[1992] | 1 | ! IM ctes ds clesphys.h SUBROUTINE SW(PSCT, RCO2, PRMU0, PFRAC, |
---|
| 2 | SUBROUTINE sw_lmdar4(psct, prmu0, pfrac, ppmb, pdp, ppsol, palbd, palbp, & |
---|
| 3 | ptave, pwv, pqs, pozon, paer, pcldsw, ptau, pomega, pcg, pheat, pheat0, & |
---|
| 4 | palbpla, ptopsw, psolsw, ptopsw0, psolsw0, zfsup, zfsdn, zfsup0, zfsdn0, & |
---|
| 5 | tauae, pizae, cgae, ptaua, pomegaa, ptopswad, psolswad, ptopswai, & |
---|
| 6 | psolswai, ok_ade, ok_aie) |
---|
[5282] | 7 | USE clesphys_mod_h |
---|
[1992] | 8 | USE dimphy |
---|
[2311] | 9 | USE print_control_mod, ONLY: lunout |
---|
[5285] | 10 | USE yomcst_mod_h |
---|
[5296] | 11 | USE phys_constants_mod, ONLY: dobson_u |
---|
[5274] | 12 | IMPLICIT NONE |
---|
[998] | 13 | |
---|
[1279] | 14 | |
---|
[5274] | 15 | |
---|
[1992] | 16 | ! ------------------------------------------------------------------ |
---|
[1279] | 17 | |
---|
[1992] | 18 | ! PURPOSE. |
---|
| 19 | ! -------- |
---|
[1565] | 20 | |
---|
[1992] | 21 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
---|
| 22 | ! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
---|
[1565] | 23 | |
---|
[1992] | 24 | ! METHOD. |
---|
| 25 | ! ------- |
---|
[998] | 26 | |
---|
[1992] | 27 | ! 1. COMPUTES ABSORBER AMOUNTS (SWU) |
---|
| 28 | ! 2. COMPUTES FLUXES IN 1ST SPECTRAL INTERVAL (SW1S) |
---|
| 29 | ! 3. COMPUTES FLUXES IN 2ND SPECTRAL INTERVAL (SW2S) |
---|
| 30 | |
---|
| 31 | ! REFERENCE. |
---|
| 32 | ! ---------- |
---|
| 33 | |
---|
| 34 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 35 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 36 | |
---|
| 37 | ! AUTHOR. |
---|
| 38 | ! ------- |
---|
| 39 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 40 | |
---|
| 41 | ! MODIFICATIONS. |
---|
| 42 | ! -------------- |
---|
| 43 | ! ORIGINAL : 89-07-14 |
---|
| 44 | ! 95-01-01 J.-J. MORCRETTE Direct/Diffuse Albedo |
---|
| 45 | ! 03-11-27 J. QUAAS Introduce aerosol forcings (based on BOUCHER) |
---|
| 46 | ! ------------------------------------------------------------------ |
---|
| 47 | |
---|
| 48 | ! * ARGUMENTS: |
---|
| 49 | |
---|
| 50 | REAL (KIND=8) psct ! constante solaire (valeur conseillee: 1370) |
---|
| 51 | ! IM ctes ds clesphys.h REAL(KIND=8) RCO2 ! concentration CO2 (IPCC: |
---|
| 52 | ! 353.E-06*44.011/28.97) |
---|
| 53 | |
---|
| 54 | REAL (KIND=8) ppsol(kdlon) ! SURFACE PRESSURE (PA) |
---|
| 55 | REAL (KIND=8) pdp(kdlon, kflev) ! LAYER THICKNESS (PA) |
---|
| 56 | REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF-LEVEL PRESSURE (MB) |
---|
| 57 | |
---|
| 58 | REAL (KIND=8) prmu0(kdlon) ! COSINE OF ZENITHAL ANGLE |
---|
| 59 | REAL (KIND=8) pfrac(kdlon) ! fraction de la journee |
---|
| 60 | |
---|
| 61 | REAL (KIND=8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
---|
| 62 | REAL (KIND=8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (KG/KG) |
---|
| 63 | REAL (KIND=8) pqs(kdlon, kflev) ! SATURATED WATER VAPOUR (KG/KG) |
---|
| 64 | REAL (KIND=8) pozon(kdlon, kflev) ! OZONE CONCENTRATION (KG/KG) |
---|
| 65 | REAL (KIND=8) paer(kdlon, kflev, 5) ! AEROSOLS' OPTICAL THICKNESS |
---|
| 66 | |
---|
| 67 | REAL (KIND=8) palbd(kdlon, 2) ! albedo du sol (lumiere diffuse) |
---|
| 68 | REAL (KIND=8) palbp(kdlon, 2) ! albedo du sol (lumiere parallele) |
---|
| 69 | |
---|
| 70 | REAL (KIND=8) pcldsw(kdlon, kflev) ! CLOUD FRACTION |
---|
| 71 | REAL (KIND=8) ptau(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS |
---|
| 72 | REAL (KIND=8) pcg(kdlon, 2, kflev) ! ASYMETRY FACTOR |
---|
| 73 | REAL (KIND=8) pomega(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
---|
| 74 | |
---|
| 75 | REAL (KIND=8) pheat(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) |
---|
| 76 | REAL (KIND=8) pheat0(kdlon, kflev) ! SHORTWAVE HEATING (K/DAY) clear-sky |
---|
| 77 | REAL (KIND=8) palbpla(kdlon) ! PLANETARY ALBEDO |
---|
| 78 | REAL (KIND=8) ptopsw(kdlon) ! SHORTWAVE FLUX AT T.O.A. |
---|
| 79 | REAL (KIND=8) psolsw(kdlon) ! SHORTWAVE FLUX AT SURFACE |
---|
| 80 | REAL (KIND=8) ptopsw0(kdlon) ! SHORTWAVE FLUX AT T.O.A. (CLEAR-SKY) |
---|
| 81 | REAL (KIND=8) psolsw0(kdlon) ! SHORTWAVE FLUX AT SURFACE (CLEAR-SKY) |
---|
| 82 | |
---|
| 83 | ! * LOCAL VARIABLES: |
---|
| 84 | |
---|
| 85 | REAL (KIND=8) zoz(kdlon, kflev) |
---|
| 86 | ! column-density of ozone in layer, in kilo-Dobsons |
---|
| 87 | |
---|
| 88 | REAL (KIND=8) zaki(kdlon, 2) |
---|
| 89 | REAL (KIND=8) zcld(kdlon, kflev) |
---|
| 90 | REAL (KIND=8) zclear(kdlon) |
---|
| 91 | REAL (KIND=8) zdsig(kdlon, kflev) |
---|
| 92 | REAL (KIND=8) zfact(kdlon) |
---|
| 93 | REAL (KIND=8) zfd(kdlon, kflev+1) |
---|
| 94 | REAL (KIND=8) zfdown(kdlon, kflev+1) |
---|
| 95 | REAL (KIND=8) zfu(kdlon, kflev+1) |
---|
| 96 | REAL (KIND=8) zfup(kdlon, kflev+1) |
---|
| 97 | REAL (KIND=8) zrmu(kdlon) |
---|
| 98 | REAL (KIND=8) zsec(kdlon) |
---|
| 99 | REAL (KIND=8) zud(kdlon, 5, kflev+1) |
---|
| 100 | REAL (KIND=8) zcldsw0(kdlon, kflev) |
---|
| 101 | |
---|
| 102 | REAL (KIND=8) zfsup(kdlon, kflev+1) |
---|
| 103 | REAL (KIND=8) zfsdn(kdlon, kflev+1) |
---|
| 104 | REAL (KIND=8) zfsup0(kdlon, kflev+1) |
---|
| 105 | REAL (KIND=8) zfsdn0(kdlon, kflev+1) |
---|
| 106 | |
---|
| 107 | INTEGER inu, jl, jk, i, k, kpl1 |
---|
| 108 | |
---|
| 109 | INTEGER swpas ! Every swpas steps, sw is calculated |
---|
| 110 | PARAMETER (swpas=1) |
---|
| 111 | |
---|
| 112 | INTEGER itapsw |
---|
| 113 | LOGICAL appel1er |
---|
| 114 | DATA itapsw/0/ |
---|
| 115 | DATA appel1er/.TRUE./ |
---|
| 116 | SAVE itapsw, appel1er |
---|
| 117 | !$OMP THREADPRIVATE(appel1er) |
---|
| 118 | !$OMP THREADPRIVATE(itapsw) |
---|
| 119 | ! jq-Introduced for aerosol forcings |
---|
| 120 | REAL (KIND=8) flag_aer |
---|
| 121 | LOGICAL ok_ade, ok_aie ! use aerosol forcings or not? |
---|
| 122 | REAL (KIND=8) tauae(kdlon, kflev, 2) ! aerosol optical properties |
---|
| 123 | REAL (KIND=8) pizae(kdlon, kflev, 2) ! (see aeropt.F) |
---|
| 124 | REAL (KIND=8) cgae(kdlon, kflev, 2) ! -"- |
---|
| 125 | REAL (KIND=8) ptaua(kdlon, 2, kflev) ! CLOUD OPTICAL THICKNESS (pre-industrial value) |
---|
| 126 | REAL (KIND=8) pomegaa(kdlon, 2, kflev) ! SINGLE SCATTERING ALBEDO |
---|
| 127 | REAL (KIND=8) ptopswad(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL DIR) |
---|
| 128 | REAL (KIND=8) psolswad(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL DIR) |
---|
| 129 | REAL (KIND=8) ptopswai(kdlon) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL IND) |
---|
| 130 | REAL (KIND=8) psolswai(kdlon) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL IND) |
---|
| 131 | ! jq - Fluxes including aerosol effects |
---|
| 132 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfsupad(:, :) |
---|
| 133 | !$OMP THREADPRIVATE(ZFSUPAD) |
---|
| 134 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfsdnad(:, :) |
---|
| 135 | !$OMP THREADPRIVATE(ZFSDNAD) |
---|
| 136 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfsupai(:, :) |
---|
| 137 | !$OMP THREADPRIVATE(ZFSUPAI) |
---|
| 138 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfsdnai(:, :) |
---|
| 139 | !$OMP THREADPRIVATE(ZFSDNAI) |
---|
| 140 | LOGICAL initialized |
---|
| 141 | ! ym SAVE ZFSUPAD, ZFSDNAD, ZFSUPAI, ZFSDNAI ! aerosol fluxes |
---|
| 142 | ! rv |
---|
| 143 | SAVE flag_aer |
---|
| 144 | !$OMP THREADPRIVATE(flag_aer) |
---|
| 145 | DATA initialized/.FALSE./ |
---|
| 146 | SAVE initialized |
---|
| 147 | !$OMP THREADPRIVATE(initialized) |
---|
| 148 | ! jq-end |
---|
| 149 | REAL tmp_ |
---|
| 150 | |
---|
| 151 | IF (.NOT. initialized) THEN |
---|
| 152 | flag_aer = 0. |
---|
| 153 | initialized = .TRUE. |
---|
| 154 | ALLOCATE (zfsupad(kdlon,kflev+1)) |
---|
| 155 | ALLOCATE (zfsdnad(kdlon,kflev+1)) |
---|
| 156 | ALLOCATE (zfsupai(kdlon,kflev+1)) |
---|
| 157 | ALLOCATE (zfsdnai(kdlon,kflev+1)) |
---|
| 158 | |
---|
| 159 | zfsupad(:, :) = 0. |
---|
| 160 | zfsdnad(:, :) = 0. |
---|
| 161 | zfsupai(:, :) = 0. |
---|
| 162 | zfsdnai(:, :) = 0. |
---|
| 163 | END IF |
---|
| 164 | |
---|
| 165 | IF (appel1er) THEN |
---|
| 166 | WRITE (lunout, *) 'SW calling frequency : ', swpas |
---|
| 167 | WRITE (lunout, *) ' In general, it should be 1' |
---|
| 168 | appel1er = .FALSE. |
---|
| 169 | END IF |
---|
| 170 | ! ------------------------------------------------------------------ |
---|
| 171 | IF (mod(itapsw,swpas)==0) THEN |
---|
| 172 | |
---|
| 173 | tmp_ = 1./(dobson_u*1E3*rg) |
---|
| 174 | ! cdir collapse |
---|
| 175 | DO jk = 1, kflev |
---|
| 176 | DO jl = 1, kdlon |
---|
| 177 | zcldsw0(jl, jk) = 0.0 |
---|
| 178 | zoz(jl, jk) = pozon(jl, jk)*tmp_*pdp(jl, jk) |
---|
| 179 | END DO |
---|
| 180 | END DO |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | ! clear-sky: |
---|
| 184 | ! IM ctes ds clesphys.h CALL SWU(PSCT,RCO2,ZCLDSW0,PPMB,PPSOL, |
---|
| 185 | CALL swu_lmdar4(psct, zcldsw0, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
| 186 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
| 187 | inu = 1 |
---|
| 188 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
| 189 | pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
| 190 | zfd, zfu) |
---|
| 191 | inu = 2 |
---|
| 192 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
| 193 | palbp, pcg, zcld, zclear, zcldsw0, zdsig, pomega, zoz, zrmu, zsec, & |
---|
| 194 | ptau, zud, pwv, pqs, zfdown, zfup) |
---|
| 195 | DO jk = 1, kflev + 1 |
---|
| 196 | DO jl = 1, kdlon |
---|
| 197 | zfsup0(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
---|
| 198 | zfsdn0(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
---|
| 199 | END DO |
---|
| 200 | END DO |
---|
| 201 | |
---|
| 202 | flag_aer = 0.0 |
---|
| 203 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
| 204 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
| 205 | inu = 1 |
---|
| 206 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
| 207 | pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
| 208 | zfd, zfu) |
---|
| 209 | inu = 2 |
---|
| 210 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
| 211 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, & |
---|
| 212 | zud, pwv, pqs, zfdown, zfup) |
---|
| 213 | |
---|
| 214 | ! cloudy-sky: |
---|
| 215 | |
---|
| 216 | DO jk = 1, kflev + 1 |
---|
| 217 | DO jl = 1, kdlon |
---|
| 218 | zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
---|
| 219 | zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
---|
| 220 | END DO |
---|
| 221 | END DO |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | IF (ok_ade) THEN |
---|
| 225 | |
---|
| 226 | ! cloudy-sky + aerosol dir OB |
---|
| 227 | flag_aer = 1.0 |
---|
| 228 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
| 229 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
| 230 | inu = 1 |
---|
| 231 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
| 232 | pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, ptau, zud, & |
---|
| 233 | zfd, zfu) |
---|
| 234 | inu = 2 |
---|
| 235 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
| 236 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomega, zoz, zrmu, zsec, & |
---|
| 237 | ptau, zud, pwv, pqs, zfdown, zfup) |
---|
| 238 | DO jk = 1, kflev + 1 |
---|
| 239 | DO jl = 1, kdlon |
---|
| 240 | zfsupad(jl, jk) = zfsup(jl, jk) |
---|
| 241 | zfsdnad(jl, jk) = zfsdn(jl, jk) |
---|
| 242 | zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
---|
| 243 | zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
---|
| 244 | END DO |
---|
| 245 | END DO |
---|
| 246 | |
---|
| 247 | END IF ! ok_ade |
---|
| 248 | |
---|
| 249 | IF (ok_aie) THEN |
---|
| 250 | |
---|
| 251 | ! jq cloudy-sky + aerosol direct + aerosol indirect |
---|
| 252 | flag_aer = 1.0 |
---|
| 253 | CALL swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
| 254 | zaki, zcld, zclear, zdsig, zfact, zrmu, zsec, zud) |
---|
| 255 | inu = 1 |
---|
| 256 | CALL sw1s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
