|
794 | REAL (KIND=8) zrmue(kdlon, kflev+1) |
---|
795 | REAL (KIND=8) zrmu0(kdlon, kflev+1) |
---|
796 | REAL (KIND=8) zrmuz(kdlon) |
---|
797 | REAL (KIND=8) zrneb(kdlon) |
---|
798 | REAL (KIND=8) zruef(kdlon, 8) |
---|
799 | REAL (KIND=8) zr1(kdlon) |
---|
800 | REAL (KIND=8) zr2(kdlon, 2) |
---|
801 | REAL (KIND=8) zr3(kdlon, 3) |
---|
802 | REAL (KIND=8) zr4(kdlon) |
---|
803 | REAL (KIND=8) zr21(kdlon) |
---|
804 | REAL (KIND=8) zr22(kdlon) |
---|
805 | REAL (KIND=8) zs(kdlon) |
---|
806 | REAL (KIND=8) ztauaz(kdlon, kflev) |
---|
807 | REAL (KIND=8) zto1(kdlon) |
---|
808 | REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
---|
809 | REAL (KIND=8) ztra1(kdlon, kflev+1) |
---|
810 | REAL (KIND=8) ztra2(kdlon, kflev+1) |
---|
811 | REAL (KIND=8) ztr1(kdlon) |
---|
812 | REAL (KIND=8) ztr2(kdlon) |
---|
813 | REAL (KIND=8) zw(kdlon) |
---|
814 | REAL (KIND=8) zw1(kdlon) |
---|
815 | REAL (KIND=8) zw2(kdlon, 2) |
---|
816 | REAL (KIND=8) zw3(kdlon, 3) |
---|
817 | REAL (KIND=8) zw4(kdlon) |
---|
818 | REAL (KIND=8) zw5(kdlon) |
---|
819 | |
---|
820 | INTEGER jl, jk, k, jaj, ikm1, ikl, jn, jabs, jkm1 |
---|
821 | INTEGER jref, jkl, jklp1, jajp, jkki, jkkp4, jn2j, iabs |
---|
822 | REAL (KIND=8) zrmum1, zwh2o, zcneb, zaa, zbb, zrki, zre11 |
---|
823 | |
---|
824 | ! If running with Reporbus, overwrite default values of RSUN. |
---|
825 | ! Otherwise keep default values from radiation_AR4_param module. |
---|
826 | IF (type_trac=='repr') THEN |
---|
827 | IF (CPPKEY_REPROBUS) THEN |
---|
828 | IF (ok_suntime) THEN |
---|
829 | rsun(1) = rsuntime(1) |
---|
830 | rsun(2) = rsuntime(2) |
---|
831 | END IF |
---|
832 | END IF |
---|
833 | END IF |
---|
834 | |
---|
835 | ! ------------------------------------------------------------------ |
---|
836 | |
---|
837 | ! * 1. SECOND SPECTRAL INTERVAL (0.68-4.00 MICRON) |
---|
838 | ! ------------------------------------------- |
---|
839 | |
---|
840 | |
---|
841 | |
---|
842 | ! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
---|
843 | ! ----------------------------------------- |
---|
844 | |
---|
845 | |
---|
846 | DO jl = 1, kdlon |
---|
847 | zrmum1 = 1. - prmu(jl) |
---|
848 | zrayl(jl) = rray(knu, 1) + zrmum1*(rray(knu,2)+zrmum1*(rray(knu, & |
---|
849 | 3)+zrmum1*(rray(knu,4)+zrmum1*(rray(knu,5)+zrmum1*rray(knu,6))))) |
---|
850 | END DO |
---|
851 | |
---|
852 | ! ------------------------------------------------------------------ |
---|
853 | |
---|
854 | ! * 2. CONTINUUM SCATTERING CALCULATIONS |
---|
855 | ! --------------------------------- |
---|
856 | |
---|
857 | |
---|
858 | ! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
---|
859 | ! -------------------------------- |
---|
860 | |
---|
861 | |
---|
862 | CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
---|
863 | zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
---|
864 | ztauaz, ztra1, ztra2) |
---|
865 | |
---|
866 | ! * 2.2 CLOUDY FRACTION OF THE COLUMN |
---|
867 | ! ----------------------------- |
---|
868 | |
---|
869 | |
---|
870 | CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
---|
871 | zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
---|
872 | ztra2) |
---|
873 | |
---|
874 | ! ------------------------------------------------------------------ |
---|
875 | |
---|
876 | ! * 3. SCATTERING CALCULATIONS WITH GREY MOLECULAR ABSORPTION |
---|
877 | ! ------------------------------------------------------ |
---|
878 | |
---|
879 | |
---|
880 | jn = 2 |
---|
881 | |
---|
882 | DO jabs = 1, 2 |
---|
883 | ! * 3.1 SURFACE CONDITIONS |
---|
884 | ! ------------------ |
---|
885 | |
---|
886 | |
---|
887 | DO jl = 1, kdlon |
---|
888 | zrefz(jl, 2, 1) = palbd(jl, knu) |
---|
889 | zrefz(jl, 1, 1) = palbd(jl, knu) |
---|
890 | END DO |
---|
891 | |
---|
892 | ! * 3.2 INTRODUCING CLOUD EFFECTS |
---|
893 | ! ------------------------- |
---|
894 | |
---|
895 | |
---|
896 | DO jk = 2, kflev + 1 |
---|
897 | jkm1 = jk - 1 |
---|
898 | ikl = kflev + 1 - jkm1 |
---|
899 | DO jl = 1, kdlon |
---|
900 | zrneb(jl) = pcld(jl, jkm1) |
---|
901 | IF (jabs==1 .AND. zrneb(jl)>2.*zeelog) THEN |
---|
902 | zwh2o = max(pwv(jl,jkm1), zeelog) |
---|
903 | zcneb = max(zeelog, min(zrneb(jl),1.-zeelog)) |
---|
904 | zbb = pud(jl, jabs, jkm1)*pqs(jl, jkm1)/zwh2o |
---|
905 | zaa = max((pud(jl,jabs,jkm1)-zcneb*zbb)/(1.-zcneb), zeelog) |
---|
906 | ELSE |
---|
907 | zaa = pud(jl, jabs, jkm1) |
---|
908 | zbb = zaa |
---|
909 | END IF |
---|
910 | zrki = paki(jl, jabs) |
---|
911 | zs(jl) = exp(-zrki*zaa*1.66) |
---|
912 | zg(jl) = exp(-zrki*zaa/zrmue(jl,jk)) |
---|
913 | ztr1(jl) = 0. |
---|
914 | zre1(jl) = 0. |
---|
915 | ztr2(jl) = 0. |
---|
916 | zre2(jl) = 0. |
---|
917 | |
---|
918 | zw(jl) = pomega(jl, knu, jkm1) |
---|
919 | zto1(jl) = ptau(jl, knu, jkm1)/zw(jl) + ztauaz(jl, jkm1)/zpizaz(jl, & |
---|
920 | jkm1) + zbb*zrki |
---|
921 | |
---|
922 | zr21(jl) = ptau(jl, knu, jkm1) + ztauaz(jl, jkm1) |
---|
923 | zr22(jl) = ptau(jl, knu, jkm1)/zr21(jl) |
---|
924 | zgg(jl) = zr22(jl)*pcg(jl, knu, jkm1) + (1.-zr22(jl))*zcgaz(jl, jkm1) |
---|
925 | zw(jl) = zr21(jl)/zto1(jl) |
---|
926 | zref(jl) = zrefz(jl, 1, jkm1) |
---|
927 | zrmuz(jl) = zrmue(jl, jk) |
---|
928 | END DO |
---|
929 | |
---|
930 | CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
---|
931 | |
---|
932 | DO jl = 1, kdlon |
---|
933 | |
---|
934 | zrefz(jl, 2, jk) = (1.-zrneb(jl))*(zray1(jl,jkm1)+zrefz(jl,2,jkm1)* & |
---|
935 | ztra1(jl,jkm1)*ztra2(jl,jkm1))*zg(jl)*zs(jl) + zrneb(jl)*zre1(jl) |
---|
936 | |
---|
937 | ztr(jl, 2, jkm1) = zrneb(jl)*ztr1(jl) + (ztra1(jl,jkm1))*zg(jl)*(1.- & |
---|
938 | zrneb(jl)) |
---|
939 | |
---|
940 | zrefz(jl, 1, jk) = (1.-zrneb(jl))*(zray1(jl,jkm1)+zrefz(jl,1,jkm1)* & |
---|
941 | ztra1(jl,jkm1)*ztra2(jl,jkm1)/(1.-zray2(jl,jkm1)*zrefz(jl,1, & |
---|
942 | jkm1)))*zg(jl)*zs(jl) + zrneb(jl)*zre2(jl) |
---|
943 | |
---|
944 | ztr(jl, 1, jkm1) = zrneb(jl)*ztr2(jl) + (ztra1(jl,jkm1)/(1.-zray2(jl, & |
---|
945 | jkm1)*zrefz(jl,1,jkm1)))*zg(jl)*(1.-zrneb(jl)) |
---|
946 | |
---|
947 | END DO |
---|
948 | END DO |
---|
949 | |
---|
950 | ! * 3.3 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
951 | ! ------------------------------------------------- |
---|
952 | |
---|
953 | |
---|
954 | DO jref = 1, 2 |
---|
955 | |
---|
956 | jn = jn + 1 |
---|
957 | |
---|
958 | DO jl = 1, kdlon |
---|
959 | zrj(jl, jn, kflev+1) = 1. |
---|
960 | zrk(jl, jn, kflev+1) = zrefz(jl, jref, kflev+1) |
---|
961 | END DO |
---|
962 | |
---|
963 | DO jk = 1, kflev |
---|
964 | jkl = kflev + 1 - jk |
---|
965 | jklp1 = jkl + 1 |
---|
966 | DO jl = 1, kdlon |
---|
967 | zre11 = zrj(jl, jn, jklp1)*ztr(jl, jref, jkl) |
---|
968 | zrj(jl, jn, jkl) = zre11 |
---|
969 | zrk(jl, jn, jkl) = zre11*zrefz(jl, jref, jkl) |
---|
970 | END DO |
---|
971 | END DO |
---|
972 | END DO |
---|
973 | END DO |
---|
974 | |
---|
975 | ! ------------------------------------------------------------------ |
---|
976 | |
---|
977 | ! * 4. INVERT GREY AND CONTINUUM FLUXES |
---|
978 | ! -------------------------------- |
---|
979 | |
---|
980 | |
---|
981 | |
---|
982 | ! * 4.1 UPWARD (ZRK) AND DOWNWARD (ZRJ) PSEUDO-FLUXES |
---|
983 | ! --------------------------------------------- |
---|
984 | |
---|
985 | |
---|
986 | DO jk = 1, kflev + 1 |
---|
987 | DO jaj = 1, 5, 2 |
---|
988 | jajp = jaj + 1 |
---|
989 | DO jl = 1, kdlon |
---|
990 | zrj(jl, jaj, jk) = zrj(jl, jaj, jk) - zrj(jl, jajp, jk) |
---|
991 | zrk(jl, jaj, jk) = zrk(jl, jaj, jk) - zrk(jl, jajp, jk) |
---|
992 | zrj(jl, jaj, jk) = max(zrj(jl,jaj,jk), zeelog) |
---|
993 | zrk(jl, jaj, jk) = max(zrk(jl,jaj,jk), zeelog) |
---|
994 | END DO |
---|
995 | END DO |
---|
996 | END DO |
---|
997 | |
---|
998 | DO jk = 1, kflev + 1 |
---|
999 | DO jaj = 2, 6, 2 |
---|
1000 | DO jl = 1, kdlon |
---|
1001 | zrj(jl, jaj, jk) = max(zrj(jl,jaj,jk), zeelog) |
---|
1002 | zrk(jl, jaj, jk) = max(zrk(jl,jaj,jk), zeelog) |
---|
1003 | END DO |
---|
1004 | END DO |
---|
1005 | END DO |
---|
1006 | |
---|
1007 | ! * 4.2 EFFECTIVE ABSORBER AMOUNTS BY INVERSE LAPLACE |
---|
1008 | ! --------------------------------------------- |
---|
1009 | |
---|
1010 | |
---|
1011 | DO jk = 1, kflev + 1 |
---|
1012 | jkki = 1 |
---|
1013 | DO jaj = 1, 2 |
---|
1014 | iind2(1) = jaj |
---|
1015 | iind2(2) = jaj |
---|
1016 | DO jn = 1, 2 |
---|
1017 | jn2j = jn + 2*jaj |
---|
1018 | jkkp4 = jkki + 4 |
---|
1019 | |
---|
1020 | ! * 4.2.1 EFFECTIVE ABSORBER AMOUNTS |
---|
1021 | ! -------------------------- |
---|
1022 | |
---|
1023 | |
---|
1024 | DO jl = 1, kdlon |
---|
1025 | zw2(jl, 1) = log(zrj(jl,jn,jk)/zrj(jl,jn2j,jk))/paki(jl, jaj) |
---|
1026 | zw2(jl, 2) = log(zrk(jl,jn,jk)/zrk(jl,jn2j,jk))/paki(jl, jaj) |
---|
1027 | END DO |
---|
1028 | |
---|
1029 | ! * 4.2.2 TRANSMISSION FUNCTION |
---|
1030 | ! --------------------- |
---|
1031 | |
---|
1032 | |
---|
1033 | CALL swtt1_lmdar4(knu, 2, iind2, zw2, zr2) |
---|
1034 | |
---|
1035 | DO jl = 1, kdlon |
---|
1036 | zrl(jl, jkki) = zr2(jl, 1) |
---|
1037 | zruef(jl, jkki) = zw2(jl, 1) |
---|
1038 | zrl(jl, jkkp4) = zr2(jl, 2) |
---|
1039 | zruef(jl, jkkp4) = zw2(jl, 2) |
---|
1040 | END DO |
---|
1041 | |
---|
1042 | jkki = jkki + 1 |
---|
1043 | END DO |
---|
1044 | END DO |
---|
1045 | |
---|
1046 | ! * 4.3 UPWARD AND DOWNWARD FLUXES WITH H2O AND UMG ABSORPTION |
---|
1047 | ! ------------------------------------------------------ |
---|
1048 | |
---|
1049 | |
---|
1050 | DO jl = 1, kdlon |
---|
1051 | pfdown(jl, jk) = zrj(jl, 1, jk)*zrl(jl, 1)*zrl(jl, 3) + & |
---|
1052 | zrj(jl, 2, jk)*zrl(jl, 2)*zrl(jl, 4) |
---|
1053 | pfup(jl, jk) = zrk(jl, 1, jk)*zrl(jl, 5)*zrl(jl, 7) + & |
---|
1054 | zrk(jl, 2, jk)*zrl(jl, 6)*zrl(jl, 8) |
---|
1055 | END DO |
---|
1056 | END DO |
---|
1057 | |
---|
1058 | ! ------------------------------------------------------------------ |
---|
1059 | |
---|
1060 | ! * 5. MOLECULAR ABSORPTION ON CLEAR-SKY FLUXES |
---|
1061 | ! ---------------------------------------- |
---|
1062 | |
---|
1063 | |
---|
1064 | |
---|
1065 | ! * 5.1 DOWNWARD FLUXES |
---|
1066 | ! --------------- |
---|
1067 | |
---|
1068 | |
---|
1069 | jaj = 2 |
---|
1070 | iind3(1) = 1 |
---|
1071 | iind3(2) = 2 |
---|
1072 | iind3(3) = 3 |
---|
1073 | |
---|
1074 | DO jl = 1, kdlon |
---|
1075 | zw3(jl, 1) = 0. |
---|
1076 | zw3(jl, 2) = 0. |
---|
1077 | zw3(jl, 3) = 0. |
---|
1078 | zw4(jl) = 0. |
---|
1079 | zw5(jl) = 0. |
---|
1080 | zr4(jl) = 1. |
---|
1081 | zfd(jl, kflev+1) = zrj0(jl, jaj, kflev+1) |
---|
1082 | END DO |
---|
1083 | DO jk = 1, kflev |
---|
1084 | ikl = kflev + 1 - jk |
---|
1085 | DO jl = 1, kdlon |
---|
1086 | zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikl)/zrmu0(jl, ikl) |
---|
1087 | zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikl)/zrmu0(jl, ikl) |
---|
1088 | zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikl)/zrmu0(jl, ikl) |
---|
1089 | zw4(jl) = zw4(jl) + pud(jl, 4, ikl)/zrmu0(jl, ikl) |
---|
1090 | zw5(jl) = zw5(jl) + pud(jl, 5, ikl)/zrmu0(jl, ikl) |
---|
1091 | END DO |
---|
1092 | |
---|
1093 | CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
---|
1094 | |
---|
1095 | DO jl = 1, kdlon |
---|
1096 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
1097 | zfd(jl, ikl) = zr3(jl, 1)*zr3(jl, 2)*zr3(jl, 3)*zr4(jl)* & |
---|
1098 | zrj0(jl, jaj, ikl) |
---|
1099 | END DO |
---|
1100 | END DO |
---|
1101 | |
---|
1102 | ! * 5.2 UPWARD FLUXES |
---|
1103 | ! ------------- |
---|
1104 | |
---|
1105 | |
---|
1106 | DO jl = 1, kdlon |
---|
1107 | zfu(jl, 1) = zfd(jl, 1)*palbp(jl, knu) |
---|
1108 | END DO |
---|
1109 | |
---|
1110 | DO jk = 2, kflev + 1 |
---|
1111 | ikm1 = jk - 1 |
---|
1112 | DO jl = 1, kdlon |
---|
1113 | zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikm1)*1.66 |
---|
1114 | zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikm1)*1.66 |
---|
1115 | zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikm1)*1.66 |
---|
1116 | zw4(jl) = zw4(jl) + pud(jl, 4, ikm1)*1.66 |
---|
1117 | zw5(jl) = zw5(jl) + pud(jl, 5, ikm1)*1.66 |
---|
1118 | END DO |
---|
1119 | |
---|
1120 | CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
---|
1121 | |
---|
1122 | DO jl = 1, kdlon |
---|
1123 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
1124 | zfu(jl, jk) = zr3(jl, 1)*zr3(jl, 2)*zr3(jl, 3)*zr4(jl)* & |
---|
1125 | zrk0(jl, jaj, jk) |
---|
1126 | END DO |
---|
1127 | END DO |
---|
1128 | |
---|
1129 | ! ------------------------------------------------------------------ |
---|
1130 | |
---|
1131 | ! * 6. INTRODUCTION OF OZONE AND H2O CONTINUUM ABSORPTION |
---|
1132 | ! -------------------------------------------------- |
---|
1133 | |
---|
1134 | iabs = 3 |
---|
1135 | |
---|
1136 | ! * 6.1 DOWNWARD FLUXES |
---|
1137 | ! --------------- |
---|
1138 | |
---|
1139 | DO jl = 1, kdlon |
---|
1140 | zw1(jl) = 0. |
---|
1141 | zw4(jl) = 0. |
---|
1142 | zw5(jl) = 0. |
---|
1143 | zr1(jl) = 0. |
---|
1144 | pfdown(jl, kflev+1) = ((1.-pclear(jl))*pfdown(jl,kflev+1)+pclear(jl)*zfd( & |
---|
1145 | jl,kflev+1))*rsun(knu) |
---|
1146 | END DO |
---|
1147 | |
---|
1148 | DO jk = 1, kflev |
---|
1149 | ikl = kflev + 1 - jk |
---|
1150 | DO jl = 1, kdlon |
---|
1151 | zw1(jl) = zw1(jl) + poz(jl, ikl)/zrmue(jl, ikl) |
---|
1152 | zw4(jl) = zw4(jl) + pud(jl, 4, ikl)/zrmue(jl, ikl) |
---|
1153 | zw5(jl) = zw5(jl) + pud(jl, 5, ikl)/zrmue(jl, ikl) |
---|
1154 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
1155 | END DO |
---|
1156 | |
---|
1157 | CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
---|
1158 | |
---|
1159 | DO jl = 1, kdlon |
---|
1160 | pfdown(jl, ikl) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfdown(jl,ikl)+ & |
---|
1161 | pclear(jl)*zfd(jl,ikl))*rsun(knu) |
---|
1162 | END DO |
---|
1163 | END DO |
---|
1164 | |
---|
1165 | ! * 6.2 UPWARD FLUXES |
---|
1166 | ! ------------- |
---|
1167 | |
---|
1168 | DO jl = 1, kdlon |
---|
1169 | pfup(jl, 1) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfup(jl,1)+pclear(jl)*zfu( & |
---|
1170 | jl,1))*rsun(knu) |
---|
1171 | END DO |
---|
1172 | |
---|
1173 | DO jk = 2, kflev + 1 |
---|
1174 | ikm1 = jk - 1 |
---|
1175 | DO jl = 1, kdlon |
---|
1176 | zw1(jl) = zw1(jl) + poz(jl, ikm1)*1.66 |
---|
1177 | zw4(jl) = zw4(jl) + pud(jl, 4, ikm1)*1.66 |
---|
1178 | zw5(jl) = zw5(jl) + pud(jl, 5, ikm1)*1.66 |
---|
1179 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
1180 | END DO |
---|
1181 | |
---|
1182 | CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
---|
1183 | |
---|
1184 | DO jl = 1, kdlon |
---|
1185 | pfup(jl, jk) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfup(jl,jk)+pclear(jl)* & |
---|
1186 | zfu(jl,jk))*rsun(knu) |
---|
1187 | END DO |
---|
1188 | END DO |
---|
1189 | |
---|
1190 | ! ------------------------------------------------------------------ |
---|
1191 | |
---|
1192 | RETURN |
---|
1193 | END SUBROUTINE sw2s_lmdar4 |
---|
1194 | SUBROUTINE swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, & |
---|
1195 | pdsig, prayl, psec, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmu0, & |
---|
1196 | ptauaz, ptra1, ptra2) |
---|
1197 | USE radopt_mod_h |
---|
1198 | USE radepsi_mod_h |
---|
1199 | USE dimphy |
---|
1200 | USE radiation_ar4_param, ONLY: taua, rpiza, rcga |
---|
1201 | IMPLICIT NONE |
---|
1202 | |
---|
1203 | ! ------------------------------------------------------------------ |
---|
1204 | ! PURPOSE. |
---|
1205 | ! -------- |
---|
1206 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
---|
1207 | ! CLEAR-SKY COLUMN |
---|
1208 | |
---|
1209 | ! REFERENCE. |
---|
1210 | ! ---------- |
---|
1211 | |
---|
1212 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
1213 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
1214 | |
---|
1215 | ! AUTHOR. |
---|
1216 | ! ------- |
---|
1217 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
1218 | |
---|
1219 | ! MODIFICATIONS. |
---|
1220 | ! -------------- |
---|
1221 | ! ORIGINAL : 94-11-15 |
---|
1222 | ! ------------------------------------------------------------------ |
---|
1223 | ! * ARGUMENTS: |
---|
1224 | |
---|
1225 | INTEGER knu |
---|
1226 | ! -OB |
---|
1227 | REAL (KIND=8) flag_aer |
---|
1228 | REAL (KIND=8) tauae(kdlon, kflev, 2) |
---|
1229 | REAL (KIND=8) pizae(kdlon, kflev, 2) |
---|
1230 | REAL (KIND=8) cgae(kdlon, kflev, 2) |
---|
1231 | REAL (KIND=8) paer(kdlon, kflev, 5) |
---|
1232 | REAL (KIND=8) palbp(kdlon, 2) |
---|
1233 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
1234 | REAL (KIND=8) prayl(kdlon) |
---|
1235 | REAL (KIND=8) psec(kdlon) |
---|
1236 | |
---|
1237 | REAL (KIND=8) pcgaz(kdlon, kflev) |
---|
1238 | REAL (KIND=8) ppizaz(kdlon, kflev) |
---|
1239 | REAL (KIND=8) pray1(kdlon, kflev+1) |
---|
1240 | REAL (KIND=8) pray2(kdlon, kflev+1) |
---|
1241 | REAL (KIND=8) prefz(kdlon, 2, kflev+1) |
---|
1242 | REAL (KIND=8) prj(kdlon, 6, kflev+1) |
---|
1243 | REAL (KIND=8) prk(kdlon, 6, kflev+1) |
---|
1244 | REAL (KIND=8) prmu0(kdlon, kflev+1) |
---|
1245 | REAL (KIND=8) ptauaz(kdlon, kflev) |
---|
1246 | REAL (KIND=8) ptra1(kdlon, kflev+1) |
---|
1247 | REAL (KIND=8) ptra2(kdlon, kflev+1) |
---|
1248 | |
---|
1249 | ! * LOCAL VARIABLES: |
---|
1250 | |
---|
1251 | REAL (KIND=8) zc0i(kdlon, kflev+1) |
---|
1252 | REAL (KIND=8) zcle0(kdlon, kflev) |
---|
1253 | REAL (KIND=8) zclear(kdlon) |
---|
1254 | REAL (KIND=8) zr21(kdlon) |
---|
1255 | REAL (KIND=8) zr23(kdlon) |
---|
1256 | REAL (KIND=8) zss0(kdlon) |
---|
1257 | REAL (KIND=8) zscat(kdlon) |
---|
1258 | REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
---|
1259 | |
---|
1260 | INTEGER jl, jk, ja, jae, jkl, jklp1, jaj, jkm1, in |
---|
1261 | REAL (KIND=8) ztray, zgar, zratio, zff, zfacoa, zcorae |
---|
1262 | REAL (KIND=8) zmue, zgap, zww, zto, zden, zmu1, zden1 |
---|
1263 | REAL (KIND=8) zbmu0, zbmu1, zre11 |
---|
1264 | |
---|
1265 | ! ------------------------------------------------------------------ |
---|
1266 | |
---|
1267 | ! * 1. OPTICAL PARAMETERS FOR AEROSOLS AND RAYLEIGH |
---|
1268 | ! -------------------------------------------- |
---|
1269 | |
---|
1270 | |
---|
1271 | ! cdir collapse |
---|
1272 | DO jk = 1, kflev + 1 |
---|
1273 | DO ja = 1, 6 |
---|
1274 | DO jl = 1, kdlon |
---|
1275 | prj(jl, ja, jk) = 0. |
---|
1276 | prk(jl, ja, jk) = 0. |
---|
1277 | END DO |
---|
1278 | END DO |
---|
1279 | END DO |
---|
1280 | |
---|
1281 | DO jk = 1, kflev |
---|
1282 | ! -OB |
---|
1283 | ! DO 104 JL = 1, KDLON |
---|
1284 | ! PCGAZ(JL,JK) = 0. |
---|
1285 | ! PPIZAZ(JL,JK) = 0. |
---|
1286 | ! PTAUAZ(JL,JK) = 0. |
---|
1287 | ! 104 CONTINUE |
---|
1288 | ! -OB |
---|
1289 | ! DO 106 JAE=1,5 |
---|
1290 | ! DO 105 JL = 1, KDLON |
---|
1291 | ! PTAUAZ(JL,JK)=PTAUAZ(JL,JK) |
---|
1292 | ! S +PAER(JL,JK,JAE)*TAUA(KNU,JAE) |
---|
1293 | ! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)+PAER(JL,JK,JAE) |
---|
1294 | ! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE) |
---|
1295 | ! PCGAZ(JL,JK) = PCGAZ(JL,JK) +PAER(JL,JK,JAE) |
---|
1296 | ! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE)*RCGA(KNU,JAE) |
---|
1297 | ! 105 CONTINUE |
---|
1298 | ! 106 CONTINUE |
---|
1299 | ! -OB |
---|
1300 | DO jl = 1, kdlon |
---|
1301 | ptauaz(jl, jk) = flag_aer*tauae(jl, jk, knu) |
---|
1302 | ppizaz(jl, jk) = flag_aer*pizae(jl, jk, knu) |
---|
1303 | pcgaz(jl, jk) = flag_aer*cgae(jl, jk, knu) |
---|
1304 | END DO |
---|
1305 | |
---|
1306 | IF (flag_aer>0) THEN |
---|
1307 | ! -OB |
---|
1308 | DO jl = 1, kdlon |
---|
1309 | ! PCGAZ(JL,JK)=PCGAZ(JL,JK)/PPIZAZ(JL,JK) |
---|
1310 | ! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)/PTAUAZ(JL,JK) |
---|
1311 | ztray = prayl(jl)*pdsig(jl, jk) |
---|
1312 | zratio = ztray/(ztray+ptauaz(jl,jk)) |
---|
1313 | zgar = pcgaz(jl, jk) |
---|
1314 | zff = zgar*zgar |
---|
1315 | ptauaz(jl, jk) = ztray + ptauaz(jl, jk)*(1.-ppizaz(jl,jk)*zff) |
---|
1316 | pcgaz(jl, jk) = zgar*(1.-zratio)/(1.+zgar) |
---|
1317 | ppizaz(jl, jk) = zratio + (1.-zratio)*ppizaz(jl, jk)*(1.-zff)/(1.- & |
---|
1318 | ppizaz(jl,jk)*zff) |
---|
1319 | END DO |
---|
1320 | ELSE |
---|
1321 | DO jl = 1, kdlon |
---|
1322 | ztray = prayl(jl)*pdsig(jl, jk) |
---|
1323 | ptauaz(jl, jk) = ztray |
---|
1324 | pcgaz(jl, jk) = 0. |
---|
1325 | ppizaz(jl, jk) = 1. - repsct |
---|
1326 | END DO |
---|
1327 | END IF ! check flag_aer |
---|
1328 | ! 107 CONTINUE |
---|
1329 | ! PRINT 9107,JK,((PAER(JL,JK,JAE),JAE=1,5) |
---|
1330 | ! $ ,PTAUAZ(JL,JK),PPIZAZ(JL,JK),PCGAZ(JL,JK),JL=1,KDLON) |
---|
1331 | ! 9107 FORMAT(1X,'SWCLR_107',I3,8E12.5) |
---|
1332 | |
---|
1333 | END DO |
---|
1334 | |
---|
1335 | ! ------------------------------------------------------------------ |
---|
1336 | |
---|
1337 | ! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
1338 | ! ---------------------------------------------- |
---|
1339 | |
---|
1340 | |
---|
1341 | DO jl = 1, kdlon |
---|
1342 | zr23(jl) = 0. |
---|
1343 | zc0i(jl, kflev+1) = 0. |
---|
1344 | zclear(jl) = 1. |
---|
1345 | zscat(jl) = 0. |
---|
1346 | END DO |
---|
1347 | |
---|
1348 | jk = 1 |
---|
1349 | jkl = kflev + 1 - jk |
---|
1350 | jklp1 = jkl + 1 |
---|
1351 | DO jl = 1, kdlon |
---|
1352 | zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
---|
1353 | zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
---|
1354 | zr21(jl) = exp(-zcorae) |
---|
1355 | zss0(jl) = 1. - zr21(jl) |
---|
1356 | zcle0(jl, jkl) = zss0(jl) |
---|
1357 | |
---|
1358 | IF (novlp==1) THEN |
---|
1359 | ! * maximum-random |
---|
1360 | zclear(jl) = zclear(jl)*(1.0-max(zss0(jl),zscat(jl)))/ & |
---|
1361 | (1.0-min(zscat(jl),1.-zepsec)) |
---|
1362 | zc0i(jl, jkl) = 1.0 - zclear(jl) |
---|
1363 | zscat(jl) = zss0(jl) |
---|
1364 | ELSE IF (novlp==2) THEN |
---|
1365 | ! * maximum |
---|
1366 | zscat(jl) = max(zss0(jl), zscat(jl)) |
---|
1367 | zc0i(jl, jkl) = zscat(jl) |
---|
1368 | ELSE IF (novlp==3) THEN |
---|
1369 | ! * random |
---|
1370 | zclear(jl) = zclear(jl)*(1.0-zss0(jl)) |
---|
1371 | zscat(jl) = 1.0 - zclear(jl) |
---|
1372 | zc0i(jl, jkl) = zscat(jl) |
---|
1373 | END IF |
---|
1374 | END DO |
---|
1375 | |
---|
1376 | DO jk = 2, kflev |
---|
1377 | jkl = kflev + 1 - jk |
---|
1378 | jklp1 = jkl + 1 |
---|
1379 | DO jl = 1, kdlon |
---|
1380 | zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
---|
1381 | zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
---|
1382 | zr21(jl) = exp(-zcorae) |
---|
1383 | zss0(jl) = 1. - zr21(jl) |
---|
1384 | zcle0(jl, jkl) = zss0(jl) |
---|
1385 | |
---|
1386 | IF (novlp==1) THEN |
---|
1387 | ! * maximum-random |
---|
1388 | zclear(jl) = zclear(jl)*(1.0-max(zss0(jl),zscat(jl)))/ & |
---|
1389 | (1.0-min(zscat(jl),1.-zepsec)) |
---|
1390 | zc0i(jl, jkl) = 1.0 - zclear(jl) |
---|
1391 | zscat(jl) = zss0(jl) |
---|
1392 | ELSE IF (novlp==2) THEN |
---|
1393 | ! * maximum |
---|
1394 | zscat(jl) = max(zss0(jl), zscat(jl)) |
---|
1395 | zc0i(jl, jkl) = zscat(jl) |
---|
1396 | ELSE IF (novlp==3) THEN |
---|
1397 | ! * random |
---|
1398 | zclear(jl) = zclear(jl)*(1.0-zss0(jl)) |
---|
1399 | zscat(jl) = 1.0 - zclear(jl) |
---|
1400 | zc0i(jl, jkl) = zscat(jl) |
---|
1401 | END IF |
---|
1402 | END DO |
---|
1403 | END DO |
---|
1404 | |
---|
1405 | ! ------------------------------------------------------------------ |
---|
1406 | |
---|
1407 | ! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
1408 | ! ----------------------------------------------- |
---|
1409 | |
---|
1410 | |
---|
1411 | DO jl = 1, kdlon |
---|
1412 | pray1(jl, kflev+1) = 0. |
---|
1413 | pray2(jl, kflev+1) = 0. |
---|
1414 | prefz(jl, 2, 1) = palbp(jl, knu) |
---|
1415 | prefz(jl, 1, 1) = palbp(jl, knu) |
---|
1416 | ptra1(jl, kflev+1) = 1. |
---|
1417 | ptra2(jl, kflev+1) = 1. |
---|
1418 | END DO |
---|
1419 | |
---|
1420 | DO jk = 2, kflev + 1 |
---|
1421 | jkm1 = jk - 1 |
---|
1422 | DO jl = 1, kdlon |
---|
1423 | |
---|
1424 | ! ------------------------------------------------------------------ |
---|
1425 | |
---|
1426 | ! * 3.1 EQUIVALENT ZENITH ANGLE |
---|
1427 | ! ----------------------- |
---|
1428 | |
---|
1429 | |
---|
1430 | zmue = (1.-zc0i(jl,jk))*psec(jl) + zc0i(jl, jk)*1.66 |
---|
1431 | prmu0(jl, jk) = 1./zmue |
---|
1432 | |
---|
1433 | ! ------------------------------------------------------------------ |
---|
1434 | |
---|
1435 | ! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
---|
1436 | ! ---------------------------------------------------- |
---|
1437 | |
---|
1438 | |
---|
1439 | zgap = pcgaz(jl, jkm1) |
---|
1440 | zbmu0 = 0.5 - 0.75*zgap/zmue |
---|
1441 | zww = ppizaz(jl, jkm1) |
---|
1442 | zto = ptauaz(jl, jkm1) |
---|
1443 | zden = 1. + (1.-zww+zbmu0*zww)*zto*zmue + (1-zww)*(1.-zww+2.*zbmu0*zww) & |
---|
1444 | *zto*zto*zmue*zmue |
---|
1445 | pray1(jl, jkm1) = zbmu0*zww*zto*zmue/zden |
---|
1446 | ptra1(jl, jkm1) = 1./zden |
---|
1447 | |
---|
1448 | zmu1 = 0.5 |
---|
1449 | zbmu1 = 0.5 - 0.75*zgap*zmu1 |
---|
1450 | zden1 = 1. + (1.-zww+zbmu1*zww)*zto/zmu1 + (1-zww)*(1.-zww+2.*zbmu1*zww & |
---|
1451 | )*zto*zto/zmu1/zmu1 |
---|
1452 | pray2(jl, jkm1) = zbmu1*zww*zto/zmu1/zden1 |
---|
1453 | ptra2(jl, jkm1) = 1./zden1 |
---|
1454 | |
---|
1455 | |
---|
1456 | |
---|
1457 | prefz(jl, 1, jk) = (pray1(jl,jkm1)+prefz(jl,1,jkm1)*ptra1(jl,jkm1)* & |
---|
1458 | ptra2(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1,jkm1))) |
---|
1459 | |
---|
1460 | ztr(jl, 1, jkm1) = (ptra1(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1, & |
---|
1461 | jkm1))) |
---|
1462 | |
---|
1463 | prefz(jl, 2, jk) = (pray1(jl,jkm1)+prefz(jl,2,jkm1)*ptra1(jl,jkm1)* & |
---|
1464 | ptra2(jl,jkm1)) |
---|
1465 | |
---|
1466 | ztr(jl, 2, jkm1) = ptra1(jl, jkm1) |
---|
1467 | |
---|
1468 | END DO |
---|
1469 | END DO |
---|
1470 | DO jl = 1, kdlon |
---|
1471 | zmue = (1.-zc0i(jl,1))*psec(jl) + zc0i(jl, 1)*1.66 |
---|
1472 | prmu0(jl, 1) = 1./zmue |
---|
1473 | END DO |
---|
1474 | |
---|
1475 | ! ------------------------------------------------------------------ |
---|
1476 | |
---|
1477 | ! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
1478 | ! ------------------------------------------------- |
---|
1479 | |
---|
1480 | |
---|
1481 | IF (knu==1) THEN |
---|
1482 | jaj = 2 |
---|
1483 | DO jl = 1, kdlon |
---|
1484 | prj(jl, jaj, kflev+1) = 1. |
---|
1485 | prk(jl, jaj, kflev+1) = prefz(jl, 1, kflev+1) |
---|
1486 | END DO |
---|
1487 | |
---|
1488 | DO jk = 1, kflev |
---|
1489 | jkl = kflev + 1 - jk |
---|
1490 | jklp1 = jkl + 1 |
---|
1491 | DO jl = 1, kdlon |
---|
1492 | zre11 = prj(jl, jaj, jklp1)*ztr(jl, 1, jkl) |
---|
1493 | prj(jl, jaj, jkl) = zre11 |
---|
1494 | prk(jl, jaj, jkl) = zre11*prefz(jl, 1, jkl) |
---|
1495 | END DO |
---|
1496 | END DO |
---|
1497 | |
---|
1498 | ELSE |
---|
1499 | |
---|
1500 | DO jaj = 1, 2 |
---|
1501 | DO jl = 1, kdlon |
---|
1502 | prj(jl, jaj, kflev+1) = 1. |
---|
1503 | prk(jl, jaj, kflev+1) = prefz(jl, jaj, kflev+1) |
---|
1504 | END DO |
---|
1505 | |
---|
1506 | DO jk = 1, kflev |
---|
1507 | jkl = kflev + 1 - jk |
---|
1508 | jklp1 = jkl + 1 |
---|
1509 | DO jl = 1, kdlon |
---|
1510 | zre11 = prj(jl, jaj, jklp1)*ztr(jl, jaj, jkl) |
---|
1511 | prj(jl, jaj, jkl) = zre11 |
---|
1512 | prk(jl, jaj, jkl) = zre11*prefz(jl, jaj, jkl) |
---|
1513 | END DO |
---|
1514 | END DO |
---|
1515 | END DO |
---|
1516 | |
---|
1517 | END IF |
---|
1518 | |
---|
1519 | ! ------------------------------------------------------------------ |
---|
1520 | |
---|
1521 | RETURN |
---|
1522 | END SUBROUTINE swclr_lmdar4 |
---|
1523 | SUBROUTINE swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, prayl, psec, & |
---|
1524 | ptau, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmue, ptauaz, ptra1, & |
---|
1525 | ptra2) |
---|
1526 | USE radopt_mod_h |
---|
1527 | USE radepsi_mod_h |
---|
1528 | USE clesphys_mod_h |
---|
1529 | USE dimphy |
---|
1530 | IMPLICIT NONE |
---|
1531 | |
---|
1532 | ! ------------------------------------------------------------------ |
---|
1533 | ! PURPOSE. |
---|
1534 | ! -------- |
---|
1535 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
---|
1536 | ! CONTINUUM SCATTERING |
---|
1537 | |
---|
1538 | ! METHOD. |
---|
1539 | ! ------- |
---|
1540 | |
---|
1541 | ! 1. COMPUTES CONTINUUM FLUXES CORRESPONDING TO AEROSOL |
---|
1542 | ! OR/AND RAYLEIGH SCATTERING (NO MOLECULAR GAS ABSORPTION) |
---|
1543 | |
---|
1544 | ! REFERENCE. |
---|
1545 | ! ---------- |
---|
1546 | |
---|
1547 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
1548 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
1549 | |
---|
1550 | ! AUTHOR. |
---|
1551 | ! ------- |
---|
1552 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
1553 | |
---|
1554 | ! MODIFICATIONS. |
---|
1555 | ! -------------- |
---|
1556 | ! ORIGINAL : 89-07-14 |
---|
1557 | ! ------------------------------------------------------------------ |
---|
1558 | ! * ARGUMENTS: |
---|
1559 | |
---|
1560 | INTEGER knu |
---|
1561 | REAL (KIND=8) palbd(kdlon, 2) |
---|
1562 | REAL (KIND=8) pcg(kdlon, 2, kflev) |
---|
1563 | REAL (KIND=8) pcld(kdlon, kflev) |
---|
1564 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
1565 | REAL (KIND=8) pomega(kdlon, 2, kflev) |
---|
1566 | REAL (KIND=8) prayl(kdlon) |
---|
1567 | REAL (KIND=8) psec(kdlon) |
---|
1568 | REAL (KIND=8) ptau(kdlon, 2, kflev) |
---|
1569 | |
---|
1570 | REAL (KIND=8) pray1(kdlon, kflev+1) |
---|
1571 | REAL (KIND=8) pray2(kdlon, kflev+1) |
---|
1572 | REAL (KIND=8) prefz(kdlon, 2, kflev+1) |
---|
1573 | REAL (KIND=8) prj(kdlon, 6, kflev+1) |
---|
1574 | REAL (KIND=8) prk(kdlon, 6, kflev+1) |
---|
1575 | REAL (KIND=8) prmue(kdlon, kflev+1) |
---|
1576 | REAL (KIND=8) pcgaz(kdlon, kflev) |
---|
1577 | REAL (KIND=8) ppizaz(kdlon, kflev) |
---|
1578 | REAL (KIND=8) ptauaz(kdlon, kflev) |
---|
1579 | REAL (KIND=8) ptra1(kdlon, kflev+1) |
---|
1580 | REAL (KIND=8) ptra2(kdlon, kflev+1) |
---|
1581 | |
---|
1582 | ! * LOCAL VARIABLES: |
---|
1583 | |
---|
1584 | REAL (KIND=8) zc1i(kdlon, kflev+1) |
---|
1585 | REAL (KIND=8) zcleq(kdlon, kflev) |
---|
1586 | REAL (KIND=8) zclear(kdlon) |
---|
1587 | REAL (KIND=8) zcloud(kdlon) |
---|
1588 | REAL (KIND=8) zgg(kdlon) |
---|
1589 | REAL (KIND=8) zref(kdlon) |
---|
1590 | REAL (KIND=8) zre1(kdlon) |
---|
1591 | REAL (KIND=8) zre2(kdlon) |
---|
1592 | REAL (KIND=8) zrmuz(kdlon) |
---|
1593 | REAL (KIND=8) zrneb(kdlon) |
---|
1594 | REAL (KIND=8) zr21(kdlon) |
---|
1595 | REAL (KIND=8) zr22(kdlon) |
---|
1596 | REAL (KIND=8) zr23(kdlon) |
---|
1597 | REAL (KIND=8) zss1(kdlon) |
---|
1598 | REAL (KIND=8) zto1(kdlon) |
---|
1599 | REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
---|
1600 | REAL (KIND=8) ztr1(kdlon) |
---|
1601 | REAL (KIND=8) ztr2(kdlon) |
---|
1602 | REAL (KIND=8) zw(kdlon) |
---|
1603 | |
---|
1604 | INTEGER jk, jl, ja, jkl, jklp1, jkm1, jaj |
---|
1605 | REAL (KIND=8) zfacoa, zfacoc, zcorae, zcorcd |
---|
1606 | REAL (KIND=8) zmue, zgap, zww, zto, zden, zden1 |
---|
1607 | REAL (KIND=8) zmu1, zre11, zbmu0, zbmu1 |
---|
1608 | |
---|
1609 | ! ------------------------------------------------------------------ |
---|
1610 | |
---|
1611 | ! * 1. INITIALIZATION |
---|
1612 | ! -------------- |
---|
1613 | |
---|
1614 | |
---|
1615 | DO jk = 1, kflev + 1 |
---|
1616 | DO ja = 1, 6 |
---|
1617 | DO jl = 1, kdlon |
---|
1618 | prj(jl, ja, jk) = 0. |
---|
1619 | prk(jl, ja, jk) = 0. |
---|
1620 | END DO |
---|
1621 | END DO |
---|
1622 | END DO |
---|
1623 | |
---|
1624 | ! ------------------------------------------------------------------ |
---|
1625 | |
---|
1626 | ! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
1627 | ! ---------------------------------------------- |
---|
1628 | |
---|
1629 | |
---|
1630 | DO jl = 1, kdlon |
---|
1631 | zr23(jl) = 0. |
---|
1632 | zc1i(jl, kflev+1) = 0. |
---|
1633 | zclear(jl) = 1. |
---|
1634 | zcloud(jl) = 0. |
---|
1635 | END DO |
---|
1636 | |
---|
1637 | jk = 1 |
---|
1638 | jkl = kflev + 1 - jk |
---|
1639 | jklp1 = jkl + 1 |
---|
1640 | DO jl = 1, kdlon |
---|
1641 | zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
---|
1642 | zfacoc = 1. - pomega(jl, knu, jkl)*pcg(jl, knu, jkl)*pcg(jl, knu, jkl) |
---|
1643 | zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
---|
1644 | zcorcd = zfacoc*ptau(jl, knu, jkl)*psec(jl) |
---|
1645 | zr21(jl) = exp(-zcorae) |
---|
1646 | zr22(jl) = exp(-zcorcd) |
---|
1647 | zss1(jl) = pcld(jl, jkl)*(1.0-zr21(jl)*zr22(jl)) + & |
---|
1648 | (1.0-pcld(jl,jkl))*(1.0-zr21(jl)) |
---|
1649 | zcleq(jl, jkl) = zss1(jl) |
---|
1650 | |
---|
1651 | IF (novlp==1) THEN |
---|
1652 | ! * maximum-random |
---|
1653 | zclear(jl) = zclear(jl)*(1.0-max(zss1(jl),zcloud(jl)))/ & |
---|
1654 | (1.0-min(zcloud(jl),1.-zepsec)) |
---|
1655 | zc1i(jl, jkl) = 1.0 - zclear(jl) |
---|
1656 | zcloud(jl) = zss1(jl) |
---|
1657 | ELSE IF (novlp==2) THEN |
---|
1658 | ! * maximum |
---|
1659 | zcloud(jl) = max(zss1(jl), zcloud(jl)) |
---|
1660 | zc1i(jl, jkl) = zcloud(jl) |
---|
1661 | ELSE IF (novlp==3) THEN |
---|
1662 | ! * random |
---|
1663 | zclear(jl) = zclear(jl)*(1.0-zss1(jl)) |
---|
1664 | zcloud(jl) = 1.0 - zclear(jl) |
---|
1665 | zc1i(jl, jkl) = zcloud(jl) |
---|
1666 | END IF |
---|
1667 | END DO |
---|
1668 | |
---|
1669 | DO jk = 2, kflev |
---|
1670 | jkl = kflev + 1 - jk |
---|
1671 | jklp1 = jkl + 1 |
---|
1672 | DO jl = 1, kdlon |
---|
1673 | zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
---|
1674 | zfacoc = 1. - pomega(jl, knu, jkl)*pcg(jl, knu, jkl)*pcg(jl, knu, jkl) |
---|
1675 | zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
---|
1676 | zcorcd = zfacoc*ptau(jl, knu, jkl)*psec(jl) |
---|
1677 | zr21(jl) = exp(-zcorae) |
---|
1678 | zr22(jl) = exp(-zcorcd) |
---|
1679 | zss1(jl) = pcld(jl, jkl)*(1.0-zr21(jl)*zr22(jl)) + & |
---|
1680 | (1.0-pcld(jl,jkl))*(1.0-zr21(jl)) |
---|
1681 | zcleq(jl, jkl) = zss1(jl) |
---|
1682 | |
---|
1683 | IF (novlp==1) THEN |
---|
1684 | ! * maximum-random |
---|
1685 | zclear(jl) = zclear(jl)*(1.0-max(zss1(jl),zcloud(jl)))/ & |
---|
1686 | (1.0-min(zcloud(jl),1.-zepsec)) |
---|
1687 | zc1i(jl, jkl) = 1.0 - zclear(jl) |
---|
1688 | zcloud(jl) = zss1(jl) |
---|
1689 | ELSE IF (novlp==2) THEN |
---|
1690 | ! * maximum |
---|
1691 | zcloud(jl) = max(zss1(jl), zcloud(jl)) |
---|
1692 | zc1i(jl, jkl) = zcloud(jl) |
---|
1693 | ELSE IF (novlp==3) THEN |
---|
1694 | ! * random |
---|
1695 | zclear(jl) = zclear(jl)*(1.0-zss1(jl)) |
---|
1696 | zcloud(jl) = 1.0 - zclear(jl) |
---|
1697 | zc1i(jl, jkl) = zcloud(jl) |
---|
1698 | END IF |
---|
1699 | END DO |
---|
1700 | END DO |
---|
1701 | |
---|
1702 | ! ------------------------------------------------------------------ |
---|
1703 | |
---|
1704 | ! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
1705 | ! ----------------------------------------------- |
---|
1706 | |
---|
1707 | |
---|
1708 | DO jl = 1, kdlon |
---|
1709 | pray1(jl, kflev+1) = 0. |
---|
1710 | pray2(jl, kflev+1) = 0. |
---|
1711 | prefz(jl, 2, 1) = palbd(jl, knu) |
---|
1712 | prefz(jl, 1, 1) = palbd(jl, knu) |
---|
1713 | ptra1(jl, kflev+1) = 1. |
---|
1714 | ptra2(jl, kflev+1) = 1. |
---|
1715 | END DO |
---|
1716 | |
---|
1717 | DO jk = 2, kflev + 1 |
---|
1718 | jkm1 = jk - 1 |
---|
1719 | DO jl = 1, kdlon |
---|
1720 | zrneb(jl) = pcld(jl, jkm1) |
---|
1721 | zre1(jl) = 0. |
---|
1722 | ztr1(jl) = 0. |
---|
1723 | zre2(jl) = 0. |
---|
1724 | ztr2(jl) = 0. |
---|
1725 | |
---|
1726 | ! ------------------------------------------------------------------ |
---|
1727 | |
---|
1728 | ! * 3.1 EQUIVALENT ZENITH ANGLE |
---|
1729 | ! ----------------------- |
---|
1730 | |
---|
1731 | |
---|
1732 | zmue = (1.-zc1i(jl,jk))*psec(jl) + zc1i(jl, jk)*1.66 |
---|
1733 | prmue(jl, jk) = 1./zmue |
---|
1734 | |
---|
1735 | ! ------------------------------------------------------------------ |
---|
1736 | |
---|
1737 | ! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
---|
1738 | ! ---------------------------------------------------- |
---|
1739 | |
---|
1740 | |
---|
1741 | zgap = pcgaz(jl, jkm1) |
---|
1742 | zbmu0 = 0.5 - 0.75*zgap/zmue |
---|
1743 | zww = ppizaz(jl, jkm1) |
---|
1744 | zto = ptauaz(jl, jkm1) |
---|
1745 | zden = 1. + (1.-zww+zbmu0*zww)*zto*zmue + (1-zww)*(1.-zww+2.*zbmu0*zww) & |
---|
1746 | *zto*zto*zmue*zmue |
---|
1747 | pray1(jl, jkm1) = zbmu0*zww*zto*zmue/zden |
---|
1748 | ptra1(jl, jkm1) = 1./zden |
---|
1749 | ! PRINT *,' LOOP 342 ** 3 ** JL=',JL,PRAY1(JL,JKM1),PTRA1(JL,JKM1) |
---|
1750 | |
---|
1751 | zmu1 = 0.5 |
---|
1752 | zbmu1 = 0.5 - 0.75*zgap*zmu1 |
---|
1753 | zden1 = 1. + (1.-zww+zbmu1*zww)*zto/zmu1 + (1-zww)*(1.-zww+2.*zbmu1*zww & |
---|
1754 | )*zto*zto/zmu1/zmu1 |
---|
1755 | pray2(jl, jkm1) = zbmu1*zww*zto/zmu1/zden1 |
---|
1756 | ptra2(jl, jkm1) = 1./zden1 |
---|
1757 | |
---|
1758 | ! ------------------------------------------------------------------ |
---|
1759 | |
---|
1760 | ! * 3.3 EFFECT OF CLOUD LAYER |
---|
1761 | ! --------------------- |
---|
1762 | |
---|
1763 | |
---|
1764 | zw(jl) = pomega(jl, knu, jkm1) |
---|
1765 | zto1(jl) = ptau(jl, knu, jkm1)/zw(jl) + ptauaz(jl, jkm1)/ppizaz(jl, & |
---|
1766 | jkm1) |
---|
1767 | zr21(jl) = ptau(jl, knu, jkm1) + ptauaz(jl, jkm1) |
---|
1768 | zr22(jl) = ptau(jl, knu, jkm1)/zr21(jl) |
---|
1769 | zgg(jl) = zr22(jl)*pcg(jl, knu, jkm1) + (1.-zr22(jl))*pcgaz(jl, jkm1) |
---|
1770 | ! Modif PhD - JJM 19/03/96 pour erreurs arrondis |
---|
1771 | ! machine |
---|
1772 | ! PHD PROTECTION ZW(JL) = ZR21(JL) / ZTO1(JL) |
---|
1773 | IF (zw(jl)==1. .AND. ppizaz(jl,jkm1)==1.) THEN |
---|
1774 | zw(jl) = 1. |
---|
1775 | ELSE |
---|
1776 | zw(jl) = zr21(jl)/zto1(jl) |
---|
1777 | END IF |
---|
1778 | zref(jl) = prefz(jl, 1, jkm1) |
---|
1779 | zrmuz(jl) = prmue(jl, jk) |
---|
1780 | END DO |
---|
1781 | |
---|
1782 | CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
---|
1783 | |
---|
1784 | DO jl = 1, kdlon |
---|
1785 | |
---|
1786 | prefz(jl, 1, jk) = (1.-zrneb(jl))*(pray1(jl,jkm1)+prefz(jl,1,jkm1)* & |
---|
1787 | ptra1(jl,jkm1)*ptra2(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1, & |
---|
1788 | jkm1))) + zrneb(jl)*zre2(jl) |
---|
1789 | |
---|
1790 | ztr(jl, 1, jkm1) = zrneb(jl)*ztr2(jl) + (ptra1(jl,jkm1)/(1.-pray2(jl, & |
---|
1791 | jkm1)*prefz(jl,1,jkm1)))*(1.-zrneb(jl)) |
---|
1792 | |
---|
1793 | prefz(jl, 2, jk) = (1.-zrneb(jl))*(pray1(jl,jkm1)+prefz(jl,2,jkm1)* & |
---|
1794 | ptra1(jl,jkm1)*ptra2(jl,jkm1)) + zrneb(jl)*zre1(jl) |
---|
1795 | |
---|
1796 | ztr(jl, 2, jkm1) = zrneb(jl)*ztr1(jl) + ptra1(jl, jkm1)*(1.-zrneb(jl)) |
---|
1797 | |
---|
1798 | END DO |
---|
1799 | END DO |
---|
1800 | DO jl = 1, kdlon |
---|
1801 | zmue = (1.-zc1i(jl,1))*psec(jl) + zc1i(jl, 1)*1.66 |
---|
1802 | prmue(jl, 1) = 1./zmue |
---|
1803 | END DO |
---|
1804 | |
---|
1805 | ! ------------------------------------------------------------------ |
---|
1806 | |
---|
1807 | ! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
1808 | ! ------------------------------------------------- |
---|
1809 | |
---|
1810 | |
---|
1811 | IF (knu==1) THEN |
---|
1812 | jaj = 2 |
---|
1813 | DO jl = 1, kdlon |
---|
1814 | prj(jl, jaj, kflev+1) = 1. |
---|
1815 | prk(jl, jaj, kflev+1) = prefz(jl, 1, kflev+1) |
---|
1816 | END DO |
---|
1817 | |
---|
1818 | DO jk = 1, kflev |
---|
1819 | jkl = kflev + 1 - jk |
---|
1820 | jklp1 = jkl + 1 |
---|
1821 | DO jl = 1, kdlon |
---|
1822 | zre11 = prj(jl, jaj, jklp1)*ztr(jl, 1, jkl) |
---|
1823 | prj(jl, jaj, jkl) = zre11 |
---|
1824 | prk(jl, jaj, jkl) = zre11*prefz(jl, 1, jkl) |
---|
1825 | END DO |
---|
1826 | END DO |
---|
1827 | |
---|
1828 | ELSE |
---|
1829 | |
---|
1830 | DO jaj = 1, 2 |
---|
1831 | DO jl = 1, kdlon |
---|
1832 | prj(jl, jaj, kflev+1) = 1. |
---|
1833 | prk(jl, jaj, kflev+1) = prefz(jl, jaj, kflev+1) |
---|
1834 | END DO |
---|
1835 | |
---|
1836 | DO jk = 1, kflev |
---|
1837 | jkl = kflev + 1 - jk |
---|
1838 | jklp1 = jkl + 1 |
---|
1839 | DO jl = 1, kdlon |
---|
1840 | zre11 = prj(jl, jaj, jklp1)*ztr(jl, jaj, jkl) |
---|
1841 | prj(jl, jaj, jkl) = zre11 |
---|
1842 | prk(jl, jaj, jkl) = zre11*prefz(jl, jaj, jkl) |
---|
1843 | END DO |
---|
1844 | END DO |
---|
1845 | END DO |
---|
1846 | |
---|
1847 | END IF |
---|
1848 | |
---|
1849 | ! ------------------------------------------------------------------ |
---|
1850 | |
---|
1851 | RETURN |
---|
1852 | END SUBROUTINE swr_lmdar4 |
---|
1853 | SUBROUTINE swde_lmdar4(pgg, pref, prmuz, pto1, pw, pre1, pre2, ptr1, ptr2) |
---|
1854 | USE dimphy |
---|
1855 | IMPLICIT NONE |
---|
1856 | |
---|
1857 | ! ------------------------------------------------------------------ |
---|
1858 | ! PURPOSE. |
---|
1859 | ! -------- |
---|
1860 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY OF A CLOUDY |
---|
1861 | ! LAYER USING THE DELTA-EDDINGTON'S APPROXIMATION. |
---|
1862 | |
---|
1863 | ! METHOD. |
---|
1864 | ! ------- |
---|
1865 | |
---|
1866 | ! STANDARD DELTA-EDDINGTON LAYER CALCULATIONS. |
---|
1867 | |
---|
1868 | ! REFERENCE. |
---|
1869 | ! ---------- |
---|
1870 | |
---|
1871 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
1872 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
1873 | |
---|
1874 | ! AUTHOR. |
---|
1875 | ! ------- |
---|
1876 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
1877 | |
---|
1878 | ! MODIFICATIONS. |
---|
1879 | ! -------------- |
---|
1880 | ! ORIGINAL : 88-12-15 |
---|
1881 | ! ------------------------------------------------------------------ |
---|
1882 | ! * ARGUMENTS: |
---|
1883 | |
---|
1884 | REAL (KIND=8) pgg(kdlon) ! ASSYMETRY FACTOR |
---|
1885 | REAL (KIND=8) pref(kdlon) ! REFLECTIVITY OF THE UNDERLYING LAYER |
---|
1886 | REAL (KIND=8) prmuz(kdlon) ! COSINE OF SOLAR ZENITH ANGLE |
---|
1887 | REAL (KIND=8) pto1(kdlon) ! OPTICAL THICKNESS |
---|
1888 | REAL (KIND=8) pw(kdlon) ! SINGLE SCATTERING ALBEDO |
---|
1889 | REAL (KIND=8) pre1(kdlon) ! LAYER REFLECTIVITY (NO UNDERLYING-LAYER REFLECTION) |
---|
1890 | REAL (KIND=8) pre2(kdlon) ! LAYER REFLECTIVITY |
---|
1891 | REAL (KIND=8) ptr1(kdlon) ! LAYER TRANSMISSIVITY (NO UNDERLYING-LAYER REFLECTION) |
---|
1892 | REAL (KIND=8) ptr2(kdlon) ! LAYER TRANSMISSIVITY |
---|
1893 | |
---|
1894 | ! * LOCAL VARIABLES: |
---|
1895 | |
---|
1896 | INTEGER jl |
---|
1897 | REAL (KIND=8) zff, zgp, ztop, zwcp, zdt, zx1, zwm |
---|
1898 | REAL (KIND=8) zrm2, zrk, zx2, zrp, zalpha, zbeta, zarg |
---|
1899 | REAL (KIND=8) zexmu0, zarg2, zexkp, zexkm, zxp2p, zxm2p, zap2b, zam2b |
---|
1900 | REAL (KIND=8) za11, za12, za13, za21, za22, za23 |
---|
1901 | REAL (KIND=8) zdena, zc1a, zc2a, zri0a, zri1a |
---|
1902 | REAL (KIND=8) zri0b, zri1b |
---|
1903 | REAL (KIND=8) zb21, zb22, zb23, zdenb, zc1b, zc2b |
---|
1904 | REAL (KIND=8) zri0c, zri1c, zri0d, zri1d |
---|
1905 | |
---|
1906 | ! ------------------------------------------------------------------ |
---|
1907 | |
---|
1908 | ! * 1. DELTA-EDDINGTON CALCULATIONS |
---|
1909 | |
---|
1910 | |
---|
1911 | DO jl = 1, kdlon |
---|
1912 | ! * 1.1 SET UP THE DELTA-MODIFIED PARAMETERS |
---|
1913 | |
---|
1914 | |
---|
1915 | zff = pgg(jl)*pgg(jl) |
---|
1916 | zgp = pgg(jl)/(1.+pgg(jl)) |
---|
1917 | ztop = (1.-pw(jl)*zff)*pto1(jl) |
---|
1918 | zwcp = (1-zff)*pw(jl)/(1.-pw(jl)*zff) |
---|
1919 | zdt = 2./3. |
---|
1920 | zx1 = 1. - zwcp*zgp |
---|
1921 | zwm = 1. - zwcp |
---|
1922 | zrm2 = prmuz(jl)*prmuz(jl) |
---|
1923 | zrk = sqrt(3.*zwm*zx1) |
---|
1924 | zx2 = 4.*(1.-zrk*zrk*zrm2) |
---|
1925 | zrp = zrk/zx1 |
---|
1926 | zalpha = 3.*zwcp*zrm2*(1.+zgp*zwm)/zx2 |
---|
1927 | zbeta = 3.*zwcp*prmuz(jl)*(1.+3.*zgp*zrm2*zwm)/zx2 |
---|
1928 | zarg = min(ztop/prmuz(jl), 200._8) |
---|
1929 | zexmu0 = exp(-zarg) |
---|
1930 | zarg2 = min(zrk*ztop, 200._8) |
---|
1931 | zexkp = exp(zarg2) |
---|
1932 | zexkm = 1./zexkp |
---|
1933 | zxp2p = 1. + zdt*zrp |
---|
1934 | zxm2p = 1. - zdt*zrp |
---|
1935 | zap2b = zalpha + zdt*zbeta |
---|
1936 | zam2b = zalpha - zdt*zbeta |
---|
1937 | |
---|
1938 | ! * 1.2 WITHOUT REFLECTION FROM THE UNDERLYING LAYER |
---|
1939 | |
---|
1940 | |
---|
1941 | za11 = zxp2p |
---|
1942 | za12 = zxm2p |
---|
1943 | za13 = zap2b |
---|
1944 | za22 = zxp2p*zexkp |
---|
1945 | za21 = zxm2p*zexkm |
---|
1946 | za23 = zam2b*zexmu0 |
---|
1947 | zdena = za11*za22 - za21*za12 |
---|
1948 | zc1a = (za22*za13-za12*za23)/zdena |
---|
1949 | zc2a = (za11*za23-za21*za13)/zdena |
---|
1950 | zri0a = zc1a + zc2a - zalpha |
---|
1951 | zri1a = zrp*(zc1a-zc2a) - zbeta |
---|
1952 | pre1(jl) = (zri0a-zdt*zri1a)/prmuz(jl) |
---|
1953 | zri0b = zc1a*zexkm + zc2a*zexkp - zalpha*zexmu0 |
---|
1954 | zri1b = zrp*(zc1a*zexkm-zc2a*zexkp) - zbeta*zexmu0 |
---|
1955 | ptr1(jl) = zexmu0 + (zri0b+zdt*zri1b)/prmuz(jl) |
---|
1956 | |
---|
1957 | ! * 1.3 WITH REFLECTION FROM THE UNDERLYING LAYER |
---|
1958 | |
---|
1959 | |
---|
1960 | zb21 = za21 - pref(jl)*zxp2p*zexkm |
---|
1961 | zb22 = za22 - pref(jl)*zxm2p*zexkp |
---|
1962 | zb23 = za23 - pref(jl)*zexmu0*(zap2b-prmuz(jl)) |
---|
1963 | zdenb = za11*zb22 - zb21*za12 |
---|
1964 | zc1b = (zb22*za13-za12*zb23)/zdenb |
---|
1965 | zc2b = (za11*zb23-zb21*za13)/zdenb |
---|
1966 | zri0c = zc1b + zc2b - zalpha |
---|
1967 | zri1c = zrp*(zc1b-zc2b) - zbeta |
---|
1968 | pre2(jl) = (zri0c-zdt*zri1c)/prmuz(jl) |
---|
1969 | zri0d = zc1b*zexkm + zc2b*zexkp - zalpha*zexmu0 |
---|
1970 | zri1d = zrp*(zc1b*zexkm-zc2b*zexkp) - zbeta*zexmu0 |
---|
1971 | ptr2(jl) = zexmu0 + (zri0d+zdt*zri1d)/prmuz(jl) |
---|
1972 | |
---|
1973 | END DO |
---|
1974 | RETURN |
---|
1975 | END SUBROUTINE swde_lmdar4 |
---|
1976 | SUBROUTINE swtt_lmdar4(knu, ka, pu, ptr) |
---|
1977 | USE dimphy |
---|
1978 | USE radiation_ar4_param, ONLY: apad, bpad, d |
---|
1979 | IMPLICIT NONE |
---|
1980 | |
---|
1981 | ! ----------------------------------------------------------------------- |
---|
1982 | ! PURPOSE. |
---|
1983 | ! -------- |
---|
1984 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
1985 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
---|
1986 | ! INTERVALS. |
---|
1987 | |
---|
1988 | ! METHOD. |
---|
1989 | ! ------- |
---|
1990 | |
---|
1991 | ! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
---|
1992 | ! AND HORNER'S ALGORITHM. |
---|
1993 | |
---|
1994 | ! REFERENCE. |
---|
1995 | ! ---------- |
---|
1996 | |
---|
1997 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
1998 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
1999 | |
---|
2000 | ! AUTHOR. |
---|
2001 | ! ------- |
---|
2002 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
2003 | |
---|
2004 | ! MODIFICATIONS. |
---|
2005 | ! -------------- |
---|
2006 | ! ORIGINAL : 88-12-15 |
---|
2007 | ! ----------------------------------------------------------------------- |
---|
2008 | |
---|
2009 | ! * ARGUMENTS |
---|
2010 | |
---|
2011 | INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
---|
2012 | INTEGER ka ! INDEX OF THE ABSORBER |
---|
2013 | REAL (KIND=8) pu(kdlon) ! ABSORBER AMOUNT |
---|
2014 | |
---|
2015 | REAL (KIND=8) ptr(kdlon) ! TRANSMISSION FUNCTION |
---|
2016 | |
---|
2017 | ! * LOCAL VARIABLES: |
---|
2018 | |
---|
2019 | REAL (KIND=8) zr1(kdlon), zr2(kdlon) |
---|
2020 | INTEGER jl, i, j |
---|
2021 | |
---|
2022 | ! ----------------------------------------------------------------------- |
---|
2023 | |
---|
2024 | ! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
---|
2025 | |
---|
2026 | |
---|
2027 | DO jl = 1, kdlon |
---|
2028 | zr1(jl) = apad(knu, ka, 1) + pu(jl)*(apad(knu,ka,2)+pu(jl)*(apad(knu,ka, & |
---|
2029 | 3)+pu(jl)*(apad(knu,ka,4)+pu(jl)*(apad(knu,ka,5)+pu(jl)*(apad(knu,ka,6) & |
---|
2030 | +pu(jl)*(apad(knu,ka,7))))))) |
---|
2031 | |
---|
2032 | zr2(jl) = bpad(knu, ka, 1) + pu(jl)*(bpad(knu,ka,2)+pu(jl)*(bpad(knu,ka, & |
---|
2033 | 3)+pu(jl)*(bpad(knu,ka,4)+pu(jl)*(bpad(knu,ka,5)+pu(jl)*(bpad(knu,ka,6) & |
---|
2034 | +pu(jl)*(bpad(knu,ka,7))))))) |
---|
2035 | |
---|
2036 | ! * 2. ADD THE BACKGROUND TRANSMISSION |
---|
2037 | |
---|
2038 | |
---|
2039 | |
---|
2040 | ptr(jl) = (zr1(jl)/zr2(jl))*(1.-d(knu,ka)) + d(knu, ka) |
---|
2041 | END DO |
---|
2042 | |
---|
2043 | RETURN |
---|
2044 | END SUBROUTINE swtt_lmdar4 |
---|
2045 | SUBROUTINE swtt1_lmdar4(knu, kabs, kind, pu, ptr) |
---|
2046 | USE dimphy |
---|
2047 | USE radiation_ar4_param, ONLY: apad, bpad, d |
---|
2048 | IMPLICIT NONE |
---|
2049 | |
---|
2050 | ! ----------------------------------------------------------------------- |
---|
2051 | ! PURPOSE. |
---|
2052 | ! -------- |
---|
2053 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
2054 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
---|
2055 | ! INTERVALS. |
---|
2056 | |
---|
2057 | ! METHOD. |
---|
2058 | ! ------- |
---|
2059 | |
---|
2060 | ! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
---|
2061 | ! AND HORNER'S ALGORITHM. |
---|
2062 | |
---|
2063 | ! REFERENCE. |
---|
2064 | ! ---------- |
---|
2065 | |
---|
2066 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
2067 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
2068 | |
---|
2069 | ! AUTHOR. |
---|
2070 | ! ------- |
---|
2071 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
2072 | |
---|
2073 | ! MODIFICATIONS. |
---|
2074 | ! -------------- |
---|
2075 | ! ORIGINAL : 95-01-20 |
---|
2076 | ! ----------------------------------------------------------------------- |
---|
2077 | ! * ARGUMENTS: |
---|
2078 | |
---|
2079 | INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
---|
2080 | INTEGER kabs ! NUMBER OF ABSORBERS |
---|
2081 | INTEGER kind(kabs) ! INDICES OF THE ABSORBERS |
---|
2082 | REAL (KIND=8) pu(kdlon, kabs) ! ABSORBER AMOUNT |
---|
2083 | |
---|
2084 | REAL (KIND=8) ptr(kdlon, kabs) ! TRANSMISSION FUNCTION |
---|
2085 | |
---|
2086 | ! * LOCAL VARIABLES: |
---|
2087 | |
---|
2088 | REAL (KIND=8) zr1(kdlon) |
---|
2089 | REAL (KIND=8) zr2(kdlon) |
---|
2090 | REAL (KIND=8) zu(kdlon) |
---|
2091 | INTEGER jl, ja, i, j, ia |
---|
2092 | |
---|
2093 | ! ----------------------------------------------------------------------- |
---|
2094 | |
---|
2095 | ! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
---|
2096 | |
---|
2097 | |
---|
2098 | DO ja = 1, kabs |
---|
2099 | ia = kind(ja) |
---|
2100 | DO jl = 1, kdlon |
---|
2101 | zu(jl) = pu(jl, ja) |
---|
2102 | zr1(jl) = apad(knu, ia, 1) + zu(jl)*(apad(knu,ia,2)+zu(jl)*(apad(knu, & |
---|
2103 | ia,3)+zu(jl)*(apad(knu,ia,4)+zu(jl)*(apad(knu,ia,5)+zu(jl)*(apad(knu, & |
---|