| 257 | pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, ptaua, & |
---|
| 258 | zud, zfd, zfu) |
---|
| 259 | inu = 2 |
---|
| 260 | CALL sw2s_lmdar4(inu, paer, flag_aer, tauae, pizae, cgae, zaki, palbd, & |
---|
| 261 | palbp, pcg, zcld, zclear, pcldsw, zdsig, pomegaa, zoz, zrmu, zsec, & |
---|
| 262 | ptaua, zud, pwv, pqs, zfdown, zfup) |
---|
| 263 | DO jk = 1, kflev + 1 |
---|
| 264 | DO jl = 1, kdlon |
---|
| 265 | zfsupai(jl, jk) = zfsup(jl, jk) |
---|
| 266 | zfsdnai(jl, jk) = zfsdn(jl, jk) |
---|
| 267 | zfsup(jl, jk) = (zfup(jl,jk)+zfu(jl,jk))*zfact(jl) |
---|
| 268 | zfsdn(jl, jk) = (zfdown(jl,jk)+zfd(jl,jk))*zfact(jl) |
---|
| 269 | END DO |
---|
| 270 | END DO |
---|
| 271 | END IF ! ok_aie |
---|
| 272 | ! jq -end |
---|
| 273 | |
---|
| 274 | itapsw = 0 |
---|
| 275 | END IF |
---|
| 276 | itapsw = itapsw + 1 |
---|
| 277 | |
---|
| 278 | DO k = 1, kflev |
---|
| 279 | kpl1 = k + 1 |
---|
| 280 | DO i = 1, kdlon |
---|
| 281 | pheat(i, k) = -(zfsup(i,kpl1)-zfsup(i,k)) - (zfsdn(i,k)-zfsdn(i,kpl1)) |
---|
| 282 | pheat(i, k) = pheat(i, k)*rday*rg/rcpd/pdp(i, k) |
---|
| 283 | pheat0(i, k) = -(zfsup0(i,kpl1)-zfsup0(i,k)) - & |
---|
| 284 | (zfsdn0(i,k)-zfsdn0(i,kpl1)) |
---|
| 285 | pheat0(i, k) = pheat0(i, k)*rday*rg/rcpd/pdp(i, k) |
---|
| 286 | END DO |
---|
| 287 | END DO |
---|
| 288 | DO i = 1, kdlon |
---|
| 289 | palbpla(i) = zfsup(i, kflev+1)/(zfsdn(i,kflev+1)+1.0E-20) |
---|
| 290 | |
---|
| 291 | psolsw(i) = zfsdn(i, 1) - zfsup(i, 1) |
---|
| 292 | ptopsw(i) = zfsdn(i, kflev+1) - zfsup(i, kflev+1) |
---|
| 293 | |
---|
| 294 | psolsw0(i) = zfsdn0(i, 1) - zfsup0(i, 1) |
---|
| 295 | ptopsw0(i) = zfsdn0(i, kflev+1) - zfsup0(i, kflev+1) |
---|
| 296 | ! -OB |
---|
| 297 | psolswad(i) = zfsdnad(i, 1) - zfsupad(i, 1) |
---|
| 298 | ptopswad(i) = zfsdnad(i, kflev+1) - zfsupad(i, kflev+1) |
---|
| 299 | |
---|
| 300 | psolswai(i) = zfsdnai(i, 1) - zfsupai(i, 1) |
---|
| 301 | ptopswai(i) = zfsdnai(i, kflev+1) - zfsupai(i, kflev+1) |
---|
| 302 | ! -fin |
---|
| 303 | END DO |
---|
| 304 | |
---|
| 305 | RETURN |
---|
| 306 | END SUBROUTINE sw_lmdar4 |
---|
| 307 | |
---|
| 308 | ! IM ctes ds clesphys.h SUBROUTINE SWU |
---|
| 309 | ! (PSCT,RCO2,PCLDSW,PPMB,PPSOL,PRMU0,PFRAC, |
---|
| 310 | SUBROUTINE swu_lmdar4(psct, pcldsw, ppmb, ppsol, prmu0, pfrac, ptave, pwv, & |
---|
| 311 | paki, pcld, pclear, pdsig, pfact, prmu, psec, pud) |
---|
[5314] | 312 | USE radopt_mod_h |
---|
| 313 | USE radepsi_mod_h |
---|
| 314 | USE clesphys_mod_h |
---|
[1992] | 315 | USE dimphy |
---|
| 316 | USE radiation_ar4_param, ONLY: zpdh2o, zpdumg, zprh2o, zprumg, rtdh2o, & |
---|
| 317 | rtdumg, rth2o, rtumg |
---|
[5285] | 318 | USE yomcst_mod_h |
---|
[5274] | 319 | IMPLICIT NONE |
---|
[1992] | 320 | |
---|
[5274] | 321 | |
---|
[1992] | 322 | ! * ARGUMENTS: |
---|
| 323 | |
---|
| 324 | REAL (KIND=8) psct |
---|
| 325 | ! IM ctes ds clesphys.h REAL(KIND=8) RCO2 |
---|
| 326 | REAL (KIND=8) pcldsw(kdlon, kflev) |
---|
| 327 | REAL (KIND=8) ppmb(kdlon, kflev+1) |
---|
| 328 | REAL (KIND=8) ppsol(kdlon) |
---|
| 329 | REAL (KIND=8) prmu0(kdlon) |
---|
| 330 | REAL (KIND=8) pfrac(kdlon) |
---|
| 331 | REAL (KIND=8) ptave(kdlon, kflev) |
---|
| 332 | REAL (KIND=8) pwv(kdlon, kflev) |
---|
| 333 | |
---|
| 334 | REAL (KIND=8) paki(kdlon, 2) |
---|
| 335 | REAL (KIND=8) pcld(kdlon, kflev) |
---|
| 336 | REAL (KIND=8) pclear(kdlon) |
---|
| 337 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
| 338 | REAL (KIND=8) pfact(kdlon) |
---|
| 339 | REAL (KIND=8) prmu(kdlon) |
---|
| 340 | REAL (KIND=8) psec(kdlon) |
---|
| 341 | REAL (KIND=8) pud(kdlon, 5, kflev+1) |
---|
| 342 | |
---|
| 343 | ! * LOCAL VARIABLES: |
---|
| 344 | |
---|
| 345 | INTEGER iind(2) |
---|
| 346 | REAL (KIND=8) zc1j(kdlon, kflev+1) |
---|
| 347 | REAL (KIND=8) zclear(kdlon) |
---|
| 348 | REAL (KIND=8) zcloud(kdlon) |
---|
| 349 | REAL (KIND=8) zn175(kdlon) |
---|
| 350 | REAL (KIND=8) zn190(kdlon) |
---|
| 351 | REAL (KIND=8) zo175(kdlon) |
---|
| 352 | REAL (KIND=8) zo190(kdlon) |
---|
| 353 | REAL (KIND=8) zsign(kdlon) |
---|
| 354 | REAL (KIND=8) zr(kdlon, 2) |
---|
| 355 | REAL (KIND=8) zsigo(kdlon) |
---|
| 356 | REAL (KIND=8) zud(kdlon, 2) |
---|
| 357 | REAL (KIND=8) zrth, zrtu, zwh2o, zdsco2, zdsh2o, zfppw |
---|
| 358 | INTEGER jl, jk, jkp1, jkl, jklp1, ja |
---|
| 359 | |
---|
| 360 | ! ------------------------------------------------------------------ |
---|
| 361 | |
---|
| 362 | ! * 1. COMPUTES AMOUNTS OF ABSORBERS |
---|
| 363 | ! ----------------------------- |
---|
| 364 | |
---|
| 365 | |
---|
| 366 | iind(1) = 1 |
---|
| 367 | iind(2) = 2 |
---|
| 368 | |
---|
| 369 | ! * 1.1 INITIALIZES QUANTITIES |
---|
| 370 | ! ---------------------- |
---|
| 371 | |
---|
| 372 | |
---|
| 373 | DO jl = 1, kdlon |
---|
| 374 | pud(jl, 1, kflev+1) = 0. |
---|
| 375 | pud(jl, 2, kflev+1) = 0. |
---|
| 376 | pud(jl, 3, kflev+1) = 0. |
---|
| 377 | pud(jl, 4, kflev+1) = 0. |
---|
| 378 | pud(jl, 5, kflev+1) = 0. |
---|
| 379 | pfact(jl) = prmu0(jl)*pfrac(jl)*psct |
---|
| 380 | prmu(jl) = sqrt(1224.*prmu0(jl)*prmu0(jl)+1.)/35. |
---|
| 381 | psec(jl) = 1./prmu(jl) |
---|
| 382 | zc1j(jl, kflev+1) = 0. |
---|
| 383 | END DO |
---|
| 384 | |
---|
| 385 | ! * 1.3 AMOUNTS OF ABSORBERS |
---|
| 386 | ! -------------------- |
---|
| 387 | |
---|
| 388 | |
---|
| 389 | DO jl = 1, kdlon |
---|
| 390 | zud(jl, 1) = 0. |
---|
| 391 | zud(jl, 2) = 0. |
---|
| 392 | zo175(jl) = ppsol(jl)**(zpdumg+1.) |
---|
| 393 | zo190(jl) = ppsol(jl)**(zpdh2o+1.) |
---|
| 394 | zsigo(jl) = ppsol(jl) |
---|
| 395 | zclear(jl) = 1. |
---|
| 396 | zcloud(jl) = 0. |
---|
| 397 | END DO |
---|
| 398 | |
---|
| 399 | DO jk = 1, kflev |
---|
| 400 | jkp1 = jk + 1 |
---|
| 401 | jkl = kflev + 1 - jk |
---|
| 402 | jklp1 = jkl + 1 |
---|
| 403 | DO jl = 1, kdlon |
---|
| 404 | zrth = (rth2o/ptave(jl,jk))**rtdh2o |
---|
| 405 | zrtu = (rtumg/ptave(jl,jk))**rtdumg |
---|
| 406 | zwh2o = max(pwv(jl,jk), zepscq) |
---|
| 407 | zsign(jl) = 100.*ppmb(jl, jkp1) |
---|
| 408 | pdsig(jl, jk) = (zsigo(jl)-zsign(jl))/ppsol(jl) |
---|
| 409 | zn175(jl) = zsign(jl)**(zpdumg+1.) |
---|
| 410 | zn190(jl) = zsign(jl)**(zpdh2o+1.) |
---|
| 411 | zdsco2 = zo175(jl) - zn175(jl) |
---|
| 412 | zdsh2o = zo190(jl) - zn190(jl) |
---|
| 413 | pud(jl, 1, jk) = 1./(10.*rg*(zpdh2o+1.))/(zprh2o**zpdh2o)*zdsh2o*zwh2o* & |
---|
| 414 | zrth |
---|
| 415 | pud(jl, 2, jk) = 1./(10.*rg*(zpdumg+1.))/(zprumg**zpdumg)*zdsco2*rco2* & |
---|
| 416 | zrtu |
---|
| 417 | zfppw = 1.6078*zwh2o/(1.+0.608*zwh2o) |
---|
| 418 | pud(jl, 4, jk) = pud(jl, 1, jk)*zfppw |
---|
| 419 | pud(jl, 5, jk) = pud(jl, 1, jk)*(1.-zfppw) |
---|
| 420 | zud(jl, 1) = zud(jl, 1) + pud(jl, 1, jk) |
---|
| 421 | zud(jl, 2) = zud(jl, 2) + pud(jl, 2, jk) |
---|
| 422 | zsigo(jl) = zsign(jl) |
---|
| 423 | zo175(jl) = zn175(jl) |
---|
| 424 | zo190(jl) = zn190(jl) |
---|
| 425 | |
---|
| 426 | IF (novlp==1) THEN |
---|
| 427 | zclear(jl) = zclear(jl)*(1.-max(pcldsw(jl,jkl),zcloud(jl)))/(1.-min( & |
---|
| 428 | zcloud(jl),1.-zepsec)) |
---|
| 429 | zc1j(jl, jkl) = 1.0 - zclear(jl) |
---|
| 430 | zcloud(jl) = pcldsw(jl, jkl) |
---|
| 431 | ELSE IF (novlp==2) THEN |
---|
| 432 | zcloud(jl) = max(pcldsw(jl,jkl), zcloud(jl)) |
---|
| 433 | zc1j(jl, jkl) = zcloud(jl) |
---|
| 434 | ELSE IF (novlp==3) THEN |
---|
| 435 | zclear(jl) = zclear(jl)*(1.-pcldsw(jl,jkl)) |
---|
| 436 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 437 | zc1j(jl, jkl) = zcloud(jl) |
---|
[998] | 438 | END IF |
---|
[1992] | 439 | END DO |
---|
| 440 | END DO |
---|
| 441 | DO jl = 1, kdlon |
---|
| 442 | pclear(jl) = 1. - zc1j(jl, 1) |
---|
| 443 | END DO |
---|
| 444 | DO jk = 1, kflev |
---|
| 445 | DO jl = 1, kdlon |
---|
| 446 | IF (pclear(jl)<1.) THEN |
---|
| 447 | pcld(jl, jk) = pcldsw(jl, jk)/(1.-pclear(jl)) |
---|
[998] | 448 | ELSE |
---|
[1992] | 449 | pcld(jl, jk) = 0. |
---|
[998] | 450 | END IF |
---|
[1992] | 451 | END DO |
---|
| 452 | END DO |
---|
| 453 | |
---|
| 454 | ! * 1.4 COMPUTES CLEAR-SKY GREY ABSORPTION COEFFICIENTS |
---|
| 455 | ! ----------------------------------------------- |
---|
| 456 | |
---|
| 457 | |
---|
| 458 | DO ja = 1, 2 |
---|
| 459 | DO jl = 1, kdlon |
---|
| 460 | zud(jl, ja) = zud(jl, ja)*psec(jl) |
---|
| 461 | END DO |
---|
| 462 | END DO |
---|
| 463 | |
---|
| 464 | CALL swtt1_lmdar4(2, 2, iind, zud, zr) |
---|
| 465 | |
---|
| 466 | DO ja = 1, 2 |
---|
| 467 | DO jl = 1, kdlon |
---|
| 468 | paki(jl, ja) = -log(zr(jl,ja))/zud(jl, ja) |
---|
| 469 | END DO |
---|
| 470 | END DO |
---|
| 471 | |
---|
| 472 | |
---|
| 473 | ! ------------------------------------------------------------------ |
---|
| 474 | |
---|
| 475 | RETURN |
---|
| 476 | END SUBROUTINE swu_lmdar4 |
---|
| 477 | SUBROUTINE sw1s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbd, palbp, & |
---|
| 478 | pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, pud, & |
---|
| 479 | pfd, pfu) |
---|
| 480 | USE dimphy |
---|
| 481 | USE radiation_ar4_param, ONLY: rsun, rray |
---|
[4389] | 482 | USE infotrac_phy, ONLY: type_trac |
---|
[5252] | 483 | USE lmdz_reprobus_wrappers, ONLY: rsuntime, ok_suntime |
---|
[3666] | 484 | USE print_control_mod, ONLY: lunout |
---|
[5252] | 485 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
[1565] | 486 | |
---|
[1992] | 487 | IMPLICIT NONE |
---|
[1279] | 488 | |
---|
[1992] | 489 | ! ------------------------------------------------------------------ |
---|
| 490 | ! PURPOSE. |
---|
| 491 | ! -------- |
---|
| 492 | |
---|
| 493 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
---|
| 494 | ! SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
---|
| 495 | |
---|
| 496 | ! METHOD. |
---|
| 497 | ! ------- |
---|
| 498 | |
---|
| 499 | ! 1. COMPUTES UPWARD AND DOWNWARD FLUXES CORRESPONDING TO |
---|
| 500 | ! CONTINUUM SCATTERING |
---|
| 501 | ! 2. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
---|
| 502 | |
---|
| 503 | ! REFERENCE. |
---|
| 504 | ! ---------- |
---|
| 505 | |
---|
| 506 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 507 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 508 | |
---|
| 509 | ! AUTHOR. |
---|
| 510 | ! ------- |
---|
| 511 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 512 | |
---|
| 513 | ! MODIFICATIONS. |
---|
| 514 | ! -------------- |
---|
| 515 | ! ORIGINAL : 89-07-14 |
---|
| 516 | ! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
---|
| 517 | ! ------------------------------------------------------------------ |
---|
| 518 | |
---|
| 519 | ! * ARGUMENTS: |
---|
| 520 | |
---|
| 521 | INTEGER knu |
---|
| 522 | ! -OB |
---|
| 523 | REAL (KIND=8) flag_aer |
---|
| 524 | REAL (KIND=8) tauae(kdlon, kflev, 2) |
---|
| 525 | REAL (KIND=8) pizae(kdlon, kflev, 2) |
---|
| 526 | REAL (KIND=8) cgae(kdlon, kflev, 2) |
---|
| 527 | REAL (KIND=8) paer(kdlon, kflev, 5) |
---|
| 528 | REAL (KIND=8) palbd(kdlon, 2) |
---|
| 529 | REAL (KIND=8) palbp(kdlon, 2) |
---|
| 530 | REAL (KIND=8) pcg(kdlon, 2, kflev) |
---|
| 531 | REAL (KIND=8) pcld(kdlon, kflev) |
---|
| 532 | REAL (KIND=8) pcldsw(kdlon, kflev) |
---|
| 533 | REAL (KIND=8) pclear(kdlon) |
---|
| 534 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
| 535 | REAL (KIND=8) pomega(kdlon, 2, kflev) |
---|
| 536 | REAL (KIND=8) poz(kdlon, kflev) |
---|
| 537 | REAL (KIND=8) prmu(kdlon) |
---|
| 538 | REAL (KIND=8) psec(kdlon) |
---|
| 539 | REAL (KIND=8) ptau(kdlon, 2, kflev) |
---|
| 540 | REAL (KIND=8) pud(kdlon, 5, kflev+1) |
---|
| 541 | |
---|
| 542 | REAL (KIND=8) pfd(kdlon, kflev+1) |
---|
| 543 | REAL (KIND=8) pfu(kdlon, kflev+1) |
---|
| 544 | |
---|
| 545 | ! * LOCAL VARIABLES: |
---|
| 546 | |
---|
| 547 | INTEGER iind(4) |
---|
| 548 | |
---|
| 549 | REAL (KIND=8) zcgaz(kdlon, kflev) |
---|
| 550 | REAL (KIND=8) zdiff(kdlon) |
---|
| 551 | REAL (KIND=8) zdirf(kdlon) |
---|
| 552 | REAL (KIND=8) zpizaz(kdlon, kflev) |
---|
| 553 | REAL (KIND=8) zrayl(kdlon) |
---|
| 554 | REAL (KIND=8) zray1(kdlon, kflev+1) |
---|
| 555 | REAL (KIND=8) zray2(kdlon, kflev+1) |
---|
| 556 | REAL (KIND=8) zrefz(kdlon, 2, kflev+1) |
---|
| 557 | REAL (KIND=8) zrj(kdlon, 6, kflev+1) |
---|
| 558 | REAL (KIND=8) zrj0(kdlon, 6, kflev+1) |
---|
| 559 | REAL (KIND=8) zrk(kdlon, 6, kflev+1) |
---|
| 560 | REAL (KIND=8) zrk0(kdlon, 6, kflev+1) |
---|
| 561 | REAL (KIND=8) zrmue(kdlon, kflev+1) |
---|
| 562 | REAL (KIND=8) zrmu0(kdlon, kflev+1) |
---|
| 563 | REAL (KIND=8) zr(kdlon, 4) |
---|
| 564 | REAL (KIND=8) ztauaz(kdlon, kflev) |
---|
| 565 | REAL (KIND=8) ztra1(kdlon, kflev+1) |
---|
| 566 | REAL (KIND=8) ztra2(kdlon, kflev+1) |
---|
| 567 | REAL (KIND=8) zw(kdlon, 4) |
---|
| 568 | |
---|
| 569 | INTEGER jl, jk, k, jaj, ikm1, ikl |
---|
| 570 | |
---|
| 571 | ! If running with Reporbus, overwrite default values of RSUN. |
---|
| 572 | ! Otherwise keep default values from radiation_AR4_param module. |
---|
[4389] | 573 | IF (type_trac=='repr') THEN |
---|
[5252] | 574 | IF (CPPKEY_REPROBUS) THEN |
---|
[1992] | 575 | IF (ok_suntime) THEN |
---|
| 576 | rsun(1) = rsuntime(1) |
---|
| 577 | rsun(2) = rsuntime(2) |
---|
| 578 | END IF |
---|
| 579 | WRITE (lunout, *) 'RSUN(1): ', rsun(1) |
---|
[5252] | 580 | END IF |
---|
[1992] | 581 | END IF |
---|
[1565] | 582 | |
---|
[1992] | 583 | ! ------------------------------------------------------------------ |
---|
| 584 | |
---|
| 585 | ! * 1. FIRST SPECTRAL INTERVAL (0.25-0.68 MICRON) |
---|
| 586 | ! ----------------------- ------------------ |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | |
---|
| 590 | ! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
---|
| 591 | ! ----------------------------------------- |
---|
| 592 | |
---|
| 593 | |
---|
| 594 | DO jl = 1, kdlon |
---|
| 595 | zrayl(jl) = rray(knu, 1) + prmu(jl)*(rray(knu,2)+prmu(jl)*(rray(knu, & |
---|
| 596 | 3)+prmu(jl)*(rray(knu,4)+prmu(jl)*(rray(knu,5)+prmu(jl)*rray(knu,6))))) |
---|
| 597 | END DO |
---|
| 598 | |
---|
| 599 | |
---|
| 600 | ! ------------------------------------------------------------------ |
---|
| 601 | |
---|
| 602 | ! * 2. CONTINUUM SCATTERING CALCULATIONS |
---|
| 603 | ! --------------------------------- |
---|
| 604 | |
---|
| 605 | |
---|
| 606 | ! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
---|
| 607 | ! -------------------------------- |
---|
| 608 | |
---|
| 609 | |
---|
| 610 | CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
---|
| 611 | zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
---|
| 612 | ztauaz, ztra1, ztra2) |
---|
| 613 | |
---|
| 614 | ! * 2.2 CLOUDY FRACTION OF THE COLUMN |
---|
| 615 | ! ----------------------------- |
---|
| 616 | |
---|
| 617 | |
---|
| 618 | CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
---|
| 619 | zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
---|
| 620 | ztra2) |
---|
| 621 | |
---|
| 622 | ! ------------------------------------------------------------------ |
---|
| 623 | |
---|
| 624 | ! * 3. OZONE ABSORPTION |
---|
| 625 | ! ---------------- |
---|
| 626 | |
---|
| 627 | |
---|
| 628 | iind(1) = 1 |
---|
| 629 | iind(2) = 3 |
---|
| 630 | iind(3) = 1 |
---|
| 631 | iind(4) = 3 |
---|
| 632 | |
---|
| 633 | ! * 3.1 DOWNWARD FLUXES |
---|
| 634 | ! --------------- |
---|
| 635 | |
---|
| 636 | |
---|
| 637 | jaj = 2 |
---|
| 638 | |
---|
| 639 | DO jl = 1, kdlon |
---|
| 640 | zw(jl, 1) = 0. |
---|
| 641 | zw(jl, 2) = 0. |
---|
| 642 | zw(jl, 3) = 0. |
---|
| 643 | zw(jl, 4) = 0. |
---|
| 644 | pfd(jl, kflev+1) = ((1.-pclear(jl))*zrj(jl,jaj,kflev+1)+pclear(jl)*zrj0( & |
---|
| 645 | jl,jaj,kflev+1))*rsun(knu) |
---|
| 646 | END DO |
---|
| 647 | DO jk = 1, kflev |
---|
| 648 | ikl = kflev + 1 - jk |
---|
| 649 | DO jl = 1, kdlon |
---|
| 650 | zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikl)/zrmue(jl, ikl) |
---|
| 651 | zw(jl, 2) = zw(jl, 2) + poz(jl, ikl)/zrmue(jl, ikl) |
---|
| 652 | zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikl)/zrmu0(jl, ikl) |
---|
| 653 | zw(jl, 4) = zw(jl, 4) + poz(jl, ikl)/zrmu0(jl, ikl) |
---|
| 654 | END DO |
---|
| 655 | |
---|
| 656 | CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
---|
| 657 | |
---|
| 658 | DO jl = 1, kdlon |
---|
| 659 | zdiff(jl) = zr(jl, 1)*zr(jl, 2)*zrj(jl, jaj, ikl) |
---|
| 660 | zdirf(jl) = zr(jl, 3)*zr(jl, 4)*zrj0(jl, jaj, ikl) |
---|
| 661 | pfd(jl, ikl) = ((1.-pclear(jl))*zdiff(jl)+pclear(jl)*zdirf(jl))* & |
---|
| 662 | rsun(knu) |
---|
| 663 | END DO |
---|
| 664 | END DO |
---|
| 665 | |
---|
| 666 | ! * 3.2 UPWARD FLUXES |
---|
| 667 | ! ------------- |
---|
| 668 | |
---|
| 669 | |
---|
| 670 | DO jl = 1, kdlon |
---|
| 671 | pfu(jl, 1) = ((1.-pclear(jl))*zdiff(jl)*palbd(jl,knu)+pclear(jl)*zdirf(jl & |
---|
| 672 | )*palbp(jl,knu))*rsun(knu) |
---|
| 673 | END DO |
---|
| 674 | |
---|
| 675 | DO jk = 2, kflev + 1 |
---|
| 676 | ikm1 = jk - 1 |
---|
| 677 | DO jl = 1, kdlon |
---|
| 678 | zw(jl, 1) = zw(jl, 1) + pud(jl, 1, ikm1)*1.66 |
---|
| 679 | zw(jl, 2) = zw(jl, 2) + poz(jl, ikm1)*1.66 |
---|
| 680 | zw(jl, 3) = zw(jl, 3) + pud(jl, 1, ikm1)*1.66 |
---|
| 681 | zw(jl, 4) = zw(jl, 4) + poz(jl, ikm1)*1.66 |
---|
| 682 | END DO |
---|
| 683 | |
---|
| 684 | CALL swtt1_lmdar4(knu, 4, iind, zw, zr) |
---|
| 685 | |
---|
| 686 | DO jl = 1, kdlon |
---|
| 687 | zdiff(jl) = zr(jl, 1)*zr(jl, 2)*zrk(jl, jaj, jk) |
---|
| 688 | zdirf(jl) = zr(jl, 3)*zr(jl, 4)*zrk0(jl, jaj, jk) |
---|
| 689 | pfu(jl, jk) = ((1.-pclear(jl))*zdiff(jl)+pclear(jl)*zdirf(jl))* & |
---|
| 690 | rsun(knu) |
---|
| 691 | END DO |
---|
| 692 | END DO |
---|
| 693 | |
---|
| 694 | ! ------------------------------------------------------------------ |
---|
| 695 | |
---|
| 696 | RETURN |
---|
| 697 | END SUBROUTINE sw1s_lmdar4 |
---|
| 698 | SUBROUTINE sw2s_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, paki, palbd, & |
---|
| 699 | palbp, pcg, pcld, pclear, pcldsw, pdsig, pomega, poz, prmu, psec, ptau, & |
---|
| 700 | pud, pwv, pqs, pfdown, pfup) |
---|
[5314] | 701 | USE radepsi_mod_h |
---|
| 702 | USE dimphy |
---|
[1992] | 703 | USE radiation_ar4_param, ONLY: rsun, rray |
---|
[4389] | 704 | USE infotrac_phy, ONLY: type_trac |
---|
[5252] | 705 | USE lmdz_reprobus_wrappers, ONLY: rsuntime, ok_suntime |
---|
| 706 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
[1565] | 707 | |
---|
[1992] | 708 | IMPLICIT NONE |
---|
[1565] | 709 | |
---|
[1992] | 710 | ! ------------------------------------------------------------------ |
---|
| 711 | ! PURPOSE. |
---|
| 712 | ! -------- |
---|
| 713 | |
---|
| 714 | ! THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN THE |
---|
| 715 | ! SECOND SPECTRAL INTERVAL FOLLOWING FOUQUART AND BONNEL (1980). |
---|
| 716 | |
---|
| 717 | ! METHOD. |
---|
| 718 | ! ------- |
---|
| 719 | |
---|
| 720 | ! 1. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING TO |
---|
| 721 | ! CONTINUUM SCATTERING |
---|
| 722 | ! 2. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING FOR |
---|
| 723 | ! A GREY MOLECULAR ABSORPTION |
---|
| 724 | ! 3. LAPLACE TRANSFORM ON THE PREVIOUS TO GET EFFECTIVE AMOUNTS |
---|
| 725 | ! OF ABSORBERS |
---|
| 726 | ! 4. APPLY H2O AND U.M.G. TRANSMISSION FUNCTIONS |
---|
| 727 | ! 5. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
---|
| 728 | |
---|
| 729 | ! REFERENCE. |
---|
| 730 | ! ---------- |
---|
| 731 | |
---|
| 732 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 733 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 734 | |
---|
| 735 | ! AUTHOR. |
---|
| 736 | ! ------- |
---|
| 737 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 738 | |
---|
| 739 | ! MODIFICATIONS. |
---|
| 740 | ! -------------- |
---|
| 741 | ! ORIGINAL : 89-07-14 |
---|
| 742 | ! 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
---|
| 743 | ! ------------------------------------------------------------------ |
---|
| 744 | ! * ARGUMENTS: |
---|
| 745 | |
---|
| 746 | INTEGER knu |
---|
| 747 | ! -OB |
---|
| 748 | REAL (KIND=8) flag_aer |
---|
| 749 | REAL (KIND=8) tauae(kdlon, kflev, 2) |
---|
| 750 | REAL (KIND=8) pizae(kdlon, kflev, 2) |
---|
| 751 | REAL (KIND=8) cgae(kdlon, kflev, 2) |
---|
| 752 | REAL (KIND=8) paer(kdlon, kflev, 5) |
---|
| 753 | REAL (KIND=8) paki(kdlon, 2) |
---|
| 754 | REAL (KIND=8) palbd(kdlon, 2) |
---|
| 755 | REAL (KIND=8) palbp(kdlon, 2) |
---|
| 756 | REAL (KIND=8) pcg(kdlon, 2, kflev) |
---|
| 757 | REAL (KIND=8) pcld(kdlon, kflev) |
---|
| 758 | REAL (KIND=8) pcldsw(kdlon, kflev) |
---|
| 759 | REAL (KIND=8) pclear(kdlon) |
---|
| 760 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
| 761 | REAL (KIND=8) pomega(kdlon, 2, kflev) |
---|
| 762 | REAL (KIND=8) poz(kdlon, kflev) |
---|
| 763 | REAL (KIND=8) pqs(kdlon, kflev) |
---|
| 764 | REAL (KIND=8) prmu(kdlon) |
---|
| 765 | REAL (KIND=8) psec(kdlon) |
---|
| 766 | REAL (KIND=8) ptau(kdlon, 2, kflev) |
---|
| 767 | REAL (KIND=8) pud(kdlon, 5, kflev+1) |
---|
| 768 | REAL (KIND=8) pwv(kdlon, kflev) |
---|
| 769 | |
---|
| 770 | REAL (KIND=8) pfdown(kdlon, kflev+1) |
---|
| 771 | REAL (KIND=8) pfup(kdlon, kflev+1) |
---|
| 772 | |
---|
| 773 | ! * LOCAL VARIABLES: |
---|
| 774 | |
---|
| 775 | INTEGER iind2(2), iind3(3) |
---|
| 776 | REAL (KIND=8) zcgaz(kdlon, kflev) |
---|
| 777 | REAL (KIND=8) zfd(kdlon, kflev+1) |
---|
| 778 | REAL (KIND=8) zfu(kdlon, kflev+1) |
---|
| 779 | REAL (KIND=8) zg(kdlon) |
---|
| 780 | REAL (KIND=8) zgg(kdlon) |
---|
| 781 | REAL (KIND=8) zpizaz(kdlon, kflev) |
---|
| 782 | REAL (KIND=8) zrayl(kdlon) |
---|
| 783 | REAL (KIND=8) zray1(kdlon, kflev+1) |
---|
| 784 | REAL (KIND=8) zray2(kdlon, kflev+1) |
---|
| 785 | REAL (KIND=8) zref(kdlon) |
---|
| 786 | REAL (KIND=8) zrefz(kdlon, 2, kflev+1) |
---|
| 787 | REAL (KIND=8) zre1(kdlon) |
---|
| 788 | REAL (KIND=8) zre2(kdlon) |
---|
| 789 | REAL (KIND=8) zrj(kdlon, 6, kflev+1) |
---|
| 790 | REAL (KIND=8) zrj0(kdlon, 6, kflev+1) |
---|
| 791 | REAL (KIND=8) zrk(kdlon, 6, kflev+1) |
---|
| 792 | REAL (KIND=8) zrk0(kdlon, 6, kflev+1) |
---|
| 793 | REAL (KIND=8) zrl(kdlon, 8) |
---|
| 794 | REAL (KIND=8) zrmue(kdlon, kflev+1) |
---|
| 795 | REAL (KIND=8) zrmu0(kdlon, kflev+1) |
---|
| 796 | REAL (KIND=8) zrmuz(kdlon) |
---|
| 797 | REAL (KIND=8) zrneb(kdlon) |
---|
| 798 | REAL (KIND=8) zruef(kdlon, 8) |
---|
| 799 | REAL (KIND=8) zr1(kdlon) |
---|
| 800 | REAL (KIND=8) zr2(kdlon, 2) |
---|
| 801 | REAL (KIND=8) zr3(kdlon, 3) |
---|
| 802 | REAL (KIND=8) zr4(kdlon) |
---|
| 803 | REAL (KIND=8) zr21(kdlon) |
---|
| 804 | REAL (KIND=8) zr22(kdlon) |
---|
| 805 | REAL (KIND=8) zs(kdlon) |
---|
| 806 | REAL (KIND=8) ztauaz(kdlon, kflev) |
---|
| 807 | REAL (KIND=8) zto1(kdlon) |
---|
| 808 | REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
---|
| 809 | REAL (KIND=8) ztra1(kdlon, kflev+1) |
---|
| 810 | REAL (KIND=8) ztra2(kdlon, kflev+1) |
---|
| 811 | REAL (KIND=8) ztr1(kdlon) |
---|
| 812 | REAL (KIND=8) ztr2(kdlon) |
---|
| 813 | REAL (KIND=8) zw(kdlon) |
---|
| 814 | REAL (KIND=8) zw1(kdlon) |
---|
| 815 | REAL (KIND=8) zw2(kdlon, 2) |
---|
| 816 | REAL (KIND=8) zw3(kdlon, 3) |
---|
| 817 | REAL (KIND=8) zw4(kdlon) |
---|
| 818 | REAL (KIND=8) zw5(kdlon) |
---|
| 819 | |
---|
| 820 | INTEGER jl, jk, k, jaj, ikm1, ikl, jn, jabs, jkm1 |
---|
| 821 | INTEGER jref, jkl, jklp1, jajp, jkki, jkkp4, jn2j, iabs |
---|
| 822 | REAL (KIND=8) zrmum1, zwh2o, zcneb, zaa, zbb, zrki, zre11 |
---|
| 823 | |
---|
| 824 | ! If running with Reporbus, overwrite default values of RSUN. |
---|
| 825 | ! Otherwise keep default values from radiation_AR4_param module. |
---|
[4389] | 826 | IF (type_trac=='repr') THEN |
---|
[5252] | 827 | IF (CPPKEY_REPROBUS) THEN |
---|
[1992] | 828 | IF (ok_suntime) THEN |
---|
| 829 | rsun(1) = rsuntime(1) |
---|
| 830 | rsun(2) = rsuntime(2) |
---|
| 831 | END IF |
---|
[5252] | 832 | END IF |
---|
[1992] | 833 | END IF |
---|
[1565] | 834 | |
---|
[1992] | 835 | ! ------------------------------------------------------------------ |
---|
[1279] | 836 | |