2104 | ia,6)+zu(jl)*(apad(knu,ia,7))))))) |
---|
2105 | |
---|
2106 | zr2(jl) = bpad(knu, ia, 1) + zu(jl)*(bpad(knu,ia,2)+zu(jl)*(bpad(knu, & |
---|
2107 | ia,3)+zu(jl)*(bpad(knu,ia,4)+zu(jl)*(bpad(knu,ia,5)+zu(jl)*(bpad(knu, & |
---|
2108 | ia,6)+zu(jl)*(bpad(knu,ia,7))))))) |
---|
2109 | |
---|
2110 | ! * 2. ADD THE BACKGROUND TRANSMISSION |
---|
2111 | |
---|
2112 | |
---|
2113 | ptr(jl, ja) = (zr1(jl)/zr2(jl))*(1.-d(knu,ia)) + d(knu, ia) |
---|
2114 | END DO |
---|
2115 | END DO |
---|
2116 | |
---|
2117 | RETURN |
---|
2118 | END SUBROUTINE swtt1_lmdar4 |
---|
2119 | ! IM ctes ds clesphys.h SUBROUTINE LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
---|
2120 | SUBROUTINE lw_lmdar4(ppmb, pdp, ppsol, pdt0, pemis, ptl, ptave, pwv, pozon, & |
---|
2121 | paer, pcldld, pcldlu, pview, pcolr, pcolr0, ptoplw, psollw, ptoplw0, & |
---|
2122 | psollw0, psollwdown, & ! IM . |
---|
2123 | ! psollwdown,psollwdownclr, |
---|
2124 | ! IM . ptoplwdown,ptoplwdownclr) |
---|
2125 | plwup, plwdn, plwup0, plwdn0) |
---|
2126 | USE raddimlw_mod_h |
---|
2127 | USE dimphy |
---|
2128 | USE print_control_mod, ONLY: lunout |
---|
2129 | USE yomcst_mod_h |
---|
2130 | IMPLICIT NONE |
---|
2131 | |
---|
2132 | |
---|
2133 | ! ----------------------------------------------------------------------- |
---|
2134 | ! METHOD. |
---|
2135 | ! ------- |
---|
2136 | |
---|
2137 | ! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
---|
2138 | ! ABSORBERS. |
---|
2139 | ! 2. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
---|
2140 | ! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
---|
2141 | ! 3. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
---|
2142 | ! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
---|
2143 | ! BOUNDARIES. |
---|
2144 | ! 4. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
---|
2145 | ! 5. INTRODUCES THE EFFECTS OF THE CLOUDS ON THE FLUXES. |
---|
2146 | |
---|
2147 | |
---|
2148 | ! REFERENCE. |
---|
2149 | ! ---------- |
---|
2150 | |
---|
2151 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
2152 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
2153 | |
---|
2154 | ! AUTHOR. |
---|
2155 | ! ------- |
---|
2156 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
2157 | |
---|
2158 | ! MODIFICATIONS. |
---|
2159 | ! -------------- |
---|
2160 | ! ORIGINAL : 89-07-14 |
---|
2161 | ! ----------------------------------------------------------------------- |
---|
2162 | ! IM ctes ds clesphys.h |
---|
2163 | ! REAL(KIND=8) RCO2 ! CO2 CONCENTRATION (IPCC:353.E-06* 44.011/28.97) |
---|
2164 | ! REAL(KIND=8) RCH4 ! CH4 CONCENTRATION (IPCC: 1.72E-06* 16.043/28.97) |
---|
2165 | ! REAL(KIND=8) RN2O ! N2O CONCENTRATION (IPCC: 310.E-09* 44.013/28.97) |
---|
2166 | ! REAL(KIND=8) RCFC11 ! CFC11 CONCENTRATION (IPCC: 280.E-12* |
---|
2167 | ! 137.3686/28.97) |
---|
2168 | ! REAL(KIND=8) RCFC12 ! CFC12 CONCENTRATION (IPCC: 484.E-12* |
---|
2169 | ! 120.9140/28.97) |
---|
2170 | REAL (KIND=8) pcldld(kdlon, kflev) ! DOWNWARD EFFECTIVE CLOUD COVER |
---|
2171 | REAL (KIND=8) pcldlu(kdlon, kflev) ! UPWARD EFFECTIVE CLOUD COVER |
---|
2172 | REAL (KIND=8) pdp(kdlon, kflev) ! LAYER PRESSURE THICKNESS (Pa) |
---|
2173 | REAL (KIND=8) pdt0(kdlon) ! SURFACE TEMPERATURE DISCONTINUITY (K) |
---|
2174 | REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
2175 | REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF LEVEL PRESSURE (mb) |
---|
2176 | REAL (KIND=8) ppsol(kdlon) ! SURFACE PRESSURE (Pa) |
---|
2177 | REAL (KIND=8) pozon(kdlon, kflev) ! O3 mass fraction |
---|
2178 | REAL (KIND=8) ptl(kdlon, kflev+1) ! HALF LEVEL TEMPERATURE (K) |
---|
2179 | REAL (KIND=8) paer(kdlon, kflev, 5) ! OPTICAL THICKNESS OF THE AEROSOLS |
---|
2180 | REAL (KIND=8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
---|
2181 | REAL (KIND=8) pview(kdlon) ! COSECANT OF VIEWING ANGLE |
---|
2182 | REAL (KIND=8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (kg/kg) |
---|
2183 | |
---|
2184 | REAL (KIND=8) pcolr(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) |
---|
2185 | REAL (KIND=8) pcolr0(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) clear-sky |
---|
2186 | REAL (KIND=8) ptoplw(kdlon) ! LONGWAVE FLUX AT T.O.A. |
---|
2187 | REAL (KIND=8) psollw(kdlon) ! LONGWAVE FLUX AT SURFACE |
---|
2188 | REAL (KIND=8) ptoplw0(kdlon) ! LONGWAVE FLUX AT T.O.A. (CLEAR-SKY) |
---|
2189 | REAL (KIND=8) psollw0(kdlon) ! LONGWAVE FLUX AT SURFACE (CLEAR-SKY) |
---|
2190 | ! Rajout LF |
---|
2191 | REAL (KIND=8) psollwdown(kdlon) ! LONGWAVE downwards flux at surface |
---|
2192 | ! Rajout IM |
---|
2193 | ! IM real(kind=8) psollwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
---|
2194 | ! surface |
---|
2195 | ! IM real(kind=8) ptoplwdown(kdlon) ! LONGWAVE downwards flux at |
---|
2196 | ! T.O.A. |
---|
2197 | ! IM real(kind=8) ptoplwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
---|
2198 | ! T.O.A. |
---|
2199 | ! IM |
---|
2200 | REAL (KIND=8) plwup(kdlon, kflev+1) ! LW up total sky |
---|
2201 | REAL (KIND=8) plwup0(kdlon, kflev+1) ! LW up clear sky |
---|
2202 | REAL (KIND=8) plwdn(kdlon, kflev+1) ! LW down total sky |
---|
2203 | REAL (KIND=8) plwdn0(kdlon, kflev+1) ! LW down clear sky |
---|
2204 | ! ------------------------------------------------------------------------- |
---|
2205 | REAL (KIND=8) zabcu(kdlon, nua, 3*kflev+1) |
---|
2206 | |
---|
2207 | REAL (KIND=8) zoz(kdlon, kflev) |
---|
2208 | ! equivalent pressure of ozone in a layer, in Pa |
---|
2209 | |
---|
2210 | ! ym REAL(KIND=8) ZFLUX(KDLON,2,KFLEV+1) ! RADIATIVE FLUXES (1:up; |
---|
2211 | ! 2:down) |
---|
2212 | ! ym REAL(KIND=8) ZFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
2213 | ! ym REAL(KIND=8) ZBINT(KDLON,KFLEV+1) ! Intermediate |
---|
2214 | ! variable |
---|
2215 | ! ym REAL(KIND=8) ZBSUI(KDLON) ! Intermediate |
---|
2216 | ! variable |
---|
2217 | ! ym REAL(KIND=8) ZCTS(KDLON,KFLEV) ! Intermediate |
---|
2218 | ! variable |
---|
2219 | ! ym REAL(KIND=8) ZCNTRB(KDLON,KFLEV+1,KFLEV+1) ! Intermediate |
---|
2220 | ! variable |
---|
2221 | ! ym SAVE ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB |
---|
2222 | REAL (KIND=8), ALLOCATABLE, SAVE :: zflux(:, :, :) ! RADIATIVE FLUXES (1:up; 2:down) |
---|
2223 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfluc(:, :, :) ! CLEAR-SKY RADIATIVE FLUXES |
---|
2224 | REAL (KIND=8), ALLOCATABLE, SAVE :: zbint(:, :) ! Intermediate variable |
---|
2225 | REAL (KIND=8), ALLOCATABLE, SAVE :: zbsui(:) ! Intermediate variable |
---|
2226 | REAL (KIND=8), ALLOCATABLE, SAVE :: zcts(:, :) ! Intermediate variable |
---|
2227 | REAL (KIND=8), ALLOCATABLE, SAVE :: zcntrb(:, :, :) ! Intermediate variable |
---|
2228 | !$OMP THREADPRIVATE(ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB) |
---|
2229 | |
---|
2230 | INTEGER ilim, i, k, kpl1 |
---|
2231 | |
---|
2232 | INTEGER lw0pas ! Every lw0pas steps, clear-sky is done |
---|
2233 | PARAMETER (lw0pas=1) |
---|
2234 | INTEGER lwpas ! Every lwpas steps, cloudy-sky is done |
---|
2235 | PARAMETER (lwpas=1) |
---|
2236 | |
---|
2237 | INTEGER itaplw0, itaplw |
---|
2238 | LOGICAL appel1er |
---|
2239 | SAVE appel1er, itaplw0, itaplw |
---|
2240 | !$OMP THREADPRIVATE(appel1er, itaplw0, itaplw) |
---|
2241 | DATA appel1er/.TRUE./ |
---|
2242 | DATA itaplw0, itaplw/0, 0/ |
---|
2243 | |
---|
2244 | ! ------------------------------------------------------------------ |
---|
2245 | IF (appel1er) THEN |
---|
2246 | WRITE (lunout, *) 'LW clear-sky calling frequency: ', lw0pas |
---|
2247 | WRITE (lunout, *) 'LW cloudy-sky calling frequency: ', lwpas |
---|
2248 | WRITE (lunout, *) ' In general, they should be 1' |
---|
2249 | ! ym |
---|
2250 | ALLOCATE (zflux(kdlon,2,kflev+1)) |
---|
2251 | ALLOCATE (zfluc(kdlon,2,kflev+1)) |
---|
2252 | ALLOCATE (zbint(kdlon,kflev+1)) |
---|
2253 | ALLOCATE (zbsui(kdlon)) |
---|
2254 | ALLOCATE (zcts(kdlon,kflev)) |
---|
2255 | ALLOCATE (zcntrb(kdlon,kflev+1,kflev+1)) |
---|
2256 | appel1er = .FALSE. |
---|
2257 | END IF |
---|
2258 | |
---|
2259 | IF (mod(itaplw0,lw0pas)==0) THEN |
---|
2260 | ! Compute equivalent pressure of ozone from mass fraction: |
---|
2261 | DO k = 1, kflev |
---|
2262 | DO i = 1, kdlon |
---|
2263 | zoz(i, k) = pozon(i, k)*pdp(i, k) |
---|
2264 | END DO |
---|
2265 | END DO |
---|
2266 | ! IM ctes ds clesphys.h CALL LWU(RCO2,RCH4, RN2O, RCFC11, RCFC12, |
---|
2267 | CALL lwu_lmdar4(paer, pdp, ppmb, ppsol, zoz, ptave, pview, pwv, zabcu) |
---|
2268 | CALL lwbv_lmdar4(ilim, pdp, pdt0, pemis, ppmb, ptl, ptave, zabcu, zfluc, & |
---|
2269 | zbint, zbsui, zcts, zcntrb) |
---|
2270 | itaplw0 = 0 |
---|
2271 | END IF |
---|
2272 | itaplw0 = itaplw0 + 1 |
---|
2273 | |
---|
2274 | IF (mod(itaplw,lwpas)==0) THEN |
---|
2275 | CALL lwc_lmdar4(ilim, pcldld, pcldlu, pemis, zfluc, zbint, zbsui, zcts, & |
---|
2276 | zcntrb, zflux) |
---|
2277 | itaplw = 0 |
---|
2278 | END IF |
---|
2279 | itaplw = itaplw + 1 |
---|
2280 | |
---|
2281 | DO k = 1, kflev |
---|
2282 | kpl1 = k + 1 |
---|
2283 | DO i = 1, kdlon |
---|
2284 | pcolr(i, k) = zflux(i, 1, kpl1) + zflux(i, 2, kpl1) - zflux(i, 1, k) - & |
---|
2285 | zflux(i, 2, k) |
---|
2286 | pcolr(i, k) = pcolr(i, k)*rday*rg/rcpd/pdp(i, k) |
---|
2287 | pcolr0(i, k) = zfluc(i, 1, kpl1) + zfluc(i, 2, kpl1) - zfluc(i, 1, k) - & |
---|
2288 | zfluc(i, 2, k) |
---|
2289 | pcolr0(i, k) = pcolr0(i, k)*rday*rg/rcpd/pdp(i, k) |
---|
2290 | END DO |
---|
2291 | END DO |
---|
2292 | DO i = 1, kdlon |
---|
2293 | psollw(i) = -zflux(i, 1, 1) - zflux(i, 2, 1) |
---|
2294 | ptoplw(i) = zflux(i, 1, kflev+1) + zflux(i, 2, kflev+1) |
---|
2295 | |
---|
2296 | psollw0(i) = -zfluc(i, 1, 1) - zfluc(i, 2, 1) |
---|
2297 | ptoplw0(i) = zfluc(i, 1, kflev+1) + zfluc(i, 2, kflev+1) |
---|
2298 | psollwdown(i) = -zflux(i, 2, 1) |
---|
2299 | |
---|
2300 | ! IM attention aux signes !; LWtop >0, LWdn < 0 |
---|
2301 | DO k = 1, kflev + 1 |
---|
2302 | plwup(i, k) = zflux(i, 1, k) |
---|
2303 | plwup0(i, k) = zfluc(i, 1, k) |
---|
2304 | plwdn(i, k) = zflux(i, 2, k) |
---|
2305 | plwdn0(i, k) = zfluc(i, 2, k) |
---|
2306 | END DO |
---|
2307 | END DO |
---|
2308 | ! ------------------------------------------------------------------ |
---|
2309 | RETURN |
---|
2310 | END SUBROUTINE lw_lmdar4 |
---|
2311 | ! IM ctes ds clesphys.h SUBROUTINE LWU(RCO2, RCH4, RN2O, RCFC11, RCFC12, |
---|
2312 | SUBROUTINE lwu_lmdar4(paer, pdp, ppmb, ppsol, poz, ptave, pview, pwv, pabcu) |
---|
2313 | USE radopt_mod_h |
---|
2314 | USE radepsi_mod_h |
---|
2315 | USE raddimlw_mod_h |
---|
2316 | USE clesphys_mod_h |
---|
2317 | USE dimphy |
---|
2318 | USE radiation_ar4_param, ONLY: tref, rt1, raer, at, bt, oct |
---|
2319 | USE infotrac_phy, ONLY: type_trac |
---|
2320 | USE lmdz_reprobus_wrappers, ONLY: rch42d, rn2o2d, rcfc112d, rcfc122d, ok_rtime2d |
---|
2321 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
2322 | |
---|
2323 | USE yomcst_mod_h |
---|
2324 | IMPLICIT NONE |
---|
2325 | |
---|
2326 | |
---|
2327 | ! PURPOSE. |
---|
2328 | ! -------- |
---|
2329 | ! COMPUTES ABSORBER AMOUNTS INCLUDING PRESSURE AND |
---|
2330 | ! TEMPERATURE EFFECTS |
---|
2331 | |
---|
2332 | ! METHOD. |
---|
2333 | ! ------- |
---|
2334 | |
---|
2335 | ! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
---|
2336 | ! ABSORBERS. |
---|
2337 | |
---|
2338 | |
---|
2339 | ! REFERENCE. |
---|
2340 | ! ---------- |
---|
2341 | |
---|
2342 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
2343 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
2344 | |
---|
2345 | ! AUTHOR. |
---|
2346 | ! ------- |
---|
2347 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
2348 | |
---|
2349 | ! MODIFICATIONS. |
---|
2350 | ! -------------- |
---|
2351 | ! ORIGINAL : 89-07-14 |
---|
2352 | ! Voigt lines (loop 404 modified) - JJM & PhD - 01/96 |
---|
2353 | ! ----------------------------------------------------------------------- |
---|
2354 | ! * ARGUMENTS: |
---|
2355 | ! IM ctes ds clesphys.h |
---|
2356 | ! REAL(KIND=8) RCO2 |
---|
2357 | ! REAL(KIND=8) RCH4, RN2O, RCFC11, RCFC12 |
---|
2358 | REAL (KIND=8) paer(kdlon, kflev, 5) |
---|
2359 | REAL (KIND=8) pdp(kdlon, kflev) |
---|
2360 | REAL (KIND=8) ppmb(kdlon, kflev+1) |
---|
2361 | REAL (KIND=8) ppsol(kdlon) |
---|
2362 | REAL (KIND=8) poz(kdlon, kflev) |
---|
2363 | REAL (KIND=8) ptave(kdlon, kflev) |
---|
2364 | REAL (KIND=8) pview(kdlon) |
---|
2365 | REAL (KIND=8) pwv(kdlon, kflev) |
---|
2366 | |
---|
2367 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! EFFECTIVE ABSORBER AMOUNTS |
---|
2368 | |
---|
2369 | ! ----------------------------------------------------------------------- |
---|
2370 | ! * LOCAL VARIABLES: |
---|
2371 | REAL (KIND=8) zably(kdlon, nua, 3*kflev+1) |
---|
2372 | REAL (KIND=8) zduc(kdlon, 3*kflev+1) |
---|
2373 | REAL (KIND=8) zphio(kdlon) |
---|
2374 | REAL (KIND=8) zpsc2(kdlon) |
---|
2375 | REAL (KIND=8) zpsc3(kdlon) |
---|
2376 | REAL (KIND=8) zpsh1(kdlon) |
---|
2377 | REAL (KIND=8) zpsh2(kdlon) |
---|
2378 | REAL (KIND=8) zpsh3(kdlon) |
---|
2379 | REAL (KIND=8) zpsh4(kdlon) |
---|
2380 | REAL (KIND=8) zpsh5(kdlon) |
---|
2381 | REAL (KIND=8) zpsh6(kdlon) |
---|
2382 | REAL (KIND=8) zpsio(kdlon) |
---|
2383 | REAL (KIND=8) ztcon(kdlon) |
---|
2384 | REAL (KIND=8) zphm6(kdlon) |
---|
2385 | REAL (KIND=8) zpsm6(kdlon) |
---|
2386 | REAL (KIND=8) zphn6(kdlon) |
---|
2387 | REAL (KIND=8) zpsn6(kdlon) |
---|
2388 | REAL (KIND=8) zssig(kdlon, 3*kflev+1) |
---|
2389 | REAL (KIND=8) ztavi(kdlon) |
---|
2390 | REAL (KIND=8) zuaer(kdlon, ninter) |
---|
2391 | REAL (KIND=8) zxoz(kdlon) |
---|
2392 | REAL (KIND=8) zxwv(kdlon) |
---|
2393 | |
---|
2394 | INTEGER jl, jk, jkj, jkjr, jkjp, ig1 |
---|
2395 | INTEGER jki, jkip1, ja, jj |
---|
2396 | INTEGER jkl, jkp1, jkk, jkjpn |
---|
2397 | INTEGER jae1, jae2, jae3, jae, jjpn |
---|
2398 | INTEGER ir, jc, jcp1 |
---|
2399 | REAL (KIND=8) zdpm, zupm, zupmh2o, zupmco2, zupmo3, zu6, zup |
---|
2400 | REAL (KIND=8) zfppw, ztx, ztx2, zzably |
---|
2401 | REAL (KIND=8) zcah1, zcbh1, zcah2, zcbh2, zcah3, zcbh3 |
---|
2402 | REAL (KIND=8) zcah4, zcbh4, zcah5, zcbh5, zcah6, zcbh6 |
---|
2403 | REAL (KIND=8) zcac8, zcbc8 |
---|
2404 | REAL (KIND=8) zalup, zdiff |
---|
2405 | |
---|
2406 | REAL (KIND=8) pvgco2, pvgh2o, pvgo3 |
---|
2407 | |
---|
2408 | REAL (KIND=8) r10e ! DECIMAL/NATURAL LOG.FACTOR |
---|
2409 | PARAMETER (r10e=0.4342945) |
---|
2410 | |
---|
2411 | ! ----------------------------------------------------------------------- |
---|
2412 | |
---|
2413 | IF (levoigt) THEN |
---|
2414 | pvgco2 = 60. |
---|
2415 | pvgh2o = 30. |
---|
2416 | pvgo3 = 400. |
---|
2417 | ELSE |
---|
2418 | pvgco2 = 0. |
---|
2419 | pvgh2o = 0. |
---|
2420 | pvgo3 = 0. |
---|
2421 | END IF |
---|
2422 | |
---|
2423 | ! * 2. PRESSURE OVER GAUSS SUB-LEVELS |
---|
2424 | ! ------------------------------ |
---|
2425 | |
---|
2426 | |
---|
2427 | DO jl = 1, kdlon |
---|
2428 | zssig(jl, 1) = ppmb(jl, 1)*100. |
---|
2429 | END DO |
---|
2430 | |
---|
2431 | DO jk = 1, kflev |
---|
2432 | jkj = (jk-1)*ng1p1 + 1 |
---|
2433 | jkjr = jkj |
---|
2434 | jkjp = jkj + ng1p1 |
---|
2435 | DO jl = 1, kdlon |
---|
2436 | zssig(jl, jkjp) = ppmb(jl, jk+1)*100. |
---|
2437 | END DO |
---|
2438 | DO ig1 = 1, ng1 |
---|
2439 | jkj = jkj + 1 |
---|
2440 | DO jl = 1, kdlon |
---|
2441 | zssig(jl, jkj) = (zssig(jl,jkjr)+zssig(jl,jkjp))*0.5 + & |
---|
2442 | rt1(ig1)*(zssig(jl,jkjp)-zssig(jl,jkjr))*0.5 |
---|
2443 | END DO |
---|
2444 | END DO |
---|
2445 | END DO |
---|
2446 | |
---|
2447 | ! ----------------------------------------------------------------------- |
---|
2448 | |
---|
2449 | |
---|
2450 | ! * 4. PRESSURE THICKNESS AND MEAN PRESSURE OF SUB-LAYERS |
---|
2451 | ! -------------------------------------------------- |
---|
2452 | |
---|
2453 | |
---|
2454 | DO jki = 1, 3*kflev |
---|
2455 | jkip1 = jki + 1 |
---|
2456 | DO jl = 1, kdlon |
---|
2457 | zably(jl, 5, jki) = (zssig(jl,jki)+zssig(jl,jkip1))*0.5 |
---|
2458 | zably(jl, 3, jki) = (zssig(jl,jki)-zssig(jl,jkip1))/(10.*rg) |
---|
2459 | END DO |
---|
2460 | END DO |
---|
2461 | |
---|
2462 | DO jk = 1, kflev |
---|
2463 | jkp1 = jk + 1 |
---|
2464 | jkl = kflev + 1 - jk |
---|
2465 | DO jl = 1, kdlon |
---|
2466 | zxwv(jl) = max(pwv(jl,jk), zepscq) |
---|
2467 | zxoz(jl) = max(poz(jl,jk)/pdp(jl,jk), zepsco) |
---|
2468 | END DO |
---|
2469 | jkj = (jk-1)*ng1p1 + 1 |
---|
2470 | jkjpn = jkj + ng1 |
---|
2471 | DO jkk = jkj, jkjpn |
---|
2472 | DO jl = 1, kdlon |
---|
2473 | zdpm = zably(jl, 3, jkk) |
---|
2474 | zupm = zably(jl, 5, jkk)*zdpm/101325. |
---|
2475 | zupmco2 = (zably(jl,5,jkk)+pvgco2)*zdpm/101325. |
---|
2476 | zupmh2o = (zably(jl,5,jkk)+pvgh2o)*zdpm/101325. |
---|
2477 | zupmo3 = (zably(jl,5,jkk)+pvgo3)*zdpm/101325. |
---|
2478 | zduc(jl, jkk) = zdpm |
---|
2479 | zably(jl, 12, jkk) = zxoz(jl)*zdpm |
---|
2480 | zably(jl, 13, jkk) = zxoz(jl)*zupmo3 |
---|
2481 | zu6 = zxwv(jl)*zupm |
---|
2482 | zfppw = 1.6078*zxwv(jl)/(1.+0.608*zxwv(jl)) |
---|
2483 | zably(jl, 6, jkk) = zxwv(jl)*zupmh2o |
---|
2484 | zably(jl, 11, jkk) = zu6*zfppw |
---|
2485 | zably(jl, 10, jkk) = zu6*(1.-zfppw) |
---|
2486 | zably(jl, 9, jkk) = rco2*zupmco2 |
---|
2487 | zably(jl, 8, jkk) = rco2*zdpm |
---|
2488 | END DO |
---|
2489 | END DO |
---|
2490 | END DO |
---|
2491 | |
---|
2492 | ! ----------------------------------------------------------------------- |
---|
2493 | |
---|
2494 | |
---|
2495 | ! * 5. CUMULATIVE ABSORBER AMOUNTS FROM TOP OF ATMOSPHERE |
---|
2496 | ! -------------------------------------------------- |
---|
2497 | |
---|
2498 | |
---|
2499 | DO ja = 1, nua |
---|
2500 | DO jl = 1, kdlon |
---|
2501 | pabcu(jl, ja, 3*kflev+1) = 0. |
---|
2502 | END DO |
---|
2503 | END DO |
---|
2504 | |
---|
2505 | DO jk = 1, kflev |
---|
2506 | jj = (jk-1)*ng1p1 + 1 |
---|
2507 | jjpn = jj + ng1 |
---|
2508 | jkl = kflev + 1 - jk |
---|
2509 | |
---|
2510 | ! * 5.1 CUMULATIVE AEROSOL AMOUNTS FROM TOP OF ATMOSPHERE |
---|
2511 | ! -------------------------------------------------- |
---|
2512 | |
---|
2513 | |
---|
2514 | jae1 = 3*kflev + 1 - jj |
---|
2515 | jae2 = 3*kflev + 1 - (jj+1) |
---|
2516 | jae3 = 3*kflev + 1 - jjpn |
---|
2517 | DO jae = 1, 5 |
---|
2518 | DO jl = 1, kdlon |
---|
2519 | zuaer(jl, jae) = (raer(jae,1)*paer(jl,jkl,1)+raer(jae,2)*paer(jl,jkl, & |
---|
2520 | 2)+raer(jae,3)*paer(jl,jkl,3)+raer(jae,4)*paer(jl,jkl,4)+ & |
---|
2521 | raer(jae,5)*paer(jl,jkl,5))/(zduc(jl,jae1)+zduc(jl,jae2)+zduc(jl, & |
---|
2522 | jae3)) |
---|
2523 | END DO |
---|
2524 | END DO |
---|
2525 | |
---|
2526 | ! * 5.2 INTRODUCES TEMPERATURE EFFECTS ON ABSORBER AMOUNTS |
---|
2527 | ! -------------------------------------------------- |
---|
2528 | |
---|
2529 | |
---|
2530 | DO jl = 1, kdlon |
---|
2531 | ztavi(jl) = ptave(jl, jkl) |
---|
2532 | ztcon(jl) = exp(6.08*(296./ztavi(jl)-1.)) |
---|
2533 | ztx = ztavi(jl) - tref |
---|
2534 | ztx2 = ztx*ztx |
---|
2535 | zzably = zably(jl, 6, jae1) + zably(jl, 6, jae2) + zably(jl, 6, jae3) |
---|
2536 | zup = min(max(0.5*r10e*log(zzably)+5.,0._8), 6._8) |
---|
2537 | zcah1 = at(1, 1) + zup*(at(1,2)+zup*(at(1,3))) |
---|
2538 | zcbh1 = bt(1, 1) + zup*(bt(1,2)+zup*(bt(1,3))) |
---|
2539 | zpsh1(jl) = exp(zcah1*ztx+zcbh1*ztx2) |
---|
2540 | zcah2 = at(2, 1) + zup*(at(2,2)+zup*(at(2,3))) |
---|
2541 | zcbh2 = bt(2, 1) + zup*(bt(2,2)+zup*(bt(2,3))) |
---|
2542 | zpsh2(jl) = exp(zcah2*ztx+zcbh2*ztx2) |
---|
2543 | zcah3 = at(3, 1) + zup*(at(3,2)+zup*(at(3,3))) |
---|
2544 | zcbh3 = bt(3, 1) + zup*(bt(3,2)+zup*(bt(3,3))) |
---|
2545 | zpsh3(jl) = exp(zcah3*ztx+zcbh3*ztx2) |
---|
2546 | zcah4 = at(4, 1) + zup*(at(4,2)+zup*(at(4,3))) |
---|
2547 | zcbh4 = bt(4, 1) + zup*(bt(4,2)+zup*(bt(4,3))) |
---|
2548 | zpsh4(jl) = exp(zcah4*ztx+zcbh4*ztx2) |
---|
2549 | zcah5 = at(5, 1) + zup*(at(5,2)+zup*(at(5,3))) |
---|
2550 | zcbh5 = bt(5, 1) + zup*(bt(5,2)+zup*(bt(5,3))) |
---|
2551 | zpsh5(jl) = exp(zcah5*ztx+zcbh5*ztx2) |
---|
2552 | zcah6 = at(6, 1) + zup*(at(6,2)+zup*(at(6,3))) |
---|
2553 | zcbh6 = bt(6, 1) + zup*(bt(6,2)+zup*(bt(6,3))) |
---|
2554 | zpsh6(jl) = exp(zcah6*ztx+zcbh6*ztx2) |
---|
2555 | zphm6(jl) = exp(-5.81E-4*ztx-1.13E-6*ztx2) |
---|
2556 | zpsm6(jl) = exp(-5.57E-4*ztx-3.30E-6*ztx2) |
---|
2557 | zphn6(jl) = exp(-3.46E-5*ztx+2.05E-7*ztx2) |
---|
2558 | zpsn6(jl) = exp(3.70E-3*ztx-2.30E-6*ztx2) |
---|
2559 | END DO |
---|
2560 | |
---|
2561 | DO jl = 1, kdlon |
---|
2562 | ztavi(jl) = ptave(jl, jkl) |
---|
2563 | ztx = ztavi(jl) - tref |
---|
2564 | ztx2 = ztx*ztx |
---|
2565 | zzably = zably(jl, 9, jae1) + zably(jl, 9, jae2) + zably(jl, 9, jae3) |
---|
2566 | zalup = r10e*log(zzably) |
---|
2567 | zup = max(0._8, 5.0+0.5*zalup) |
---|
2568 | zpsc2(jl) = (ztavi(jl)/tref)**zup |
---|
2569 | zcac8 = at(8, 1) + zup*(at(8,2)+zup*(at(8,3))) |
---|
2570 | zcbc8 = bt(8, 1) + zup*(bt(8,2)+zup*(bt(8,3))) |
---|
2571 | zpsc3(jl) = exp(zcac8*ztx+zcbc8*ztx2) |
---|
2572 | zphio(jl) = exp(oct(1)*ztx+oct(2)*ztx2) |
---|
2573 | zpsio(jl) = exp(2.*(oct(3)*ztx+oct(4)*ztx2)) |
---|
2574 | END DO |
---|
2575 | |
---|
2576 | DO jkk = jj, jjpn |
---|
2577 | jc = 3*kflev + 1 - jkk |
---|
2578 | jcp1 = jc + 1 |
---|
2579 | DO jl = 1, kdlon |
---|
2580 | zdiff = pview(jl) |
---|
2581 | pabcu(jl, 10, jc) = pabcu(jl, 10, jcp1) + zably(jl, 10, jc)*zdiff |
---|
2582 | pabcu(jl, 11, jc) = pabcu(jl, 11, jcp1) + zably(jl, 11, jc)*ztcon(jl) & |
---|
2583 | *zdiff |
---|
2584 | |
---|
2585 | pabcu(jl, 12, jc) = pabcu(jl, 12, jcp1) + zably(jl, 12, jc)*zphio(jl) & |
---|
2586 | *zdiff |
---|
2587 | pabcu(jl, 13, jc) = pabcu(jl, 13, jcp1) + zably(jl, 13, jc)*zpsio(jl) & |
---|
2588 | *zdiff |
---|
2589 | |
---|
2590 | pabcu(jl, 7, jc) = pabcu(jl, 7, jcp1) + zably(jl, 9, jc)*zpsc2(jl)* & |
---|
2591 | zdiff |
---|
2592 | pabcu(jl, 8, jc) = pabcu(jl, 8, jcp1) + zably(jl, 9, jc)*zpsc3(jl)* & |
---|
2593 | zdiff |
---|
2594 | pabcu(jl, 9, jc) = pabcu(jl, 9, jcp1) + zably(jl, 9, jc)*zpsc3(jl)* & |
---|
2595 | zdiff |
---|
2596 | |
---|
2597 | pabcu(jl, 1, jc) = pabcu(jl, 1, jcp1) + zably(jl, 6, jc)*zpsh1(jl)* & |
---|
2598 | zdiff |
---|
2599 | pabcu(jl, 2, jc) = pabcu(jl, 2, jcp1) + zably(jl, 6, jc)*zpsh2(jl)* & |
---|
2600 | zdiff |
---|
2601 | pabcu(jl, 3, jc) = pabcu(jl, 3, jcp1) + zably(jl, 6, jc)*zpsh5(jl)* & |
---|
2602 | zdiff |
---|
2603 | pabcu(jl, 4, jc) = pabcu(jl, 4, jcp1) + zably(jl, 6, jc)*zpsh3(jl)* & |
---|
2604 | zdiff |
---|
2605 | pabcu(jl, 5, jc) = pabcu(jl, 5, jcp1) + zably(jl, 6, jc)*zpsh4(jl)* & |
---|
2606 | zdiff |
---|
2607 | pabcu(jl, 6, jc) = pabcu(jl, 6, jcp1) + zably(jl, 6, jc)*zpsh6(jl)* & |
---|
2608 | zdiff |
---|
2609 | |
---|
2610 | pabcu(jl, 14, jc) = pabcu(jl, 14, jcp1) + zuaer(jl, 1)*zduc(jl, jc)* & |
---|
2611 | zdiff |
---|
2612 | pabcu(jl, 15, jc) = pabcu(jl, 15, jcp1) + zuaer(jl, 2)*zduc(jl, jc)* & |
---|
2613 | zdiff |
---|
2614 | pabcu(jl, 16, jc) = pabcu(jl, 16, jcp1) + zuaer(jl, 3)*zduc(jl, jc)* & |
---|
2615 | zdiff |
---|
2616 | pabcu(jl, 17, jc) = pabcu(jl, 17, jcp1) + zuaer(jl, 4)*zduc(jl, jc)* & |
---|
2617 | zdiff |
---|
2618 | pabcu(jl, 18, jc) = pabcu(jl, 18, jcp1) + zuaer(jl, 5)*zduc(jl, jc)* & |
---|
2619 | zdiff |
---|
2620 | |
---|
2621 | |
---|
2622 | |
---|
2623 | IF (type_trac=='repr') THEN |
---|
2624 | IF (CPPKEY_REPROBUS) THEN |
---|
2625 | IF (ok_rtime2d) THEN |
---|
2626 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
2627 | zably(jl, 8, jc)*rch42d(jl, jc)/rco2*zphm6(jl)*zdiff |
---|
2628 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
2629 | zably(jl, 9, jc)*rch42d(jl, jc)/rco2*zpsm6(jl)*zdiff |
---|
2630 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
2631 | zably(jl, 8, jc)*rn2o2d(jl, jc)/rco2*zphn6(jl)*zdiff |
---|
2632 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
2633 | zably(jl, 9, jc)*rn2o2d(jl, jc)/rco2*zpsn6(jl)*zdiff |
---|
2634 | |
---|
2635 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
2636 | zably(jl, 8, jc)*rcfc112d(jl, jc)/rco2*zdiff |
---|
2637 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
2638 | zably(jl, 8, jc)*rcfc122d(jl, jc)/rco2*zdiff |
---|
2639 | ELSE |
---|
2640 | ! Same calculation as for type_trac /= repr |
---|
2641 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
2642 | zably(jl, 8, jc)*rch4/rco2*zphm6(jl)*zdiff |
---|
2643 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
2644 | zably(jl, 9, jc)*rch4/rco2*zpsm6(jl)*zdiff |
---|
2645 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
2646 | zably(jl, 8, jc)*rn2o/rco2*zphn6(jl)*zdiff |
---|
2647 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
2648 | zably(jl, 9, jc)*rn2o/rco2*zpsn6(jl)*zdiff |
---|
2649 | |
---|
2650 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
2651 | zably(jl, 8, jc)*rcfc11/rco2*zdiff |
---|
2652 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
2653 | zably(jl, 8, jc)*rcfc12/rco2*zdiff |
---|
2654 | END IF |
---|
2655 | END IF |
---|
2656 | ELSE |
---|
2657 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
2658 | zably(jl, 8, jc)*rch4/rco2*zphm6(jl)*zdiff |
---|
2659 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
2660 | zably(jl, 9, jc)*rch4/rco2*zpsm6(jl)*zdiff |
---|
2661 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
2662 | zably(jl, 8, jc)*rn2o/rco2*zphn6(jl)*zdiff |
---|
2663 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
2664 | zably(jl, 9, jc)*rn2o/rco2*zpsn6(jl)*zdiff |
---|
2665 | |
---|
2666 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
2667 | zably(jl, 8, jc)*rcfc11/rco2*zdiff |
---|
2668 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
2669 | zably(jl, 8, jc)*rcfc12/rco2*zdiff |
---|
2670 | END IF |
---|
2671 | |
---|
2672 | END DO |
---|
2673 | END DO |
---|
2674 | |
---|
2675 | END DO |
---|
2676 | |
---|
2677 | |
---|
2678 | RETURN |
---|
2679 | END SUBROUTINE lwu_lmdar4 |
---|
2680 | SUBROUTINE lwbv_lmdar4(klim, pdp, pdt0, pemis, ppmb, ptl, ptave, pabcu, & |
---|
2681 | pfluc, pbint, pbsui, pcts, pcntrb) |
---|
2682 | USE raddimlw_mod_h |
---|
2683 | USE dimphy |
---|
2684 | USE yomcst_mod_h |
---|
2685 | IMPLICIT NONE |
---|
2686 | |
---|
2687 | |
---|
2688 | ! PURPOSE. |
---|
2689 | ! -------- |
---|
2690 | ! TO COMPUTE THE PLANCK FUNCTION AND PERFORM THE |
---|
2691 | ! VERTICAL INTEGRATION. SPLIT OUT FROM LW FOR MEMORY |
---|
2692 | ! SAVING |
---|
2693 | |
---|
2694 | ! METHOD. |
---|
2695 | ! ------- |
---|
2696 | |
---|
2697 | ! 1. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
---|
2698 | ! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
---|
2699 | ! 2. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
---|
2700 | ! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
---|
2701 | ! BOUNDARIES. |
---|
2702 | ! 3. COMPUTES THE CLEAR-SKY COOLING RATES. |
---|
2703 | |
---|
2704 | ! REFERENCE. |
---|
2705 | ! ---------- |
---|
2706 | |
---|
2707 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
2708 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
2709 | |
---|
2710 | ! AUTHOR. |
---|
2711 | ! ------- |
---|
2712 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
2713 | |
---|
2714 | ! MODIFICATIONS. |
---|
2715 | ! -------------- |
---|
2716 | ! ORIGINAL : 89-07-14 |
---|
2717 | ! MODIFICATION : 93-10-15 M.HAMRUD (SPLIT OUT FROM LW TO SAVE |
---|
2718 | ! MEMORY) |
---|
2719 | ! ----------------------------------------------------------------------- |
---|
2720 | ! * ARGUMENTS: |
---|
2721 | INTEGER klim |
---|
2722 | |
---|
2723 | REAL (KIND=8) pdp(kdlon, kflev) |
---|
2724 | REAL (KIND=8) pdt0(kdlon) |
---|
2725 | REAL (KIND=8) pemis(kdlon) |
---|
2726 | REAL (KIND=8) ppmb(kdlon, kflev+1) |
---|
2727 | REAL (KIND=8) ptl(kdlon, kflev+1) |
---|
2728 | REAL (KIND=8) ptave(kdlon, kflev) |
---|
2729 | |
---|
2730 | REAL (KIND=8) pfluc(kdlon, 2, kflev+1) |
---|
2731 | |
---|
2732 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) |
---|
2733 | REAL (KIND=8) pbint(kdlon, kflev+1) |
---|
2734 | REAL (KIND=8) pbsui(kdlon) |
---|
2735 | REAL (KIND=8) pcts(kdlon, kflev) |
---|
2736 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) |
---|
2737 | |
---|
2738 | ! ------------------------------------------------------------------------- |
---|
2739 | |
---|
2740 | ! * LOCAL VARIABLES: |
---|
2741 | REAL (KIND=8) zb(kdlon, ninter, kflev+1) |
---|
2742 | REAL (KIND=8) zbsur(kdlon, ninter) |
---|
2743 | REAL (KIND=8) zbtop(kdlon, ninter) |
---|
2744 | REAL (KIND=8) zdbsl(kdlon, ninter, kflev*2) |
---|
2745 | REAL (KIND=8) zga(kdlon, 8, 2, kflev) |
---|
2746 | REAL (KIND=8) zgb(kdlon, 8, 2, kflev) |
---|
2747 | REAL (KIND=8) zgasur(kdlon, 8, 2) |
---|
2748 | REAL (KIND=8) zgbsur(kdlon, 8, 2) |
---|
2749 | REAL (KIND=8) zgatop(kdlon, 8, 2) |
---|
2750 | REAL (KIND=8) zgbtop(kdlon, 8, 2) |
---|
2751 | |
---|
2752 | INTEGER nuaer, ntraer |
---|
2753 | ! ------------------------------------------------------------------ |
---|
2754 | ! * COMPUTES PLANCK FUNCTIONS: |
---|
2755 | CALL lwb_lmdar4(pdt0, ptave, ptl, zb, pbint, pbsui, zbsur, zbtop, zdbsl, & |
---|
2756 | zga, zgb, zgasur, zgbsur, zgatop, zgbtop) |
---|
2757 | ! ------------------------------------------------------------------ |
---|
2758 | ! * PERFORMS THE VERTICAL INTEGRATION: |
---|
2759 | nuaer = nua |
---|
2760 | ntraer = ntra |
---|
2761 | CALL lwv_lmdar4(nuaer, ntraer, klim, pabcu, zb, pbint, pbsui, zbsur, zbtop, & |
---|
2762 | zdbsl, pemis, ppmb, ptave, zga, zgb, zgasur, zgbsur, zgatop, zgbtop, & |
---|
2763 | pcntrb, pcts, pfluc) |
---|
2764 | ! ------------------------------------------------------------------ |
---|
2765 | RETURN |
---|
2766 | END SUBROUTINE lwbv_lmdar4 |
---|
2767 | SUBROUTINE lwc_lmdar4(klim, pcldld, pcldlu, pemis, pfluc, pbint, pbsuin, & |
---|
2768 | pcts, pcntrb, pflux) |
---|
2769 | USE radopt_mod_h |
---|
2770 | USE radepsi_mod_h |
---|
2771 | USE dimphy |
---|
2772 | IMPLICIT NONE |
---|
2773 | |
---|
2774 | ! PURPOSE. |
---|
2775 | ! -------- |
---|
2776 | ! INTRODUCES CLOUD EFFECTS ON LONGWAVE FLUXES OR |
---|
2777 | ! RADIANCES |
---|
2778 | |
---|
2779 | ! EXPLICIT ARGUMENTS : |
---|
2780 | ! -------------------- |
---|
2781 | ! ==== INPUTS === |
---|
2782 | ! PBINT : (KDLON,0:KFLEV) ; HALF LEVEL PLANCK FUNCTION |
---|
2783 | ! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
---|
2784 | ! PCLDLD : (KDLON,KFLEV) ; DOWNWARD EFFECTIVE CLOUD FRACTION |
---|
2785 | ! PCLDLU : (KDLON,KFLEV) ; UPWARD EFFECTIVE CLOUD FRACTION |
---|
2786 | ! PCNTRB : (KDLON,KFLEV+1,KFLEV+1); CLEAR-SKY ENERGY EXCHANGE |
---|
2787 | ! PCTS : (KDLON,KFLEV) ; CLEAR-SKY LAYER COOLING-TO-SPACE |
---|
2788 | ! PEMIS : (KDLON) ; SURFACE EMISSIVITY |
---|
2789 | ! PFLUC |
---|
2790 | ! ==== OUTPUTS === |
---|
2791 | ! PFLUX(KDLON,2,KFLEV) ; RADIATIVE FLUXES : |
---|
2792 | ! 1 ==> UPWARD FLUX TOTAL |
---|
2793 | ! 2 ==> DOWNWARD FLUX TOTAL |
---|
2794 | |
---|
2795 | ! METHOD. |
---|
2796 | ! ------- |
---|
2797 | |
---|
2798 | ! 1. INITIALIZES ALL FLUXES TO CLEAR-SKY VALUES |
---|
2799 | ! 2. EFFECT OF ONE OVERCAST UNITY EMISSIVITY CLOUD LAYER |
---|
2800 | ! 3. EFFECT OF SEMI-TRANSPARENT, PARTIAL OR MULTI-LAYERED |
---|
2801 | ! CLOUDS |
---|
2802 | |
---|
2803 | ! REFERENCE. |
---|
2804 | ! ---------- |
---|
2805 | |
---|
2806 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
2807 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
2808 | |
---|
2809 | ! AUTHOR. |
---|
2810 | ! ------- |
---|
2811 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
2812 | |
---|
2813 | ! MODIFICATIONS. |
---|
2814 | ! -------------- |
---|
2815 | ! ORIGINAL : 89-07-14 |
---|
2816 | ! Voigt lines (loop 231 to 233) - JJM & PhD - 01/96 |
---|
2817 | ! ----------------------------------------------------------------------- |
---|
2818 | ! * ARGUMENTS: |
---|
2819 | INTEGER klim |
---|
2820 | REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
2821 | REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF LEVEL PLANCK FUNCTION |
---|
2822 | REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
2823 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) !CLEAR-SKY ENERGY EXCHANGE |
---|
2824 | REAL (KIND=8) pcts(kdlon, kflev) ! CLEAR-SKY LAYER COOLING-TO-SPACE |
---|
2825 | |
---|
2826 | REAL (KIND=8) pcldld(kdlon, kflev) |
---|
2827 | REAL (KIND=8) pcldlu(kdlon, kflev) |
---|
2828 | REAL (KIND=8) pemis(kdlon) |
---|
2829 | |
---|
2830 | REAL (KIND=8) pflux(kdlon, 2, kflev+1) |
---|
2831 | ! ----------------------------------------------------------------------- |
---|
2832 | ! * LOCAL VARIABLES: |
---|
2833 | INTEGER imx(kdlon), imxp(kdlon) |
---|
2834 | |
---|
2835 | REAL (KIND=8) zclear(kdlon), zcloud(kdlon), zdnf(kdlon, kflev+1, kflev+1), & |
---|
2836 | zfd(kdlon), zfn10(kdlon), zfu(kdlon), zupf(kdlon, kflev+1, kflev+1) |
---|
2837 | REAL (KIND=8) zclm(kdlon, kflev+1, kflev+1) |
---|
2838 | |
---|
2839 | INTEGER jk, jl, imaxc, imx1, imx2, jkj, jkp1, jkm1 |
---|
2840 | INTEGER jk1, jk2, jkc, jkcp1, jcloud |
---|
2841 | INTEGER imxm1, imxp1 |
---|
2842 | REAL (KIND=8) zcfrac |
---|
2843 | |
---|
2844 | ! ------------------------------------------------------------------ |
---|
2845 | |
---|
2846 | ! * 1. INITIALIZATION |
---|
2847 | ! -------------- |
---|
2848 | |
---|
2849 | |
---|
2850 | imaxc = 0 |
---|
2851 | |
---|
2852 | DO jl = 1, kdlon |
---|
2853 | imx(jl) = 0 |
---|
2854 | imxp(jl) = 0 |
---|
2855 | zcloud(jl) = 0. |
---|
2856 | END DO |
---|
2857 | |
---|
2858 | ! * 1.1 SEARCH THE LAYER INDEX OF THE HIGHEST CLOUD |
---|
2859 | ! ------------------------------------------- |
---|
2860 | |
---|
2861 | |
---|
2862 | DO jk = 1, kflev |
---|
2863 | DO jl = 1, kdlon |
---|
2864 | imx1 = imx(jl) |
---|
2865 | imx2 = jk |
---|
2866 | IF (pcldlu(jl,jk)>zepsc) THEN |
---|
2867 | imxp(jl) = imx2 |
---|
2868 | ELSE |
---|
2869 | imxp(jl) = imx1 |
---|
2870 | END IF |
---|
2871 | imaxc = max(imxp(jl), imaxc) |
---|
2872 | imx(jl) = imxp(jl) |
---|
2873 | END DO |
---|
2874 | END DO |
---|
2875 | ! GM******* |
---|
2876 | imaxc = kflev |
---|
2877 | ! GM******* |
---|
2878 | |
---|
2879 | DO jk = 1, kflev + 1 |
---|
2880 | DO jl = 1, kdlon |
---|
2881 | pflux(jl, 1, jk) = pfluc(jl, 1, jk) |
---|
2882 | pflux(jl, 2, jk) = pfluc(jl, 2, jk) |
---|
2883 | END DO |
---|
2884 | END DO |
---|
2885 | |
---|
2886 | ! ------------------------------------------------------------------ |
---|
2887 | |
---|
2888 | ! * 2. EFFECT OF CLOUDINESS ON LONGWAVE FLUXES |
---|
2889 | ! --------------------------------------- |
---|
2890 | |
---|
2891 | IF (imaxc>0) THEN |
---|
2892 | |
---|
2893 | imxp1 = imaxc + 1 |
---|
2894 | imxm1 = imaxc - 1 |
---|
2895 | |
---|
2896 | ! * 2.0 INITIALIZE TO CLEAR-SKY FLUXES |
---|
2897 | ! ------------------------------ |
---|
2898 | |
---|
2899 | |
---|
2900 | DO jk1 = 1, kflev + 1 |
---|
2901 | DO jk2 = 1, kflev + 1 |
---|
2902 | DO jl = 1, kdlon |
---|
2903 | zupf(jl, jk2, jk1) = pfluc(jl, 1, jk1) |
---|
2904 | zdnf(jl, jk2, jk1) = pfluc(jl, 2, jk1) |
---|
2905 | END DO |
---|
2906 | END DO |
---|
2907 | END DO |
---|
2908 | |
---|
2909 | ! * 2.1 FLUXES FOR ONE OVERCAST UNITY EMISSIVITY CLOUD |
---|
2910 | ! ---------------------------------------------- |
---|
2911 | |
---|
2912 | |
---|
2913 | DO jkc = 1, imaxc |
---|
2914 | jcloud = jkc |
---|
2915 | jkcp1 = jcloud + 1 |
---|
2916 | |
---|
2917 | ! * 2.1.1 ABOVE THE CLOUD |
---|
2918 | ! --------------- |
---|
2919 | |
---|
2920 | |
---|
2921 | DO jk = jkcp1, kflev + 1 |
---|
2922 | jkm1 = jk - 1 |
---|
2923 | DO jl = 1, kdlon |
---|
2924 | zfu(jl) = 0. |
---|
2925 | END DO |
---|
2926 | IF (jk>jkcp1) THEN |
---|
2927 | DO jkj = jkcp1, jkm1 |
---|
2928 | DO jl = 1, kdlon |
---|
2929 | zfu(jl) = zfu(jl) + pcntrb(jl, jk, jkj) |
---|
2930 | END DO |
---|
2931 | END DO |
---|
2932 | END IF |
---|
2933 | |
---|
2934 | DO jl = 1, kdlon |
---|
2935 | zupf(jl, jkcp1, jk) = pbint(jl, jk) - zfu(jl) |
---|
2936 | END DO |
---|
2937 | END DO |
---|
2938 | |
---|
2939 | ! * 2.1.2 BELOW THE CLOUD |
---|
2940 | ! --------------- |
---|
2941 | |
---|
2942 | |
---|
2943 | DO jk = 1, jcloud |
---|
2944 | jkp1 = jk + 1 |
---|
2945 | DO jl = 1, kdlon |
---|
2946 | zfd(jl) = 0. |
---|
2947 | END DO |
---|
2948 | |
---|
2949 | IF (jk<jcloud) THEN |
---|
2950 | DO jkj = jkp1, jcloud |
---|
2951 | DO jl = 1, kdlon |
---|
2952 | zfd(jl) = zfd(jl) + pcntrb(jl, jk, jkj) |
---|
2953 | END DO |
---|
2954 | END DO |
---|
2955 | END IF |
---|
2956 | DO jl = 1, kdlon |
---|
2957 | zdnf(jl, jkcp1, jk) = -pbint(jl, jk) - zfd(jl) |
---|
2958 | END DO |
---|
2959 | END DO |
---|
2960 | |
---|
2961 | END DO |
---|
2962 | |
---|
2963 | ! * 2.2 CLOUD COVER MATRIX |
---|
2964 | ! ------------------ |
---|
2965 | |
---|
2966 | ! * ZCLM(JK1,JK2) IS THE OBSCURATION FACTOR BY CLOUD LAYERS BETWEEN |
---|
2967 | ! HALF-LEVELS JK1 AND JK2 AS SEEN FROM JK1 |
---|
2968 | |
---|
2969 | |
---|
2970 | DO jk1 = 1, kflev + 1 |
---|
2971 | DO jk2 = 1, kflev + 1 |
---|
2972 | DO jl = 1, kdlon |
---|
2973 | zclm(jl, jk1, jk2) = 0. |
---|
2974 | END DO |
---|
2975 | END DO |
---|
2976 | END DO |
---|
2977 | |
---|
2978 | ! * 2.4 CLOUD COVER BELOW THE LEVEL OF CALCULATION |
---|
2979 | ! ------------------------------------------ |
---|
2980 | |
---|
2981 | |
---|
2982 | DO jk1 = 2, kflev + 1 |
---|
2983 | DO jl = 1, kdlon |
---|
2984 | zclear(jl) = 1. |
---|
2985 | zcloud(jl) = 0. |
---|
2986 | END DO |
---|
2987 | DO jk = jk1 - 1, 1, -1 |
---|
2988 | DO jl = 1, kdlon |
---|
2989 | IF (novlp==1) THEN |
---|
2990 | ! * maximum-random |
---|
2991 | zclear(jl) = zclear(jl)*(1.0-max(pcldlu(jl, & |
---|
2992 | jk),zcloud(jl)))/(1.0-min(zcloud(jl),1.-zepsec)) |
---|
2993 | zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
---|
2994 | zcloud(jl) = pcldlu(jl, jk) |
---|
2995 | ELSE IF (novlp==2) THEN |
---|
2996 | ! * maximum |
---|
2997 | zcloud(jl) = max(zcloud(jl), pcldlu(jl,jk)) |
---|
2998 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
2999 | ELSE IF (novlp==3) THEN |
---|
3000 | ! * random |
---|
3001 | zclear(jl) = zclear(jl)*(1.0-pcldlu(jl,jk)) |
---|
3002 | zcloud(jl) = 1.0 - zclear(jl) |
---|
3003 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
3004 | END IF |
---|
3005 | END DO |
---|
3006 | END DO |
---|
3007 | END DO |
---|
3008 | |
---|
3009 | ! * 2.5 CLOUD COVER ABOVE THE LEVEL OF CALCULATION |
---|
3010 | ! ------------------------------------------ |
---|
3011 | |
---|
3012 | |
---|
3013 | DO jk1 = 1, kflev |
---|
3014 | DO jl = 1, kdlon |
---|
3015 | zclear(jl) = 1. |
---|
3016 | zcloud(jl) = 0. |
---|
3017 | END DO |
---|
3018 | DO jk = jk1, kflev |
---|
3019 | DO jl = 1, kdlon |
---|
3020 | IF (novlp==1) THEN |
---|
3021 | ! * maximum-random |
---|
3022 | zclear(jl) = zclear(jl)*(1.0-max(pcldld(jl, & |
---|
3023 | jk),zcloud(jl)))/(1.0-min(zcloud(jl),1.-zepsec)) |
---|
3024 | zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
---|
3025 | zcloud(jl) = pcldld(jl, jk) |
---|
3026 | ELSE IF (novlp==2) THEN |
---|
3027 | ! * maximum |
---|
3028 | zcloud(jl) = max(zcloud(jl), pcldld(jl,jk)) |
---|
3029 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
3030 | ELSE IF (novlp==3) THEN |
---|
3031 | ! * random |
---|
3032 | zclear(jl) = zclear(jl)*(1.0-pcldld(jl,jk)) |
---|
3033 | zcloud(jl) = 1.0 - zclear(jl) |
---|
3034 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
3035 | END IF |
---|
3036 | END DO |
---|
3037 | END DO |
---|
3038 | END DO |
---|
3039 | |
---|
3040 | ! * 3. FLUXES FOR PARTIAL/MULTIPLE LAYERED CLOUDINESS |
---|
3041 | ! ---------------------------------------------- |
---|
3042 | |
---|
3043 | |
---|
3044 | ! * 3.1 DOWNWARD FLUXES |
---|
3045 | ! --------------- |
---|
3046 | |
---|
3047 | |
---|
3048 | DO jl = 1, kdlon |
---|
3049 | pflux(jl, 2, kflev+1) = 0. |
---|
3050 | END DO |
---|
3051 | |
---|
3052 | DO jk1 = kflev, 1, -1 |
---|
3053 | |
---|
3054 | ! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
---|
3055 | |
---|
3056 | DO jl = 1, kdlon |
---|
3057 | zfd(jl) = (1.-zclm(jl,jk1,kflev))*zdnf(jl, 1, jk1) |
---|
3058 | END DO |
---|
3059 | |
---|
3060 | ! * CONTRIBUTION FROM ADJACENT CLOUD |
---|
3061 | |
---|
3062 | DO jl = 1, kdlon |
---|
3063 | zfd(jl) = zfd(jl) + zclm(jl, jk1, jk1)*zdnf(jl, jk1+1, jk1) |
---|
3064 | END DO |
---|
3065 | |
---|
3066 | ! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
---|
3067 | |
---|
3068 | DO jk = kflev - 1, jk1, -1 |
---|
3069 | DO jl = 1, kdlon |
---|
3070 | zcfrac = zclm(jl, jk1, jk+1) - zclm(jl, jk1, jk) |
---|
3071 | zfd(jl) = zfd(jl) + zcfrac*zdnf(jl, jk+2, jk1) |
---|
3072 | END DO |
---|
3073 | END DO |
---|
3074 | |
---|
3075 | DO jl = 1, kdlon |
---|
3076 | pflux(jl, 2, jk1) = zfd(jl) |
---|
3077 | END DO |
---|
3078 | |
---|
3079 | END DO |
---|
3080 | |
---|
3081 | ! * 3.2 UPWARD FLUX AT THE SURFACE |
---|
3082 | ! -------------------------- |
---|
3083 | |
---|
3084 | |
---|
3085 | DO jl = 1, kdlon |
---|
3086 | pflux(jl, 1, 1) = pemis(jl)*pbsuin(jl) - (1.-pemis(jl))*pflux(jl, 2, 1) |
---|
3087 | END DO |
---|
3088 | |
---|
3089 | ! * 3.3 UPWARD FLUXES |
---|
3090 | ! ------------- |
---|
3091 | |
---|
3092 | |
---|
3093 | DO jk1 = 2, kflev + 1 |
---|
3094 | |
---|
3095 | ! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
---|
3096 | |
---|
3097 | DO jl = 1, kdlon |
---|
3098 | zfu(jl) = (1.-zclm(jl,jk1,1))*zupf(jl, 1, jk1) |
---|
3099 | END DO |
---|
3100 | |
---|
3101 | ! * CONTRIBUTION FROM ADJACENT CLOUD |
---|
3102 | |
---|
3103 | DO jl = 1, kdlon |
---|
3104 | zfu(jl) = zfu(jl) + zclm(jl, jk1, jk1-1)*zupf(jl, jk1, jk1) |
---|
3105 | END DO |
---|
3106 | |
---|
3107 | ! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
---|
3108 | |
---|
3109 | DO jk = 2, jk1 - 1 |
---|
3110 | DO jl = 1, kdlon |
---|
3111 | zcfrac = zclm(jl, jk1, jk-1) - zclm(jl, jk1, jk) |
---|
3112 | zfu(jl) = zfu(jl) + zcfrac*zupf(jl, jk, jk1) |
---|
3113 | END DO |
---|
3114 | END DO |
---|
3115 | |
---|
3116 | DO jl = 1, kdlon |
---|
3117 | pflux(jl, 1, jk1) = zfu(jl) |
---|
3118 | END DO |
---|
3119 | |
---|
3120 | END DO |
---|
3121 | |
---|
3122 | |
---|
3123 | END IF |
---|
3124 | |
---|
3125 | ! * 2.3 END OF CLOUD EFFECT COMPUTATIONS |
---|
3126 | |
---|
3127 | |
---|
3128 | IF (.NOT. levoigt) THEN |
---|
3129 | DO jl = 1, kdlon |
---|
3130 | zfn10(jl) = pflux(jl, 1, klim) + pflux(jl, 2, klim) |
---|
3131 | END DO |
---|
3132 | DO jk = klim + 1, kflev + 1 |
---|
3133 | DO jl = 1, kdlon |
---|
3134 | zfn10(jl) = zfn10(jl) + pcts(jl, jk-1) |
---|
3135 | pflux(jl, 1, jk) = zfn10(jl) |
---|
3136 | pflux(jl, 2, jk) = 0.0 |
---|
3137 | END DO |
---|
3138 | END DO |
---|
3139 | END IF |
---|
3140 | |
---|
3141 | RETURN |
---|
3142 | END SUBROUTINE lwc_lmdar4 |
---|
3143 | SUBROUTINE lwb_lmdar4(pdt0, ptave, ptl, pb, pbint, pbsuin, pbsur, pbtop, & |
---|
3144 | pdbsl, pga, pgb, pgasur, pgbsur, pgatop, pgbtop) |
---|
3145 | USE raddimlw_mod_h |
---|
3146 | USE dimphy |
---|
3147 | USE radiation_ar4_param, ONLY: tintp, xp, ga, gb |
---|
3148 | IMPLICIT NONE |
---|
3149 | |
---|
3150 | ! ----------------------------------------------------------------------- |
---|
3151 | ! PURPOSE. |
---|
3152 | ! -------- |
---|
3153 | ! COMPUTES PLANCK FUNCTIONS |
---|
3154 | |
---|
3155 | ! EXPLICIT ARGUMENTS : |
---|
3156 | ! -------------------- |
---|
3157 | ! ==== INPUTS === |
---|
3158 | ! PDT0 : (KDLON) ; SURFACE TEMPERATURE DISCONTINUITY |
---|
3159 | ! PTAVE : (KDLON,KFLEV) ; TEMPERATURE |
---|
3160 | ! PTL : (KDLON,0:KFLEV) ; HALF LEVEL TEMPERATURE |
---|
3161 | ! ==== OUTPUTS === |
---|
3162 | ! PB : (KDLON,Ninter,KFLEV+1); SPECTRAL HALF LEVEL PLANCK FUNCTION |
---|
3163 | ! PBINT : (KDLON,KFLEV+1) ; HALF LEVEL PLANCK FUNCTION |
---|
3164 | ! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
---|
3165 | ! PBSUR : (KDLON,Ninter) ; SURFACE SPECTRAL PLANCK FUNCTION |
---|
3166 | ! PBTOP : (KDLON,Ninter) ; TOP SPECTRAL PLANCK FUNCTION |
---|
3167 | ! PDBSL : (KDLON,Ninter,KFLEV*2); SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
3168 | ! PGA : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
3169 | ! PGB : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
3170 | ! PGASUR, PGBSUR (KDLON,8,2) ; SURFACE PADE APPROXIMANTS |
---|
3171 | ! PGATOP, PGBTOP (KDLON,8,2) ; T.O.A. PADE APPROXIMANTS |
---|
3172 | |
---|
3173 | ! IMPLICIT ARGUMENTS : NONE |
---|
3174 | ! -------------------- |
---|
3175 | |
---|
3176 | ! METHOD. |
---|
3177 | ! ------- |
---|
3178 | |
---|
3179 | ! 1. COMPUTES THE PLANCK FUNCTION ON ALL LEVELS AND HALF LEVELS |
---|
3180 | ! FROM A POLYNOMIAL DEVELOPMENT OF PLANCK FUNCTION |
---|
3181 | |
---|
3182 | ! REFERENCE. |
---|
3183 | ! ---------- |
---|
3184 | |
---|
3185 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
3186 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS " |
---|
3187 | |
---|
3188 | ! AUTHOR. |
---|
3189 | ! ------- |
---|
3190 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
3191 | |
---|
3192 | ! MODIFICATIONS. |
---|
3193 | ! -------------- |
---|
3194 | ! ORIGINAL : 89-07-14 |
---|
3195 | |
---|
3196 | ! ----------------------------------------------------------------------- |
---|
3197 | |
---|
3198 | ! ARGUMENTS: |
---|
3199 | |
---|
3200 | REAL (KIND=8) pdt0(kdlon) |
---|
3201 | REAL (KIND=8) ptave(kdlon, kflev) |
---|
3202 | REAL (KIND=8) ptl(kdlon, kflev+1) |
---|
3203 | |
---|
3204 | REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF LEVEL PLANCK FUNCTION |
---|
3205 | REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF LEVEL PLANCK FUNCTION |
---|
3206 | REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
3207 | REAL (KIND=8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
---|
3208 | REAL (KIND=8) pbtop(kdlon, ninter) ! TOP SPECTRAL PLANCK FUNCTION |
---|
3209 | REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
3210 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
3211 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
3212 | REAL (KIND=8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
3213 | REAL (KIND=8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
3214 | REAL (KIND=8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
3215 | REAL (KIND=8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
3216 | |
---|
3217 | ! ------------------------------------------------------------------------- |
---|
3218 | ! * LOCAL VARIABLES: |
---|
3219 | INTEGER indb(kdlon), inds(kdlon) |
---|
3220 | REAL (KIND=8) zblay(kdlon, kflev), zblev(kdlon, kflev+1) |
---|
3221 | REAL (KIND=8) zres(kdlon), zres2(kdlon), zti(kdlon), zti2(kdlon) |
---|
3222 | |
---|
3223 | INTEGER jk, jl, ic, jnu, jf, jg |
---|
3224 | INTEGER jk1, jk2 |
---|
3225 | INTEGER k, j, ixtox, indto, ixtx, indt |
---|
3226 | INTEGER indsu, indtp |
---|
3227 | REAL (KIND=8) zdsto1, zdstox, zdst1, zdstx |
---|
3228 | |
---|
3229 | ! * Quelques parametres: |
---|
3230 | REAL (KIND=8) tstand |
---|
3231 | PARAMETER (tstand=250.0) |
---|
3232 | REAL (KIND=8) tstp |
---|
3233 | PARAMETER (tstp=12.5) |
---|
3234 | INTEGER mxixt |
---|
3235 | PARAMETER (mxixt=10) |
---|
3236 | |
---|
3237 | ! * Used Data Block: |
---|
3238 | ! REAL*8 TINTP(11) |
---|
3239 | ! SAVE TINTP |
---|
3240 | ! c$OMP THREADPRIVATE(TINTP) |
---|
3241 | ! REAL*8 GA(11,16,3), GB(11,16,3) |
---|
3242 | ! SAVE GA, GB |
---|
3243 | ! c$OMP THREADPRIVATE(GA, GB) |
---|
3244 | ! REAL*8 XP(6,6) |
---|
3245 | ! SAVE XP |
---|
3246 | ! c$OMP THREADPRIVATE(XP) |
---|
3247 | |
---|
3248 | ! DATA TINTP / 187.5, 200., 212.5, 225., 237.5, 250., |
---|
3249 | ! S 262.5, 275., 287.5, 300., 312.5 / |
---|
3250 | ! ----------------------------------------------------------------------- |
---|
3251 | ! -- WATER VAPOR -- INT.1 -- 0- 500 CM-1 -- FROM ABS225 ---------------- |
---|
3252 | |
---|
3253 | |
---|
3254 | |
---|
3255 | |
---|
3256 | ! -- R.D. -- G = - 0.2 SLA |
---|
3257 | |
---|
3258 | |
---|
3259 | ! ----- INTERVAL = 1 ----- T = 187.5 |
---|
3260 | |
---|
3261 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3262 | ! DATA (GA( 1, 1,IC),IC=1,3) / |
---|
3263 | ! S 0.63499072E-02,-0.99506586E-03, 0.00000000E+00/ |
---|
3264 | ! DATA (GB( 1, 1,IC),IC=1,3) / |
---|
3265 | ! S 0.63499072E-02, 0.97222852E-01, 0.10000000E+01/ |
---|
3266 | ! DATA (GA( 1, 2,IC),IC=1,3) / |
---|
3267 | ! S 0.77266491E-02,-0.11661515E-02, 0.00000000E+00/ |
---|
3268 | ! DATA (GB( 1, 2,IC),IC=1,3) / |
---|
3269 | ! S 0.77266491E-02, 0.10681591E+00, 0.10000000E+01/ |
---|
3270 | |
---|
3271 | ! ----- INTERVAL = 1 ----- T = 200.0 |
---|
3272 | |
---|
3273 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3274 | ! DATA (GA( 2, 1,IC),IC=1,3) / |
---|
3275 | ! S 0.65566348E-02,-0.10184169E-02, 0.00000000E+00/ |
---|
3276 | ! DATA (GB( 2, 1,IC),IC=1,3) / |
---|
3277 | ! S 0.65566348E-02, 0.98862238E-01, 0.10000000E+01/ |
---|
3278 | ! DATA (GA( 2, 2,IC),IC=1,3) / |
---|
3279 | ! S 0.81323287E-02,-0.11886130E-02, 0.00000000E+00/ |
---|
3280 | ! DATA (GB( 2, 2,IC),IC=1,3) / |
---|
3281 | ! S 0.81323287E-02, 0.10921298E+00, 0.10000000E+01/ |
---|
3282 | |
---|
3283 | ! ----- INTERVAL = 1 ----- T = 212.5 |
---|
3284 | |
---|
3285 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3286 | ! DATA (GA( 3, 1,IC),IC=1,3) / |
---|
3287 | ! S 0.67849730E-02,-0.10404730E-02, 0.00000000E+00/ |
---|
3288 | ! DATA (GB( 3, 1,IC),IC=1,3) / |
---|
3289 | ! S 0.67849730E-02, 0.10061504E+00, 0.10000000E+01/ |
---|
3290 | ! DATA (GA( 3, 2,IC),IC=1,3) / |
---|
3291 | ! S 0.86507620E-02,-0.12139929E-02, 0.00000000E+00/ |
---|
3292 | ! DATA (GB( 3, 2,IC),IC=1,3) / |
---|
3293 | ! S 0.86507620E-02, 0.11198225E+00, 0.10000000E+01/ |
---|
3294 | |
---|
3295 | ! ----- INTERVAL = 1 ----- T = 225.0 |
---|
3296 | |
---|
3297 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3298 | ! DATA (GA( 4, 1,IC),IC=1,3) / |
---|
3299 | ! S 0.70481947E-02,-0.10621792E-02, 0.00000000E+00/ |
---|
3300 | ! DATA (GB( 4, 1,IC),IC=1,3) / |
---|
3301 | ! S 0.70481947E-02, 0.10256222E+00, 0.10000000E+01/ |
---|
3302 | ! DATA (GA( 4, 2,IC),IC=1,3) / |
---|
3303 | ! S 0.92776391E-02,-0.12445811E-02, 0.00000000E+00/ |
---|
3304 | ! DATA (GB( 4, 2,IC),IC=1,3) / |
---|
3305 | ! S 0.92776391E-02, 0.11487826E+00, 0.10000000E+01/ |
---|
3306 | |
---|
3307 | ! ----- INTERVAL = 1 ----- T = 237.5 |
---|
3308 | |
---|
3309 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3310 | ! DATA (GA( 5, 1,IC),IC=1,3) / |
---|
3311 | ! S 0.73585943E-02,-0.10847662E-02, 0.00000000E+00/ |
---|
3312 | ! DATA (GB( 5, 1,IC),IC=1,3) / |
---|
3313 | ! S 0.73585943E-02, 0.10475952E+00, 0.10000000E+01/ |