---|
[1992] | 837 | ! * 1. SECOND SPECTRAL INTERVAL (0.68-4.00 MICRON) |
---|
| 838 | ! ------------------------------------------- |
---|
| 839 | |
---|
| 840 | |
---|
| 841 | |
---|
| 842 | ! * 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
---|
| 843 | ! ----------------------------------------- |
---|
| 844 | |
---|
| 845 | |
---|
| 846 | DO jl = 1, kdlon |
---|
| 847 | zrmum1 = 1. - prmu(jl) |
---|
| 848 | zrayl(jl) = rray(knu, 1) + zrmum1*(rray(knu,2)+zrmum1*(rray(knu, & |
---|
| 849 | 3)+zrmum1*(rray(knu,4)+zrmum1*(rray(knu,5)+zrmum1*rray(knu,6))))) |
---|
| 850 | END DO |
---|
| 851 | |
---|
| 852 | ! ------------------------------------------------------------------ |
---|
| 853 | |
---|
| 854 | ! * 2. CONTINUUM SCATTERING CALCULATIONS |
---|
| 855 | ! --------------------------------- |
---|
| 856 | |
---|
| 857 | |
---|
| 858 | ! * 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
---|
| 859 | ! -------------------------------- |
---|
| 860 | |
---|
| 861 | |
---|
| 862 | CALL swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, pdsig, & |
---|
| 863 | zrayl, psec, zcgaz, zpizaz, zray1, zray2, zrefz, zrj0, zrk0, zrmu0, & |
---|
| 864 | ztauaz, ztra1, ztra2) |
---|
| 865 | |
---|
| 866 | ! * 2.2 CLOUDY FRACTION OF THE COLUMN |
---|
| 867 | ! ----------------------------- |
---|
| 868 | |
---|
| 869 | |
---|
| 870 | CALL swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, zrayl, psec, ptau, & |
---|
| 871 | zcgaz, zpizaz, zray1, zray2, zrefz, zrj, zrk, zrmue, ztauaz, ztra1, & |
---|
| 872 | ztra2) |
---|
| 873 | |
---|
| 874 | ! ------------------------------------------------------------------ |
---|
| 875 | |
---|
| 876 | ! * 3. SCATTERING CALCULATIONS WITH GREY MOLECULAR ABSORPTION |
---|
| 877 | ! ------------------------------------------------------ |
---|
| 878 | |
---|
| 879 | |
---|
| 880 | jn = 2 |
---|
| 881 | |
---|
| 882 | DO jabs = 1, 2 |
---|
| 883 | ! * 3.1 SURFACE CONDITIONS |
---|
| 884 | ! ------------------ |
---|
| 885 | |
---|
| 886 | |
---|
| 887 | DO jl = 1, kdlon |
---|
| 888 | zrefz(jl, 2, 1) = palbd(jl, knu) |
---|
| 889 | zrefz(jl, 1, 1) = palbd(jl, knu) |
---|
| 890 | END DO |
---|
| 891 | |
---|
| 892 | ! * 3.2 INTRODUCING CLOUD EFFECTS |
---|
| 893 | ! ------------------------- |
---|
| 894 | |
---|
| 895 | |
---|
| 896 | DO jk = 2, kflev + 1 |
---|
| 897 | jkm1 = jk - 1 |
---|
| 898 | ikl = kflev + 1 - jkm1 |
---|
| 899 | DO jl = 1, kdlon |
---|
| 900 | zrneb(jl) = pcld(jl, jkm1) |
---|
| 901 | IF (jabs==1 .AND. zrneb(jl)>2.*zeelog) THEN |
---|
| 902 | zwh2o = max(pwv(jl,jkm1), zeelog) |
---|
| 903 | zcneb = max(zeelog, min(zrneb(jl),1.-zeelog)) |
---|
| 904 | zbb = pud(jl, jabs, jkm1)*pqs(jl, jkm1)/zwh2o |
---|
| 905 | zaa = max((pud(jl,jabs,jkm1)-zcneb*zbb)/(1.-zcneb), zeelog) |
---|
| 906 | ELSE |
---|
| 907 | zaa = pud(jl, jabs, jkm1) |
---|
| 908 | zbb = zaa |
---|
| 909 | END IF |
---|
| 910 | zrki = paki(jl, jabs) |
---|
| 911 | zs(jl) = exp(-zrki*zaa*1.66) |
---|
| 912 | zg(jl) = exp(-zrki*zaa/zrmue(jl,jk)) |
---|
| 913 | ztr1(jl) = 0. |
---|
| 914 | zre1(jl) = 0. |
---|
| 915 | ztr2(jl) = 0. |
---|
| 916 | zre2(jl) = 0. |
---|
| 917 | |
---|
| 918 | zw(jl) = pomega(jl, knu, jkm1) |
---|
| 919 | zto1(jl) = ptau(jl, knu, jkm1)/zw(jl) + ztauaz(jl, jkm1)/zpizaz(jl, & |
---|
| 920 | jkm1) + zbb*zrki |
---|
| 921 | |
---|
| 922 | zr21(jl) = ptau(jl, knu, jkm1) + ztauaz(jl, jkm1) |
---|
| 923 | zr22(jl) = ptau(jl, knu, jkm1)/zr21(jl) |
---|
| 924 | zgg(jl) = zr22(jl)*pcg(jl, knu, jkm1) + (1.-zr22(jl))*zcgaz(jl, jkm1) |
---|
| 925 | zw(jl) = zr21(jl)/zto1(jl) |
---|
| 926 | zref(jl) = zrefz(jl, 1, jkm1) |
---|
| 927 | zrmuz(jl) = zrmue(jl, jk) |
---|
| 928 | END DO |
---|
| 929 | |
---|
| 930 | CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
---|
| 931 | |
---|
| 932 | DO jl = 1, kdlon |
---|
| 933 | |
---|
| 934 | zrefz(jl, 2, jk) = (1.-zrneb(jl))*(zray1(jl,jkm1)+zrefz(jl,2,jkm1)* & |
---|
| 935 | ztra1(jl,jkm1)*ztra2(jl,jkm1))*zg(jl)*zs(jl) + zrneb(jl)*zre1(jl) |
---|
| 936 | |
---|
| 937 | ztr(jl, 2, jkm1) = zrneb(jl)*ztr1(jl) + (ztra1(jl,jkm1))*zg(jl)*(1.- & |
---|
| 938 | zrneb(jl)) |
---|
| 939 | |
---|
| 940 | zrefz(jl, 1, jk) = (1.-zrneb(jl))*(zray1(jl,jkm1)+zrefz(jl,1,jkm1)* & |
---|
| 941 | ztra1(jl,jkm1)*ztra2(jl,jkm1)/(1.-zray2(jl,jkm1)*zrefz(jl,1, & |
---|
| 942 | jkm1)))*zg(jl)*zs(jl) + zrneb(jl)*zre2(jl) |
---|
| 943 | |
---|
| 944 | ztr(jl, 1, jkm1) = zrneb(jl)*ztr2(jl) + (ztra1(jl,jkm1)/(1.-zray2(jl, & |
---|
| 945 | jkm1)*zrefz(jl,1,jkm1)))*zg(jl)*(1.-zrneb(jl)) |
---|
| 946 | |
---|
| 947 | END DO |
---|
| 948 | END DO |
---|
| 949 | |
---|
| 950 | ! * 3.3 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 951 | ! ------------------------------------------------- |
---|
| 952 | |
---|
| 953 | |
---|
| 954 | DO jref = 1, 2 |
---|
| 955 | |
---|
| 956 | jn = jn + 1 |
---|
| 957 | |
---|
| 958 | DO jl = 1, kdlon |
---|
| 959 | zrj(jl, jn, kflev+1) = 1. |
---|
| 960 | zrk(jl, jn, kflev+1) = zrefz(jl, jref, kflev+1) |
---|
| 961 | END DO |
---|
| 962 | |
---|
| 963 | DO jk = 1, kflev |
---|
| 964 | jkl = kflev + 1 - jk |
---|
| 965 | jklp1 = jkl + 1 |
---|
| 966 | DO jl = 1, kdlon |
---|
| 967 | zre11 = zrj(jl, jn, jklp1)*ztr(jl, jref, jkl) |
---|
| 968 | zrj(jl, jn, jkl) = zre11 |
---|
| 969 | zrk(jl, jn, jkl) = zre11*zrefz(jl, jref, jkl) |
---|
| 970 | END DO |
---|
| 971 | END DO |
---|
| 972 | END DO |
---|
| 973 | END DO |
---|
| 974 | |
---|
| 975 | ! ------------------------------------------------------------------ |
---|
| 976 | |
---|
| 977 | ! * 4. INVERT GREY AND CONTINUUM FLUXES |
---|
| 978 | ! -------------------------------- |
---|
| 979 | |
---|
| 980 | |
---|
| 981 | |
---|
| 982 | ! * 4.1 UPWARD (ZRK) AND DOWNWARD (ZRJ) PSEUDO-FLUXES |
---|
| 983 | ! --------------------------------------------- |
---|
| 984 | |
---|
| 985 | |
---|
| 986 | DO jk = 1, kflev + 1 |
---|
| 987 | DO jaj = 1, 5, 2 |
---|
| 988 | jajp = jaj + 1 |
---|
| 989 | DO jl = 1, kdlon |
---|
| 990 | zrj(jl, jaj, jk) = zrj(jl, jaj, jk) - zrj(jl, jajp, jk) |
---|
| 991 | zrk(jl, jaj, jk) = zrk(jl, jaj, jk) - zrk(jl, jajp, jk) |
---|
| 992 | zrj(jl, jaj, jk) = max(zrj(jl,jaj,jk), zeelog) |
---|
| 993 | zrk(jl, jaj, jk) = max(zrk(jl,jaj,jk), zeelog) |
---|
| 994 | END DO |
---|
| 995 | END DO |
---|
| 996 | END DO |
---|
| 997 | |
---|
| 998 | DO jk = 1, kflev + 1 |
---|
| 999 | DO jaj = 2, 6, 2 |
---|
| 1000 | DO jl = 1, kdlon |
---|
| 1001 | zrj(jl, jaj, jk) = max(zrj(jl,jaj,jk), zeelog) |
---|
| 1002 | zrk(jl, jaj, jk) = max(zrk(jl,jaj,jk), zeelog) |
---|
| 1003 | END DO |
---|
| 1004 | END DO |
---|
| 1005 | END DO |
---|
| 1006 | |
---|
| 1007 | ! * 4.2 EFFECTIVE ABSORBER AMOUNTS BY INVERSE LAPLACE |
---|
| 1008 | ! --------------------------------------------- |
---|
| 1009 | |
---|
| 1010 | |
---|
| 1011 | DO jk = 1, kflev + 1 |
---|
| 1012 | jkki = 1 |
---|
| 1013 | DO jaj = 1, 2 |
---|
| 1014 | iind2(1) = jaj |
---|
| 1015 | iind2(2) = jaj |
---|
| 1016 | DO jn = 1, 2 |
---|
| 1017 | jn2j = jn + 2*jaj |
---|
| 1018 | jkkp4 = jkki + 4 |
---|
| 1019 | |
---|
| 1020 | ! * 4.2.1 EFFECTIVE ABSORBER AMOUNTS |
---|
| 1021 | ! -------------------------- |
---|
| 1022 | |
---|
| 1023 | |
---|
| 1024 | DO jl = 1, kdlon |
---|
| 1025 | zw2(jl, 1) = log(zrj(jl,jn,jk)/zrj(jl,jn2j,jk))/paki(jl, jaj) |
---|
| 1026 | zw2(jl, 2) = log(zrk(jl,jn,jk)/zrk(jl,jn2j,jk))/paki(jl, jaj) |
---|
| 1027 | END DO |
---|
| 1028 | |
---|
| 1029 | ! * 4.2.2 TRANSMISSION FUNCTION |
---|
| 1030 | ! --------------------- |
---|
| 1031 | |
---|
| 1032 | |
---|
| 1033 | CALL swtt1_lmdar4(knu, 2, iind2, zw2, zr2) |
---|
| 1034 | |
---|
| 1035 | DO jl = 1, kdlon |
---|
| 1036 | zrl(jl, jkki) = zr2(jl, 1) |
---|
| 1037 | zruef(jl, jkki) = zw2(jl, 1) |
---|
| 1038 | zrl(jl, jkkp4) = zr2(jl, 2) |
---|
| 1039 | zruef(jl, jkkp4) = zw2(jl, 2) |
---|
| 1040 | END DO |
---|
| 1041 | |
---|
| 1042 | jkki = jkki + 1 |
---|
| 1043 | END DO |
---|
| 1044 | END DO |
---|
| 1045 | |
---|
| 1046 | ! * 4.3 UPWARD AND DOWNWARD FLUXES WITH H2O AND UMG ABSORPTION |
---|
| 1047 | ! ------------------------------------------------------ |
---|
| 1048 | |
---|
| 1049 | |
---|
| 1050 | DO jl = 1, kdlon |
---|
| 1051 | pfdown(jl, jk) = zrj(jl, 1, jk)*zrl(jl, 1)*zrl(jl, 3) + & |
---|
| 1052 | zrj(jl, 2, jk)*zrl(jl, 2)*zrl(jl, 4) |
---|
| 1053 | pfup(jl, jk) = zrk(jl, 1, jk)*zrl(jl, 5)*zrl(jl, 7) + & |
---|
| 1054 | zrk(jl, 2, jk)*zrl(jl, 6)*zrl(jl, 8) |
---|
| 1055 | END DO |
---|
| 1056 | END DO |
---|
| 1057 | |
---|
| 1058 | ! ------------------------------------------------------------------ |
---|
| 1059 | |
---|
| 1060 | ! * 5. MOLECULAR ABSORPTION ON CLEAR-SKY FLUXES |
---|
| 1061 | ! ---------------------------------------- |
---|
| 1062 | |
---|
| 1063 | |
---|
| 1064 | |
---|
| 1065 | ! * 5.1 DOWNWARD FLUXES |
---|
| 1066 | ! --------------- |
---|
| 1067 | |
---|
| 1068 | |
---|
| 1069 | jaj = 2 |
---|
| 1070 | iind3(1) = 1 |
---|
| 1071 | iind3(2) = 2 |
---|
| 1072 | iind3(3) = 3 |
---|
| 1073 | |
---|
| 1074 | DO jl = 1, kdlon |
---|
| 1075 | zw3(jl, 1) = 0. |
---|
| 1076 | zw3(jl, 2) = 0. |
---|
| 1077 | zw3(jl, 3) = 0. |
---|
| 1078 | zw4(jl) = 0. |
---|
| 1079 | zw5(jl) = 0. |
---|
| 1080 | zr4(jl) = 1. |
---|
| 1081 | zfd(jl, kflev+1) = zrj0(jl, jaj, kflev+1) |
---|
| 1082 | END DO |
---|
| 1083 | DO jk = 1, kflev |
---|
| 1084 | ikl = kflev + 1 - jk |
---|
| 1085 | DO jl = 1, kdlon |
---|
| 1086 | zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikl)/zrmu0(jl, ikl) |
---|
| 1087 | zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikl)/zrmu0(jl, ikl) |
---|
| 1088 | zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikl)/zrmu0(jl, ikl) |
---|
| 1089 | zw4(jl) = zw4(jl) + pud(jl, 4, ikl)/zrmu0(jl, ikl) |
---|
| 1090 | zw5(jl) = zw5(jl) + pud(jl, 5, ikl)/zrmu0(jl, ikl) |
---|
| 1091 | END DO |
---|
| 1092 | |
---|
| 1093 | CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
---|
| 1094 | |
---|
| 1095 | DO jl = 1, kdlon |
---|
| 1096 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1097 | zfd(jl, ikl) = zr3(jl, 1)*zr3(jl, 2)*zr3(jl, 3)*zr4(jl)* & |
---|
| 1098 | zrj0(jl, jaj, ikl) |
---|
| 1099 | END DO |
---|
| 1100 | END DO |
---|
| 1101 | |
---|
| 1102 | ! * 5.2 UPWARD FLUXES |
---|
| 1103 | ! ------------- |
---|
| 1104 | |
---|
| 1105 | |
---|
| 1106 | DO jl = 1, kdlon |
---|
| 1107 | zfu(jl, 1) = zfd(jl, 1)*palbp(jl, knu) |
---|
| 1108 | END DO |
---|
| 1109 | |
---|
| 1110 | DO jk = 2, kflev + 1 |
---|
| 1111 | ikm1 = jk - 1 |
---|
| 1112 | DO jl = 1, kdlon |
---|
| 1113 | zw3(jl, 1) = zw3(jl, 1) + pud(jl, 1, ikm1)*1.66 |
---|
| 1114 | zw3(jl, 2) = zw3(jl, 2) + pud(jl, 2, ikm1)*1.66 |
---|
| 1115 | zw3(jl, 3) = zw3(jl, 3) + poz(jl, ikm1)*1.66 |
---|
| 1116 | zw4(jl) = zw4(jl) + pud(jl, 4, ikm1)*1.66 |
---|
| 1117 | zw5(jl) = zw5(jl) + pud(jl, 5, ikm1)*1.66 |
---|
| 1118 | END DO |
---|
| 1119 | |
---|
| 1120 | CALL swtt1_lmdar4(knu, 3, iind3, zw3, zr3) |
---|
| 1121 | |
---|
| 1122 | DO jl = 1, kdlon |
---|
| 1123 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1124 | zfu(jl, jk) = zr3(jl, 1)*zr3(jl, 2)*zr3(jl, 3)*zr4(jl)* & |
---|
| 1125 | zrk0(jl, jaj, jk) |
---|
| 1126 | END DO |
---|
| 1127 | END DO |
---|
| 1128 | |
---|
| 1129 | ! ------------------------------------------------------------------ |
---|
| 1130 | |
---|
| 1131 | ! * 6. INTRODUCTION OF OZONE AND H2O CONTINUUM ABSORPTION |
---|
| 1132 | ! -------------------------------------------------- |
---|
| 1133 | |
---|
| 1134 | iabs = 3 |
---|
| 1135 | |
---|
| 1136 | ! * 6.1 DOWNWARD FLUXES |
---|
| 1137 | ! --------------- |
---|
| 1138 | |
---|
| 1139 | DO jl = 1, kdlon |
---|
| 1140 | zw1(jl) = 0. |
---|
| 1141 | zw4(jl) = 0. |
---|
| 1142 | zw5(jl) = 0. |
---|
| 1143 | zr1(jl) = 0. |
---|
| 1144 | pfdown(jl, kflev+1) = ((1.-pclear(jl))*pfdown(jl,kflev+1)+pclear(jl)*zfd( & |
---|
| 1145 | jl,kflev+1))*rsun(knu) |
---|
| 1146 | END DO |
---|
| 1147 | |
---|
| 1148 | DO jk = 1, kflev |