---|
3314 | ! DATA (GA( 5, 2,IC),IC=1,3) / |
---|
3315 | ! S 0.99806312E-02,-0.12807672E-02, 0.00000000E+00/ |
---|
3316 | ! DATA (GB( 5, 2,IC),IC=1,3) / |
---|
3317 | ! S 0.99806312E-02, 0.11751113E+00, 0.10000000E+01/ |
---|
3318 | |
---|
3319 | ! ----- INTERVAL = 1 ----- T = 250.0 |
---|
3320 | |
---|
3321 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3322 | ! DATA (GA( 6, 1,IC),IC=1,3) / |
---|
3323 | ! S 0.77242818E-02,-0.11094726E-02, 0.00000000E+00/ |
---|
3324 | ! DATA (GB( 6, 1,IC),IC=1,3) / |
---|
3325 | ! S 0.77242818E-02, 0.10720986E+00, 0.10000000E+01/ |
---|
3326 | ! DATA (GA( 6, 2,IC),IC=1,3) / |
---|
3327 | ! S 0.10709803E-01,-0.13208251E-02, 0.00000000E+00/ |
---|
3328 | ! DATA (GB( 6, 2,IC),IC=1,3) / |
---|
3329 | ! S 0.10709803E-01, 0.11951535E+00, 0.10000000E+01/ |
---|
3330 | |
---|
3331 | ! ----- INTERVAL = 1 ----- T = 262.5 |
---|
3332 | |
---|
3333 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3334 | ! DATA (GA( 7, 1,IC),IC=1,3) / |
---|
3335 | ! S 0.81472693E-02,-0.11372949E-02, 0.00000000E+00/ |
---|
3336 | ! DATA (GB( 7, 1,IC),IC=1,3) / |
---|
3337 | ! S 0.81472693E-02, 0.10985370E+00, 0.10000000E+01/ |
---|
3338 | ! DATA (GA( 7, 2,IC),IC=1,3) / |
---|
3339 | ! S 0.11414739E-01,-0.13619034E-02, 0.00000000E+00/ |
---|
3340 | ! DATA (GB( 7, 2,IC),IC=1,3) / |
---|
3341 | ! S 0.11414739E-01, 0.12069945E+00, 0.10000000E+01/ |
---|
3342 | |
---|
3343 | ! ----- INTERVAL = 1 ----- T = 275.0 |
---|
3344 | |
---|
3345 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3346 | ! DATA (GA( 8, 1,IC),IC=1,3) / |
---|
3347 | ! S 0.86227527E-02,-0.11687683E-02, 0.00000000E+00/ |
---|
3348 | ! DATA (GB( 8, 1,IC),IC=1,3) / |
---|
3349 | ! S 0.86227527E-02, 0.11257633E+00, 0.10000000E+01/ |
---|
3350 | ! DATA (GA( 8, 2,IC),IC=1,3) / |
---|
3351 | ! S 0.12058772E-01,-0.14014165E-02, 0.00000000E+00/ |
---|
3352 | ! DATA (GB( 8, 2,IC),IC=1,3) / |
---|
3353 | ! S 0.12058772E-01, 0.12108524E+00, 0.10000000E+01/ |
---|
3354 | |
---|
3355 | ! ----- INTERVAL = 1 ----- T = 287.5 |
---|
3356 | |
---|
3357 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3358 | ! DATA (GA( 9, 1,IC),IC=1,3) / |
---|
3359 | ! S 0.91396814E-02,-0.12038314E-02, 0.00000000E+00/ |
---|
3360 | ! DATA (GB( 9, 1,IC),IC=1,3) / |
---|
3361 | ! S 0.91396814E-02, 0.11522980E+00, 0.10000000E+01/ |
---|
3362 | ! DATA (GA( 9, 2,IC),IC=1,3) / |
---|
3363 | ! S 0.12623992E-01,-0.14378639E-02, 0.00000000E+00/ |
---|
3364 | ! DATA (GB( 9, 2,IC),IC=1,3) / |
---|
3365 | ! S 0.12623992E-01, 0.12084229E+00, 0.10000000E+01/ |
---|
3366 | |
---|
3367 | ! ----- INTERVAL = 1 ----- T = 300.0 |
---|
3368 | |
---|
3369 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3370 | ! DATA (GA(10, 1,IC),IC=1,3) / |
---|
3371 | ! S 0.96825438E-02,-0.12418367E-02, 0.00000000E+00/ |
---|
3372 | ! DATA (GB(10, 1,IC),IC=1,3) / |
---|
3373 | ! S 0.96825438E-02, 0.11766343E+00, 0.10000000E+01/ |
---|
3374 | ! DATA (GA(10, 2,IC),IC=1,3) / |
---|
3375 | ! S 0.13108146E-01,-0.14708488E-02, 0.00000000E+00/ |
---|
3376 | ! DATA (GB(10, 2,IC),IC=1,3) / |
---|
3377 | ! S 0.13108146E-01, 0.12019005E+00, 0.10000000E+01/ |
---|
3378 | |
---|
3379 | ! ----- INTERVAL = 1 ----- T = 312.5 |
---|
3380 | |
---|
3381 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
3382 | ! DATA (GA(11, 1,IC),IC=1,3) / |
---|
3383 | ! S 0.10233955E-01,-0.12817135E-02, 0.00000000E+00/ |
---|
3384 | ! DATA (GB(11, 1,IC),IC=1,3) / |
---|
3385 | ! S 0.10233955E-01, 0.11975320E+00, 0.10000000E+01/ |
---|
3386 | ! DATA (GA(11, 2,IC),IC=1,3) / |
---|
3387 | ! S 0.13518390E-01,-0.15006791E-02, 0.00000000E+00/ |
---|
3388 | ! DATA (GB(11, 2,IC),IC=1,3) / |
---|
3389 | ! S 0.13518390E-01, 0.11932684E+00, 0.10000000E+01/ |
---|
3390 | |
---|
3391 | |
---|
3392 | |
---|
3393 | ! --- WATER VAPOR --- INTERVAL 2 -- 500-800 CM-1--- FROM ABS225 --------- |
---|
3394 | |
---|
3395 | |
---|
3396 | |
---|
3397 | |
---|
3398 | ! --- R.D. --- G = 0.02 + 0.50 / ( 1 + 4.5 U ) |
---|
3399 | |
---|
3400 | |
---|
3401 | ! ----- INTERVAL = 2 ----- T = 187.5 |
---|
3402 | |
---|
3403 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3404 | ! DATA (GA( 1, 3,IC),IC=1,3) / |
---|
3405 | ! S 0.11644593E+01, 0.41243390E+00, 0.00000000E+00/ |
---|
3406 | ! DATA (GB( 1, 3,IC),IC=1,3) / |
---|
3407 | ! S 0.11644593E+01, 0.10346097E+01, 0.10000000E+01/ |
---|
3408 | ! DATA (GA( 1, 4,IC),IC=1,3) / |
---|
3409 | ! S 0.12006968E+01, 0.48318936E+00, 0.00000000E+00/ |
---|
3410 | ! DATA (GB( 1, 4,IC),IC=1,3) / |
---|
3411 | ! S 0.12006968E+01, 0.10626130E+01, 0.10000000E+01/ |
---|
3412 | |
---|
3413 | ! ----- INTERVAL = 2 ----- T = 200.0 |
---|
3414 | |
---|
3415 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3416 | ! DATA (GA( 2, 3,IC),IC=1,3) / |
---|
3417 | ! S 0.11747203E+01, 0.43407282E+00, 0.00000000E+00/ |
---|
3418 | ! DATA (GB( 2, 3,IC),IC=1,3) / |
---|
3419 | ! S 0.11747203E+01, 0.10433655E+01, 0.10000000E+01/ |
---|
3420 | ! DATA (GA( 2, 4,IC),IC=1,3) / |
---|
3421 | ! S 0.12108196E+01, 0.50501827E+00, 0.00000000E+00/ |
---|
3422 | ! DATA (GB( 2, 4,IC),IC=1,3) / |
---|
3423 | ! S 0.12108196E+01, 0.10716026E+01, 0.10000000E+01/ |
---|
3424 | |
---|
3425 | ! ----- INTERVAL = 2 ----- T = 212.5 |
---|
3426 | |
---|
3427 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3428 | ! DATA (GA( 3, 3,IC),IC=1,3) / |
---|
3429 | ! S 0.11837872E+01, 0.45331413E+00, 0.00000000E+00/ |
---|
3430 | ! DATA (GB( 3, 3,IC),IC=1,3) / |
---|
3431 | ! S 0.11837872E+01, 0.10511933E+01, 0.10000000E+01/ |
---|
3432 | ! DATA (GA( 3, 4,IC),IC=1,3) / |
---|
3433 | ! S 0.12196717E+01, 0.52409502E+00, 0.00000000E+00/ |
---|
3434 | ! DATA (GB( 3, 4,IC),IC=1,3) / |
---|
3435 | ! S 0.12196717E+01, 0.10795108E+01, 0.10000000E+01/ |
---|
3436 | |
---|
3437 | ! ----- INTERVAL = 2 ----- T = 225.0 |
---|
3438 | |
---|
3439 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3440 | ! DATA (GA( 4, 3,IC),IC=1,3) / |
---|
3441 | ! S 0.11918561E+01, 0.47048604E+00, 0.00000000E+00/ |
---|
3442 | ! DATA (GB( 4, 3,IC),IC=1,3) / |
---|
3443 | ! S 0.11918561E+01, 0.10582150E+01, 0.10000000E+01/ |
---|
3444 | ! DATA (GA( 4, 4,IC),IC=1,3) / |
---|
3445 | ! S 0.12274493E+01, 0.54085277E+00, 0.00000000E+00/ |
---|
3446 | ! DATA (GB( 4, 4,IC),IC=1,3) / |
---|
3447 | ! S 0.12274493E+01, 0.10865006E+01, 0.10000000E+01/ |
---|
3448 | |
---|
3449 | ! ----- INTERVAL = 2 ----- T = 237.5 |
---|
3450 | |
---|
3451 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3452 | ! DATA (GA( 5, 3,IC),IC=1,3) / |
---|
3453 | ! S 0.11990757E+01, 0.48586286E+00, 0.00000000E+00/ |
---|
3454 | ! DATA (GB( 5, 3,IC),IC=1,3) / |
---|
3455 | ! S 0.11990757E+01, 0.10645317E+01, 0.10000000E+01/ |
---|
3456 | ! DATA (GA( 5, 4,IC),IC=1,3) / |
---|
3457 | ! S 0.12343189E+01, 0.55565422E+00, 0.00000000E+00/ |
---|
3458 | ! DATA (GB( 5, 4,IC),IC=1,3) / |
---|
3459 | ! S 0.12343189E+01, 0.10927103E+01, 0.10000000E+01/ |
---|
3460 | |
---|
3461 | ! ----- INTERVAL = 2 ----- T = 250.0 |
---|
3462 | |
---|
3463 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3464 | ! DATA (GA( 6, 3,IC),IC=1,3) / |
---|
3465 | ! S 0.12055643E+01, 0.49968044E+00, 0.00000000E+00/ |
---|
3466 | ! DATA (GB( 6, 3,IC),IC=1,3) / |
---|
3467 | ! S 0.12055643E+01, 0.10702313E+01, 0.10000000E+01/ |
---|
3468 | ! DATA (GA( 6, 4,IC),IC=1,3) / |
---|
3469 | ! S 0.12404147E+01, 0.56878618E+00, 0.00000000E+00/ |
---|
3470 | ! DATA (GB( 6, 4,IC),IC=1,3) / |
---|
3471 | ! S 0.12404147E+01, 0.10982489E+01, 0.10000000E+01/ |
---|
3472 | |
---|
3473 | ! ----- INTERVAL = 2 ----- T = 262.5 |
---|
3474 | |
---|
3475 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3476 | ! DATA (GA( 7, 3,IC),IC=1,3) / |
---|
3477 | ! S 0.12114186E+01, 0.51214132E+00, 0.00000000E+00/ |
---|
3478 | ! DATA (GB( 7, 3,IC),IC=1,3) / |
---|
3479 | ! S 0.12114186E+01, 0.10753907E+01, 0.10000000E+01/ |
---|
3480 | ! DATA (GA( 7, 4,IC),IC=1,3) / |
---|
3481 | ! S 0.12458431E+01, 0.58047395E+00, 0.00000000E+00/ |
---|
3482 | ! DATA (GB( 7, 4,IC),IC=1,3) / |
---|
3483 | ! S 0.12458431E+01, 0.11032019E+01, 0.10000000E+01/ |
---|
3484 | |
---|
3485 | ! ----- INTERVAL = 2 ----- T = 275.0 |
---|
3486 | |
---|
3487 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3488 | ! DATA (GA( 8, 3,IC),IC=1,3) / |
---|
3489 | ! S 0.12167192E+01, 0.52341830E+00, 0.00000000E+00/ |
---|
3490 | ! DATA (GB( 8, 3,IC),IC=1,3) / |
---|
3491 | ! S 0.12167192E+01, 0.10800762E+01, 0.10000000E+01/ |
---|
3492 | ! DATA (GA( 8, 4,IC),IC=1,3) / |
---|
3493 | ! S 0.12506907E+01, 0.59089894E+00, 0.00000000E+00/ |
---|
3494 | ! DATA (GB( 8, 4,IC),IC=1,3) / |
---|
3495 | ! S 0.12506907E+01, 0.11076379E+01, 0.10000000E+01/ |
---|
3496 | |
---|
3497 | ! ----- INTERVAL = 2 ----- T = 287.5 |
---|
3498 | |
---|
3499 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3500 | ! DATA (GA( 9, 3,IC),IC=1,3) / |
---|
3501 | ! S 0.12215344E+01, 0.53365803E+00, 0.00000000E+00/ |
---|
3502 | ! DATA (GB( 9, 3,IC),IC=1,3) / |
---|
3503 | ! S 0.12215344E+01, 0.10843446E+01, 0.10000000E+01/ |
---|
3504 | ! DATA (GA( 9, 4,IC),IC=1,3) / |
---|
3505 | ! S 0.12550299E+01, 0.60021475E+00, 0.00000000E+00/ |
---|
3506 | ! DATA (GB( 9, 4,IC),IC=1,3) / |
---|
3507 | ! S 0.12550299E+01, 0.11116160E+01, 0.10000000E+01/ |
---|
3508 | |
---|
3509 | ! ----- INTERVAL = 2 ----- T = 300.0 |
---|
3510 | |
---|
3511 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3512 | ! DATA (GA(10, 3,IC),IC=1,3) / |
---|
3513 | ! S 0.12259226E+01, 0.54298448E+00, 0.00000000E+00/ |
---|
3514 | ! DATA (GB(10, 3,IC),IC=1,3) / |
---|
3515 | ! S 0.12259226E+01, 0.10882439E+01, 0.10000000E+01/ |
---|
3516 | ! DATA (GA(10, 4,IC),IC=1,3) / |
---|
3517 | ! S 0.12589256E+01, 0.60856112E+00, 0.00000000E+00/ |
---|
3518 | ! DATA (GB(10, 4,IC),IC=1,3) / |
---|
3519 | ! S 0.12589256E+01, 0.11151910E+01, 0.10000000E+01/ |
---|
3520 | |
---|
3521 | ! ----- INTERVAL = 2 ----- T = 312.5 |
---|
3522 | |
---|
3523 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3524 | ! DATA (GA(11, 3,IC),IC=1,3) / |
---|
3525 | ! S 0.12299344E+01, 0.55150227E+00, 0.00000000E+00/ |
---|
3526 | ! DATA (GB(11, 3,IC),IC=1,3) / |
---|
3527 | ! S 0.12299344E+01, 0.10918144E+01, 0.10000000E+01/ |
---|
3528 | ! DATA (GA(11, 4,IC),IC=1,3) / |
---|
3529 | ! S 0.12624402E+01, 0.61607594E+00, 0.00000000E+00/ |
---|
3530 | ! DATA (GB(11, 4,IC),IC=1,3) / |
---|
3531 | ! S 0.12624402E+01, 0.11184188E+01, 0.10000000E+01/ |
---|
3532 | |
---|
3533 | |
---|
3534 | |
---|
3535 | |
---|
3536 | |
---|
3537 | |
---|
3538 | ! - WATER VAPOR - INT. 3 -- 800-970 + 1110-1250 CM-1 -- FIT FROM 215 IS - |
---|
3539 | |
---|
3540 | |
---|
3541 | ! -- WATER VAPOR LINES IN THE WINDOW REGION (800-1250 CM-1) |
---|
3542 | |
---|
3543 | |
---|
3544 | |
---|
3545 | ! --- G = 3.875E-03 --------------- |
---|
3546 | |
---|
3547 | ! ----- INTERVAL = 3 ----- T = 187.5 |
---|
3548 | |
---|
3549 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3550 | ! DATA (GA( 1, 7,IC),IC=1,3) / |
---|
3551 | ! S 0.10192131E+02, 0.80737799E+01, 0.00000000E+00/ |
---|
3552 | ! DATA (GB( 1, 7,IC),IC=1,3) / |
---|
3553 | ! S 0.10192131E+02, 0.82623280E+01, 0.10000000E+01/ |
---|
3554 | ! DATA (GA( 1, 8,IC),IC=1,3) / |
---|
3555 | ! S 0.92439050E+01, 0.77425778E+01, 0.00000000E+00/ |
---|
3556 | ! DATA (GB( 1, 8,IC),IC=1,3) / |
---|
3557 | ! S 0.92439050E+01, 0.79342219E+01, 0.10000000E+01/ |
---|
3558 | |
---|
3559 | ! ----- INTERVAL = 3 ----- T = 200.0 |
---|
3560 | |
---|
3561 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3562 | ! DATA (GA( 2, 7,IC),IC=1,3) / |
---|
3563 | ! S 0.97258602E+01, 0.79171158E+01, 0.00000000E+00/ |
---|
3564 | ! DATA (GB( 2, 7,IC),IC=1,3) / |
---|
3565 | ! S 0.97258602E+01, 0.81072291E+01, 0.10000000E+01/ |
---|
3566 | ! DATA (GA( 2, 8,IC),IC=1,3) / |
---|
3567 | ! S 0.87567422E+01, 0.75443460E+01, 0.00000000E+00/ |
---|
3568 | ! DATA (GB( 2, 8,IC),IC=1,3) / |
---|
3569 | ! S 0.87567422E+01, 0.77373458E+01, 0.10000000E+01/ |
---|
3570 | |
---|
3571 | ! ----- INTERVAL = 3 ----- T = 212.5 |
---|
3572 | |
---|
3573 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3574 | ! DATA (GA( 3, 7,IC),IC=1,3) / |
---|
3575 | ! S 0.92992890E+01, 0.77609605E+01, 0.00000000E+00/ |
---|
3576 | ! DATA (GB( 3, 7,IC),IC=1,3) / |
---|
3577 | ! S 0.92992890E+01, 0.79523834E+01, 0.10000000E+01/ |
---|
3578 | ! DATA (GA( 3, 8,IC),IC=1,3) / |
---|
3579 | ! S 0.83270144E+01, 0.73526151E+01, 0.00000000E+00/ |
---|
3580 | ! DATA (GB( 3, 8,IC),IC=1,3) / |
---|
3581 | ! S 0.83270144E+01, 0.75467334E+01, 0.10000000E+01/ |
---|
3582 | |
---|
3583 | ! ----- INTERVAL = 3 ----- T = 225.0 |
---|
3584 | |
---|
3585 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3586 | ! DATA (GA( 4, 7,IC),IC=1,3) / |
---|
3587 | ! S 0.89154021E+01, 0.76087371E+01, 0.00000000E+00/ |
---|
3588 | ! DATA (GB( 4, 7,IC),IC=1,3) / |
---|
3589 | ! S 0.89154021E+01, 0.78012527E+01, 0.10000000E+01/ |
---|
3590 | ! DATA (GA( 4, 8,IC),IC=1,3) / |
---|
3591 | ! S 0.79528337E+01, 0.71711188E+01, 0.00000000E+00/ |
---|
3592 | ! DATA (GB( 4, 8,IC),IC=1,3) / |
---|
3593 | ! S 0.79528337E+01, 0.73661786E+01, 0.10000000E+01/ |
---|
3594 | |
---|
3595 | ! ----- INTERVAL = 3 ----- T = 237.5 |
---|
3596 | |
---|
3597 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3598 | ! DATA (GA( 5, 7,IC),IC=1,3) / |
---|
3599 | ! S 0.85730084E+01, 0.74627112E+01, 0.00000000E+00/ |
---|
3600 | ! DATA (GB( 5, 7,IC),IC=1,3) / |
---|
3601 | ! S 0.85730084E+01, 0.76561458E+01, 0.10000000E+01/ |
---|
3602 | ! DATA (GA( 5, 8,IC),IC=1,3) / |
---|
3603 | ! S 0.76286839E+01, 0.70015571E+01, 0.00000000E+00/ |
---|
3604 | ! DATA (GB( 5, 8,IC),IC=1,3) / |
---|
3605 | ! S 0.76286839E+01, 0.71974319E+01, 0.10000000E+01/ |
---|
3606 | |
---|
3607 | ! ----- INTERVAL = 3 ----- T = 250.0 |
---|
3608 | |
---|
3609 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3610 | ! DATA (GA( 6, 7,IC),IC=1,3) / |
---|
3611 | ! S 0.82685838E+01, 0.73239981E+01, 0.00000000E+00/ |
---|
3612 | ! DATA (GB( 6, 7,IC),IC=1,3) / |
---|
3613 | ! S 0.82685838E+01, 0.75182174E+01, 0.10000000E+01/ |
---|
3614 | ! DATA (GA( 6, 8,IC),IC=1,3) / |
---|
3615 | ! S 0.73477879E+01, 0.68442532E+01, 0.00000000E+00/ |
---|
3616 | ! DATA (GB( 6, 8,IC),IC=1,3) / |
---|
3617 | ! S 0.73477879E+01, 0.70408543E+01, 0.10000000E+01/ |
---|
3618 | |
---|
3619 | ! ----- INTERVAL = 3 ----- T = 262.5 |
---|
3620 | |
---|
3621 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3622 | ! DATA (GA( 7, 7,IC),IC=1,3) / |
---|
3623 | ! S 0.79978921E+01, 0.71929934E+01, 0.00000000E+00/ |
---|
3624 | ! DATA (GB( 7, 7,IC),IC=1,3) / |
---|
3625 | ! S 0.79978921E+01, 0.73878952E+01, 0.10000000E+01/ |
---|
3626 | ! DATA (GA( 7, 8,IC),IC=1,3) / |
---|
3627 | ! S 0.71035818E+01, 0.66987996E+01, 0.00000000E+00/ |
---|
3628 | ! DATA (GB( 7, 8,IC),IC=1,3) / |
---|
3629 | ! S 0.71035818E+01, 0.68960649E+01, 0.10000000E+01/ |
---|
3630 | |
---|
3631 | ! ----- INTERVAL = 3 ----- T = 275.0 |
---|
3632 | |
---|
3633 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3634 | ! DATA (GA( 8, 7,IC),IC=1,3) / |
---|
3635 | ! S 0.77568055E+01, 0.70697065E+01, 0.00000000E+00/ |
---|
3636 | ! DATA (GB( 8, 7,IC),IC=1,3) / |
---|
3637 | ! S 0.77568055E+01, 0.72652133E+01, 0.10000000E+01/ |
---|
3638 | ! DATA (GA( 8, 8,IC),IC=1,3) / |
---|
3639 | ! S 0.68903312E+01, 0.65644820E+01, 0.00000000E+00/ |
---|
3640 | ! DATA (GB( 8, 8,IC),IC=1,3) / |
---|
3641 | ! S 0.68903312E+01, 0.67623672E+01, 0.10000000E+01/ |
---|
3642 | |
---|
3643 | ! ----- INTERVAL = 3 ----- T = 287.5 |
---|
3644 | |
---|
3645 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3646 | ! DATA (GA( 9, 7,IC),IC=1,3) / |
---|
3647 | ! S 0.75416266E+01, 0.69539626E+01, 0.00000000E+00/ |
---|
3648 | ! DATA (GB( 9, 7,IC),IC=1,3) / |
---|
3649 | ! S 0.75416266E+01, 0.71500151E+01, 0.10000000E+01/ |
---|
3650 | ! DATA (GA( 9, 8,IC),IC=1,3) / |
---|
3651 | ! S 0.67032875E+01, 0.64405267E+01, 0.00000000E+00/ |
---|
3652 | ! DATA (GB( 9, 8,IC),IC=1,3) / |
---|
3653 | ! S 0.67032875E+01, 0.66389989E+01, 0.10000000E+01/ |
---|
3654 | |
---|
3655 | ! ----- INTERVAL = 3 ----- T = 300.0 |
---|
3656 | |
---|
3657 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3658 | ! DATA (GA(10, 7,IC),IC=1,3) / |
---|
3659 | ! S 0.73491694E+01, 0.68455144E+01, 0.00000000E+00/ |
---|
3660 | ! DATA (GB(10, 7,IC),IC=1,3) / |
---|
3661 | ! S 0.73491694E+01, 0.70420667E+01, 0.10000000E+01/ |
---|
3662 | ! DATA (GA(10, 8,IC),IC=1,3) / |
---|
3663 | ! S 0.65386461E+01, 0.63262376E+01, 0.00000000E+00/ |
---|
3664 | ! DATA (GB(10, 8,IC),IC=1,3) / |
---|
3665 | ! S 0.65386461E+01, 0.65252707E+01, 0.10000000E+01/ |
---|
3666 | |
---|
3667 | ! ----- INTERVAL = 3 ----- T = 312.5 |
---|
3668 | |
---|
3669 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3670 | ! DATA (GA(11, 7,IC),IC=1,3) / |
---|
3671 | ! S 0.71767400E+01, 0.67441020E+01, 0.00000000E+00/ |
---|
3672 | ! DATA (GB(11, 7,IC),IC=1,3) / |
---|
3673 | ! S 0.71767400E+01, 0.69411177E+01, 0.10000000E+01/ |
---|
3674 | ! DATA (GA(11, 8,IC),IC=1,3) / |
---|
3675 | ! S 0.63934377E+01, 0.62210701E+01, 0.00000000E+00/ |
---|
3676 | ! DATA (GB(11, 8,IC),IC=1,3) / |
---|
3677 | ! S 0.63934377E+01, 0.64206412E+01, 0.10000000E+01/ |
---|
3678 | |
---|
3679 | |
---|
3680 | ! -- WATER VAPOR -- 970-1110 CM-1 ---------------------------------------- |
---|
3681 | |
---|
3682 | ! -- G = 3.6E-03 |
---|
3683 | |
---|
3684 | ! ----- INTERVAL = 4 ----- T = 187.5 |
---|
3685 | |
---|
3686 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3687 | ! DATA (GA( 1, 9,IC),IC=1,3) / |
---|
3688 | ! S 0.24870635E+02, 0.10542131E+02, 0.00000000E+00/ |
---|
3689 | ! DATA (GB( 1, 9,IC),IC=1,3) / |
---|
3690 | ! S 0.24870635E+02, 0.10656640E+02, 0.10000000E+01/ |
---|
3691 | ! DATA (GA( 1,10,IC),IC=1,3) / |
---|
3692 | ! S 0.24586283E+02, 0.10490353E+02, 0.00000000E+00/ |
---|
3693 | ! DATA (GB( 1,10,IC),IC=1,3) / |
---|
3694 | ! S 0.24586283E+02, 0.10605856E+02, 0.10000000E+01/ |
---|
3695 | |
---|
3696 | ! ----- INTERVAL = 4 ----- T = 200.0 |
---|
3697 | |
---|
3698 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3699 | ! DATA (GA( 2, 9,IC),IC=1,3) / |
---|
3700 | ! S 0.24725591E+02, 0.10515895E+02, 0.00000000E+00/ |
---|
3701 | ! DATA (GB( 2, 9,IC),IC=1,3) / |
---|
3702 | ! S 0.24725591E+02, 0.10630910E+02, 0.10000000E+01/ |
---|
3703 | ! DATA (GA( 2,10,IC),IC=1,3) / |
---|
3704 | ! S 0.24441465E+02, 0.10463512E+02, 0.00000000E+00/ |
---|
3705 | ! DATA (GB( 2,10,IC),IC=1,3) / |
---|
3706 | ! S 0.24441465E+02, 0.10579514E+02, 0.10000000E+01/ |
---|
3707 | |
---|
3708 | ! ----- INTERVAL = 4 ----- T = 212.5 |
---|
3709 | |
---|
3710 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3711 | ! DATA (GA( 3, 9,IC),IC=1,3) / |
---|
3712 | ! S 0.24600320E+02, 0.10492949E+02, 0.00000000E+00/ |
---|
3713 | ! DATA (GB( 3, 9,IC),IC=1,3) / |
---|
3714 | ! S 0.24600320E+02, 0.10608399E+02, 0.10000000E+01/ |
---|
3715 | ! DATA (GA( 3,10,IC),IC=1,3) / |
---|
3716 | ! S 0.24311657E+02, 0.10439183E+02, 0.00000000E+00/ |
---|
3717 | ! DATA (GB( 3,10,IC),IC=1,3) / |
---|
3718 | ! S 0.24311657E+02, 0.10555632E+02, 0.10000000E+01/ |
---|
3719 | |
---|
3720 | ! ----- INTERVAL = 4 ----- T = 225.0 |
---|
3721 | |
---|
3722 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3723 | ! DATA (GA( 4, 9,IC),IC=1,3) / |
---|
3724 | ! S 0.24487300E+02, 0.10472049E+02, 0.00000000E+00/ |
---|
3725 | ! DATA (GB( 4, 9,IC),IC=1,3) / |
---|
3726 | ! S 0.24487300E+02, 0.10587891E+02, 0.10000000E+01/ |
---|
3727 | ! DATA (GA( 4,10,IC),IC=1,3) / |
---|
3728 | ! S 0.24196167E+02, 0.10417324E+02, 0.00000000E+00/ |
---|
3729 | ! DATA (GB( 4,10,IC),IC=1,3) / |
---|
3730 | ! S 0.24196167E+02, 0.10534169E+02, 0.10000000E+01/ |
---|
3731 | |
---|
3732 | ! ----- INTERVAL = 4 ----- T = 237.5 |
---|
3733 | |
---|
3734 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3735 | ! DATA (GA( 5, 9,IC),IC=1,3) / |
---|
3736 | ! S 0.24384935E+02, 0.10452961E+02, 0.00000000E+00/ |
---|
3737 | ! DATA (GB( 5, 9,IC),IC=1,3) / |
---|
3738 | ! S 0.24384935E+02, 0.10569156E+02, 0.10000000E+01/ |
---|
3739 | ! DATA (GA( 5,10,IC),IC=1,3) / |
---|
3740 | ! S 0.24093406E+02, 0.10397704E+02, 0.00000000E+00/ |
---|
3741 | ! DATA (GB( 5,10,IC),IC=1,3) / |
---|
3742 | ! S 0.24093406E+02, 0.10514900E+02, 0.10000000E+01/ |
---|
3743 | |
---|
3744 | ! ----- INTERVAL = 4 ----- T = 250.0 |
---|
3745 | |
---|
3746 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3747 | ! DATA (GA( 6, 9,IC),IC=1,3) / |
---|
3748 | ! S 0.24292341E+02, 0.10435562E+02, 0.00000000E+00/ |
---|
3749 | ! DATA (GB( 6, 9,IC),IC=1,3) / |
---|
3750 | ! S 0.24292341E+02, 0.10552075E+02, 0.10000000E+01/ |
---|
3751 | ! DATA (GA( 6,10,IC),IC=1,3) / |
---|
3752 | ! S 0.24001597E+02, 0.10380038E+02, 0.00000000E+00/ |
---|
3753 | ! DATA (GB( 6,10,IC),IC=1,3) / |
---|
3754 | ! S 0.24001597E+02, 0.10497547E+02, 0.10000000E+01/ |
---|
3755 | |
---|
3756 | ! ----- INTERVAL = 4 ----- T = 262.5 |
---|
3757 | |
---|
3758 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3759 | ! DATA (GA( 7, 9,IC),IC=1,3) / |
---|
3760 | ! S 0.24208572E+02, 0.10419710E+02, 0.00000000E+00/ |
---|
3761 | ! DATA (GB( 7, 9,IC),IC=1,3) / |
---|
3762 | ! S 0.24208572E+02, 0.10536510E+02, 0.10000000E+01/ |
---|
3763 | ! DATA (GA( 7,10,IC),IC=1,3) / |
---|
3764 | ! S 0.23919098E+02, 0.10364052E+02, 0.00000000E+00/ |
---|
3765 | ! DATA (GB( 7,10,IC),IC=1,3) / |
---|
3766 | ! S 0.23919098E+02, 0.10481842E+02, 0.10000000E+01/ |
---|
3767 | |
---|
3768 | ! ----- INTERVAL = 4 ----- T = 275.0 |
---|
3769 | |
---|
3770 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3771 | ! DATA (GA( 8, 9,IC),IC=1,3) / |
---|
3772 | ! S 0.24132642E+02, 0.10405247E+02, 0.00000000E+00/ |
---|
3773 | ! DATA (GB( 8, 9,IC),IC=1,3) / |
---|
3774 | ! S 0.24132642E+02, 0.10522307E+02, 0.10000000E+01/ |
---|
3775 | ! DATA (GA( 8,10,IC),IC=1,3) / |
---|
3776 | ! S 0.23844511E+02, 0.10349509E+02, 0.00000000E+00/ |
---|
3777 | ! DATA (GB( 8,10,IC),IC=1,3) / |
---|
3778 | ! S 0.23844511E+02, 0.10467553E+02, 0.10000000E+01/ |
---|
3779 | |
---|
3780 | ! ----- INTERVAL = 4 ----- T = 287.5 |
---|
3781 | |
---|
3782 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3783 | ! DATA (GA( 9, 9,IC),IC=1,3) / |
---|
3784 | ! S 0.24063614E+02, 0.10392022E+02, 0.00000000E+00/ |
---|
3785 | ! DATA (GB( 9, 9,IC),IC=1,3) / |
---|
3786 | ! S 0.24063614E+02, 0.10509317E+02, 0.10000000E+01/ |
---|
3787 | ! DATA (GA( 9,10,IC),IC=1,3) / |
---|
3788 | ! S 0.23776708E+02, 0.10336215E+02, 0.00000000E+00/ |
---|
3789 | ! DATA (GB( 9,10,IC),IC=1,3) / |
---|
3790 | ! S 0.23776708E+02, 0.10454488E+02, 0.10000000E+01/ |
---|
3791 | |
---|
3792 | ! ----- INTERVAL = 4 ----- T = 300.0 |
---|
3793 | |
---|
3794 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3795 | ! DATA (GA(10, 9,IC),IC=1,3) / |
---|
3796 | ! S 0.24000649E+02, 0.10379892E+02, 0.00000000E+00/ |
---|
3797 | ! DATA (GB(10, 9,IC),IC=1,3) / |
---|
3798 | ! S 0.24000649E+02, 0.10497402E+02, 0.10000000E+01/ |
---|
3799 | ! DATA (GA(10,10,IC),IC=1,3) / |
---|
3800 | ! S 0.23714816E+02, 0.10324018E+02, 0.00000000E+00/ |
---|
3801 | ! DATA (GB(10,10,IC),IC=1,3) / |
---|
3802 | ! S 0.23714816E+02, 0.10442501E+02, 0.10000000E+01/ |
---|
3803 | |
---|
3804 | ! ----- INTERVAL = 4 ----- T = 312.5 |
---|
3805 | |
---|
3806 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
3807 | ! DATA (GA(11, 9,IC),IC=1,3) / |
---|
3808 | ! S 0.23943021E+02, 0.10368736E+02, 0.00000000E+00/ |
---|
3809 | ! DATA (GB(11, 9,IC),IC=1,3) / |
---|
3810 | ! S 0.23943021E+02, 0.10486443E+02, 0.10000000E+01/ |
---|
3811 | ! DATA (GA(11,10,IC),IC=1,3) / |
---|
3812 | ! S 0.23658197E+02, 0.10312808E+02, 0.00000000E+00/ |
---|
3813 | ! DATA (GB(11,10,IC),IC=1,3) / |
---|
3814 | ! S 0.23658197E+02, 0.10431483E+02, 0.10000000E+01/ |
---|
3815 | |
---|
3816 | |
---|
3817 | |
---|
3818 | ! -- H2O -- WEAKER PARTS OF THE STRONG BANDS -- FROM ABS225 ---- |
---|
3819 | |
---|
3820 | ! -- WATER VAPOR --- 350 - 500 CM-1 |
---|
3821 | |
---|
3822 | ! -- G = - 0.2*SLA, 0.0 +0.5/(1+0.5U) |
---|
3823 | |
---|
3824 | ! ----- INTERVAL = 5 ----- T = 187.5 |
---|
3825 | |
---|
3826 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3827 | ! DATA (GA( 1, 5,IC),IC=1,3) / |
---|
3828 | ! S 0.15750172E+00,-0.22159303E-01, 0.00000000E+00/ |
---|
3829 | ! DATA (GB( 1, 5,IC),IC=1,3) / |
---|
3830 | ! S 0.15750172E+00, 0.38103212E+00, 0.10000000E+01/ |
---|
3831 | ! DATA (GA( 1, 6,IC),IC=1,3) / |
---|
3832 | ! S 0.17770551E+00,-0.24972399E-01, 0.00000000E+00/ |
---|
3833 | ! DATA (GB( 1, 6,IC),IC=1,3) / |
---|
3834 | ! S 0.17770551E+00, 0.41646579E+00, 0.10000000E+01/ |
---|
3835 | |
---|
3836 | ! ----- INTERVAL = 5 ----- T = 200.0 |
---|
3837 | |
---|
3838 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3839 | ! DATA (GA( 2, 5,IC),IC=1,3) / |
---|
3840 | ! S 0.16174076E+00,-0.22748917E-01, 0.00000000E+00/ |
---|
3841 | ! DATA (GB( 2, 5,IC),IC=1,3) / |
---|
3842 | ! S 0.16174076E+00, 0.38913800E+00, 0.10000000E+01/ |
---|
3843 | ! DATA (GA( 2, 6,IC),IC=1,3) / |
---|
3844 | ! S 0.18176757E+00,-0.25537247E-01, 0.00000000E+00/ |
---|
3845 | ! DATA (GB( 2, 6,IC),IC=1,3) / |
---|
3846 | ! S 0.18176757E+00, 0.42345095E+00, 0.10000000E+01/ |
---|
3847 | |
---|
3848 | ! ----- INTERVAL = 5 ----- T = 212.5 |
---|
3849 | |
---|
3850 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3851 | ! DATA (GA( 3, 5,IC),IC=1,3) / |
---|
3852 | ! S 0.16548628E+00,-0.23269898E-01, 0.00000000E+00/ |
---|
3853 | ! DATA (GB( 3, 5,IC),IC=1,3) / |
---|
3854 | ! S 0.16548628E+00, 0.39613651E+00, 0.10000000E+01/ |
---|
3855 | ! DATA (GA( 3, 6,IC),IC=1,3) / |
---|
3856 | ! S 0.18527967E+00,-0.26025624E-01, 0.00000000E+00/ |
---|
3857 | ! DATA (GB( 3, 6,IC),IC=1,3) / |
---|
3858 | ! S 0.18527967E+00, 0.42937476E+00, 0.10000000E+01/ |
---|
3859 | |
---|
3860 | ! ----- INTERVAL = 5 ----- T = 225.0 |
---|
3861 | |
---|
3862 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3863 | ! DATA (GA( 4, 5,IC),IC=1,3) / |
---|
3864 | ! S 0.16881124E+00,-0.23732392E-01, 0.00000000E+00/ |
---|
3865 | ! DATA (GB( 4, 5,IC),IC=1,3) / |
---|
3866 | ! S 0.16881124E+00, 0.40222421E+00, 0.10000000E+01/ |
---|
3867 | ! DATA (GA( 4, 6,IC),IC=1,3) / |
---|
3868 | ! S 0.18833348E+00,-0.26450280E-01, 0.00000000E+00/ |
---|
3869 | ! DATA (GB( 4, 6,IC),IC=1,3) / |
---|
3870 | ! S 0.18833348E+00, 0.43444062E+00, 0.10000000E+01/ |
---|
3871 | |
---|
3872 | ! ----- INTERVAL = 5 ----- T = 237.5 |
---|
3873 | |
---|
3874 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3875 | ! DATA (GA( 5, 5,IC),IC=1,3) / |
---|
3876 | ! S 0.17177839E+00,-0.24145123E-01, 0.00000000E+00/ |
---|
3877 | ! DATA (GB( 5, 5,IC),IC=1,3) / |
---|
3878 | ! S 0.17177839E+00, 0.40756010E+00, 0.10000000E+01/ |
---|
3879 | ! DATA (GA( 5, 6,IC),IC=1,3) / |
---|
3880 | ! S 0.19100108E+00,-0.26821236E-01, 0.00000000E+00/ |
---|
3881 | ! DATA (GB( 5, 6,IC),IC=1,3) / |
---|
3882 | ! S 0.19100108E+00, 0.43880316E+00, 0.10000000E+01/ |
---|
3883 | |
---|
3884 | ! ----- INTERVAL = 5 ----- T = 250.0 |
---|
3885 | |
---|
3886 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3887 | ! DATA (GA( 6, 5,IC),IC=1,3) / |
---|
3888 | ! S 0.17443933E+00,-0.24515269E-01, 0.00000000E+00/ |
---|
3889 | ! DATA (GB( 6, 5,IC),IC=1,3) / |
---|
3890 | ! S 0.17443933E+00, 0.41226954E+00, 0.10000000E+01/ |
---|
3891 | ! DATA (GA( 6, 6,IC),IC=1,3) / |
---|
3892 | ! S 0.19334122E+00,-0.27146657E-01, 0.00000000E+00/ |
---|
3893 | ! DATA (GB( 6, 6,IC),IC=1,3) / |
---|
3894 | ! S 0.19334122E+00, 0.44258354E+00, 0.10000000E+01/ |
---|
3895 | |
---|
3896 | ! ----- INTERVAL = 5 ----- T = 262.5 |
---|
3897 | |
---|
3898 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3899 | ! DATA (GA( 7, 5,IC),IC=1,3) / |
---|
3900 | ! S 0.17683622E+00,-0.24848690E-01, 0.00000000E+00/ |
---|
3901 | ! DATA (GB( 7, 5,IC),IC=1,3) / |
---|
3902 | ! S 0.17683622E+00, 0.41645142E+00, 0.10000000E+01/ |
---|
3903 | ! DATA (GA( 7, 6,IC),IC=1,3) / |
---|
3904 | ! S 0.19540288E+00,-0.27433354E-01, 0.00000000E+00/ |
---|
3905 | ! DATA (GB( 7, 6,IC),IC=1,3) / |
---|
3906 | ! S 0.19540288E+00, 0.44587882E+00, 0.10000000E+01/ |
---|
3907 | |
---|
3908 | ! ----- INTERVAL = 5 ----- T = 275.0 |
---|
3909 | |
---|
3910 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3911 | ! DATA (GA( 8, 5,IC),IC=1,3) / |
---|
3912 | ! S 0.17900375E+00,-0.25150210E-01, 0.00000000E+00/ |
---|
3913 | ! DATA (GB( 8, 5,IC),IC=1,3) / |
---|
3914 | ! S 0.17900375E+00, 0.42018474E+00, 0.10000000E+01/ |
---|
3915 | ! DATA (GA( 8, 6,IC),IC=1,3) / |
---|
3916 | ! S 0.19722732E+00,-0.27687065E-01, 0.00000000E+00/ |
---|
3917 | ! DATA (GB( 8, 6,IC),IC=1,3) / |
---|
3918 | ! S 0.19722732E+00, 0.44876776E+00, 0.10000000E+01/ |
---|
3919 | |
---|
3920 | ! ----- INTERVAL = 5 ----- T = 287.5 |
---|
3921 | |
---|
3922 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3923 | ! DATA (GA( 9, 5,IC),IC=1,3) / |
---|
3924 | ! S 0.18097099E+00,-0.25423873E-01, 0.00000000E+00/ |
---|
3925 | ! DATA (GB( 9, 5,IC),IC=1,3) / |
---|
3926 | ! S 0.18097099E+00, 0.42353379E+00, 0.10000000E+01/ |
---|
3927 | ! DATA (GA( 9, 6,IC),IC=1,3) / |
---|
3928 | ! S 0.19884918E+00,-0.27912608E-01, 0.00000000E+00/ |
---|
3929 | ! DATA (GB( 9, 6,IC),IC=1,3) / |
---|
3930 | ! S 0.19884918E+00, 0.45131451E+00, 0.10000000E+01/ |
---|
3931 | |
---|
3932 | ! ----- INTERVAL = 5 ----- T = 300.0 |
---|
3933 | |
---|
3934 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3935 | ! DATA (GA(10, 5,IC),IC=1,3) / |
---|
3936 | ! S 0.18276283E+00,-0.25673139E-01, 0.00000000E+00/ |
---|
3937 | ! DATA (GB(10, 5,IC),IC=1,3) / |
---|
3938 | ! S 0.18276283E+00, 0.42655211E+00, 0.10000000E+01/ |
---|
3939 | ! DATA (GA(10, 6,IC),IC=1,3) / |
---|
3940 | ! S 0.20029696E+00,-0.28113944E-01, 0.00000000E+00/ |
---|
3941 | ! DATA (GB(10, 6,IC),IC=1,3) / |
---|
3942 | ! S 0.20029696E+00, 0.45357095E+00, 0.10000000E+01/ |
---|
3943 | |
---|
3944 | ! ----- INTERVAL = 5 ----- T = 312.5 |
---|
3945 | |
---|
3946 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3947 | ! DATA (GA(11, 5,IC),IC=1,3) / |
---|
3948 | ! S 0.18440117E+00,-0.25901055E-01, 0.00000000E+00/ |
---|
3949 | ! DATA (GB(11, 5,IC),IC=1,3) / |
---|
3950 | ! S 0.18440117E+00, 0.42928533E+00, 0.10000000E+01/ |
---|
3951 | ! DATA (GA(11, 6,IC),IC=1,3) / |
---|
3952 | ! S 0.20159300E+00,-0.28294180E-01, 0.00000000E+00/ |
---|
3953 | ! DATA (GB(11, 6,IC),IC=1,3) / |
---|
3954 | ! S 0.20159300E+00, 0.45557797E+00, 0.10000000E+01/ |
---|
3955 | |
---|
3956 | |
---|
3957 | |
---|
3958 | |
---|
3959 | ! - WATER VAPOR - WINGS OF VIBRATION-ROTATION BAND - 1250-1450+1880-2820 - |
---|
3960 | ! --- G = 0.0 |
---|
3961 | |
---|
3962 | |
---|
3963 | ! ----- INTERVAL = 6 ----- T = 187.5 |
---|
3964 | |
---|
3965 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3966 | ! DATA (GA( 1,11,IC),IC=1,3) / |
---|
3967 | ! S 0.11990218E+02,-0.12823142E+01, 0.00000000E+00/ |
---|
3968 | ! DATA (GB( 1,11,IC),IC=1,3) / |
---|
3969 | ! S 0.11990218E+02, 0.26681588E+02, 0.10000000E+01/ |
---|
3970 | ! DATA (GA( 1,12,IC),IC=1,3) / |
---|
3971 | ! S 0.79709806E+01,-0.74805226E+00, 0.00000000E+00/ |
---|
3972 | ! DATA (GB( 1,12,IC),IC=1,3) / |
---|
3973 | ! S 0.79709806E+01, 0.18377807E+02, 0.10000000E+01/ |
---|
3974 | |
---|
3975 | ! ----- INTERVAL = 6 ----- T = 200.0 |
---|
3976 | |
---|
3977 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3978 | ! DATA (GA( 2,11,IC),IC=1,3) / |
---|
3979 | ! S 0.10904073E+02,-0.10571588E+01, 0.00000000E+00/ |
---|
3980 | ! DATA (GB( 2,11,IC),IC=1,3) / |
---|
3981 | ! S 0.10904073E+02, 0.24728346E+02, 0.10000000E+01/ |
---|
3982 | ! DATA (GA( 2,12,IC),IC=1,3) / |
---|
3983 | ! S 0.75400737E+01,-0.56252739E+00, 0.00000000E+00/ |
---|
3984 | ! DATA (GB( 2,12,IC),IC=1,3) / |
---|
3985 | ! S 0.75400737E+01, 0.17643148E+02, 0.10000000E+01/ |
---|
3986 | |
---|
3987 | ! ----- INTERVAL = 6 ----- T = 212.5 |
---|
3988 | |
---|
3989 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
3990 | ! DATA (GA( 3,11,IC),IC=1,3) / |
---|
3991 | ! S 0.89126838E+01,-0.74864953E+00, 0.00000000E+00/ |
---|
3992 | ! DATA (GB( 3,11,IC),IC=1,3) / |
---|
3993 | ! S 0.89126838E+01, 0.20551342E+02, 0.10000000E+01/ |
---|
3994 | ! DATA (GA( 3,12,IC),IC=1,3) / |
---|
3995 | ! S 0.81804377E+01,-0.46188072E+00, 0.00000000E+00/ |
---|
3996 | ! DATA (GB( 3,12,IC),IC=1,3) / |
---|
3997 | ! S 0.81804377E+01, 0.19296161E+02, 0.10000000E+01/ |
---|
3998 | |
---|
3999 | ! ----- INTERVAL = 6 ----- T = 225.0 |
---|
4000 | |
---|
4001 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
4002 | ! DATA (GA( 4,11,IC),IC=1,3) / |
---|
4003 | ! S 0.85622405E+01,-0.58705980E+00, 0.00000000E+00/ |
---|
4004 | ! DATA (GB( 4,11,IC),IC=1,3) / |
---|
4005 | ! S 0.85622405E+01, 0.19955244E+02, 0.10000000E+01/ |
---|
4006 | ! DATA (GA( 4,12,IC),IC=1,3) / |
---|
4007 | ! S 0.10564339E+02,-0.40712065E+00, 0.00000000E+00/ |
---|
4008 | ! DATA (GB( 4,12,IC),IC=1,3) / |
---|
4009 | ! S 0.10564339E+02, 0.24951120E+02, 0.10000000E+01/ |
---|
4010 | |
---|
4011 | ! ----- INTERVAL = 6 ----- T = 237.5 |
---|
4012 | |
---|
4013 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
4014 | ! DATA (GA( 5,11,IC),IC=1,3) / |
---|
4015 | ! S 0.94892164E+01,-0.49305772E+00, 0.00000000E+00/ |
---|
4016 | ! DATA (GB( 5,11,IC),IC=1,3) / |
---|
4017 | ! S 0.94892164E+01, 0.22227100E+02, 0.10000000E+01/ |
---|
4018 | ! DATA (GA( 5,12,IC),IC=1,3) / |
---|
4019 | ! S 0.46896789E+02,-0.15295996E+01, 0.00000000E+00/ |
---|
4020 | ! DATA (GB( 5,12,IC),IC=1,3) / |
---|
4021 | ! S 0.46896789E+02, 0.10957372E+03, 0.10000000E+01/ |
---|
4022 | |
---|
4023 | ! ----- INTERVAL = 6 ----- T = 250.0 |
---|
4024 | |
---|
4025 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
4026 | ! DATA (GA( 6,11,IC),IC=1,3) / |
---|
4027 | ! S 0.13580937E+02,-0.51461431E+00, 0.00000000E+00/ |
---|
4028 | ! DATA (GB( 6,11,IC),IC=1,3) / |
---|
4029 | ! S 0.13580937E+02, 0.31770288E+02, 0.10000000E+01/ |
---|
4030 | ! DATA (GA( 6,12,IC),IC=1,3) / |
---|
4031 | ! S-0.30926524E+01, 0.43555255E+00, 0.00000000E+00/ |
---|
4032 | ! DATA (GB( 6,12,IC),IC=1,3) / |
---|
4033 | ! S-0.30926524E+01,-0.67432659E+01, 0.10000000E+01/ |
---|
4034 | |
---|
4035 | ! ----- INTERVAL = 6 ----- T = 262.5 |
---|
4036 | |
---|
4037 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
4038 | ! DATA (GA( 7,11,IC),IC=1,3) / |
---|
4039 | ! S-0.32050918E+03, 0.12373350E+02, 0.00000000E+00/ |
---|
4040 | ! DATA (GB( 7,11,IC),IC=1,3) / |
---|
4041 | ! S-0.32050918E+03,-0.74061287E+03, 0.10000000E+01/ |
---|
4042 | ! DATA (GA( 7,12,IC),IC=1,3) / |
---|
4043 | ! S 0.85742941E+00, 0.50380874E+00, 0.00000000E+00/ |
---|
4044 | ! DATA (GB( 7,12,IC),IC=1,3) / |
---|
4045 | ! S 0.85742941E+00, 0.24550746E+01, 0.10000000E+01/ |
---|
4046 | |
---|
4047 | ! ----- INTERVAL = 6 ----- T = 275.0 |
---|
4048 | |
---|
4049 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
4050 | ! DATA (GA( 8,11,IC),IC=1,3) / |
---|
4051 | ! S-0.37133165E+01, 0.44809588E+00, 0.00000000E+00/ |
---|
4052 | ! DATA (GB( 8,11,IC),IC=1,3) / |
---|
4053 | ! S-0.37133165E+01,-0.81329826E+01, 0.10000000E+01/ |
---|
4054 | ! DATA (GA( 8,12,IC),IC=1,3) / |
---|
4055 | ! S 0.19164038E+01, 0.68537352E+00, 0.00000000E+00/ |
---|
4056 | ! DATA (GB( 8,12,IC),IC=1,3) / |
---|
4057 | ! S 0.19164038E+01, 0.49089917E+01, 0.10000000E+01/ |
---|
4058 | |
---|
4059 | ! ----- INTERVAL = 6 ----- T = 287.5 |
---|
4060 | |
---|
4061 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
4062 | ! DATA (GA( 9,11,IC),IC=1,3) / |
---|
4063 | ! S 0.18890836E+00, 0.46548918E+00, 0.00000000E+00/ |
---|
4064 | ! DATA (GB( 9,11,IC),IC=1,3) / |
---|
4065 | ! S 0.18890836E+00, 0.90279822E+00, 0.10000000E+01/ |
---|
4066 | ! DATA (GA( 9,12,IC),IC=1,3) / |
---|
4067 | ! S 0.23513199E+01, 0.89437630E+00, 0.00000000E+00/ |
---|
4068 | ! DATA (GB( 9,12,IC),IC=1,3) / |
---|
4069 | ! S 0.23513199E+01, 0.59008712E+01, 0.10000000E+01/ |
---|
4070 | |
---|
4071 | ! ----- INTERVAL = 6 ----- T = 300.0 |
---|
4072 | |
---|
4073 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
4074 | ! DATA (GA(10,11,IC),IC=1,3) / |
---|
4075 | ! S 0.14209226E+01, 0.59121475E+00, 0.00000000E+00/ |
---|
4076 | ! DATA (GB(10,11,IC),IC=1,3) / |
---|
4077 | ! S 0.14209226E+01, 0.37532746E+01, 0.10000000E+01/ |
---|
4078 | ! DATA (GA(10,12,IC),IC=1,3) / |
---|
4079 | ! S 0.25566644E+01, 0.11127003E+01, 0.00000000E+00/ |
---|
4080 | ! DATA (GB(10,12,IC),IC=1,3) / |
---|
4081 | ! S 0.25566644E+01, 0.63532616E+01, 0.10000000E+01/ |
---|
4082 | |
---|
4083 | ! ----- INTERVAL = 6 ----- T = 312.5 |
---|
4084 | |
---|
4085 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
4086 | ! DATA (GA(11,11,IC),IC=1,3) / |
---|
4087 | ! S 0.19817679E+01, 0.74676119E+00, 0.00000000E+00/ |
---|
4088 | ! DATA (GB(11,11,IC),IC=1,3) / |
---|
4089 | ! S 0.19817679E+01, 0.50437916E+01, 0.10000000E+01/ |
---|
4090 | ! DATA (GA(11,12,IC),IC=1,3) / |
---|
4091 | ! S 0.26555181E+01, 0.13329782E+01, 0.00000000E+00/ |
---|
4092 | ! DATA (GB(11,12,IC),IC=1,3) / |
---|
4093 | ! S 0.26555181E+01, 0.65558627E+01, 0.10000000E+01/ |
---|
4094 | |
---|
4095 | |
---|
4096 | |
---|
4097 | |
---|
4098 | |
---|
4099 | ! -- END WATER VAPOR |
---|
4100 | |
---|
4101 | |
---|
4102 | ! -- CO2 -- INT.2 -- 500-800 CM-1 --- FROM ABS225 ---------------------- |
---|
4103 | |
---|
4104 | |
---|
4105 | |
---|
4106 | ! -- FIU = 0.8 + MAX(0.35,(7-IU)*0.9) , X/T, 9 |
---|
4107 | |
---|
4108 | ! ----- INTERVAL = 2 ----- T = 187.5 |
---|
4109 | |
---|
4110 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4111 | ! DATA (GA( 1,13,IC),IC=1,3) / |
---|
4112 | ! S 0.87668459E-01, 0.13845511E+01, 0.00000000E+00/ |
---|
4113 | ! DATA (GB( 1,13,IC),IC=1,3) / |
---|
4114 | ! S 0.87668459E-01, 0.23203798E+01, 0.10000000E+01/ |
---|
4115 | ! DATA (GA( 1,14,IC),IC=1,3) / |
---|
4116 | ! S 0.74878820E-01, 0.11718758E+01, 0.00000000E+00/ |
---|
4117 | ! DATA (GB( 1,14,IC),IC=1,3) / |
---|
4118 | ! S 0.74878820E-01, 0.20206726E+01, 0.10000000E+01/ |
---|
4119 | |
---|
4120 | ! ----- INTERVAL = 2 ----- T = 200.0 |
---|
4121 | |
---|
4122 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4123 | ! DATA (GA( 2,13,IC),IC=1,3) / |
---|
4124 | ! S 0.83754276E-01, 0.13187042E+01, 0.00000000E+00/ |
---|
4125 | ! DATA (GB( 2,13,IC),IC=1,3) / |
---|
4126 | ! S 0.83754276E-01, 0.22288925E+01, 0.10000000E+01/ |
---|
4127 | ! DATA (GA( 2,14,IC),IC=1,3) / |
---|
4128 | ! S 0.71650966E-01, 0.11216131E+01, 0.00000000E+00/ |
---|
4129 | ! DATA (GB( 2,14,IC),IC=1,3) / |
---|
4130 | ! S 0.71650966E-01, 0.19441824E+01, 0.10000000E+01/ |
---|
4131 | |
---|
4132 | ! ----- INTERVAL = 2 ----- T = 212.5 |
---|
4133 | |
---|
4134 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4135 | ! DATA (GA( 3,13,IC),IC=1,3) / |
---|
4136 | ! S 0.80460283E-01, 0.12644396E+01, 0.00000000E+00/ |
---|
4137 | ! DATA (GB( 3,13,IC),IC=1,3) / |
---|
4138 | ! S 0.80460283E-01, 0.21515593E+01, 0.10000000E+01/ |
---|
4139 | ! DATA (GA( 3,14,IC),IC=1,3) / |
---|
4140 | ! S 0.68979615E-01, 0.10809473E+01, 0.00000000E+00/ |
---|
4141 | ! DATA (GB( 3,14,IC),IC=1,3) / |
---|
4142 | ! S 0.68979615E-01, 0.18807257E+01, 0.10000000E+01/ |
---|
4143 | |
---|
4144 | ! ----- INTERVAL = 2 ----- T = 225.0 |
---|
4145 | |
---|
4146 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4147 | ! DATA (GA( 4,13,IC),IC=1,3) / |
---|
4148 | ! S 0.77659686E-01, 0.12191543E+01, 0.00000000E+00/ |
---|
4149 | ! DATA (GB( 4,13,IC),IC=1,3) / |
---|
4150 | ! S 0.77659686E-01, 0.20855896E+01, 0.10000000E+01/ |
---|
4151 | ! DATA (GA( 4,14,IC),IC=1,3) / |
---|
4152 | ! S 0.66745345E-01, 0.10476396E+01, 0.00000000E+00/ |
---|
4153 | ! DATA (GB( 4,14,IC),IC=1,3) / |
---|
4154 | ! S 0.66745345E-01, 0.18275618E+01, 0.10000000E+01/ |
---|
4155 | |
---|
4156 | ! ----- INTERVAL = 2 ----- T = 237.5 |
---|
4157 | |
---|
4158 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4159 | ! DATA (GA( 5,13,IC),IC=1,3) / |
---|
4160 | ! S 0.75257056E-01, 0.11809511E+01, 0.00000000E+00/ |
---|
4161 | ! DATA (GB( 5,13,IC),IC=1,3) / |
---|
4162 | ! S 0.75257056E-01, 0.20288489E+01, 0.10000000E+01/ |
---|
4163 | ! DATA (GA( 5,14,IC),IC=1,3) / |
---|
4164 | ! S 0.64857571E-01, 0.10200373E+01, 0.00000000E+00/ |
---|
4165 | ! DATA (GB( 5,14,IC),IC=1,3) / |
---|
4166 | ! S 0.64857571E-01, 0.17825910E+01, 0.10000000E+01/ |
---|
4167 | |
---|
4168 | ! ----- INTERVAL = 2 ----- T = 250.0 |
---|
4169 | |
---|
4170 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4171 | ! DATA (GA( 6,13,IC),IC=1,3) / |
---|
4172 | ! S 0.73179175E-01, 0.11484154E+01, 0.00000000E+00/ |
---|
4173 | ! DATA (GB( 6,13,IC),IC=1,3) / |
---|
4174 | ! S 0.73179175E-01, 0.19796791E+01, 0.10000000E+01/ |
---|
4175 | ! DATA (GA( 6,14,IC),IC=1,3) / |
---|
4176 | ! S 0.63248495E-01, 0.99692726E+00, 0.00000000E+00/ |
---|
4177 | ! DATA (GB( 6,14,IC),IC=1,3) / |
---|
4178 | ! S 0.63248495E-01, 0.17442308E+01, 0.10000000E+01/ |
---|
4179 | |
---|
4180 | ! ----- INTERVAL = 2 ----- T = 262.5 |
---|
4181 | |
---|
4182 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4183 | ! DATA (GA( 7,13,IC),IC=1,3) / |
---|
4184 | ! S 0.71369063E-01, 0.11204723E+01, 0.00000000E+00/ |
---|
4185 | ! DATA (GB( 7,13,IC),IC=1,3) / |
---|
4186 | ! S 0.71369063E-01, 0.19367778E+01, 0.10000000E+01/ |
---|
4187 | ! DATA (GA( 7,14,IC),IC=1,3) / |
---|
4188 | ! S 0.61866970E-01, 0.97740923E+00, 0.00000000E+00/ |
---|
4189 | ! DATA (GB( 7,14,IC),IC=1,3) / |
---|
4190 | ! S 0.61866970E-01, 0.17112809E+01, 0.10000000E+01/ |
---|
4191 | |
---|
4192 | ! ----- INTERVAL = 2 ----- T = 275.0 |
---|
4193 | |
---|
4194 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4195 | ! DATA (GA( 8,13,IC),IC=1,3) / |
---|
4196 | ! S 0.69781812E-01, 0.10962918E+01, 0.00000000E+00/ |
---|
4197 | ! DATA (GB( 8,13,IC),IC=1,3) / |
---|
4198 | ! S 0.69781812E-01, 0.18991112E+01, 0.10000000E+01/ |
---|
4199 | ! DATA (GA( 8,14,IC),IC=1,3) / |
---|
4200 | ! S 0.60673632E-01, 0.96080188E+00, 0.00000000E+00/ |
---|
4201 | ! DATA (GB( 8,14,IC),IC=1,3) / |
---|
4202 | ! S 0.60673632E-01, 0.16828137E+01, 0.10000000E+01/ |
---|
4203 | |
---|
4204 | ! ----- INTERVAL = 2 ----- T = 287.5 |
---|
4205 | |
---|
4206 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4207 | ! DATA (GA( 9,13,IC),IC=1,3) / |
---|
4208 | ! S 0.68381606E-01, 0.10752229E+01, 0.00000000E+00/ |
---|
4209 | ! DATA (GB( 9,13,IC),IC=1,3) / |
---|
4210 | ! S 0.68381606E-01, 0.18658501E+01, 0.10000000E+01/ |
---|
4211 | ! DATA (GA( 9,14,IC),IC=1,3) / |
---|
4212 | ! S 0.59637277E-01, 0.94657562E+00, 0.00000000E+00/ |
---|
4213 | ! DATA (GB( 9,14,IC),IC=1,3) / |
---|
4214 | ! S 0.59637277E-01, 0.16580908E+01, 0.10000000E+01/ |
---|
4215 | |
---|
4216 | ! ----- INTERVAL = 2 ----- T = 300.0 |
---|
4217 | |
---|
4218 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4219 | ! DATA (GA(10,13,IC),IC=1,3) / |
---|
4220 | ! S 0.67139539E-01, 0.10567474E+01, 0.00000000E+00/ |
---|
4221 | ! DATA (GB(10,13,IC),IC=1,3) / |
---|
4222 | ! S 0.67139539E-01, 0.18363226E+01, 0.10000000E+01/ |
---|
4223 | ! DATA (GA(10,14,IC),IC=1,3) / |
---|
4224 | ! S 0.58732178E-01, 0.93430511E+00, 0.00000000E+00/ |
---|
4225 | ! DATA (GB(10,14,IC),IC=1,3) / |
---|
4226 | ! S 0.58732178E-01, 0.16365014E+01, 0.10000000E+01/ |
---|
4227 | |
---|
4228 | ! ----- INTERVAL = 2 ----- T = 312.5 |
---|
4229 | |
---|
4230 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
4231 | ! DATA (GA(11,13,IC),IC=1,3) / |
---|
4232 | ! S 0.66032012E-01, 0.10404465E+01, 0.00000000E+00/ |
---|
4233 | ! DATA (GB(11,13,IC),IC=1,3) / |
---|
4234 | ! S 0.66032012E-01, 0.18099779E+01, 0.10000000E+01/ |
---|
4235 | ! DATA (GA(11,14,IC),IC=1,3) / |
---|
4236 | ! S 0.57936092E-01, 0.92363528E+00, 0.00000000E+00/ |
---|
4237 | ! DATA (GB(11,14,IC),IC=1,3) / |
---|
4238 | ! S 0.57936092E-01, 0.16175164E+01, 0.10000000E+01/ |
---|
4239 | |
---|
4240 | |
---|
4241 | |
---|
4242 | |
---|
4243 | |
---|
4244 | |
---|
4245 | |
---|
4246 | |
---|
4247 | |
---|
4248 | |
---|
4249 | ! -- CARBON DIOXIDE LINES IN THE WINDOW REGION (800-1250 CM-1) |
---|
4250 | |
---|
4251 | |
---|
4252 | ! -- G = 0.0 |
---|
4253 | |
---|
4254 | |
---|
4255 | ! ----- INTERVAL = 4 ----- T = 187.5 |
---|
4256 | |
---|
4257 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4258 | ! DATA (GA( 1,15,IC),IC=1,3) / |
---|
4259 | ! S 0.13230067E+02, 0.22042132E+02, 0.00000000E+00/ |
---|
4260 | ! DATA (GB( 1,15,IC),IC=1,3) / |
---|
4261 | ! S 0.13230067E+02, 0.22051750E+02, 0.10000000E+01/ |
---|
4262 | ! DATA (GA( 1,16,IC),IC=1,3) / |
---|
4263 | ! S 0.13183816E+02, 0.22169501E+02, 0.00000000E+00/ |
---|
4264 | ! DATA (GB( 1,16,IC),IC=1,3) / |
---|
4265 | ! S 0.13183816E+02, 0.22178972E+02, 0.10000000E+01/ |
---|
4266 | |
---|
4267 | ! ----- INTERVAL = 4 ----- T = 200.0 |
---|
4268 | |
---|
4269 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4270 | ! DATA (GA( 2,15,IC),IC=1,3) / |
---|
4271 | ! S 0.13213564E+02, 0.22107298E+02, 0.00000000E+00/ |
---|
4272 | ! DATA (GB( 2,15,IC),IC=1,3) / |
---|
4273 | ! S 0.13213564E+02, 0.22116850E+02, 0.10000000E+01/ |
---|
4274 | ! DATA (GA( 2,16,IC),IC=1,3) / |
---|
4275 | ! S 0.13189991E+02, 0.22270075E+02, 0.00000000E+00/ |
---|
4276 | ! DATA (GB( 2,16,IC),IC=1,3) / |
---|
4277 | ! S 0.13189991E+02, 0.22279484E+02, 0.10000000E+01/ |
---|
4278 | |
---|
4279 | ! ----- INTERVAL = 4 ----- T = 212.5 |
---|
4280 | |
---|
4281 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4282 | ! DATA (GA( 3,15,IC),IC=1,3) / |
---|
4283 | ! S 0.13209140E+02, 0.22180915E+02, 0.00000000E+00/ |
---|
4284 | ! DATA (GB( 3,15,IC),IC=1,3) / |
---|
4285 | ! S 0.13209140E+02, 0.22190410E+02, 0.10000000E+01/ |
---|
4286 | ! DATA (GA( 3,16,IC),IC=1,3) / |
---|
4287 | ! S 0.13209485E+02, 0.22379193E+02, 0.00000000E+00/ |
---|
4288 | ! DATA (GB( 3,16,IC),IC=1,3) / |
---|
4289 | ! S 0.13209485E+02, 0.22388551E+02, 0.10000000E+01/ |
---|
4290 | |
---|
4291 | ! ----- INTERVAL = 4 ----- T = 225.0 |
---|
4292 | |
---|
4293 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4294 | ! DATA (GA( 4,15,IC),IC=1,3) / |
---|
4295 | ! S 0.13213894E+02, 0.22259478E+02, 0.00000000E+00/ |
---|
4296 | ! DATA (GB( 4,15,IC),IC=1,3) / |
---|
4297 | ! S 0.13213894E+02, 0.22268925E+02, 0.10000000E+01/ |
---|
4298 | ! DATA (GA( 4,16,IC),IC=1,3) / |
---|
4299 | ! S 0.13238789E+02, 0.22492992E+02, 0.00000000E+00/ |
---|
4300 | ! DATA (GB( 4,16,IC),IC=1,3) / |
---|
4301 | ! S 0.13238789E+02, 0.22502309E+02, 0.10000000E+01/ |
---|
4302 | |
---|
4303 | ! ----- INTERVAL = 4 ----- T = 237.5 |
---|
4304 | |
---|
4305 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4306 | ! DATA (GA( 5,15,IC),IC=1,3) / |
---|
4307 | ! S 0.13225963E+02, 0.22341039E+02, 0.00000000E+00/ |
---|
4308 | ! DATA (GB( 5,15,IC),IC=1,3) / |
---|
4309 | ! S 0.13225963E+02, 0.22350445E+02, 0.10000000E+01/ |
---|
4310 | ! DATA (GA( 5,16,IC),IC=1,3) / |
---|
4311 | ! S 0.13275017E+02, 0.22608508E+02, 0.00000000E+00/ |
---|
4312 | ! DATA (GB( 5,16,IC),IC=1,3) / |
---|
4313 | ! S 0.13275017E+02, 0.22617792E+02, 0.10000000E+01/ |
---|
4314 | |
---|
4315 | ! ----- INTERVAL = 4 ----- T = 250.0 |
---|
4316 | |
---|
4317 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4318 | ! DATA (GA( 6,15,IC),IC=1,3) / |
---|
4319 | ! S 0.13243806E+02, 0.22424247E+02, 0.00000000E+00/ |
---|
4320 | ! DATA (GB( 6,15,IC),IC=1,3) / |
---|
4321 | ! S 0.13243806E+02, 0.22433617E+02, 0.10000000E+01/ |
---|
4322 | ! DATA (GA( 6,16,IC),IC=1,3) / |
---|
4323 | ! S 0.13316096E+02, 0.22723843E+02, 0.00000000E+00/ |
---|
4324 | ! DATA (GB( 6,16,IC),IC=1,3) / |
---|
4325 | ! S 0.13316096E+02, 0.22733099E+02, 0.10000000E+01/ |
---|
4326 | |
---|
4327 | ! ----- INTERVAL = 4 ----- T = 262.5 |
---|
4328 | |
---|
4329 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4330 | ! DATA (GA( 7,15,IC),IC=1,3) / |
---|
4331 | ! S 0.13266104E+02, 0.22508089E+02, 0.00000000E+00/ |
---|
4332 | ! DATA (GB( 7,15,IC),IC=1,3) / |
---|
4333 | ! S 0.13266104E+02, 0.22517429E+02, 0.10000000E+01/ |
---|
4334 | ! DATA (GA( 7,16,IC),IC=1,3) / |
---|
4335 | ! S 0.13360555E+02, 0.22837837E+02, 0.00000000E+00/ |
---|
4336 | ! DATA (GB( 7,16,IC),IC=1,3) / |
---|
4337 | ! S 0.13360555E+02, 0.22847071E+02, 0.10000000E+01/ |
---|
4338 | |
---|
4339 | ! ----- INTERVAL = 4 ----- T = 275.0 |
---|
4340 | |
---|
4341 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4342 | ! DATA (GA( 8,15,IC),IC=1,3) / |
---|
4343 | ! S 0.13291782E+02, 0.22591771E+02, 0.00000000E+00/ |
---|
4344 | ! DATA (GB( 8,15,IC),IC=1,3) / |
---|
4345 | ! S 0.13291782E+02, 0.22601086E+02, 0.10000000E+01/ |
---|
4346 | ! DATA (GA( 8,16,IC),IC=1,3) / |
---|
4347 | ! S 0.13407324E+02, 0.22949751E+02, 0.00000000E+00/ |
---|
4348 | ! DATA (GB( 8,16,IC),IC=1,3) / |
---|
4349 | ! S 0.13407324E+02, 0.22958967E+02, 0.10000000E+01/ |
---|
4350 | |
---|
4351 | ! ----- INTERVAL = 4 ----- T = 287.5 |
---|
4352 | |
---|
4353 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4354 | ! DATA (GA( 9,15,IC),IC=1,3) / |
---|
4355 | ! S 0.13319961E+02, 0.22674661E+02, 0.00000000E+00/ |
---|
4356 | ! DATA (GB( 9,15,IC),IC=1,3) / |
---|
4357 | ! S 0.13319961E+02, 0.22683956E+02, 0.10000000E+01/ |
---|
4358 | ! DATA (GA( 9,16,IC),IC=1,3) / |
---|
4359 | ! S 0.13455544E+02, 0.23059032E+02, 0.00000000E+00/ |
---|
4360 | ! DATA (GB( 9,16,IC),IC=1,3) / |
---|
4361 | ! S 0.13455544E+02, 0.23068234E+02, 0.10000000E+01/ |
---|
4362 | |
---|
4363 | ! ----- INTERVAL = 4 ----- T = 300.0 |
---|
4364 | |
---|
4365 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4366 | ! DATA (GA(10,15,IC),IC=1,3) / |
---|
4367 | ! S 0.13349927E+02, 0.22756246E+02, 0.00000000E+00/ |
---|
4368 | ! DATA (GB(10,15,IC),IC=1,3) / |
---|
4369 | ! S 0.13349927E+02, 0.22765522E+02, 0.10000000E+01/ |
---|
4370 | ! DATA (GA(10,16,IC),IC=1,3) / |
---|
4371 | ! S 0.13504450E+02, 0.23165146E+02, 0.00000000E+00/ |
---|
4372 | ! DATA (GB(10,16,IC),IC=1,3) / |
---|
4373 | ! S 0.13504450E+02, 0.23174336E+02, 0.10000000E+01/ |
---|
4374 | |
---|
4375 | ! ----- INTERVAL = 4 ----- T = 312.5 |
---|
4376 | |
---|
4377 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
4378 | ! DATA (GA(11,15,IC),IC=1,3) / |
---|
4379 | ! S 0.13381108E+02, 0.22836093E+02, 0.00000000E+00/ |
---|
4380 | ! DATA (GB(11,15,IC),IC=1,3) / |
---|
4381 | ! S 0.13381108E+02, 0.22845354E+02, 0.10000000E+01/ |
---|
4382 | ! DATA (GA(11,16,IC),IC=1,3) / |
---|
4383 | ! S 0.13553282E+02, 0.23267456E+02, 0.00000000E+00/ |
---|
4384 | ! DATA (GB(11,16,IC),IC=1,3) / |