---|
| 1149 | ikl = kflev + 1 - jk |
---|
| 1150 | DO jl = 1, kdlon |
---|
| 1151 | zw1(jl) = zw1(jl) + poz(jl, ikl)/zrmue(jl, ikl) |
---|
| 1152 | zw4(jl) = zw4(jl) + pud(jl, 4, ikl)/zrmue(jl, ikl) |
---|
| 1153 | zw5(jl) = zw5(jl) + pud(jl, 5, ikl)/zrmue(jl, ikl) |
---|
| 1154 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1155 | END DO |
---|
| 1156 | |
---|
| 1157 | CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
---|
| 1158 | |
---|
| 1159 | DO jl = 1, kdlon |
---|
| 1160 | pfdown(jl, ikl) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfdown(jl,ikl)+ & |
---|
| 1161 | pclear(jl)*zfd(jl,ikl))*rsun(knu) |
---|
| 1162 | END DO |
---|
| 1163 | END DO |
---|
| 1164 | |
---|
| 1165 | ! * 6.2 UPWARD FLUXES |
---|
| 1166 | ! ------------- |
---|
| 1167 | |
---|
| 1168 | DO jl = 1, kdlon |
---|
| 1169 | pfup(jl, 1) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfup(jl,1)+pclear(jl)*zfu( & |
---|
| 1170 | jl,1))*rsun(knu) |
---|
| 1171 | END DO |
---|
| 1172 | |
---|
| 1173 | DO jk = 2, kflev + 1 |
---|
| 1174 | ikm1 = jk - 1 |
---|
| 1175 | DO jl = 1, kdlon |
---|
| 1176 | zw1(jl) = zw1(jl) + poz(jl, ikm1)*1.66 |
---|
| 1177 | zw4(jl) = zw4(jl) + pud(jl, 4, ikm1)*1.66 |
---|
| 1178 | zw5(jl) = zw5(jl) + pud(jl, 5, ikm1)*1.66 |
---|
| 1179 | ! ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1180 | END DO |
---|
| 1181 | |
---|
| 1182 | CALL swtt_lmdar4(knu, iabs, zw1, zr1) |
---|
| 1183 | |
---|
| 1184 | DO jl = 1, kdlon |
---|
| 1185 | pfup(jl, jk) = ((1.-pclear(jl))*zr1(jl)*zr4(jl)*pfup(jl,jk)+pclear(jl)* & |
---|
| 1186 | zfu(jl,jk))*rsun(knu) |
---|
| 1187 | END DO |
---|
| 1188 | END DO |
---|
| 1189 | |
---|
| 1190 | ! ------------------------------------------------------------------ |
---|
| 1191 | |
---|
| 1192 | RETURN |
---|
| 1193 | END SUBROUTINE sw2s_lmdar4 |
---|
| 1194 | SUBROUTINE swclr_lmdar4(knu, paer, flag_aer, tauae, pizae, cgae, palbp, & |
---|
| 1195 | pdsig, prayl, psec, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmu0, & |
---|
| 1196 | ptauaz, ptra1, ptra2) |
---|
[5314] | 1197 | USE radopt_mod_h |
---|
| 1198 | USE radepsi_mod_h |
---|
| 1199 | USE dimphy |
---|
[1992] | 1200 | USE radiation_ar4_param, ONLY: taua, rpiza, rcga |
---|
| 1201 | IMPLICIT NONE |
---|
| 1202 | |
---|
| 1203 | ! ------------------------------------------------------------------ |
---|
| 1204 | ! PURPOSE. |
---|
| 1205 | ! -------- |
---|
| 1206 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
---|
| 1207 | ! CLEAR-SKY COLUMN |
---|
| 1208 | |
---|
| 1209 | ! REFERENCE. |
---|
| 1210 | ! ---------- |
---|
| 1211 | |
---|
| 1212 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 1213 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 1214 | |
---|
| 1215 | ! AUTHOR. |
---|
| 1216 | ! ------- |
---|
| 1217 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1218 | |
---|
| 1219 | ! MODIFICATIONS. |
---|
| 1220 | ! -------------- |
---|
| 1221 | ! ORIGINAL : 94-11-15 |
---|
| 1222 | ! ------------------------------------------------------------------ |
---|
| 1223 | ! * ARGUMENTS: |
---|
| 1224 | |
---|
| 1225 | INTEGER knu |
---|
| 1226 | ! -OB |
---|
| 1227 | REAL (KIND=8) flag_aer |
---|
| 1228 | REAL (KIND=8) tauae(kdlon, kflev, 2) |
---|
| 1229 | REAL (KIND=8) pizae(kdlon, kflev, 2) |
---|
| 1230 | REAL (KIND=8) cgae(kdlon, kflev, 2) |
---|
| 1231 | REAL (KIND=8) paer(kdlon, kflev, 5) |
---|
| 1232 | REAL (KIND=8) palbp(kdlon, 2) |
---|
| 1233 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
| 1234 | REAL (KIND=8) prayl(kdlon) |
---|
| 1235 | REAL (KIND=8) psec(kdlon) |
---|
| 1236 | |
---|
| 1237 | REAL (KIND=8) pcgaz(kdlon, kflev) |
---|
| 1238 | REAL (KIND=8) ppizaz(kdlon, kflev) |
---|
| 1239 | REAL (KIND=8) pray1(kdlon, kflev+1) |
---|
| 1240 | REAL (KIND=8) pray2(kdlon, kflev+1) |
---|
| 1241 | REAL (KIND=8) prefz(kdlon, 2, kflev+1) |
---|
| 1242 | REAL (KIND=8) prj(kdlon, 6, kflev+1) |
---|
| 1243 | REAL (KIND=8) prk(kdlon, 6, kflev+1) |
---|
| 1244 | REAL (KIND=8) prmu0(kdlon, kflev+1) |
---|
| 1245 | REAL (KIND=8) ptauaz(kdlon, kflev) |
---|
| 1246 | REAL (KIND=8) ptra1(kdlon, kflev+1) |
---|
| 1247 | REAL (KIND=8) ptra2(kdlon, kflev+1) |
---|
| 1248 | |
---|
| 1249 | ! * LOCAL VARIABLES: |
---|
| 1250 | |
---|
| 1251 | REAL (KIND=8) zc0i(kdlon, kflev+1) |
---|
| 1252 | REAL (KIND=8) zcle0(kdlon, kflev) |
---|
| 1253 | REAL (KIND=8) zclear(kdlon) |
---|
| 1254 | REAL (KIND=8) zr21(kdlon) |
---|
| 1255 | REAL (KIND=8) zr23(kdlon) |
---|
| 1256 | REAL (KIND=8) zss0(kdlon) |
---|
| 1257 | REAL (KIND=8) zscat(kdlon) |
---|
| 1258 | REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
---|
| 1259 | |
---|
| 1260 | INTEGER jl, jk, ja, jae, jkl, jklp1, jaj, jkm1, in |
---|
| 1261 | REAL (KIND=8) ztray, zgar, zratio, zff, zfacoa, zcorae |
---|
| 1262 | REAL (KIND=8) zmue, zgap, zww, zto, zden, zmu1, zden1 |
---|
| 1263 | REAL (KIND=8) zbmu0, zbmu1, zre11 |
---|
| 1264 | |
---|
| 1265 | ! ------------------------------------------------------------------ |
---|
| 1266 | |
---|
| 1267 | ! * 1. OPTICAL PARAMETERS FOR AEROSOLS AND RAYLEIGH |
---|
| 1268 | ! -------------------------------------------- |
---|
| 1269 | |
---|
| 1270 | |
---|
| 1271 | ! cdir collapse |
---|
| 1272 | DO jk = 1, kflev + 1 |
---|
| 1273 | DO ja = 1, 6 |
---|
| 1274 | DO jl = 1, kdlon |
---|
| 1275 | prj(jl, ja, jk) = 0. |
---|
| 1276 | prk(jl, ja, jk) = 0. |
---|
| 1277 | END DO |
---|
| 1278 | END DO |
---|
| 1279 | END DO |
---|
| 1280 | |
---|
| 1281 | DO jk = 1, kflev |
---|
| 1282 | ! -OB |
---|
| 1283 | ! DO 104 JL = 1, KDLON |
---|
| 1284 | ! PCGAZ(JL,JK) = 0. |
---|
| 1285 | ! PPIZAZ(JL,JK) = 0. |
---|
| 1286 | ! PTAUAZ(JL,JK) = 0. |
---|
| 1287 | ! 104 CONTINUE |
---|
| 1288 | ! -OB |
---|
| 1289 | ! DO 106 JAE=1,5 |
---|
| 1290 | ! DO 105 JL = 1, KDLON |
---|
| 1291 | ! PTAUAZ(JL,JK)=PTAUAZ(JL,JK) |
---|
| 1292 | ! S +PAER(JL,JK,JAE)*TAUA(KNU,JAE) |
---|
| 1293 | ! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)+PAER(JL,JK,JAE) |
---|
| 1294 | ! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE) |
---|
| 1295 | ! PCGAZ(JL,JK) = PCGAZ(JL,JK) +PAER(JL,JK,JAE) |
---|
| 1296 | ! S * TAUA(KNU,JAE)*RPIZA(KNU,JAE)*RCGA(KNU,JAE) |
---|
| 1297 | ! 105 CONTINUE |
---|
| 1298 | ! 106 CONTINUE |
---|
| 1299 | ! -OB |
---|
| 1300 | DO jl = 1, kdlon |
---|
| 1301 | ptauaz(jl, jk) = flag_aer*tauae(jl, jk, knu) |
---|
| 1302 | ppizaz(jl, jk) = flag_aer*pizae(jl, jk, knu) |
---|
| 1303 | pcgaz(jl, jk) = flag_aer*cgae(jl, jk, knu) |
---|
| 1304 | END DO |
---|
| 1305 | |
---|
| 1306 | IF (flag_aer>0) THEN |
---|
| 1307 | ! -OB |
---|
| 1308 | DO jl = 1, kdlon |
---|
| 1309 | ! PCGAZ(JL,JK)=PCGAZ(JL,JK)/PPIZAZ(JL,JK) |
---|
| 1310 | ! PPIZAZ(JL,JK)=PPIZAZ(JL,JK)/PTAUAZ(JL,JK) |
---|
| 1311 | ztray = prayl(jl)*pdsig(jl, jk) |
---|
| 1312 | zratio = ztray/(ztray+ptauaz(jl,jk)) |
---|
| 1313 | zgar = pcgaz(jl, jk) |
---|
| 1314 | zff = zgar*zgar |
---|
| 1315 | ptauaz(jl, jk) = ztray + ptauaz(jl, jk)*(1.-ppizaz(jl,jk)*zff) |
---|
| 1316 | pcgaz(jl, jk) = zgar*(1.-zratio)/(1.+zgar) |
---|
| 1317 | ppizaz(jl, jk) = zratio + (1.-zratio)*ppizaz(jl, jk)*(1.-zff)/(1.- & |
---|
| 1318 | ppizaz(jl,jk)*zff) |
---|
| 1319 | END DO |
---|
| 1320 | ELSE |
---|
| 1321 | DO jl = 1, kdlon |
---|
| 1322 | ztray = prayl(jl)*pdsig(jl, jk) |
---|
| 1323 | ptauaz(jl, jk) = ztray |
---|
| 1324 | pcgaz(jl, jk) = 0. |
---|
| 1325 | ppizaz(jl, jk) = 1. - repsct |
---|
| 1326 | END DO |
---|
| 1327 | END IF ! check flag_aer |
---|
| 1328 | ! 107 CONTINUE |
---|
| 1329 | ! PRINT 9107,JK,((PAER(JL,JK,JAE),JAE=1,5) |
---|
| 1330 | ! $ ,PTAUAZ(JL,JK),PPIZAZ(JL,JK),PCGAZ(JL,JK),JL=1,KDLON) |
---|
| 1331 | ! 9107 FORMAT(1X,'SWCLR_107',I3,8E12.5) |
---|
| 1332 | |
---|
| 1333 | END DO |
---|
| 1334 | |
---|
| 1335 | ! ------------------------------------------------------------------ |
---|
| 1336 | |
---|
| 1337 | ! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
| 1338 | ! ---------------------------------------------- |
---|
| 1339 | |
---|
| 1340 | |
---|
| 1341 | DO jl = 1, kdlon |
---|
| 1342 | zr23(jl) = 0. |
---|
| 1343 | zc0i(jl, kflev+1) = 0. |
---|
| 1344 | zclear(jl) = 1. |
---|
| 1345 | zscat(jl) = 0. |
---|
| 1346 | END DO |
---|
| 1347 | |
---|
| 1348 | jk = 1 |
---|
| 1349 | jkl = kflev + 1 - jk |
---|
| 1350 | jklp1 = jkl + 1 |
---|
| 1351 | DO jl = 1, kdlon |
---|
| 1352 | zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
---|
| 1353 | zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
---|
| 1354 | zr21(jl) = exp(-zcorae) |
---|
| 1355 | zss0(jl) = 1. - zr21(jl) |
---|
| 1356 | zcle0(jl, jkl) = zss0(jl) |
---|
| 1357 | |
---|
| 1358 | IF (novlp==1) THEN |
---|
| 1359 | ! * maximum-random |
---|
| 1360 | zclear(jl) = zclear(jl)*(1.0-max(zss0(jl),zscat(jl)))/ & |
---|
| 1361 | (1.0-min(zscat(jl),1.-zepsec)) |
---|
| 1362 | zc0i(jl, jkl) = 1.0 - zclear(jl) |
---|
| 1363 | zscat(jl) = zss0(jl) |
---|
| 1364 | ELSE IF (novlp==2) THEN |
---|
| 1365 | ! * maximum |
---|
| 1366 | zscat(jl) = max(zss0(jl), zscat(jl)) |
---|
| 1367 | zc0i(jl, jkl) = zscat(jl) |
---|
| 1368 | ELSE IF (novlp==3) THEN |
---|
| 1369 | ! * random |
---|
| 1370 | zclear(jl) = zclear(jl)*(1.0-zss0(jl)) |
---|
| 1371 | zscat(jl) = 1.0 - zclear(jl) |
---|
| 1372 | zc0i(jl, jkl) = zscat(jl) |
---|
| 1373 | END IF |
---|
| 1374 | END DO |
---|
| 1375 | |
---|
| 1376 | DO jk = 2, kflev |
---|
| 1377 | jkl = kflev + 1 - jk |
---|
| 1378 | jklp1 = jkl + 1 |
---|
| 1379 | DO jl = 1, kdlon |
---|
| 1380 | zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
---|
| 1381 | zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
---|
| 1382 | zr21(jl) = exp(-zcorae) |
---|
| 1383 | zss0(jl) = 1. - zr21(jl) |
---|
| 1384 | zcle0(jl, jkl) = zss0(jl) |
---|
| 1385 | |
---|
| 1386 | IF (novlp==1) THEN |
---|
| 1387 | ! * maximum-random |
---|
| 1388 | zclear(jl) = zclear(jl)*(1.0-max(zss0(jl),zscat(jl)))/ & |
---|
| 1389 | (1.0-min(zscat(jl),1.-zepsec)) |
---|
| 1390 | zc0i(jl, jkl) = 1.0 - zclear(jl) |
---|
| 1391 | zscat(jl) = zss0(jl) |
---|
| 1392 | ELSE IF (novlp==2) THEN |
---|
| 1393 | ! * maximum |
---|
| 1394 | zscat(jl) = max(zss0(jl), zscat(jl)) |
---|
| 1395 | zc0i(jl, jkl) = zscat(jl) |
---|
| 1396 | ELSE IF (novlp==3) THEN |
---|
| 1397 | ! * random |
---|
| 1398 | zclear(jl) = zclear(jl)*(1.0-zss0(jl)) |
---|
| 1399 | zscat(jl) = 1.0 - zclear(jl) |
---|
| 1400 | zc0i(jl, jkl) = zscat(jl) |
---|
[998] | 1401 | END IF |
---|
[1992] | 1402 | END DO |
---|
| 1403 | END DO |
---|
[998] | 1404 | |
---|
[1992] | 1405 | ! ------------------------------------------------------------------ |
---|
[1279] | 1406 | |
---|
[1992] | 1407 | ! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
| 1408 | ! ----------------------------------------------- |
---|
| 1409 | |
---|
| 1410 | |
---|
| 1411 | DO jl = 1, kdlon |
---|
| 1412 | pray1(jl, kflev+1) = 0. |
---|
| 1413 | pray2(jl, kflev+1) = 0. |
---|
| 1414 | prefz(jl, 2, 1) = palbp(jl, knu) |
---|
| 1415 | prefz(jl, 1, 1) = palbp(jl, knu) |
---|
| 1416 | ptra1(jl, kflev+1) = 1. |
---|
| 1417 | ptra2(jl, kflev+1) = 1. |
---|
| 1418 | END DO |
---|
| 1419 | |
---|
| 1420 | DO jk = 2, kflev + 1 |
---|
| 1421 | jkm1 = jk - 1 |
---|
| 1422 | DO jl = 1, kdlon |
---|
| 1423 | |
---|
| 1424 | ! ------------------------------------------------------------------ |
---|
| 1425 | |
---|
| 1426 | ! * 3.1 EQUIVALENT ZENITH ANGLE |
---|
| 1427 | ! ----------------------- |
---|
| 1428 | |
---|
| 1429 | |
---|
| 1430 | zmue = (1.-zc0i(jl,jk))*psec(jl) + zc0i(jl, jk)*1.66 |
---|
| 1431 | prmu0(jl, jk) = 1./zmue |
---|
| 1432 | |
---|
| 1433 | ! ------------------------------------------------------------------ |
---|
| 1434 | |
---|
| 1435 | ! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
---|
| 1436 | ! ---------------------------------------------------- |
---|
| 1437 | |
---|
| 1438 | |
---|
| 1439 | zgap = pcgaz(jl, jkm1) |
---|
| 1440 | zbmu0 = 0.5 - 0.75*zgap/zmue |
---|