---|
4385 | ! S 0.13553282E+02, 0.23276638E+02, 0.10000000E+01/ |
---|
4386 | |
---|
4387 | ! ------------------------------------------------------------------ |
---|
4388 | ! DATA (( XP( J,K),J=1,6), K=1,6) / |
---|
4389 | ! S 0.46430621E+02, 0.12928299E+03, 0.20732648E+03, |
---|
4390 | ! S 0.31398411E+03, 0.18373177E+03,-0.11412303E+03, |
---|
4391 | ! S 0.73604774E+02, 0.27887914E+03, 0.27076947E+03, |
---|
4392 | ! S-0.57322111E+02,-0.64742459E+02, 0.87238280E+02, |
---|
4393 | ! S 0.37050866E+02, 0.20498759E+03, 0.37558029E+03, |
---|
4394 | ! S 0.17401171E+03,-0.13350302E+03,-0.37651795E+02, |
---|
4395 | ! S 0.14930141E+02, 0.89161160E+02, 0.17793062E+03, |
---|
4396 | ! S 0.93433860E+02,-0.70646020E+02,-0.26373150E+02, |
---|
4397 | ! S 0.40386780E+02, 0.10855270E+03, 0.50755010E+02, |
---|
4398 | ! S-0.31496190E+02, 0.12791300E+00, 0.18017770E+01, |
---|
4399 | ! S 0.90811926E+01, 0.75073923E+02, 0.24654438E+03, |
---|
4400 | ! S 0.39332612E+03, 0.29385281E+03, 0.89107921E+02 / |
---|
4401 | |
---|
4402 | |
---|
4403 | |
---|
4404 | ! * 1.0 PLANCK FUNCTIONS AND GRADIENTS |
---|
4405 | ! ------------------------------ |
---|
4406 | |
---|
4407 | |
---|
4408 | ! cdir collapse |
---|
4409 | DO jk = 1, kflev + 1 |
---|
4410 | DO jl = 1, kdlon |
---|
4411 | pbint(jl, jk) = 0. |
---|
4412 | END DO |
---|
4413 | END DO |
---|
4414 | DO jl = 1, kdlon |
---|
4415 | pbsuin(jl) = 0. |
---|
4416 | END DO |
---|
4417 | |
---|
4418 | DO jnu = 1, ninter |
---|
4419 | |
---|
4420 | ! * 1.1 LEVELS FROM SURFACE TO KFLEV |
---|
4421 | ! ---------------------------- |
---|
4422 | |
---|
4423 | |
---|
4424 | DO jk = 1, kflev |
---|
4425 | DO jl = 1, kdlon |
---|
4426 | zti(jl) = (ptl(jl,jk)-tstand)/tstand |
---|
4427 | zres(jl) = xp(1, jnu) + zti(jl)*(xp(2,jnu)+zti(jl)*(xp(3, & |
---|
4428 | jnu)+zti(jl)*(xp(4,jnu)+zti(jl)*(xp(5,jnu)+zti(jl)*(xp(6,jnu)))))) |
---|
4429 | pbint(jl, jk) = pbint(jl, jk) + zres(jl) |
---|
4430 | pb(jl, jnu, jk) = zres(jl) |
---|
4431 | zblev(jl, jk) = zres(jl) |
---|
4432 | zti2(jl) = (ptave(jl,jk)-tstand)/tstand |
---|
4433 | zres2(jl) = xp(1, jnu) + zti2(jl)*(xp(2,jnu)+zti2(jl)*(xp(3, & |
---|
4434 | jnu)+zti2(jl)*(xp(4,jnu)+zti2(jl)*(xp(5,jnu)+zti2(jl)*(xp(6,jnu)))) & |
---|
4435 | )) |
---|
4436 | zblay(jl, jk) = zres2(jl) |
---|
4437 | END DO |
---|
4438 | END DO |
---|
4439 | |
---|
4440 | ! * 1.2 TOP OF THE ATMOSPHERE AND SURFACE |
---|
4441 | ! --------------------------------- |
---|
4442 | |
---|
4443 | |
---|
4444 | DO jl = 1, kdlon |
---|
4445 | zti(jl) = (ptl(jl,kflev+1)-tstand)/tstand |
---|
4446 | zti2(jl) = (ptl(jl,1)+pdt0(jl)-tstand)/tstand |
---|
4447 | zres(jl) = xp(1, jnu) + zti(jl)*(xp(2,jnu)+zti(jl)*(xp(3, & |
---|
4448 | jnu)+zti(jl)*(xp(4,jnu)+zti(jl)*(xp(5,jnu)+zti(jl)*(xp(6,jnu)))))) |
---|
4449 | zres2(jl) = xp(1, jnu) + zti2(jl)*(xp(2,jnu)+zti2(jl)*(xp(3, & |
---|
4450 | jnu)+zti2(jl)*(xp(4,jnu)+zti2(jl)*(xp(5,jnu)+zti2(jl)*(xp(6,jnu)))))) |
---|
4451 | pbint(jl, kflev+1) = pbint(jl, kflev+1) + zres(jl) |
---|
4452 | pb(jl, jnu, kflev+1) = zres(jl) |
---|
4453 | zblev(jl, kflev+1) = zres(jl) |
---|
4454 | pbtop(jl, jnu) = zres(jl) |
---|
4455 | pbsur(jl, jnu) = zres2(jl) |
---|
4456 | pbsuin(jl) = pbsuin(jl) + zres2(jl) |
---|
4457 | END DO |
---|
4458 | |
---|
4459 | ! * 1.3 GRADIENTS IN SUB-LAYERS |
---|
4460 | ! ----------------------- |
---|
4461 | |
---|
4462 | |
---|
4463 | DO jk = 1, kflev |
---|
4464 | jk2 = 2*jk |
---|
4465 | jk1 = jk2 - 1 |
---|
4466 | DO jl = 1, kdlon |
---|
4467 | pdbsl(jl, jnu, jk1) = zblay(jl, jk) - zblev(jl, jk) |
---|
4468 | pdbsl(jl, jnu, jk2) = zblev(jl, jk+1) - zblay(jl, jk) |
---|
4469 | END DO |
---|
4470 | END DO |
---|
4471 | |
---|
4472 | END DO |
---|
4473 | |
---|
4474 | ! * 2.0 CHOOSE THE RELEVANT SETS OF PADE APPROXIMANTS |
---|
4475 | ! --------------------------------------------- |
---|
4476 | |
---|
4477 | |
---|
4478 | |
---|
4479 | |
---|
4480 | DO jl = 1, kdlon |
---|
4481 | zdsto1 = (ptl(jl,kflev+1)-tintp(1))/tstp |
---|
4482 | ixtox = max(1, min(mxixt,int(zdsto1+1.))) |
---|
4483 | zdstox = (ptl(jl,kflev+1)-tintp(ixtox))/tstp |
---|
4484 | IF (zdstox<0.5) THEN |
---|
4485 | indto = ixtox |
---|
4486 | ELSE |
---|
4487 | indto = ixtox + 1 |
---|
4488 | END IF |
---|
4489 | indb(jl) = indto |
---|
4490 | zdst1 = (ptl(jl,1)-tintp(1))/tstp |
---|
4491 | ixtx = max(1, min(mxixt,int(zdst1+1.))) |
---|
4492 | zdstx = (ptl(jl,1)-tintp(ixtx))/tstp |
---|
4493 | IF (zdstx<0.5) THEN |
---|
4494 | indt = ixtx |
---|
4495 | ELSE |
---|
4496 | indt = ixtx + 1 |
---|
4497 | END IF |
---|
4498 | inds(jl) = indt |
---|
4499 | END DO |
---|
4500 | |
---|
4501 | DO jf = 1, 2 |
---|
4502 | DO jg = 1, 8 |
---|
4503 | DO jl = 1, kdlon |
---|
4504 | indsu = inds(jl) |
---|
4505 | pgasur(jl, jg, jf) = ga(indsu, 2*jg-1, jf) |
---|
4506 | pgbsur(jl, jg, jf) = gb(indsu, 2*jg-1, jf) |
---|
4507 | indtp = indb(jl) |
---|
4508 | pgatop(jl, jg, jf) = ga(indtp, 2*jg-1, jf) |
---|
4509 | pgbtop(jl, jg, jf) = gb(indtp, 2*jg-1, jf) |
---|
4510 | END DO |
---|
4511 | END DO |
---|
4512 | END DO |
---|
4513 | |
---|
4514 | DO jk = 1, kflev |
---|
4515 | DO jl = 1, kdlon |
---|
4516 | zdst1 = (ptave(jl,jk)-tintp(1))/tstp |
---|
4517 | ixtx = max(1, min(mxixt,int(zdst1+1.))) |
---|
4518 | zdstx = (ptave(jl,jk)-tintp(ixtx))/tstp |
---|
4519 | IF (zdstx<0.5) THEN |
---|
4520 | indt = ixtx |
---|
4521 | ELSE |
---|
4522 | indt = ixtx + 1 |
---|
4523 | END IF |
---|
4524 | indb(jl) = indt |
---|
4525 | END DO |
---|
4526 | |
---|
4527 | DO jf = 1, 2 |
---|
4528 | DO jg = 1, 8 |
---|
4529 | DO jl = 1, kdlon |
---|
4530 | indt = indb(jl) |
---|
4531 | pga(jl, jg, jf, jk) = ga(indt, 2*jg, jf) |
---|
4532 | pgb(jl, jg, jf, jk) = gb(indt, 2*jg, jf) |
---|
4533 | END DO |
---|
4534 | END DO |
---|
4535 | END DO |
---|
4536 | END DO |
---|
4537 | |
---|
4538 | ! ------------------------------------------------------------------ |
---|
4539 | |
---|
4540 | RETURN |
---|
4541 | END SUBROUTINE lwb_lmdar4 |
---|
4542 | SUBROUTINE lwv_lmdar4(kuaer, ktraer, klim, pabcu, pb, pbint, pbsuin, pbsur, & |
---|
4543 | pbtop, pdbsl, pemis, ppmb, ptave, pga, pgb, pgasur, pgbsur, pgatop, & |
---|
4544 | pgbtop, pcntrb, pcts, pfluc) |
---|
4545 | USE raddimlw_mod_h |
---|
4546 | USE dimphy |
---|
4547 | USE yomcst_mod_h |
---|
4548 | IMPLICIT NONE |
---|
4549 | |
---|
4550 | |
---|
4551 | ! ----------------------------------------------------------------------- |
---|
4552 | ! PURPOSE. |
---|
4553 | ! -------- |
---|
4554 | ! CARRIES OUT THE VERTICAL INTEGRATION TO GIVE LONGWAVE |
---|
4555 | ! FLUXES OR RADIANCES |
---|
4556 | |
---|
4557 | ! METHOD. |
---|
4558 | ! ------- |
---|
4559 | |
---|
4560 | ! 1. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING BETWEEN |
---|
4561 | ! CONTRIBUTIONS BY - THE NEARBY LAYERS |
---|
4562 | ! - THE DISTANT LAYERS |
---|
4563 | ! - THE BOUNDARY TERMS |
---|
4564 | ! 2. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
---|
4565 | |
---|
4566 | ! REFERENCE. |
---|
4567 | ! ---------- |
---|
4568 | |
---|
4569 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
4570 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
4571 | |
---|
4572 | ! AUTHOR. |
---|
4573 | ! ------- |
---|
4574 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
4575 | |
---|
4576 | ! MODIFICATIONS. |
---|
4577 | ! -------------- |
---|
4578 | ! ORIGINAL : 89-07-14 |
---|
4579 | ! ----------------------------------------------------------------------- |
---|
4580 | |
---|
4581 | ! * ARGUMENTS: |
---|
4582 | INTEGER kuaer, ktraer, klim |
---|
4583 | |
---|
4584 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! EFFECTIVE ABSORBER AMOUNTS |
---|
4585 | REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
---|
4586 | REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF-LEVEL PLANCK FUNCTIONS |
---|
4587 | REAL (KIND=8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
---|
4588 | REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
4589 | REAL (KIND=8) pbtop(kdlon, ninter) ! T.O.A. SPECTRAL PLANCK FUNCTION |
---|
4590 | REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
4591 | REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
4592 | REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF-LEVEL PRESSURE (MB) |
---|
4593 | REAL (KIND=8) ptave(kdlon, kflev) ! TEMPERATURE |
---|
4594 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
4595 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
4596 | REAL (KIND=8) pgasur(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
4597 | REAL (KIND=8) pgbsur(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
4598 | REAL (KIND=8) pgatop(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
4599 | REAL (KIND=8) pgbtop(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
4600 | |
---|
4601 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
---|
4602 | REAL (KIND=8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
---|
4603 | REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
4604 | ! ----------------------------------------------------------------------- |
---|
4605 | ! LOCAL VARIABLES: |
---|
4606 | REAL (KIND=8) zadjd(kdlon, kflev+1) |
---|
4607 | REAL (KIND=8) zadju(kdlon, kflev+1) |
---|
4608 | REAL (KIND=8) zdbdt(kdlon, ninter, kflev) |
---|
4609 | REAL (KIND=8) zdisd(kdlon, kflev+1) |
---|
4610 | REAL (KIND=8) zdisu(kdlon, kflev+1) |
---|
4611 | |
---|
4612 | INTEGER jk, jl |
---|
4613 | ! ----------------------------------------------------------------------- |
---|
4614 | |
---|
4615 | DO jk = 1, kflev + 1 |
---|
4616 | DO jl = 1, kdlon |
---|
4617 | zadjd(jl, jk) = 0. |
---|
4618 | zadju(jl, jk) = 0. |
---|
4619 | zdisd(jl, jk) = 0. |
---|
4620 | zdisu(jl, jk) = 0. |
---|
4621 | END DO |
---|
4622 | END DO |
---|
4623 | |
---|
4624 | DO jk = 1, kflev |
---|
4625 | DO jl = 1, kdlon |
---|
4626 | pcts(jl, jk) = 0. |
---|
4627 | END DO |
---|
4628 | END DO |
---|
4629 | |
---|
4630 | ! * CONTRIBUTION FROM ADJACENT LAYERS |
---|
4631 | |
---|
4632 | CALL lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, zadjd, zadju, & |
---|
4633 | pcntrb, zdbdt) |
---|
4634 | ! * CONTRIBUTION FROM DISTANT LAYERS |
---|
4635 | |
---|
4636 | CALL lwvd_lmdar4(kuaer, ktraer, pabcu, zdbdt, pga, pgb, pcntrb, zdisd, & |
---|
4637 | zdisu) |
---|
4638 | |
---|
4639 | ! * EXCHANGE WITH THE BOUNDARIES |
---|
4640 | |
---|
4641 | CALL lwvb_lmdar4(kuaer, ktraer, klim, pabcu, zadjd, zadju, pb, pbint, & |
---|
4642 | pbsuin, pbsur, pbtop, zdisd, zdisu, pemis, ppmb, pga, pgb, pgasur, & |
---|
4643 | pgbsur, pgatop, pgbtop, pcts, pfluc) |
---|
4644 | |
---|
4645 | |
---|
4646 | RETURN |
---|
4647 | END SUBROUTINE lwv_lmdar4 |
---|
4648 | SUBROUTINE lwvb_lmdar4(kuaer, ktraer, klim, pabcu, padjd, padju, pb, pbint, & |
---|
4649 | pbsui, pbsur, pbtop, pdisd, pdisu, pemis, ppmb, pga, pgb, pgasur, pgbsur, & |
---|
4650 | pgatop, pgbtop, pcts, pfluc) |
---|
4651 | USE radopt_mod_h |
---|
4652 | USE raddimlw_mod_h |
---|
4653 | USE dimphy |
---|
4654 | IMPLICIT NONE |
---|
4655 | |
---|
4656 | ! ----------------------------------------------------------------------- |
---|
4657 | ! PURPOSE. |
---|
4658 | ! -------- |
---|
4659 | ! INTRODUCES THE EFFECTS OF THE BOUNDARIES IN THE VERTICAL |
---|
4660 | ! INTEGRATION |
---|
4661 | |
---|
4662 | ! METHOD. |
---|
4663 | ! ------- |
---|
4664 | |
---|
4665 | ! 1. COMPUTES THE ENERGY EXCHANGE WITH TOP AND SURFACE OF THE |
---|
4666 | ! ATMOSPHERE |
---|
4667 | ! 2. COMPUTES THE COOLING-TO-SPACE AND HEATING-FROM-GROUND |
---|
4668 | ! TERMS FOR THE APPROXIMATE COOLING RATE ABOVE 10 HPA |
---|
4669 | ! 3. ADDS UP ALL CONTRIBUTIONS TO GET THE CLEAR-SKY FLUXES |
---|
4670 | |
---|
4671 | ! REFERENCE. |
---|
4672 | ! ---------- |
---|
4673 | |
---|
4674 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
4675 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
4676 | |
---|
4677 | ! AUTHOR. |
---|
4678 | ! ------- |
---|
4679 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
4680 | |
---|
4681 | ! MODIFICATIONS. |
---|
4682 | ! -------------- |
---|
4683 | ! ORIGINAL : 89-07-14 |
---|
4684 | ! Voigt lines (loop 2413 to 2427) - JJM & PhD - 01/96 |
---|
4685 | ! ----------------------------------------------------------------------- |
---|
4686 | |
---|
4687 | ! * 0.1 ARGUMENTS |
---|
4688 | ! --------- |
---|
4689 | |
---|
4690 | INTEGER kuaer, ktraer, klim |
---|
4691 | |
---|
4692 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
---|
4693 | REAL (KIND=8) padjd(kdlon, kflev+1) ! CONTRIBUTION BY ADJACENT LAYERS |
---|
4694 | REAL (KIND=8) padju(kdlon, kflev+1) ! CONTRIBUTION BY ADJACENT LAYERS |
---|
4695 | REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
---|
4696 | REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF-LEVEL PLANCK FUNCTIONS |
---|
4697 | REAL (KIND=8) pbsur(kdlon, ninter) ! SPECTRAL SURFACE PLANCK FUNCTION |
---|
4698 | REAL (KIND=8) pbsui(kdlon) ! SURFACE PLANCK FUNCTION |
---|
4699 | REAL (KIND=8) pbtop(kdlon, ninter) ! SPECTRAL T.O.A. PLANCK FUNCTION |
---|
4700 | REAL (KIND=8) pdisd(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
4701 | REAL (KIND=8) pdisu(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
4702 | REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
4703 | REAL (KIND=8) ppmb(kdlon, kflev+1) ! PRESSURE MB |
---|
4704 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
4705 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
4706 | REAL (KIND=8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
4707 | REAL (KIND=8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
4708 | REAL (KIND=8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
4709 | REAL (KIND=8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
4710 | |
---|
4711 | REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
4712 | REAL (KIND=8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
---|
4713 | |
---|
4714 | ! * LOCAL VARIABLES: |
---|
4715 | |
---|
4716 | REAL (KIND=8) zbgnd(kdlon) |
---|
4717 | REAL (KIND=8) zfd(kdlon) |
---|
4718 | REAL (KIND=8) zfn10(kdlon) |
---|
4719 | REAL (KIND=8) zfu(kdlon) |
---|
4720 | REAL (KIND=8) ztt(kdlon, ntra) |
---|
4721 | REAL (KIND=8) ztt1(kdlon, ntra) |
---|
4722 | REAL (KIND=8) ztt2(kdlon, ntra) |
---|
4723 | REAL (KIND=8) zuu(kdlon, nua) |
---|
4724 | REAL (KIND=8) zcnsol(kdlon) |
---|
4725 | REAL (KIND=8) zcntop(kdlon) |
---|
4726 | |
---|
4727 | INTEGER jk, jl, ja |
---|
4728 | INTEGER jstra, jstru |
---|
4729 | INTEGER ind1, ind2, ind3, ind4, in, jlim |
---|
4730 | REAL (KIND=8) zctstr |
---|
4731 | |
---|
4732 | ! ----------------------------------------------------------------------- |
---|
4733 | |
---|
4734 | ! * 1. INITIALIZATION |
---|
4735 | ! -------------- |
---|
4736 | |
---|
4737 | |
---|
4738 | |
---|
4739 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
4740 | ! --------------------------------- |
---|
4741 | |
---|
4742 | |
---|
4743 | DO ja = 1, ntra |
---|
4744 | DO jl = 1, kdlon |
---|
4745 | ztt(jl, ja) = 1.0 |
---|
4746 | ztt1(jl, ja) = 1.0 |
---|
4747 | ztt2(jl, ja) = 1.0 |
---|
4748 | END DO |
---|
4749 | END DO |
---|
4750 | |
---|
4751 | DO ja = 1, nua |
---|
4752 | DO jl = 1, kdlon |
---|
4753 | zuu(jl, ja) = 1.0 |
---|
4754 | END DO |
---|
4755 | END DO |
---|
4756 | |
---|
4757 | ! ------------------------------------------------------------------ |
---|
4758 | |
---|
4759 | ! * 2. VERTICAL INTEGRATION |
---|
4760 | ! -------------------- |
---|
4761 | |
---|
4762 | |
---|
4763 | ind1 = 0 |
---|
4764 | ind3 = 0 |
---|
4765 | ind4 = 1 |
---|
4766 | ind2 = 1 |
---|
4767 | |
---|
4768 | ! * 2.3 EXCHANGE WITH TOP OF THE ATMOSPHERE |
---|
4769 | ! ----------------------------------- |
---|
4770 | |
---|
4771 | |
---|
4772 | DO jk = 1, kflev |
---|
4773 | in = (jk-1)*ng1p1 + 1 |
---|
4774 | |
---|
4775 | DO ja = 1, kuaer |
---|
4776 | DO jl = 1, kdlon |
---|
4777 | zuu(jl, ja) = pabcu(jl, ja, in) |
---|
4778 | END DO |
---|
4779 | END DO |
---|
4780 | |
---|
4781 | |
---|
4782 | CALL lwtt_lmdar4(pgatop(1,1,1), pgbtop(1,1,1), zuu, ztt) |
---|
4783 | |
---|
4784 | DO jl = 1, kdlon |
---|
4785 | zcntop(jl) = pbtop(jl, 1)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
4786 | pbtop(jl, 2)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
4787 | pbtop(jl, 3)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
4788 | pbtop(jl, 4)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
4789 | pbtop(jl, 5)*ztt(jl, 3)*ztt(jl, 14) + pbtop(jl, 6)*ztt(jl, 6)*ztt(jl, & |
---|
4790 | 15) |
---|
4791 | zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
---|
4792 | pfluc(jl, 2, jk) = zfd(jl) |
---|
4793 | END DO |
---|
4794 | |
---|
4795 | END DO |
---|
4796 | |
---|
4797 | jk = kflev + 1 |
---|
4798 | in = (jk-1)*ng1p1 + 1 |
---|
4799 | |
---|
4800 | DO jl = 1, kdlon |
---|
4801 | zcntop(jl) = pbtop(jl, 1) + pbtop(jl, 2) + pbtop(jl, 3) + pbtop(jl, 4) + & |
---|
4802 | pbtop(jl, 5) + pbtop(jl, 6) |
---|
4803 | zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
---|
4804 | pfluc(jl, 2, jk) = zfd(jl) |
---|
4805 | END DO |
---|
4806 | |
---|
4807 | ! * 2.4 COOLING-TO-SPACE OF LAYERS ABOVE 10 HPA |
---|
4808 | ! --------------------------------------- |
---|
4809 | |
---|
4810 | |
---|
4811 | |
---|
4812 | ! * 2.4.1 INITIALIZATION |
---|
4813 | ! -------------- |
---|
4814 | |
---|
4815 | |
---|
4816 | jlim = kflev |
---|
4817 | |
---|
4818 | IF (.NOT. levoigt) THEN |
---|
4819 | DO jk = kflev, 1, -1 |
---|
4820 | IF (ppmb(1,jk)<10.0) THEN |
---|
4821 | jlim = jk |
---|
4822 | END IF |
---|
4823 | END DO |
---|
4824 | END IF |
---|
4825 | klim = jlim |
---|
4826 | |
---|
4827 | IF (.NOT. levoigt) THEN |
---|
4828 | DO ja = 1, ktraer |
---|
4829 | DO jl = 1, kdlon |
---|
4830 | ztt1(jl, ja) = 1.0 |
---|
4831 | END DO |
---|
4832 | END DO |
---|
4833 | |
---|
4834 | ! * 2.4.2 LOOP OVER LAYERS ABOVE 10 HPA |
---|
4835 | ! ----------------------------- |
---|
4836 | |
---|
4837 | |
---|
4838 | DO jstra = kflev, jlim, -1 |
---|
4839 | jstru = (jstra-1)*ng1p1 + 1 |
---|
4840 | |
---|
4841 | DO ja = 1, kuaer |
---|
4842 | DO jl = 1, kdlon |
---|
4843 | zuu(jl, ja) = pabcu(jl, ja, jstru) |
---|
4844 | END DO |
---|
4845 | END DO |
---|
4846 | |
---|
4847 | |
---|
4848 | CALL lwtt_lmdar4(pga(1,1,1,jstra), pgb(1,1,1,jstra), zuu, ztt) |
---|
4849 | |
---|
4850 | DO jl = 1, kdlon |
---|
4851 | zctstr = (pb(jl,1,jstra)+pb(jl,1,jstra+1))* & |
---|
4852 | (ztt1(jl,1)*ztt1(jl,10)-ztt(jl,1)*ztt(jl,10)) + & |
---|
4853 | (pb(jl,2,jstra)+pb(jl,2,jstra+1))*(ztt1(jl,2)*ztt1(jl,7)*ztt1(jl,11 & |
---|
4854 | )-ztt(jl,2)*ztt(jl,7)*ztt(jl,11)) + (pb(jl,3,jstra)+pb(jl,3,jstra+1 & |
---|
4855 | ))*(ztt1(jl,4)*ztt1(jl,8)*ztt1(jl,12)-ztt(jl,4)*ztt(jl,8)*ztt(jl,12 & |
---|
4856 | )) + (pb(jl,4,jstra)+pb(jl,4,jstra+1))*(ztt1(jl,5)*ztt1(jl,9)*ztt1( & |
---|
4857 | jl,13)-ztt(jl,5)*ztt(jl,9)*ztt(jl,13)) + (pb(jl,5,jstra)+pb(jl,5, & |
---|
4858 | jstra+1))*(ztt1(jl,3)*ztt1(jl,14)-ztt(jl,3)*ztt(jl,14)) + & |
---|
4859 | (pb(jl,6,jstra)+pb(jl,6,jstra+1))*(ztt1(jl,6)*ztt1(jl,15)-ztt(jl,6) & |
---|
4860 | *ztt(jl,15)) |
---|
4861 | pcts(jl, jstra) = zctstr*0.5 |
---|
4862 | END DO |
---|
4863 | DO ja = 1, ktraer |
---|
4864 | DO jl = 1, kdlon |
---|
4865 | ztt1(jl, ja) = ztt(jl, ja) |
---|
4866 | END DO |
---|
4867 | END DO |
---|
4868 | END DO |
---|
4869 | END IF |
---|
4870 | ! Mise a zero de securite pour PCTS en cas de LEVOIGT |
---|
4871 | IF (levoigt) THEN |
---|
4872 | DO jstra = 1, kflev |
---|
4873 | DO jl = 1, kdlon |
---|
4874 | pcts(jl, jstra) = 0. |
---|
4875 | END DO |
---|
4876 | END DO |
---|
4877 | END IF |
---|
4878 | |
---|
4879 | ! * 2.5 EXCHANGE WITH LOWER LIMIT |
---|
4880 | ! ------------------------- |
---|
4881 | |
---|
4882 | |
---|
4883 | DO jl = 1, kdlon |
---|
4884 | zbgnd(jl) = pbsui(jl)*pemis(jl) - (1.-pemis(jl))*pfluc(jl, 2, 1) - & |
---|
4885 | pbint(jl, 1) |
---|
4886 | END DO |
---|
4887 | |
---|
4888 | jk = 1 |
---|
4889 | in = (jk-1)*ng1p1 + 1 |
---|
4890 | |
---|
4891 | DO jl = 1, kdlon |
---|
4892 | zcnsol(jl) = pbsur(jl, 1) + pbsur(jl, 2) + pbsur(jl, 3) + pbsur(jl, 4) + & |
---|
4893 | pbsur(jl, 5) + pbsur(jl, 6) |
---|
4894 | zcnsol(jl) = zcnsol(jl)*zbgnd(jl)/pbsui(jl) |
---|
4895 | zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
---|
4896 | pfluc(jl, 1, jk) = zfu(jl) |
---|
4897 | END DO |
---|
4898 | |
---|
4899 | DO jk = 2, kflev + 1 |
---|
4900 | in = (jk-1)*ng1p1 + 1 |
---|
4901 | |
---|
4902 | |
---|
4903 | DO ja = 1, kuaer |
---|
4904 | DO jl = 1, kdlon |
---|
4905 | zuu(jl, ja) = pabcu(jl, ja, 1) - pabcu(jl, ja, in) |
---|
4906 | END DO |
---|
4907 | END DO |
---|
4908 | |
---|
4909 | |
---|
4910 | CALL lwtt_lmdar4(pgasur(1,1,1), pgbsur(1,1,1), zuu, ztt) |
---|
4911 | |
---|
4912 | DO jl = 1, kdlon |
---|
4913 | zcnsol(jl) = pbsur(jl, 1)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
4914 | pbsur(jl, 2)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
4915 | pbsur(jl, 3)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
4916 | pbsur(jl, 4)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
4917 | pbsur(jl, 5)*ztt(jl, 3)*ztt(jl, 14) + pbsur(jl, 6)*ztt(jl, 6)*ztt(jl, & |
---|
4918 | 15) |
---|
4919 | zcnsol(jl) = zcnsol(jl)*zbgnd(jl)/pbsui(jl) |
---|
4920 | zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
---|
4921 | pfluc(jl, 1, jk) = zfu(jl) |
---|
4922 | END DO |
---|
4923 | |
---|
4924 | |
---|
4925 | END DO |
---|
4926 | |
---|
4927 | ! * 2.7 CLEAR-SKY FLUXES |
---|
4928 | ! ---------------- |
---|
4929 | |
---|
4930 | |
---|
4931 | IF (.NOT. levoigt) THEN |
---|
4932 | DO jl = 1, kdlon |
---|
4933 | zfn10(jl) = pfluc(jl, 1, jlim) + pfluc(jl, 2, jlim) |
---|
4934 | END DO |
---|
4935 | DO jk = jlim + 1, kflev + 1 |
---|
4936 | DO jl = 1, kdlon |
---|
4937 | zfn10(jl) = zfn10(jl) + pcts(jl, jk-1) |
---|
4938 | pfluc(jl, 1, jk) = zfn10(jl) |
---|
4939 | pfluc(jl, 2, jk) = 0. |
---|
4940 | END DO |
---|
4941 | END DO |
---|
4942 | END IF |
---|
4943 | |
---|
4944 | ! ------------------------------------------------------------------ |
---|
4945 | |
---|
4946 | RETURN |
---|
4947 | END SUBROUTINE lwvb_lmdar4 |
---|
4948 | SUBROUTINE lwvd_lmdar4(kuaer, ktraer, pabcu, pdbdt, pga, pgb, pcntrb, pdisd, & |
---|
4949 | pdisu) |
---|
4950 | USE raddimlw_mod_h |
---|
4951 | USE dimphy |
---|
4952 | IMPLICIT NONE |
---|
4953 | |
---|
4954 | ! ----------------------------------------------------------------------- |
---|
4955 | ! PURPOSE. |
---|
4956 | ! -------- |
---|
4957 | ! CARRIES OUT THE VERTICAL INTEGRATION ON THE DISTANT LAYERS |
---|
4958 | |
---|
4959 | ! METHOD. |
---|
4960 | ! ------- |
---|
4961 | |
---|
4962 | ! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
---|
4963 | ! CONTRIBUTIONS OF THE DISTANT LAYERS USING TRAPEZOIDAL RULE |
---|
4964 | |
---|
4965 | ! REFERENCE. |
---|
4966 | ! ---------- |
---|
4967 | |
---|
4968 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
4969 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
4970 | |
---|
4971 | ! AUTHOR. |
---|
4972 | ! ------- |
---|
4973 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
4974 | |
---|
4975 | ! MODIFICATIONS. |
---|
4976 | ! -------------- |
---|
4977 | ! ORIGINAL : 89-07-14 |
---|
4978 | ! ----------------------------------------------------------------------- |
---|
4979 | ! * ARGUMENTS: |
---|
4980 | |
---|
4981 | INTEGER kuaer, ktraer |
---|
4982 | |
---|
4983 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
---|
4984 | REAL (KIND=8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
---|
4985 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
4986 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
4987 | |
---|
4988 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! ENERGY EXCHANGE MATRIX |
---|
4989 | REAL (KIND=8) pdisd(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
4990 | REAL (KIND=8) pdisu(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
4991 | |
---|
4992 | ! * LOCAL VARIABLES: |
---|
4993 | |
---|
4994 | REAL (KIND=8) zglayd(kdlon) |
---|
4995 | REAL (KIND=8) zglayu(kdlon) |
---|
4996 | REAL (KIND=8) ztt(kdlon, ntra) |
---|
4997 | REAL (KIND=8) ztt1(kdlon, ntra) |
---|
4998 | REAL (KIND=8) ztt2(kdlon, ntra) |
---|
4999 | |
---|
5000 | INTEGER jl, jk, ja, ikp1, ikn, ikd1, jkj, ikd2 |
---|
5001 | INTEGER ikjp1, ikm1, ikj, jlk, iku1, ijkl, iku2 |
---|
5002 | INTEGER ind1, ind2, ind3, ind4, itt |
---|
5003 | REAL (KIND=8) zww, zdzxdg, zdzxmg |
---|
5004 | |
---|
5005 | ! * 1. INITIALIZATION |
---|
5006 | ! -------------- |
---|
5007 | |
---|
5008 | |
---|
5009 | ! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
---|
5010 | ! ------------------------------ |
---|
5011 | |
---|
5012 | |
---|
5013 | DO jk = 1, kflev + 1 |
---|
5014 | DO jl = 1, kdlon |
---|
5015 | pdisd(jl, jk) = 0. |
---|
5016 | pdisu(jl, jk) = 0. |
---|
5017 | END DO |
---|
5018 | END DO |
---|
5019 | |
---|
5020 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
5021 | ! --------------------------------- |
---|
5022 | |
---|
5023 | |
---|
5024 | |
---|
5025 | DO ja = 1, ntra |
---|
5026 | DO jl = 1, kdlon |
---|
5027 | ztt(jl, ja) = 1.0 |
---|
5028 | ztt1(jl, ja) = 1.0 |
---|
5029 | ztt2(jl, ja) = 1.0 |
---|
5030 | END DO |
---|