| 1441 | zww = ppizaz(jl, jkm1) |
---|
| 1442 | zto = ptauaz(jl, jkm1) |
---|
| 1443 | zden = 1. + (1.-zww+zbmu0*zww)*zto*zmue + (1-zww)*(1.-zww+2.*zbmu0*zww) & |
---|
| 1444 | *zto*zto*zmue*zmue |
---|
| 1445 | pray1(jl, jkm1) = zbmu0*zww*zto*zmue/zden |
---|
| 1446 | ptra1(jl, jkm1) = 1./zden |
---|
| 1447 | |
---|
| 1448 | zmu1 = 0.5 |
---|
| 1449 | zbmu1 = 0.5 - 0.75*zgap*zmu1 |
---|
| 1450 | zden1 = 1. + (1.-zww+zbmu1*zww)*zto/zmu1 + (1-zww)*(1.-zww+2.*zbmu1*zww & |
---|
| 1451 | )*zto*zto/zmu1/zmu1 |
---|
| 1452 | pray2(jl, jkm1) = zbmu1*zww*zto/zmu1/zden1 |
---|
| 1453 | ptra2(jl, jkm1) = 1./zden1 |
---|
| 1454 | |
---|
| 1455 | |
---|
| 1456 | |
---|
| 1457 | prefz(jl, 1, jk) = (pray1(jl,jkm1)+prefz(jl,1,jkm1)*ptra1(jl,jkm1)* & |
---|
| 1458 | ptra2(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1,jkm1))) |
---|
| 1459 | |
---|
| 1460 | ztr(jl, 1, jkm1) = (ptra1(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1, & |
---|
| 1461 | jkm1))) |
---|
| 1462 | |
---|
| 1463 | prefz(jl, 2, jk) = (pray1(jl,jkm1)+prefz(jl,2,jkm1)*ptra1(jl,jkm1)* & |
---|
| 1464 | ptra2(jl,jkm1)) |
---|
| 1465 | |
---|
| 1466 | ztr(jl, 2, jkm1) = ptra1(jl, jkm1) |
---|
| 1467 | |
---|
| 1468 | END DO |
---|
| 1469 | END DO |
---|
| 1470 | DO jl = 1, kdlon |
---|
| 1471 | zmue = (1.-zc0i(jl,1))*psec(jl) + zc0i(jl, 1)*1.66 |
---|
| 1472 | prmu0(jl, 1) = 1./zmue |
---|
| 1473 | END DO |
---|
| 1474 | |
---|
| 1475 | ! ------------------------------------------------------------------ |
---|
| 1476 | |
---|
| 1477 | ! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 1478 | ! ------------------------------------------------- |
---|
| 1479 | |
---|
| 1480 | |
---|
| 1481 | IF (knu==1) THEN |
---|
| 1482 | jaj = 2 |
---|
| 1483 | DO jl = 1, kdlon |
---|
| 1484 | prj(jl, jaj, kflev+1) = 1. |
---|
| 1485 | prk(jl, jaj, kflev+1) = prefz(jl, 1, kflev+1) |
---|
| 1486 | END DO |
---|
| 1487 | |
---|
| 1488 | DO jk = 1, kflev |
---|
| 1489 | jkl = kflev + 1 - jk |
---|
| 1490 | jklp1 = jkl + 1 |
---|
| 1491 | DO jl = 1, kdlon |
---|
| 1492 | zre11 = prj(jl, jaj, jklp1)*ztr(jl, 1, jkl) |
---|
| 1493 | prj(jl, jaj, jkl) = zre11 |
---|
| 1494 | prk(jl, jaj, jkl) = zre11*prefz(jl, 1, jkl) |
---|
[998] | 1495 | END DO |
---|
[1992] | 1496 | END DO |
---|
| 1497 | |
---|
| 1498 | ELSE |
---|
| 1499 | |
---|
| 1500 | DO jaj = 1, 2 |
---|
| 1501 | DO jl = 1, kdlon |
---|
| 1502 | prj(jl, jaj, kflev+1) = 1. |
---|
| 1503 | prk(jl, jaj, kflev+1) = prefz(jl, jaj, kflev+1) |
---|
| 1504 | END DO |
---|
| 1505 | |
---|
| 1506 | DO jk = 1, kflev |
---|
| 1507 | jkl = kflev + 1 - jk |
---|
| 1508 | jklp1 = jkl + 1 |
---|
| 1509 | DO jl = 1, kdlon |
---|
| 1510 | zre11 = prj(jl, jaj, jklp1)*ztr(jl, jaj, jkl) |
---|
| 1511 | prj(jl, jaj, jkl) = zre11 |
---|
| 1512 | prk(jl, jaj, jkl) = zre11*prefz(jl, jaj, jkl) |
---|
| 1513 | END DO |
---|
| 1514 | END DO |
---|
| 1515 | END DO |
---|
| 1516 | |
---|
| 1517 | END IF |
---|
| 1518 | |
---|
| 1519 | ! ------------------------------------------------------------------ |
---|
| 1520 | |
---|
| 1521 | RETURN |
---|
| 1522 | END SUBROUTINE swclr_lmdar4 |
---|
| 1523 | SUBROUTINE swr_lmdar4(knu, palbd, pcg, pcld, pdsig, pomega, prayl, psec, & |
---|
| 1524 | ptau, pcgaz, ppizaz, pray1, pray2, prefz, prj, prk, prmue, ptauaz, ptra1, & |
---|
| 1525 | ptra2) |
---|
[5314] | 1526 | USE radopt_mod_h |
---|
| 1527 | USE radepsi_mod_h |
---|
| 1528 | USE clesphys_mod_h |
---|
[1992] | 1529 | USE dimphy |
---|
| 1530 | IMPLICIT NONE |
---|
| 1531 | |
---|
| 1532 | ! ------------------------------------------------------------------ |
---|
| 1533 | ! PURPOSE. |
---|
| 1534 | ! -------- |
---|
| 1535 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
---|
| 1536 | ! CONTINUUM SCATTERING |
---|
| 1537 | |
---|
| 1538 | ! METHOD. |
---|
| 1539 | ! ------- |
---|
| 1540 | |
---|
| 1541 | ! 1. COMPUTES CONTINUUM FLUXES CORRESPONDING TO AEROSOL |
---|
| 1542 | ! OR/AND RAYLEIGH SCATTERING (NO MOLECULAR GAS ABSORPTION) |
---|
| 1543 | |
---|
| 1544 | ! REFERENCE. |
---|
| 1545 | ! ---------- |
---|
| 1546 | |
---|
| 1547 | ! SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 1548 | ! DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 1549 | |
---|
| 1550 | ! AUTHOR. |
---|
| 1551 | ! ------- |
---|
| 1552 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1553 | |
---|
| 1554 | ! MODIFICATIONS. |
---|
| 1555 | ! -------------- |
---|
| 1556 | ! ORIGINAL : 89-07-14 |
---|
| 1557 | ! ------------------------------------------------------------------ |
---|
| 1558 | ! * ARGUMENTS: |
---|
| 1559 | |
---|
| 1560 | INTEGER knu |
---|
| 1561 | REAL (KIND=8) palbd(kdlon, 2) |
---|
| 1562 | REAL (KIND=8) pcg(kdlon, 2, kflev) |
---|
| 1563 | REAL (KIND=8) pcld(kdlon, kflev) |
---|
| 1564 | REAL (KIND=8) pdsig(kdlon, kflev) |
---|
| 1565 | REAL (KIND=8) pomega(kdlon, 2, kflev) |
---|
| 1566 | REAL (KIND=8) prayl(kdlon) |
---|
| 1567 | REAL (KIND=8) psec(kdlon) |
---|
| 1568 | REAL (KIND=8) ptau(kdlon, 2, kflev) |
---|
| 1569 | |
---|
| 1570 | REAL (KIND=8) pray1(kdlon, kflev+1) |
---|
| 1571 | REAL (KIND=8) pray2(kdlon, kflev+1) |
---|
| 1572 | REAL (KIND=8) prefz(kdlon, 2, kflev+1) |
---|
| 1573 | REAL (KIND=8) prj(kdlon, 6, kflev+1) |
---|
| 1574 | REAL (KIND=8) prk(kdlon, 6, kflev+1) |
---|
| 1575 | REAL (KIND=8) prmue(kdlon, kflev+1) |
---|
| 1576 | REAL (KIND=8) pcgaz(kdlon, kflev) |
---|
| 1577 | REAL (KIND=8) ppizaz(kdlon, kflev) |
---|
| 1578 | REAL (KIND=8) ptauaz(kdlon, kflev) |
---|
| 1579 | REAL (KIND=8) ptra1(kdlon, kflev+1) |
---|
| 1580 | REAL (KIND=8) ptra2(kdlon, kflev+1) |
---|
| 1581 | |
---|
| 1582 | ! * LOCAL VARIABLES: |
---|
| 1583 | |
---|
| 1584 | REAL (KIND=8) zc1i(kdlon, kflev+1) |
---|
| 1585 | REAL (KIND=8) zcleq(kdlon, kflev) |
---|
| 1586 | REAL (KIND=8) zclear(kdlon) |
---|
| 1587 | REAL (KIND=8) zcloud(kdlon) |
---|
| 1588 | REAL (KIND=8) zgg(kdlon) |
---|
| 1589 | REAL (KIND=8) zref(kdlon) |
---|
| 1590 | REAL (KIND=8) zre1(kdlon) |
---|
| 1591 | REAL (KIND=8) zre2(kdlon) |
---|
| 1592 | REAL (KIND=8) zrmuz(kdlon) |
---|
| 1593 | REAL (KIND=8) zrneb(kdlon) |
---|
| 1594 | REAL (KIND=8) zr21(kdlon) |
---|
| 1595 | REAL (KIND=8) zr22(kdlon) |
---|
| 1596 | REAL (KIND=8) zr23(kdlon) |
---|
| 1597 | REAL (KIND=8) zss1(kdlon) |
---|
| 1598 | REAL (KIND=8) zto1(kdlon) |
---|
| 1599 | REAL (KIND=8) ztr(kdlon, 2, kflev+1) |
---|
| 1600 | REAL (KIND=8) ztr1(kdlon) |
---|
| 1601 | REAL (KIND=8) ztr2(kdlon) |
---|
| 1602 | REAL (KIND=8) zw(kdlon) |
---|
| 1603 | |
---|
| 1604 | INTEGER jk, jl, ja, jkl, jklp1, jkm1, jaj |
---|
| 1605 | REAL (KIND=8) zfacoa, zfacoc, zcorae, zcorcd |
---|
| 1606 | REAL (KIND=8) zmue, zgap, zww, zto, zden, zden1 |
---|
| 1607 | REAL (KIND=8) zmu1, zre11, zbmu0, zbmu1 |
---|
| 1608 | |
---|
| 1609 | ! ------------------------------------------------------------------ |
---|
| 1610 | |
---|
| 1611 | ! * 1. INITIALIZATION |
---|
| 1612 | ! -------------- |
---|
| 1613 | |
---|
| 1614 | |
---|
| 1615 | DO jk = 1, kflev + 1 |
---|
| 1616 | DO ja = 1, 6 |
---|
| 1617 | DO jl = 1, kdlon |
---|
| 1618 | prj(jl, ja, jk) = 0. |
---|
| 1619 | prk(jl, ja, jk) = 0. |
---|
| 1620 | END DO |
---|
| 1621 | END DO |
---|
| 1622 | END DO |
---|
| 1623 | |
---|
| 1624 | ! ------------------------------------------------------------------ |
---|
| 1625 | |
---|
| 1626 | ! * 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
| 1627 | ! ---------------------------------------------- |
---|
| 1628 | |
---|
| 1629 | |
---|
| 1630 | DO jl = 1, kdlon |
---|
| 1631 | zr23(jl) = 0. |
---|
| 1632 | zc1i(jl, kflev+1) = 0. |
---|
| 1633 | zclear(jl) = 1. |
---|
| 1634 | zcloud(jl) = 0. |
---|
| 1635 | END DO |
---|
| 1636 | |
---|
| 1637 | jk = 1 |
---|
| 1638 | jkl = kflev + 1 - jk |
---|
| 1639 | jklp1 = jkl + 1 |
---|
| 1640 | DO jl = 1, kdlon |
---|
| 1641 | zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
---|
| 1642 | zfacoc = 1. - pomega(jl, knu, jkl)*pcg(jl, knu, jkl)*pcg(jl, knu, jkl) |
---|
| 1643 | zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
---|
| 1644 | zcorcd = zfacoc*ptau(jl, knu, jkl)*psec(jl) |
---|
| 1645 | zr21(jl) = exp(-zcorae) |
---|
| 1646 | zr22(jl) = exp(-zcorcd) |
---|
| 1647 | zss1(jl) = pcld(jl, jkl)*(1.0-zr21(jl)*zr22(jl)) + & |
---|
| 1648 | (1.0-pcld(jl,jkl))*(1.0-zr21(jl)) |
---|
| 1649 | zcleq(jl, jkl) = zss1(jl) |
---|
| 1650 | |
---|
| 1651 | IF (novlp==1) THEN |
---|
| 1652 | ! * maximum-random |
---|
| 1653 | zclear(jl) = zclear(jl)*(1.0-max(zss1(jl),zcloud(jl)))/ & |
---|
| 1654 | (1.0-min(zcloud(jl),1.-zepsec)) |
---|
| 1655 | zc1i(jl, jkl) = 1.0 - zclear(jl) |
---|
| 1656 | zcloud(jl) = zss1(jl) |
---|
| 1657 | ELSE IF (novlp==2) THEN |
---|
| 1658 | ! * maximum |
---|
| 1659 | zcloud(jl) = max(zss1(jl), zcloud(jl)) |
---|
| 1660 | zc1i(jl, jkl) = zcloud(jl) |
---|
| 1661 | ELSE IF (novlp==3) THEN |
---|
| 1662 | ! * random |
---|
| 1663 | zclear(jl) = zclear(jl)*(1.0-zss1(jl)) |
---|
| 1664 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 1665 | zc1i(jl, jkl) = zcloud(jl) |
---|
| 1666 | END IF |
---|
| 1667 | END DO |
---|
| 1668 | |
---|
| 1669 | DO jk = 2, kflev |
---|
| 1670 | jkl = kflev + 1 - jk |
---|
| 1671 | jklp1 = jkl + 1 |
---|
| 1672 | DO jl = 1, kdlon |
---|
| 1673 | zfacoa = 1. - ppizaz(jl, jkl)*pcgaz(jl, jkl)*pcgaz(jl, jkl) |
---|
| 1674 | zfacoc = 1. - pomega(jl, knu, jkl)*pcg(jl, knu, jkl)*pcg(jl, knu, jkl) |
---|
| 1675 | zcorae = zfacoa*ptauaz(jl, jkl)*psec(jl) |
---|
| 1676 | zcorcd = zfacoc*ptau(jl, knu, jkl)*psec(jl) |
---|
| 1677 | zr21(jl) = exp(-zcorae) |
---|
| 1678 | zr22(jl) = exp(-zcorcd) |
---|
| 1679 | zss1(jl) = pcld(jl, jkl)*(1.0-zr21(jl)*zr22(jl)) + & |
---|
| 1680 | (1.0-pcld(jl,jkl))*(1.0-zr21(jl)) |
---|
| 1681 | zcleq(jl, jkl) = zss1(jl) |
---|
| 1682 | |
---|
| 1683 | IF (novlp==1) THEN |
---|
| 1684 | ! * maximum-random |
---|
| 1685 | zclear(jl) = zclear(jl)*(1.0-max(zss1(jl),zcloud(jl)))/ & |
---|
| 1686 | (1.0-min(zcloud(jl),1.-zepsec)) |
---|
| 1687 | zc1i(jl, jkl) = 1.0 - zclear(jl) |
---|
| 1688 | zcloud(jl) = zss1(jl) |
---|
| 1689 | ELSE IF (novlp==2) THEN |
---|
| 1690 | ! * maximum |
---|
| 1691 | zcloud(jl) = max(zss1(jl), zcloud(jl)) |
---|
| 1692 | zc1i(jl, jkl) = zcloud(jl) |
---|
| 1693 | ELSE IF (novlp==3) THEN |
---|
| 1694 | ! * random |
---|
| 1695 | zclear(jl) = zclear(jl)*(1.0-zss1(jl)) |
---|
| 1696 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 1697 | zc1i(jl, jkl) = zcloud(jl) |
---|
[998] | 1698 | END IF |
---|
[1992] | 1699 | END DO |
---|
| 1700 | END DO |
---|
| 1701 | |
---|
| 1702 | ! ------------------------------------------------------------------ |
---|
| 1703 | |
---|
| 1704 | ! * 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
| 1705 | ! ----------------------------------------------- |
---|
| 1706 | |
---|
| 1707 | |
---|
| 1708 | DO jl = 1, kdlon |
---|
| 1709 | pray1(jl, kflev+1) = 0. |
---|
| 1710 | pray2(jl, kflev+1) = 0. |
---|
| 1711 | prefz(jl, 2, 1) = palbd(jl, knu) |
---|
| 1712 | prefz(jl, 1, 1) = palbd(jl, knu) |
---|
| 1713 | ptra1(jl, kflev+1) = 1. |
---|
| 1714 | ptra2(jl, kflev+1) = 1. |
---|
| 1715 | END DO |
---|
| 1716 | |
---|
| 1717 | DO jk = 2, kflev + 1 |
---|
| 1718 | jkm1 = jk - 1 |
---|
| 1719 | DO jl = 1, kdlon |
---|
| 1720 | zrneb(jl) = pcld(jl, jkm1) |
---|
| 1721 | zre1(jl) = 0. |
---|
| 1722 | ztr1(jl) = 0. |
---|
| 1723 | zre2(jl) = 0. |
---|
| 1724 | ztr2(jl) = 0. |
---|
| 1725 | |
---|
| 1726 | ! ------------------------------------------------------------------ |
---|
| 1727 | |
---|
| 1728 | ! * 3.1 EQUIVALENT ZENITH ANGLE |
---|
| 1729 | ! ----------------------- |
---|
| 1730 | |
---|
| 1731 | |
---|
| 1732 | zmue = (1.-zc1i(jl,jk))*psec(jl) + zc1i(jl, jk)*1.66 |
---|
| 1733 | prmue(jl, jk) = 1./zmue |
---|
| 1734 | |
---|
| 1735 | ! ------------------------------------------------------------------ |
---|
| 1736 | |
---|
| 1737 | ! * 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
---|