5031 | END DO |
---|
5032 | |
---|
5033 | ! ------------------------------------------------------------------ |
---|
5034 | |
---|
5035 | ! * 2. VERTICAL INTEGRATION |
---|
5036 | ! -------------------- |
---|
5037 | |
---|
5038 | |
---|
5039 | ind1 = 0 |
---|
5040 | ind3 = 0 |
---|
5041 | ind4 = 1 |
---|
5042 | ind2 = 1 |
---|
5043 | |
---|
5044 | ! * 2.2 CONTRIBUTION FROM DISTANT LAYERS |
---|
5045 | ! --------------------------------- |
---|
5046 | |
---|
5047 | |
---|
5048 | |
---|
5049 | ! * 2.2.1 DISTANT AND ABOVE LAYERS |
---|
5050 | ! ------------------------ |
---|
5051 | |
---|
5052 | |
---|
5053 | |
---|
5054 | |
---|
5055 | ! * 2.2.2 FIRST UPPER LEVEL |
---|
5056 | ! ----------------- |
---|
5057 | |
---|
5058 | |
---|
5059 | DO jk = 1, kflev - 1 |
---|
5060 | ikp1 = jk + 1 |
---|
5061 | ikn = (jk-1)*ng1p1 + 1 |
---|
5062 | ikd1 = jk*ng1p1 + 1 |
---|
5063 | |
---|
5064 | CALL lwttm_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), pabcu(1,1,ikn), & |
---|
5065 | pabcu(1,1,ikd1), ztt1) |
---|
5066 | |
---|
5067 | ! * 2.2.3 HIGHER UP |
---|
5068 | ! --------- |
---|
5069 | |
---|
5070 | |
---|
5071 | itt = 1 |
---|
5072 | DO jkj = ikp1, kflev |
---|
5073 | IF (itt==1) THEN |
---|
5074 | itt = 2 |
---|
5075 | ELSE |
---|
5076 | itt = 1 |
---|
5077 | END IF |
---|
5078 | ikjp1 = jkj + 1 |
---|
5079 | ikd2 = jkj*ng1p1 + 1 |
---|
5080 | |
---|
5081 | IF (itt==1) THEN |
---|
5082 | CALL lwttm_lmdar4(pga(1,1,1,jkj), pgb(1,1,1,jkj), pabcu(1,1,ikn), & |
---|
5083 | pabcu(1,1,ikd2), ztt1) |
---|
5084 | ELSE |
---|
5085 | CALL lwttm_lmdar4(pga(1,1,1,jkj), pgb(1,1,1,jkj), pabcu(1,1,ikn), & |
---|
5086 | pabcu(1,1,ikd2), ztt2) |
---|
5087 | END IF |
---|
5088 | |
---|
5089 | DO ja = 1, ktraer |
---|
5090 | DO jl = 1, kdlon |
---|
5091 | ztt(jl, ja) = (ztt1(jl,ja)+ztt2(jl,ja))*0.5 |
---|
5092 | END DO |
---|
5093 | END DO |
---|
5094 | |
---|
5095 | DO jl = 1, kdlon |
---|
5096 | zww = pdbdt(jl, 1, jkj)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
5097 | pdbdt(jl, 2, jkj)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
5098 | pdbdt(jl, 3, jkj)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
5099 | pdbdt(jl, 4, jkj)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
5100 | pdbdt(jl, 5, jkj)*ztt(jl, 3)*ztt(jl, 14) + & |
---|
5101 | pdbdt(jl, 6, jkj)*ztt(jl, 6)*ztt(jl, 15) |
---|
5102 | zglayd(jl) = zww |
---|
5103 | zdzxdg = zglayd(jl) |
---|
5104 | pdisd(jl, jk) = pdisd(jl, jk) + zdzxdg |
---|
5105 | pcntrb(jl, jk, ikjp1) = zdzxdg |
---|
5106 | END DO |
---|
5107 | |
---|
5108 | |
---|
5109 | END DO |
---|
5110 | END DO |
---|
5111 | |
---|
5112 | ! * 2.2.4 DISTANT AND BELOW LAYERS |
---|
5113 | ! ------------------------ |
---|
5114 | |
---|
5115 | |
---|
5116 | |
---|
5117 | |
---|
5118 | ! * 2.2.5 FIRST LOWER LEVEL |
---|
5119 | ! ----------------- |
---|
5120 | |
---|
5121 | |
---|
5122 | DO jk = 3, kflev + 1 |
---|
5123 | ikn = (jk-1)*ng1p1 + 1 |
---|
5124 | ikm1 = jk - 1 |
---|
5125 | ikj = jk - 2 |
---|
5126 | iku1 = ikj*ng1p1 + 1 |
---|
5127 | |
---|
5128 | |
---|
5129 | CALL lwttm_lmdar4(pga(1,1,1,ikj), pgb(1,1,1,ikj), pabcu(1,1,iku1), & |
---|
5130 | pabcu(1,1,ikn), ztt1) |
---|
5131 | |
---|
5132 | ! * 2.2.6 DOWN BELOW |
---|
5133 | ! ---------- |
---|
5134 | |
---|
5135 | |
---|
5136 | itt = 1 |
---|
5137 | DO jlk = 1, ikj |
---|
5138 | IF (itt==1) THEN |
---|
5139 | itt = 2 |
---|
5140 | ELSE |
---|
5141 | itt = 1 |
---|
5142 | END IF |
---|
5143 | ijkl = ikm1 - jlk |
---|
5144 | iku2 = (ijkl-1)*ng1p1 + 1 |
---|
5145 | |
---|
5146 | |
---|
5147 | IF (itt==1) THEN |
---|
5148 | CALL lwttm_lmdar4(pga(1,1,1,ijkl), pgb(1,1,1,ijkl), pabcu(1,1,iku2), & |
---|
5149 | pabcu(1,1,ikn), ztt1) |
---|
5150 | ELSE |
---|
5151 | CALL lwttm_lmdar4(pga(1,1,1,ijkl), pgb(1,1,1,ijkl), pabcu(1,1,iku2), & |
---|
5152 | pabcu(1,1,ikn), ztt2) |
---|
5153 | END IF |
---|
5154 | |
---|
5155 | DO ja = 1, ktraer |
---|
5156 | DO jl = 1, kdlon |
---|
5157 | ztt(jl, ja) = (ztt1(jl,ja)+ztt2(jl,ja))*0.5 |
---|
5158 | END DO |
---|
5159 | END DO |
---|
5160 | |
---|
5161 | DO jl = 1, kdlon |
---|
5162 | zww = pdbdt(jl, 1, ijkl)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
5163 | pdbdt(jl, 2, ijkl)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
5164 | pdbdt(jl, 3, ijkl)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
5165 | pdbdt(jl, 4, ijkl)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
5166 | pdbdt(jl, 5, ijkl)*ztt(jl, 3)*ztt(jl, 14) + & |
---|
5167 | pdbdt(jl, 6, ijkl)*ztt(jl, 6)*ztt(jl, 15) |
---|
5168 | zglayu(jl) = zww |
---|
5169 | zdzxmg = zglayu(jl) |
---|
5170 | pdisu(jl, jk) = pdisu(jl, jk) + zdzxmg |
---|
5171 | pcntrb(jl, jk, ijkl) = zdzxmg |
---|
5172 | END DO |
---|
5173 | |
---|
5174 | |
---|
5175 | END DO |
---|
5176 | END DO |
---|
5177 | |
---|
5178 | RETURN |
---|
5179 | END SUBROUTINE lwvd_lmdar4 |
---|
5180 | SUBROUTINE lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, padjd, padju, & |
---|
5181 | pcntrb, pdbdt) |
---|
5182 | USE raddimlw_mod_h |
---|
5183 | USE dimphy |
---|
5184 | USE radiation_ar4_param, ONLY: wg1 |
---|
5185 | IMPLICIT NONE |
---|
5186 | |
---|
5187 | ! ----------------------------------------------------------------------- |
---|
5188 | ! PURPOSE. |
---|
5189 | ! -------- |
---|
5190 | ! CARRIES OUT THE VERTICAL INTEGRATION ON NEARBY LAYERS |
---|
5191 | ! TO GIVE LONGWAVE FLUXES OR RADIANCES |
---|
5192 | |
---|
5193 | ! METHOD. |
---|
5194 | ! ------- |
---|
5195 | |
---|
5196 | ! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
---|
5197 | ! CONTRIBUTIONS OF THE ADJACENT LAYERS USING A GAUSSIAN QUADRATURE |
---|
5198 | |
---|
5199 | ! REFERENCE. |
---|
5200 | ! ---------- |
---|
5201 | |
---|
5202 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
5203 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
5204 | |
---|
5205 | ! AUTHOR. |
---|
5206 | ! ------- |
---|
5207 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
5208 | |
---|
5209 | ! MODIFICATIONS. |
---|
5210 | ! -------------- |
---|
5211 | ! ORIGINAL : 89-07-14 |
---|
5212 | ! ----------------------------------------------------------------------- |
---|
5213 | |
---|
5214 | ! * ARGUMENTS: |
---|
5215 | |
---|
5216 | INTEGER kuaer, ktraer |
---|
5217 | |
---|
5218 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
---|
5219 | REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
5220 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
5221 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
5222 | |
---|
5223 | REAL (KIND=8) padjd(kdlon, kflev+1) ! CONTRIBUTION OF ADJACENT LAYERS |
---|
5224 | REAL (KIND=8) padju(kdlon, kflev+1) ! CONTRIBUTION OF ADJACENT LAYERS |
---|
5225 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
---|
5226 | REAL (KIND=8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
---|
5227 | |
---|
5228 | ! * LOCAL ARRAYS: |
---|
5229 | |
---|
5230 | REAL (KIND=8) zglayd(kdlon) |
---|
5231 | REAL (KIND=8) zglayu(kdlon) |
---|
5232 | REAL (KIND=8) ztt(kdlon, ntra) |
---|
5233 | REAL (KIND=8) ztt1(kdlon, ntra) |
---|
5234 | REAL (KIND=8) ztt2(kdlon, ntra) |
---|
5235 | REAL (KIND=8) zuu(kdlon, nua) |
---|
5236 | |
---|
5237 | INTEGER jk, jl, ja, im12, ind, inu, ixu, jg |
---|
5238 | INTEGER ixd, ibs, idd, imu, jk1, jk2, jnu |
---|
5239 | REAL (KIND=8) zwtr |
---|
5240 | |
---|
5241 | ! ----------------------------------------------------------------------- |
---|
5242 | |
---|
5243 | ! * 1. INITIALIZATION |
---|
5244 | ! -------------- |
---|
5245 | |
---|
5246 | |
---|
5247 | ! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
---|
5248 | ! ------------------------------ |
---|
5249 | |
---|
5250 | |
---|
5251 | DO jk = 1, kflev + 1 |
---|
5252 | DO jl = 1, kdlon |
---|
5253 | padjd(jl, jk) = 0. |
---|
5254 | padju(jl, jk) = 0. |
---|
5255 | END DO |
---|
5256 | END DO |
---|
5257 | |
---|
5258 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
5259 | ! --------------------------------- |
---|
5260 | |
---|
5261 | |
---|
5262 | DO ja = 1, ntra |
---|
5263 | DO jl = 1, kdlon |
---|
5264 | ztt(jl, ja) = 1.0 |
---|
5265 | ztt1(jl, ja) = 1.0 |
---|
5266 | ztt2(jl, ja) = 1.0 |
---|
5267 | END DO |
---|
5268 | END DO |
---|
5269 | |
---|
5270 | DO ja = 1, nua |
---|
5271 | DO jl = 1, kdlon |
---|
5272 | zuu(jl, ja) = 0. |
---|
5273 | END DO |
---|
5274 | END DO |
---|
5275 | |
---|
5276 | ! ------------------------------------------------------------------ |
---|
5277 | |
---|
5278 | ! * 2. VERTICAL INTEGRATION |
---|
5279 | ! -------------------- |
---|
5280 | |
---|
5281 | |
---|
5282 | |
---|
5283 | ! * 2.1 CONTRIBUTION FROM ADJACENT LAYERS |
---|
5284 | ! --------------------------------- |
---|
5285 | |
---|
5286 | |
---|
5287 | DO jk = 1, kflev |
---|
5288 | ! * 2.1.1 DOWNWARD LAYERS |
---|
5289 | ! --------------- |
---|
5290 | |
---|
5291 | |
---|
5292 | im12 = 2*(jk-1) |
---|
5293 | ind = (jk-1)*ng1p1 + 1 |
---|
5294 | ixd = ind |
---|
5295 | inu = jk*ng1p1 + 1 |
---|
5296 | ixu = ind |
---|
5297 | |
---|
5298 | DO jl = 1, kdlon |
---|
5299 | zglayd(jl) = 0. |
---|
5300 | zglayu(jl) = 0. |
---|
5301 | END DO |
---|
5302 | |
---|
5303 | DO jg = 1, ng1 |
---|
5304 | ibs = im12 + jg |
---|
5305 | idd = ixd + jg |
---|
5306 | DO ja = 1, kuaer |
---|
5307 | DO jl = 1, kdlon |
---|
5308 | zuu(jl, ja) = pabcu(jl, ja, ind) - pabcu(jl, ja, idd) |
---|
5309 | END DO |
---|
5310 | END DO |
---|
5311 | |
---|
5312 | |
---|
5313 | CALL lwtt_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), zuu, ztt) |
---|
5314 | |
---|
5315 | DO jl = 1, kdlon |
---|
5316 | zwtr = pdbsl(jl, 1, ibs)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
5317 | pdbsl(jl, 2, ibs)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
5318 | pdbsl(jl, 3, ibs)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
5319 | pdbsl(jl, 4, ibs)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
5320 | pdbsl(jl, 5, ibs)*ztt(jl, 3)*ztt(jl, 14) + & |
---|
5321 | pdbsl(jl, 6, ibs)*ztt(jl, 6)*ztt(jl, 15) |
---|
5322 | zglayd(jl) = zglayd(jl) + zwtr*wg1(jg) |
---|
5323 | END DO |
---|
5324 | |
---|
5325 | ! * 2.1.2 DOWNWARD LAYERS |
---|
5326 | ! --------------- |
---|
5327 | |
---|
5328 | |
---|
5329 | imu = ixu + jg |
---|
5330 | DO ja = 1, kuaer |
---|
5331 | DO jl = 1, kdlon |
---|
5332 | zuu(jl, ja) = pabcu(jl, ja, imu) - pabcu(jl, ja, inu) |
---|
5333 | END DO |
---|
5334 | END DO |
---|
5335 | |
---|
5336 | |
---|
5337 | CALL lwtt_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), zuu, ztt) |
---|
5338 | |
---|
5339 | DO jl = 1, kdlon |
---|
5340 | zwtr = pdbsl(jl, 1, ibs)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
5341 | pdbsl(jl, 2, ibs)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
5342 | pdbsl(jl, 3, ibs)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
5343 | pdbsl(jl, 4, ibs)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
5344 | pdbsl(jl, 5, ibs)*ztt(jl, 3)*ztt(jl, 14) + & |
---|
5345 | pdbsl(jl, 6, ibs)*ztt(jl, 6)*ztt(jl, 15) |
---|
5346 | zglayu(jl) = zglayu(jl) + zwtr*wg1(jg) |
---|
5347 | END DO |
---|
5348 | |
---|
5349 | END DO |
---|
5350 | |
---|
5351 | DO jl = 1, kdlon |
---|
5352 | padjd(jl, jk) = zglayd(jl) |
---|
5353 | pcntrb(jl, jk, jk+1) = zglayd(jl) |
---|
5354 | padju(jl, jk+1) = zglayu(jl) |
---|
5355 | pcntrb(jl, jk+1, jk) = zglayu(jl) |
---|
5356 | pcntrb(jl, jk, jk) = 0.0 |
---|
5357 | END DO |
---|
5358 | |
---|
5359 | END DO |
---|
5360 | |
---|
5361 | DO jk = 1, kflev |
---|
5362 | jk2 = 2*jk |
---|
5363 | jk1 = jk2 - 1 |
---|
5364 | DO jnu = 1, ninter |
---|
5365 | DO jl = 1, kdlon |
---|
5366 | pdbdt(jl, jnu, jk) = pdbsl(jl, jnu, jk1) + pdbsl(jl, jnu, jk2) |
---|
5367 | END DO |
---|
5368 | END DO |
---|
5369 | END DO |
---|
5370 | |
---|
5371 | RETURN |
---|
5372 | |
---|
5373 | END SUBROUTINE lwvn_lmdar4 |
---|
5374 | SUBROUTINE lwtt_lmdar4(pga, pgb, puu, ptt) |
---|
5375 | USE raddimlw_mod_h |
---|
5376 | USE dimphy |
---|
5377 | IMPLICIT NONE |
---|
5378 | |
---|
5379 | ! ----------------------------------------------------------------------- |
---|
5380 | ! PURPOSE. |
---|
5381 | ! -------- |
---|
5382 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
5383 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
5384 | ! INTERVALS. |
---|
5385 | |
---|
5386 | ! METHOD. |
---|
5387 | ! ------- |
---|
5388 | |
---|
5389 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
5390 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
5391 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
5392 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
5393 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
5394 | |
---|
5395 | ! REFERENCE. |
---|
5396 | ! ---------- |
---|
5397 | |
---|
5398 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
5399 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
5400 | |
---|
5401 | ! AUTHOR. |
---|
5402 | ! ------- |
---|
5403 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
5404 | |
---|
5405 | ! MODIFICATIONS. |
---|
5406 | ! -------------- |
---|
5407 | ! ORIGINAL : 88-12-15 |
---|
5408 | |
---|
5409 | ! ----------------------------------------------------------------------- |
---|
5410 | REAL (KIND=8) o1h, o2h |
---|
5411 | PARAMETER (o1h=2230.) |
---|
5412 | PARAMETER (o2h=100.) |
---|
5413 | REAL (KIND=8) rpialf0 |
---|
5414 | PARAMETER (rpialf0=2.0) |
---|
5415 | |
---|
5416 | ! * ARGUMENTS: |
---|
5417 | |
---|
5418 | REAL (KIND=8) puu(kdlon, nua) |
---|
5419 | REAL (KIND=8) ptt(kdlon, ntra) |
---|
5420 | REAL (KIND=8) pga(kdlon, 8, 2) |
---|
5421 | REAL (KIND=8) pgb(kdlon, 8, 2) |
---|
5422 | |
---|
5423 | ! * LOCAL VARIABLES: |
---|
5424 | |
---|
5425 | REAL (KIND=8) zz, zxd, zxn |
---|
5426 | REAL (KIND=8) zpu, zpu10, zpu11, zpu12, zpu13 |
---|
5427 | REAL (KIND=8) zeu, zeu10, zeu11, zeu12, zeu13 |
---|
5428 | REAL (KIND=8) zx, zy, zsq1, zsq2, zvxy, zuxy |
---|
5429 | REAL (KIND=8) zaercn, zto1, zto2, zxch4, zych4, zxn2o, zyn2o |
---|
5430 | REAL (KIND=8) zsqn21, zodn21, zsqh42, zodh42 |
---|
5431 | REAL (KIND=8) zsqh41, zodh41, zsqn22, zodn22, zttf11, zttf12 |
---|
5432 | REAL (KIND=8) zuu11, zuu12, za11, za12 |
---|
5433 | INTEGER jl, ja |
---|
5434 | |
---|
5435 | ! ------------------------------------------------------------------ |
---|
5436 | |
---|
5437 | ! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
5438 | ! ----------------------------------------------- |
---|
5439 | |
---|
5440 | |
---|
5441 | |
---|
5442 | ! cdir collapse |
---|
5443 | DO ja = 1, 8 |
---|
5444 | DO jl = 1, kdlon |
---|
5445 | zz = sqrt(puu(jl,ja)) |
---|
5446 | ! ZXD(JL,1)=PGB( JL, 1,1) + ZZ(JL, 1)*(PGB( JL, 1,2) + ZZ(JL, 1)) |
---|
5447 | ! ZXN(JL,1)=PGA( JL, 1,1) + ZZ(JL, 1)*(PGA( JL, 1,2) ) |
---|
5448 | ! PTT(JL,1)=ZXN(JL,1)/ZXD(JL,1) |
---|
5449 | zxd = pgb(jl, ja, 1) + zz*(pgb(jl,ja,2)+zz) |
---|
5450 | zxn = pga(jl, ja, 1) + zz*(pga(jl,ja,2)) |
---|
5451 | ptt(jl, ja) = zxn/zxd |
---|
5452 | END DO |
---|
5453 | END DO |
---|
5454 | |
---|
5455 | ! ------------------------------------------------------------------ |
---|
5456 | |
---|
5457 | ! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
5458 | ! --------------------------------------------------- |
---|
5459 | |
---|
5460 | |
---|
5461 | DO jl = 1, kdlon |
---|
5462 | ptt(jl, 9) = ptt(jl, 8) |
---|
5463 | |
---|
5464 | ! - CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
5465 | |
---|
5466 | zpu = 0.002*puu(jl, 10) |
---|
5467 | zpu10 = 112.*zpu |
---|
5468 | zpu11 = 6.25*zpu |
---|
5469 | zpu12 = 5.00*zpu |
---|
5470 | zpu13 = 80.0*zpu |
---|
5471 | zeu = puu(jl, 11) |
---|
5472 | zeu10 = 12.*zeu |
---|
5473 | zeu11 = 6.25*zeu |
---|
5474 | zeu12 = 5.00*zeu |
---|
5475 | zeu13 = 80.0*zeu |
---|
5476 | |
---|
5477 | ! - OZONE ABSORPTION |
---|
5478 | |
---|
5479 | zx = puu(jl, 12) |
---|
5480 | zy = puu(jl, 13) |
---|
5481 | zuxy = 4.*zx*zx/(rpialf0*zy) |
---|
5482 | zsq1 = sqrt(1.+o1h*zuxy) - 1. |
---|
5483 | zsq2 = sqrt(1.+o2h*zuxy) - 1. |
---|
5484 | zvxy = rpialf0*zy/(2.*zx) |
---|
5485 | zaercn = puu(jl, 17) + zeu12 + zpu12 |
---|
5486 | zto1 = exp(-zvxy*zsq1-zaercn) |
---|
5487 | zto2 = exp(-zvxy*zsq2-zaercn) |
---|
5488 | |
---|
5489 | ! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
5490 | |
---|
5491 | ! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
5492 | |
---|
5493 | ! NEXOTIC=1 |
---|
5494 | ! IF (NEXOTIC.EQ.1) THEN |
---|
5495 | zxch4 = puu(jl, 19) |
---|
5496 | zych4 = puu(jl, 20) |
---|
5497 | zuxy = 4.*zxch4*zxch4/(0.103*zych4) |
---|
5498 | zsqh41 = sqrt(1.+33.7*zuxy) - 1. |
---|
5499 | zvxy = 0.103*zych4/(2.*zxch4) |
---|
5500 | zodh41 = zvxy*zsqh41 |
---|
5501 | |
---|
5502 | ! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
5503 | |
---|
5504 | zxn2o = puu(jl, 21) |
---|
5505 | zyn2o = puu(jl, 22) |
---|
5506 | zuxy = 4.*zxn2o*zxn2o/(0.416*zyn2o) |
---|
5507 | zsqn21 = sqrt(1.+21.3*zuxy) - 1. |
---|
5508 | zvxy = 0.416*zyn2o/(2.*zxn2o) |
---|
5509 | zodn21 = zvxy*zsqn21 |
---|
5510 | |
---|
5511 | ! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
5512 | |
---|
5513 | zuxy = 4.*zxch4*zxch4/(0.113*zych4) |
---|
5514 | zsqh42 = sqrt(1.+400.*zuxy) - 1. |
---|
5515 | zvxy = 0.113*zych4/(2.*zxch4) |
---|
5516 | zodh42 = zvxy*zsqh42 |
---|
5517 | |
---|
5518 | ! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
5519 | |
---|
5520 | zuxy = 4.*zxn2o*zxn2o/(0.197*zyn2o) |
---|
5521 | zsqn22 = sqrt(1.+2000.*zuxy) - 1. |
---|
5522 | zvxy = 0.197*zyn2o/(2.*zxn2o) |
---|
5523 | zodn22 = zvxy*zsqn22 |
---|
5524 | |
---|
5525 | ! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
5526 | |
---|
5527 | za11 = 2.*puu(jl, 23)*4.404E+05 |
---|
5528 | zttf11 = 1. - za11*0.003225 |
---|
5529 | |
---|
5530 | ! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
5531 | |
---|
5532 | za12 = 2.*puu(jl, 24)*6.7435E+05 |
---|
5533 | zttf12 = 1. - za12*0.003225 |
---|
5534 | |
---|
5535 | zuu11 = -puu(jl, 15) - zeu10 - zpu10 |
---|
5536 | zuu12 = -puu(jl, 16) - zeu11 - zpu11 - zodh41 - zodn21 |
---|
5537 | ptt(jl, 10) = exp(-puu(jl,14)) |
---|
5538 | ptt(jl, 11) = exp(zuu11) |
---|
5539 | ptt(jl, 12) = exp(zuu12)*zttf11*zttf12 |
---|
5540 | ptt(jl, 13) = 0.7554*zto1 + 0.2446*zto2 |
---|
5541 | ptt(jl, 14) = ptt(jl, 10)*exp(-zeu13-zpu13) |
---|
5542 | ptt(jl, 15) = exp(-puu(jl,14)-zodh42-zodn22) |
---|
5543 | END DO |
---|
5544 | |
---|
5545 | RETURN |
---|
5546 | END SUBROUTINE lwtt_lmdar4 |
---|
5547 | SUBROUTINE lwttm_lmdar4(pga, pgb, puu1, puu2, ptt) |
---|
5548 | USE raddimlw_mod_h |
---|
5549 | USE dimphy |
---|
5550 | IMPLICIT NONE |
---|
5551 | |
---|
5552 | ! ------------------------------------------------------------------ |
---|
5553 | ! PURPOSE. |
---|
5554 | ! -------- |
---|
5555 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
5556 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
5557 | ! INTERVALS. |
---|
5558 | |
---|
5559 | ! METHOD. |
---|
5560 | ! ------- |
---|
5561 | |
---|
5562 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
5563 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
5564 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
5565 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
5566 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
5567 | |
---|
5568 | ! REFERENCE. |
---|
5569 | ! ---------- |
---|
5570 | |
---|
5571 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
5572 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
5573 | |
---|
5574 | ! AUTHOR. |
---|
5575 | ! ------- |
---|
5576 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
5577 | |
---|
5578 | ! MODIFICATIONS. |
---|
5579 | ! -------------- |
---|
5580 | ! ORIGINAL : 88-12-15 |
---|
5581 | |
---|
5582 | ! ----------------------------------------------------------------------- |
---|
5583 | REAL (KIND=8) o1h, o2h |
---|
5584 | PARAMETER (o1h=2230.) |
---|
5585 | PARAMETER (o2h=100.) |
---|
5586 | REAL (KIND=8) rpialf0 |
---|
5587 | PARAMETER (rpialf0=2.0) |
---|
5588 | |
---|
5589 | ! * ARGUMENTS: |
---|
5590 | |
---|
5591 | REAL (KIND=8) pga(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
5592 | REAL (KIND=8) pgb(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
5593 | REAL (KIND=8) puu1(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
---|
5594 | REAL (KIND=8) puu2(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
---|
5595 | REAL (KIND=8) ptt(kdlon, ntra) ! TRANSMISSION FUNCTIONS |
---|
5596 | |
---|
5597 | ! * LOCAL VARIABLES: |
---|
5598 | |
---|
5599 | INTEGER ja, jl |
---|
5600 | REAL (KIND=8) zz, zxd, zxn |
---|
5601 | REAL (KIND=8) zpu, zpu10, zpu11, zpu12, zpu13 |
---|
5602 | REAL (KIND=8) zeu, zeu10, zeu11, zeu12, zeu13 |
---|
5603 | REAL (KIND=8) zx, zy, zuxy, zsq1, zsq2, zvxy, zaercn, zto1, zto2 |
---|
5604 | REAL (KIND=8) zxch4, zych4, zsqh41, zodh41 |
---|
5605 | REAL (KIND=8) zxn2o, zyn2o, zsqn21, zodn21, zsqh42, zodh42 |
---|
5606 | REAL (KIND=8) zsqn22, zodn22, za11, zttf11, za12, zttf12 |
---|
5607 | REAL (KIND=8) zuu11, zuu12 |
---|
5608 | |
---|
5609 | ! ------------------------------------------------------------------ |
---|
5610 | |
---|
5611 | ! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
5612 | ! ----------------------------------------------- |
---|
5613 | |
---|
5614 | |
---|
5615 | |
---|
5616 | |
---|
5617 | ! CDIR ON_ADB(PUU1) |
---|
5618 | ! CDIR ON_ADB(PUU2) |
---|
5619 | ! CDIR COLLAPSE |
---|
5620 | DO ja = 1, 8 |
---|
5621 | DO jl = 1, kdlon |
---|
5622 | zz = sqrt(puu1(jl,ja)-puu2(jl,ja)) |
---|
5623 | zxd = pgb(jl, ja, 1) + zz*(pgb(jl,ja,2)+zz) |
---|
5624 | zxn = pga(jl, ja, 1) + zz*(pga(jl,ja,2)) |
---|
5625 | ptt(jl, ja) = zxn/zxd |
---|
5626 | END DO |
---|
5627 | END DO |
---|
5628 | |
---|
5629 | ! ------------------------------------------------------------------ |
---|
5630 | |
---|
5631 | ! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
5632 | ! --------------------------------------------------- |
---|
5633 | |
---|
5634 | |
---|
5635 | DO jl = 1, kdlon |
---|
5636 | ptt(jl, 9) = ptt(jl, 8) |
---|
5637 | |
---|
5638 | ! - CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
5639 | |
---|
5640 | zpu = 0.002*(puu1(jl,10)-puu2(jl,10)) |
---|
5641 | zpu10 = 112.*zpu |
---|
5642 | zpu11 = 6.25*zpu |
---|
5643 | zpu12 = 5.00*zpu |
---|
5644 | zpu13 = 80.0*zpu |
---|
5645 | zeu = (puu1(jl,11)-puu2(jl,11)) |
---|
5646 | zeu10 = 12.*zeu |
---|
5647 | zeu11 = 6.25*zeu |
---|
5648 | zeu12 = 5.00*zeu |
---|
5649 | zeu13 = 80.0*zeu |
---|
5650 | |
---|
5651 | ! - OZONE ABSORPTION |
---|
5652 | |
---|
5653 | zx = (puu1(jl,12)-puu2(jl,12)) |
---|
5654 | zy = (puu1(jl,13)-puu2(jl,13)) |
---|
5655 | zuxy = 4.*zx*zx/(rpialf0*zy) |
---|
5656 | zsq1 = sqrt(1.+o1h*zuxy) - 1. |
---|
5657 | zsq2 = sqrt(1.+o2h*zuxy) - 1. |
---|
5658 | zvxy = rpialf0*zy/(2.*zx) |
---|
5659 | zaercn = (puu1(jl,17)-puu2(jl,17)) + zeu12 + zpu12 |
---|
5660 | zto1 = exp(-zvxy*zsq1-zaercn) |
---|
5661 | zto2 = exp(-zvxy*zsq2-zaercn) |
---|
5662 | |
---|
5663 | ! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
5664 | |
---|
5665 | ! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
5666 | |
---|
5667 | zxch4 = (puu1(jl,19)-puu2(jl,19)) |
---|
5668 | zych4 = (puu1(jl,20)-puu2(jl,20)) |
---|
5669 | zuxy = 4.*zxch4*zxch4/(0.103*zych4) |
---|
5670 | zsqh41 = sqrt(1.+33.7*zuxy) - 1. |
---|
5671 | zvxy = 0.103*zych4/(2.*zxch4) |
---|
5672 | zodh41 = zvxy*zsqh41 |
---|
5673 | |
---|
5674 | ! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
5675 | |
---|
5676 | zxn2o = (puu1(jl,21)-puu2(jl,21)) |
---|
5677 | zyn2o = (puu1(jl,22)-puu2(jl,22)) |
---|
5678 | zuxy = 4.*zxn2o*zxn2o/(0.416*zyn2o) |
---|
5679 | zsqn21 = sqrt(1.+21.3*zuxy) - 1. |
---|
5680 | zvxy = 0.416*zyn2o/(2.*zxn2o) |
---|
5681 | zodn21 = zvxy*zsqn21 |
---|
5682 | |
---|
5683 | ! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
5684 | |
---|
5685 | zuxy = 4.*zxch4*zxch4/(0.113*zych4) |
---|
5686 | zsqh42 = sqrt(1.+400.*zuxy) - 1. |
---|
5687 | zvxy = 0.113*zych4/(2.*zxch4) |
---|
5688 | zodh42 = zvxy*zsqh42 |
---|
5689 | |
---|
5690 | ! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
5691 | |
---|
5692 | zuxy = 4.*zxn2o*zxn2o/(0.197*zyn2o) |
---|
5693 | zsqn22 = sqrt(1.+2000.*zuxy) - 1. |
---|
5694 | zvxy = 0.197*zyn2o/(2.*zxn2o) |
---|
5695 | zodn22 = zvxy*zsqn22 |
---|
5696 | |
---|
5697 | ! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
5698 | |
---|
5699 | za11 = (puu1(jl,23)-puu2(jl,23))*4.404E+05 |
---|
5700 | zttf11 = 1. - za11*0.003225 |
---|
5701 | |
---|
5702 | ! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
5703 | |
---|
5704 | za12 = (puu1(jl,24)-puu2(jl,24))*6.7435E+05 |
---|
5705 | zttf12 = 1. - za12*0.003225 |
---|
5706 | |
---|
5707 | zuu11 = -(puu1(jl,15)-puu2(jl,15)) - zeu10 - zpu10 |
---|
5708 | zuu12 = -(puu1(jl,16)-puu2(jl,16)) - zeu11 - zpu11 - zodh41 - zodn21 |
---|
5709 | ptt(jl, 10) = exp(-(puu1(jl,14)-puu2(jl,14))) |
---|
5710 | ptt(jl, 11) = exp(zuu11) |
---|
5711 | ptt(jl, 12) = exp(zuu12)*zttf11*zttf12 |
---|
5712 | ptt(jl, 13) = 0.7554*zto1 + 0.2446*zto2 |
---|
5713 | ptt(jl, 14) = ptt(jl, 10)*exp(-zeu13-zpu13) |
---|
5714 | ptt(jl, 15) = exp(-(puu1(jl,14)-puu2(jl,14))-zodh42-zodn22) |
---|
5715 | END DO |
---|
5716 | |
---|
5717 | RETURN |
---|
5718 | END SUBROUTINE lwttm_lmdar4 |
---|