| 1738 | ! ---------------------------------------------------- |
---|
| 1739 | |
---|
| 1740 | |
---|
| 1741 | zgap = pcgaz(jl, jkm1) |
---|
| 1742 | zbmu0 = 0.5 - 0.75*zgap/zmue |
---|
| 1743 | zww = ppizaz(jl, jkm1) |
---|
| 1744 | zto = ptauaz(jl, jkm1) |
---|
| 1745 | zden = 1. + (1.-zww+zbmu0*zww)*zto*zmue + (1-zww)*(1.-zww+2.*zbmu0*zww) & |
---|
| 1746 | *zto*zto*zmue*zmue |
---|
| 1747 | pray1(jl, jkm1) = zbmu0*zww*zto*zmue/zden |
---|
| 1748 | ptra1(jl, jkm1) = 1./zden |
---|
| 1749 | ! PRINT *,' LOOP 342 ** 3 ** JL=',JL,PRAY1(JL,JKM1),PTRA1(JL,JKM1) |
---|
| 1750 | |
---|
| 1751 | zmu1 = 0.5 |
---|
| 1752 | zbmu1 = 0.5 - 0.75*zgap*zmu1 |
---|
| 1753 | zden1 = 1. + (1.-zww+zbmu1*zww)*zto/zmu1 + (1-zww)*(1.-zww+2.*zbmu1*zww & |
---|
| 1754 | )*zto*zto/zmu1/zmu1 |
---|
| 1755 | pray2(jl, jkm1) = zbmu1*zww*zto/zmu1/zden1 |
---|
| 1756 | ptra2(jl, jkm1) = 1./zden1 |
---|
| 1757 | |
---|
| 1758 | ! ------------------------------------------------------------------ |
---|
| 1759 | |
---|
| 1760 | ! * 3.3 EFFECT OF CLOUD LAYER |
---|
| 1761 | ! --------------------- |
---|
| 1762 | |
---|
| 1763 | |
---|
| 1764 | zw(jl) = pomega(jl, knu, jkm1) |
---|
| 1765 | zto1(jl) = ptau(jl, knu, jkm1)/zw(jl) + ptauaz(jl, jkm1)/ppizaz(jl, & |
---|
| 1766 | jkm1) |
---|
| 1767 | zr21(jl) = ptau(jl, knu, jkm1) + ptauaz(jl, jkm1) |
---|
| 1768 | zr22(jl) = ptau(jl, knu, jkm1)/zr21(jl) |
---|
| 1769 | zgg(jl) = zr22(jl)*pcg(jl, knu, jkm1) + (1.-zr22(jl))*pcgaz(jl, jkm1) |
---|
| 1770 | ! Modif PhD - JJM 19/03/96 pour erreurs arrondis |
---|
| 1771 | ! machine |
---|
| 1772 | ! PHD PROTECTION ZW(JL) = ZR21(JL) / ZTO1(JL) |
---|
| 1773 | IF (zw(jl)==1. .AND. ppizaz(jl,jkm1)==1.) THEN |
---|
| 1774 | zw(jl) = 1. |
---|
[998] | 1775 | ELSE |
---|
[1992] | 1776 | zw(jl) = zr21(jl)/zto1(jl) |
---|
[998] | 1777 | END IF |
---|
[1992] | 1778 | zref(jl) = prefz(jl, 1, jkm1) |
---|
| 1779 | zrmuz(jl) = prmue(jl, jk) |
---|
| 1780 | END DO |
---|
[1279] | 1781 | |
---|
[1992] | 1782 | CALL swde_lmdar4(zgg, zref, zrmuz, zto1, zw, zre1, zre2, ztr1, ztr2) |
---|
[1279] | 1783 | |
---|
[1992] | 1784 | DO jl = 1, kdlon |
---|
[1279] | 1785 | |
---|
[1992] | 1786 | prefz(jl, 1, jk) = (1.-zrneb(jl))*(pray1(jl,jkm1)+prefz(jl,1,jkm1)* & |
---|
| 1787 | ptra1(jl,jkm1)*ptra2(jl,jkm1)/(1.-pray2(jl,jkm1)*prefz(jl,1, & |
---|
| 1788 | jkm1))) + zrneb(jl)*zre2(jl) |
---|
[1279] | 1789 | |
---|
[1992] | 1790 | ztr(jl, 1, jkm1) = zrneb(jl)*ztr2(jl) + (ptra1(jl,jkm1)/(1.-pray2(jl, & |
---|
| 1791 | jkm1)*prefz(jl,1,jkm1)))*(1.-zrneb(jl)) |
---|
[998] | 1792 | |
---|
[1992] | 1793 | prefz(jl, 2, jk) = (1.-zrneb(jl))*(pray1(jl,jkm1)+prefz(jl,2,jkm1)* & |
---|
| 1794 | ptra1(jl,jkm1)*ptra2(jl,jkm1)) + zrneb(jl)*zre1(jl) |
---|
| 1795 | |
---|
| 1796 | ztr(jl, 2, jkm1) = zrneb(jl)*ztr1(jl) + ptra1(jl, jkm1)*(1.-zrneb(jl)) |
---|
| 1797 | |
---|
| 1798 | END DO |
---|
| 1799 | END DO |
---|
| 1800 | DO jl = 1, kdlon |
---|
| 1801 | zmue = (1.-zc1i(jl,1))*psec(jl) + zc1i(jl, 1)*1.66 |
---|
| 1802 | prmue(jl, 1) = 1./zmue |
---|
| 1803 | END DO |
---|
| 1804 | |
---|
| 1805 | ! ------------------------------------------------------------------ |
---|
| 1806 | |
---|
| 1807 | ! * 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 1808 | ! ------------------------------------------------- |
---|
| 1809 | |
---|
| 1810 | |
---|
| 1811 | IF (knu==1) THEN |
---|
| 1812 | jaj = 2 |
---|
| 1813 | DO jl = 1, kdlon |
---|
| 1814 | prj(jl, jaj, kflev+1) = 1. |
---|
| 1815 | prk(jl, jaj, kflev+1) = prefz(jl, 1, kflev+1) |
---|
| 1816 | END DO |
---|
| 1817 | |
---|
| 1818 | DO jk = 1, kflev |
---|
| 1819 | jkl = kflev + 1 - jk |
---|
| 1820 | jklp1 = jkl + 1 |
---|
| 1821 | DO jl = 1, kdlon |
---|
| 1822 | zre11 = prj(jl, jaj, jklp1)*ztr(jl, 1, jkl) |
---|
| 1823 | prj(jl, jaj, jkl) = zre11 |
---|
| 1824 | prk(jl, jaj, jkl) = zre11*prefz(jl, 1, jkl) |
---|
| 1825 | END DO |
---|
| 1826 | END DO |
---|
| 1827 | |
---|
| 1828 | ELSE |
---|
| 1829 | |
---|
| 1830 | DO jaj = 1, 2 |
---|
| 1831 | DO jl = 1, kdlon |
---|
| 1832 | prj(jl, jaj, kflev+1) = 1. |
---|
| 1833 | prk(jl, jaj, kflev+1) = prefz(jl, jaj, kflev+1) |
---|
| 1834 | END DO |
---|
| 1835 | |
---|
| 1836 | DO jk = 1, kflev |
---|
| 1837 | jkl = kflev + 1 - jk |
---|
| 1838 | jklp1 = jkl + 1 |
---|
| 1839 | DO jl = 1, kdlon |
---|
| 1840 | zre11 = prj(jl, jaj, jklp1)*ztr(jl, jaj, jkl) |
---|
| 1841 | prj(jl, jaj, jkl) = zre11 |
---|
| 1842 | prk(jl, jaj, jkl) = zre11*prefz(jl, jaj, jkl) |
---|
| 1843 | END DO |
---|
| 1844 | END DO |
---|
| 1845 | END DO |
---|
| 1846 | |
---|
| 1847 | END IF |
---|
| 1848 | |
---|
| 1849 | ! ------------------------------------------------------------------ |
---|
| 1850 | |
---|
| 1851 | RETURN |
---|
| 1852 | END SUBROUTINE swr_lmdar4 |
---|
| 1853 | SUBROUTINE swde_lmdar4(pgg, pref, prmuz, pto1, pw, pre1, pre2, ptr1, ptr2) |
---|
| 1854 | USE dimphy |
---|
| 1855 | IMPLICIT NONE |
---|
| 1856 | |
---|
| 1857 | ! ------------------------------------------------------------------ |
---|
| 1858 | ! PURPOSE. |
---|
| 1859 | ! -------- |
---|
| 1860 | ! COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY OF A CLOUDY |
---|
| 1861 | ! LAYER USING THE DELTA-EDDINGTON'S APPROXIMATION. |
---|
| 1862 | |
---|
| 1863 | ! METHOD. |
---|
| 1864 | ! ------- |
---|
| 1865 | |
---|
| 1866 | ! STANDARD DELTA-EDDINGTON LAYER CALCULATIONS. |
---|
| 1867 | |
---|
| 1868 | ! REFERENCE. |
---|
| 1869 | ! ---------- |
---|
| 1870 | |
---|
| 1871 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 1872 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 1873 | |
---|
| 1874 | ! AUTHOR. |
---|
| 1875 | ! ------- |
---|
| 1876 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1877 | |
---|
| 1878 | ! MODIFICATIONS. |
---|
| 1879 | ! -------------- |
---|
| 1880 | ! ORIGINAL : 88-12-15 |
---|
| 1881 | ! ------------------------------------------------------------------ |
---|
| 1882 | ! * ARGUMENTS: |
---|
| 1883 | |
---|
| 1884 | REAL (KIND=8) pgg(kdlon) ! ASSYMETRY FACTOR |
---|
| 1885 | REAL (KIND=8) pref(kdlon) ! REFLECTIVITY OF THE UNDERLYING LAYER |
---|
| 1886 | REAL (KIND=8) prmuz(kdlon) ! COSINE OF SOLAR ZENITH ANGLE |
---|
| 1887 | REAL (KIND=8) pto1(kdlon) ! OPTICAL THICKNESS |
---|
| 1888 | REAL (KIND=8) pw(kdlon) ! SINGLE SCATTERING ALBEDO |
---|
| 1889 | REAL (KIND=8) pre1(kdlon) ! LAYER REFLECTIVITY (NO UNDERLYING-LAYER REFLECTION) |
---|
| 1890 | REAL (KIND=8) pre2(kdlon) ! LAYER REFLECTIVITY |
---|
| 1891 | REAL (KIND=8) ptr1(kdlon) ! LAYER TRANSMISSIVITY (NO UNDERLYING-LAYER REFLECTION) |
---|
| 1892 | REAL (KIND=8) ptr2(kdlon) ! LAYER TRANSMISSIVITY |
---|
| 1893 | |
---|
| 1894 | ! * LOCAL VARIABLES: |
---|
| 1895 | |
---|
| 1896 | INTEGER jl |
---|
| 1897 | REAL (KIND=8) zff, zgp, ztop, zwcp, zdt, zx1, zwm |
---|
| 1898 | REAL (KIND=8) zrm2, zrk, zx2, zrp, zalpha, zbeta, zarg |
---|
| 1899 | REAL (KIND=8) zexmu0, zarg2, zexkp, zexkm, zxp2p, zxm2p, zap2b, zam2b |
---|
| 1900 | REAL (KIND=8) za11, za12, za13, za21, za22, za23 |
---|
| 1901 | REAL (KIND=8) zdena, zc1a, zc2a, zri0a, zri1a |
---|
| 1902 | REAL (KIND=8) zri0b, zri1b |
---|
| 1903 | REAL (KIND=8) zb21, zb22, zb23, zdenb, zc1b, zc2b |
---|
| 1904 | REAL (KIND=8) zri0c, zri1c, zri0d, zri1d |
---|
| 1905 | |
---|
| 1906 | ! ------------------------------------------------------------------ |
---|
| 1907 | |
---|
| 1908 | ! * 1. DELTA-EDDINGTON CALCULATIONS |
---|
| 1909 | |
---|
| 1910 | |
---|
| 1911 | DO jl = 1, kdlon |
---|
| 1912 | ! * 1.1 SET UP THE DELTA-MODIFIED PARAMETERS |
---|
| 1913 | |
---|
| 1914 | |
---|
| 1915 | zff = pgg(jl)*pgg(jl) |
---|
| 1916 | zgp = pgg(jl)/(1.+pgg(jl)) |
---|
| 1917 | ztop = (1.-pw(jl)*zff)*pto1(jl) |
---|
| 1918 | zwcp = (1-zff)*pw(jl)/(1.-pw(jl)*zff) |
---|
| 1919 | zdt = 2./3. |
---|
| 1920 | zx1 = 1. - zwcp*zgp |
---|
| 1921 | zwm = 1. - zwcp |
---|
| 1922 | zrm2 = prmuz(jl)*prmuz(jl) |
---|
| 1923 | zrk = sqrt(3.*zwm*zx1) |
---|
| 1924 | zx2 = 4.*(1.-zrk*zrk*zrm2) |
---|
| 1925 | zrp = zrk/zx1 |
---|
| 1926 | zalpha = 3.*zwcp*zrm2*(1.+zgp*zwm)/zx2 |
---|
| 1927 | zbeta = 3.*zwcp*prmuz(jl)*(1.+3.*zgp*zrm2*zwm)/zx2 |
---|
| 1928 | zarg = min(ztop/prmuz(jl), 200._8) |
---|
| 1929 | zexmu0 = exp(-zarg) |
---|
| 1930 | zarg2 = min(zrk*ztop, 200._8) |
---|
| 1931 | zexkp = exp(zarg2) |
---|
| 1932 | zexkm = 1./zexkp |
---|
| 1933 | zxp2p = 1. + zdt*zrp |
---|
| 1934 | zxm2p = 1. - zdt*zrp |
---|
| 1935 | zap2b = zalpha + zdt*zbeta |
---|
| 1936 | zam2b = zalpha - zdt*zbeta |
---|
| 1937 | |
---|
| 1938 | ! * 1.2 WITHOUT REFLECTION FROM THE UNDERLYING LAYER |
---|
| 1939 | |
---|
| 1940 | |
---|
| 1941 | za11 = zxp2p |
---|
| 1942 | za12 = zxm2p |
---|
| 1943 | za13 = zap2b |
---|
| 1944 | za22 = zxp2p*zexkp |
---|
| 1945 | za21 = zxm2p*zexkm |
---|
| 1946 | za23 = zam2b*zexmu0 |
---|
| 1947 | zdena = za11*za22 - za21*za12 |
---|
| 1948 | zc1a = (za22*za13-za12*za23)/zdena |
---|
| 1949 | zc2a = (za11*za23-za21*za13)/zdena |
---|
| 1950 | zri0a = zc1a + zc2a - zalpha |
---|
| 1951 | zri1a = zrp*(zc1a-zc2a) - zbeta |
---|
| 1952 | pre1(jl) = (zri0a-zdt*zri1a)/prmuz(jl) |
---|
| 1953 | zri0b = zc1a*zexkm + zc2a*zexkp - zalpha*zexmu0 |
---|
| 1954 | zri1b = zrp*(zc1a*zexkm-zc2a*zexkp) - zbeta*zexmu0 |
---|
| 1955 | ptr1(jl) = zexmu0 + (zri0b+zdt*zri1b)/prmuz(jl) |
---|
| 1956 | |
---|
| 1957 | ! * 1.3 WITH REFLECTION FROM THE UNDERLYING LAYER |
---|
| 1958 | |
---|
| 1959 | |
---|
| 1960 | zb21 = za21 - pref(jl)*zxp2p*zexkm |
---|
| 1961 | zb22 = za22 - pref(jl)*zxm2p*zexkp |
---|
| 1962 | zb23 = za23 - pref(jl)*zexmu0*(zap2b-prmuz(jl)) |
---|
| 1963 | zdenb = za11*zb22 - zb21*za12 |
---|
| 1964 | zc1b = (zb22*za13-za12*zb23)/zdenb |
---|
| 1965 | zc2b = (za11*zb23-zb21*za13)/zdenb |
---|
| 1966 | zri0c = zc1b + zc2b - zalpha |
---|
| 1967 | zri1c = zrp*(zc1b-zc2b) - zbeta |
---|
| 1968 | pre2(jl) = (zri0c-zdt*zri1c)/prmuz(jl) |
---|
| 1969 | zri0d = zc1b*zexkm + zc2b*zexkp - zalpha*zexmu0 |
---|
| 1970 | zri1d = zrp*(zc1b*zexkm-zc2b*zexkp) - zbeta*zexmu0 |
---|
| 1971 | ptr2(jl) = zexmu0 + (zri0d+zdt*zri1d)/prmuz(jl) |
---|
| 1972 | |
---|
| 1973 | END DO |
---|
| 1974 | RETURN |
---|
| 1975 | END SUBROUTINE swde_lmdar4 |
---|
| 1976 | SUBROUTINE swtt_lmdar4(knu, ka, pu, ptr) |
---|
| 1977 | USE dimphy |
---|
| 1978 | USE radiation_ar4_param, ONLY: apad, bpad, d |
---|
| 1979 | IMPLICIT NONE |
---|
| 1980 | |
---|
| 1981 | ! ----------------------------------------------------------------------- |
---|
| 1982 | ! PURPOSE. |
---|
| 1983 | ! -------- |
---|
| 1984 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 1985 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
---|
| 1986 | ! INTERVALS. |
---|
| 1987 | |
---|
| 1988 | ! METHOD. |
---|
| 1989 | ! ------- |
---|
| 1990 | |
---|
| 1991 | ! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
---|
| 1992 | ! AND HORNER'S ALGORITHM. |
---|
| 1993 | |
---|
| 1994 | ! REFERENCE. |
---|
| 1995 | ! ---------- |
---|
| 1996 | |
---|
| 1997 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 1998 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 1999 | |
---|
| 2000 | ! AUTHOR. |
---|
| 2001 | ! ------- |
---|
| 2002 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2003 | |
---|
| 2004 | ! MODIFICATIONS. |
---|
| 2005 | ! -------------- |
---|
| 2006 | ! ORIGINAL : 88-12-15 |
---|
| 2007 | ! ----------------------------------------------------------------------- |
---|
| 2008 | |
---|
| 2009 | ! * ARGUMENTS |
---|
| 2010 | |
---|
| 2011 | INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
---|
| 2012 | INTEGER ka ! INDEX OF THE ABSORBER |
---|
| 2013 | REAL (KIND=8) pu(kdlon) ! ABSORBER AMOUNT |
---|
| 2014 | |
---|
| 2015 | REAL (KIND=8) ptr(kdlon) ! TRANSMISSION FUNCTION |
---|
| 2016 | |
---|
| 2017 | ! * LOCAL VARIABLES: |
---|
| 2018 | |
---|
| 2019 | REAL (KIND=8) zr1(kdlon), zr2(kdlon) |
---|
| 2020 | INTEGER jl, i, j |
---|
| 2021 | |
---|
| 2022 | ! ----------------------------------------------------------------------- |
---|
| 2023 | |
---|
| 2024 | ! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
---|
| 2025 | |
---|
| 2026 | |
---|
| 2027 | DO jl = 1, kdlon |
---|
| 2028 | zr1(jl) = apad(knu, ka, 1) + pu(jl)*(apad(knu,ka,2)+pu(jl)*(apad(knu,ka, & |
---|
| 2029 | 3)+pu(jl)*(apad(knu,ka,4)+pu(jl)*(apad(knu,ka,5)+pu(jl)*(apad(knu,ka,6) & |
---|
| 2030 | +pu(jl)*(apad(knu,ka,7))))))) |
---|
| 2031 | |
---|
| 2032 | zr2(jl) = bpad(knu, ka, 1) + pu(jl)*(bpad(knu,ka,2)+pu(jl)*(bpad(knu,ka, & |
---|
| 2033 | 3)+pu(jl)*(bpad(knu,ka,4)+pu(jl)*(bpad(knu,ka,5)+pu(jl)*(bpad(knu,ka,6) & |
---|
| 2034 | +pu(jl)*(bpad(knu,ka,7))))))) |
---|
| 2035 | |
---|
| 2036 | ! * 2. ADD THE BACKGROUND TRANSMISSION |
---|
| 2037 | |
---|
| 2038 | |
---|
| 2039 | |
---|
| 2040 | ptr(jl) = (zr1(jl)/zr2(jl))*(1.-d(knu,ka)) + d(knu, ka) |
---|
| 2041 | END DO |
---|
| 2042 | |
---|
| 2043 | RETURN |
---|
| 2044 | END SUBROUTINE swtt_lmdar4 |
---|
| 2045 | SUBROUTINE swtt1_lmdar4(knu, kabs, kind, pu, ptr) |
---|
| 2046 | USE dimphy |
---|
| 2047 | USE radiation_ar4_param, ONLY: apad, bpad, d |
---|
| 2048 | IMPLICIT NONE |
---|
| 2049 | |
---|
| 2050 | ! ----------------------------------------------------------------------- |
---|
| 2051 | ! PURPOSE. |
---|
| 2052 | ! -------- |
---|
| 2053 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 2054 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
---|
| 2055 | ! INTERVALS. |
---|
| 2056 | |
---|
| 2057 | ! METHOD. |
---|
| 2058 | ! ------- |
---|
| 2059 | |
---|
| 2060 | ! TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
---|
| 2061 | ! AND HORNER'S ALGORITHM. |
---|
| 2062 | |
---|
| 2063 | ! REFERENCE. |
---|
| 2064 | ! ---------- |
---|
| 2065 | |
---|
| 2066 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2067 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2068 | |
---|
| 2069 | ! AUTHOR. |
---|
| 2070 | ! ------- |
---|
| 2071 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2072 | |
---|
| 2073 | ! MODIFICATIONS. |
---|
| 2074 | ! -------------- |
---|
| 2075 | ! ORIGINAL : 95-01-20 |
---|
| 2076 | ! ----------------------------------------------------------------------- |
---|
| 2077 | ! * ARGUMENTS: |
---|
| 2078 | |
---|
| 2079 | INTEGER knu ! INDEX OF THE SPECTRAL INTERVAL |
---|
| 2080 | INTEGER kabs ! NUMBER OF ABSORBERS |
---|
| 2081 | INTEGER kind(kabs) ! INDICES OF THE ABSORBERS |
---|
| 2082 | REAL (KIND=8) pu(kdlon, kabs) ! ABSORBER AMOUNT |
---|
| 2083 | |
---|
| 2084 | REAL (KIND=8) ptr(kdlon, kabs) ! TRANSMISSION FUNCTION |
---|
| 2085 | |
---|
| 2086 | ! * LOCAL VARIABLES: |
---|
| 2087 | |
---|
| 2088 | REAL (KIND=8) zr1(kdlon) |
---|
| 2089 | REAL (KIND=8) zr2(kdlon) |
---|
| 2090 | REAL (KIND=8) zu(kdlon) |
---|
| 2091 | INTEGER jl, ja, i, j, ia |
---|
| 2092 | |
---|
| 2093 | ! ----------------------------------------------------------------------- |
---|
| 2094 | |
---|
| 2095 | ! * 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
---|
| 2096 | |
---|
| 2097 | |
---|
| 2098 | DO ja = 1, kabs |
---|
| 2099 | ia = kind(ja) |
---|
| 2100 | DO jl = 1, kdlon |
---|
| 2101 | zu(jl) = pu(jl, ja) |
---|
| 2102 | zr1(jl) = apad(knu, ia, 1) + zu(jl)*(apad(knu,ia,2)+zu(jl)*(apad(knu, & |
---|
| 2103 | ia,3)+zu(jl)*(apad(knu,ia,4)+zu(jl)*(apad(knu,ia,5)+zu(jl)*(apad(knu, & |
---|
| 2104 | ia,6)+zu(jl)*(apad(knu,ia,7))))))) |
---|
| 2105 | |
---|
| 2106 | zr2(jl) = bpad(knu, ia, 1) + zu(jl)*(bpad(knu,ia,2)+zu(jl)*(bpad(knu, & |
---|
| 2107 | ia,3)+zu(jl)*(bpad(knu,ia,4)+zu(jl)*(bpad(knu,ia,5)+zu(jl)*(bpad(knu, & |
---|
| 2108 | ia,6)+zu(jl)*(bpad(knu,ia,7))))))) |
---|
| 2109 | |
---|
| 2110 | ! * 2. ADD THE BACKGROUND TRANSMISSION |
---|
| 2111 | |
---|
| 2112 | |
---|
| 2113 | ptr(jl, ja) = (zr1(jl)/zr2(jl))*(1.-d(knu,ia)) + d(knu, ia) |
---|
| 2114 | END DO |
---|
| 2115 | END DO |
---|
| 2116 | |
---|
| 2117 | RETURN |
---|
| 2118 | END SUBROUTINE swtt1_lmdar4 |
---|
| 2119 | ! IM ctes ds clesphys.h SUBROUTINE LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
---|
| 2120 | SUBROUTINE lw_lmdar4(ppmb, pdp, ppsol, pdt0, pemis, ptl, ptave, pwv, pozon, & |
---|
| 2121 | paer, pcldld, pcldlu, pview, pcolr, pcolr0, ptoplw, psollw, ptoplw0, & |
---|
| 2122 | psollw0, psollwdown, & ! IM . |
---|
| 2123 | ! psollwdown,psollwdownclr, |
---|
| 2124 | ! IM . ptoplwdown,ptoplwdownclr) |
---|
| 2125 | plwup, plwdn, plwup0, plwdn0) |
---|
[5314] | 2126 | USE raddimlw_mod_h |
---|
| 2127 | USE dimphy |
---|
[2311] | 2128 | USE print_control_mod, ONLY: lunout |
---|
[5285] | 2129 | USE yomcst_mod_h |
---|
[5274] | 2130 | IMPLICIT NONE |
---|
[1992] | 2131 | |
---|
[5274] | 2132 | |
---|
[1992] | 2133 | ! ----------------------------------------------------------------------- |
---|
| 2134 | ! METHOD. |
---|
| 2135 | ! ------- |
---|
| 2136 | |
---|
| 2137 | ! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
---|
| 2138 | ! ABSORBERS. |
---|
| 2139 | ! 2. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
---|
| 2140 | ! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
---|
| 2141 | ! 3. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
---|
| 2142 | ! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
---|
| 2143 | ! BOUNDARIES. |
---|
| 2144 | ! 4. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
---|
| 2145 | ! 5. INTRODUCES THE EFFECTS OF THE CLOUDS ON THE FLUXES. |
---|
| 2146 | |
---|
| 2147 | |
---|
| 2148 | ! REFERENCE. |
---|
| 2149 | ! ---------- |
---|
| 2150 | |
---|
| 2151 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2152 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2153 | |
---|
| 2154 | ! AUTHOR. |
---|
| 2155 | ! ------- |
---|
| 2156 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2157 | |
---|
| 2158 | ! MODIFICATIONS. |
---|
| 2159 | ! -------------- |
---|
| 2160 | ! ORIGINAL : 89-07-14 |
---|
| 2161 | ! ----------------------------------------------------------------------- |
---|
| 2162 | ! IM ctes ds clesphys.h |
---|
| 2163 | ! REAL(KIND=8) RCO2 ! CO2 CONCENTRATION (IPCC:353.E-06* 44.011/28.97) |
---|
| 2164 | ! REAL(KIND=8) RCH4 ! CH4 CONCENTRATION (IPCC: 1.72E-06* 16.043/28.97) |
---|
| 2165 | ! REAL(KIND=8) RN2O ! N2O CONCENTRATION (IPCC: 310.E-09* 44.013/28.97) |
---|
| 2166 | ! REAL(KIND=8) RCFC11 ! CFC11 CONCENTRATION (IPCC: 280.E-12* |
---|
| 2167 | ! 137.3686/28.97) |
---|
| 2168 | ! REAL(KIND=8) RCFC12 ! CFC12 CONCENTRATION (IPCC: 484.E-12* |
---|
| 2169 | ! 120.9140/28.97) |
---|
| 2170 | REAL (KIND=8) pcldld(kdlon, kflev) ! DOWNWARD EFFECTIVE CLOUD COVER |
---|
| 2171 | REAL (KIND=8) pcldlu(kdlon, kflev) ! UPWARD EFFECTIVE CLOUD COVER |
---|
| 2172 | REAL (KIND=8) pdp(kdlon, kflev) ! LAYER PRESSURE THICKNESS (Pa) |
---|
| 2173 | REAL (KIND=8) pdt0(kdlon) ! SURFACE TEMPERATURE DISCONTINUITY (K) |
---|
| 2174 | REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
| 2175 | REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF LEVEL PRESSURE (mb) |
---|
| 2176 | REAL (KIND=8) ppsol(kdlon) ! SURFACE PRESSURE (Pa) |
---|
| 2177 | REAL (KIND=8) pozon(kdlon, kflev) ! O3 mass fraction |
---|
| 2178 | REAL (KIND=8) ptl(kdlon, kflev+1) ! HALF LEVEL TEMPERATURE (K) |
---|
| 2179 | REAL (KIND=8) paer(kdlon, kflev, 5) ! OPTICAL THICKNESS OF THE AEROSOLS |
---|
| 2180 | REAL (KIND=8) ptave(kdlon, kflev) ! LAYER TEMPERATURE (K) |
---|
| 2181 | REAL (KIND=8) pview(kdlon) ! COSECANT OF VIEWING ANGLE |
---|
| 2182 | REAL (KIND=8) pwv(kdlon, kflev) ! SPECIFIC HUMIDITY (kg/kg) |
---|
| 2183 | |
---|
| 2184 | REAL (KIND=8) pcolr(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) |
---|
| 2185 | REAL (KIND=8) pcolr0(kdlon, kflev) ! LONG-WAVE TENDENCY (K/day) clear-sky |
---|
| 2186 | REAL (KIND=8) ptoplw(kdlon) ! LONGWAVE FLUX AT T.O.A. |
---|
| 2187 | REAL (KIND=8) psollw(kdlon) ! LONGWAVE FLUX AT SURFACE |
---|
| 2188 | REAL (KIND=8) ptoplw0(kdlon) ! LONGWAVE FLUX AT T.O.A. (CLEAR-SKY) |
---|
| 2189 | REAL (KIND=8) psollw0(kdlon) ! LONGWAVE FLUX AT SURFACE (CLEAR-SKY) |
---|
| 2190 | ! Rajout LF |
---|
| 2191 | REAL (KIND=8) psollwdown(kdlon) ! LONGWAVE downwards flux at surface |
---|
| 2192 | ! Rajout IM |
---|
| 2193 | ! IM real(kind=8) psollwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
---|
| 2194 | ! surface |
---|
| 2195 | ! IM real(kind=8) ptoplwdown(kdlon) ! LONGWAVE downwards flux at |
---|
| 2196 | ! T.O.A. |
---|
| 2197 | ! IM real(kind=8) ptoplwdownclr(kdlon) ! LONGWAVE CS downwards flux at |
---|
| 2198 | ! T.O.A. |
---|
| 2199 | ! IM |
---|
| 2200 | REAL (KIND=8) plwup(kdlon, kflev+1) ! LW up total sky |
---|
| 2201 | REAL (KIND=8) plwup0(kdlon, kflev+1) ! LW up clear sky |
---|
| 2202 | REAL (KIND=8) plwdn(kdlon, kflev+1) ! LW down total sky |
---|
| 2203 | REAL (KIND=8) plwdn0(kdlon, kflev+1) ! LW down clear sky |
---|
| 2204 | ! ------------------------------------------------------------------------- |
---|
| 2205 | REAL (KIND=8) zabcu(kdlon, nua, 3*kflev+1) |
---|
| 2206 | |
---|
| 2207 | REAL (KIND=8) zoz(kdlon, kflev) |
---|
| 2208 | ! equivalent pressure of ozone in a layer, in Pa |
---|
| 2209 | |
---|
| 2210 | ! ym REAL(KIND=8) ZFLUX(KDLON,2,KFLEV+1) ! RADIATIVE FLUXES (1:up; |
---|
| 2211 | ! 2:down) |
---|
| 2212 | ! ym REAL(KIND=8) ZFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 2213 | ! ym REAL(KIND=8) ZBINT(KDLON,KFLEV+1) ! Intermediate |
---|
| 2214 | ! variable |
---|
| 2215 | ! ym REAL(KIND=8) ZBSUI(KDLON) ! Intermediate |
---|
| 2216 | ! variable |
---|
| 2217 | ! ym REAL(KIND=8) ZCTS(KDLON,KFLEV) ! Intermediate |
---|
| 2218 | ! variable |
---|
| 2219 | ! ym REAL(KIND=8) ZCNTRB(KDLON,KFLEV+1,KFLEV+1) ! Intermediate |
---|
| 2220 | ! variable |
---|
| 2221 | ! ym SAVE ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB |
---|
| 2222 | REAL (KIND=8), ALLOCATABLE, SAVE :: zflux(:, :, :) ! RADIATIVE FLUXES (1:up; 2:down) |
---|
| 2223 | REAL (KIND=8), ALLOCATABLE, SAVE :: zfluc(:, :, :) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 2224 | REAL (KIND=8), ALLOCATABLE, SAVE :: zbint(:, :) ! Intermediate variable |
---|
| 2225 | REAL (KIND=8), ALLOCATABLE, SAVE :: zbsui(:) ! Intermediate variable |
---|
| 2226 | REAL (KIND=8), ALLOCATABLE, SAVE :: zcts(:, :) ! Intermediate variable |
---|
| 2227 | REAL (KIND=8), ALLOCATABLE, SAVE :: zcntrb(:, :, :) ! Intermediate variable |
---|
| 2228 | !$OMP THREADPRIVATE(ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB) |
---|
| 2229 | |
---|
| 2230 | INTEGER ilim, i, k, kpl1 |
---|
| 2231 | |
---|
| 2232 | INTEGER lw0pas ! Every lw0pas steps, clear-sky is done |
---|
| 2233 | PARAMETER (lw0pas=1) |
---|
| 2234 | INTEGER lwpas ! Every lwpas steps, cloudy-sky is done |
---|
| 2235 | PARAMETER (lwpas=1) |
---|
| 2236 | |
---|
| 2237 | INTEGER itaplw0, itaplw |
---|
| 2238 | LOGICAL appel1er |
---|
| 2239 | SAVE appel1er, itaplw0, itaplw |
---|
| 2240 | !$OMP THREADPRIVATE(appel1er, itaplw0, itaplw) |
---|
| 2241 | DATA appel1er/.TRUE./ |
---|
| 2242 | DATA itaplw0, itaplw/0, 0/ |
---|
| 2243 | |
---|
| 2244 | ! ------------------------------------------------------------------ |
---|
| 2245 | IF (appel1er) THEN |
---|
| 2246 | WRITE (lunout, *) 'LW clear-sky calling frequency: ', lw0pas |
---|
| 2247 | WRITE (lunout, *) 'LW cloudy-sky calling frequency: ', lwpas |
---|
| 2248 | WRITE (lunout, *) ' In general, they should be 1' |
---|
| 2249 | ! ym |
---|
| 2250 | ALLOCATE (zflux(kdlon,2,kflev+1)) |
---|
| 2251 | ALLOCATE (zfluc(kdlon,2,kflev+1)) |
---|
| 2252 | ALLOCATE (zbint(kdlon,kflev+1)) |
---|
| 2253 | ALLOCATE (zbsui(kdlon)) |
---|
| 2254 | ALLOCATE (zcts(kdlon,kflev)) |
---|
| 2255 | ALLOCATE (zcntrb(kdlon,kflev+1,kflev+1)) |
---|
| 2256 | appel1er = .FALSE. |
---|
| 2257 | END IF |
---|
| 2258 | |
---|
| 2259 | IF (mod(itaplw0,lw0pas)==0) THEN |
---|
| 2260 | ! Compute equivalent pressure of ozone from mass fraction: |
---|
| 2261 | DO k = 1, kflev |
---|
| 2262 | DO i = 1, kdlon |
---|
| 2263 | zoz(i, k) = pozon(i, k)*pdp(i, k) |
---|
| 2264 | END DO |
---|
| 2265 | END DO |
---|
| 2266 | ! IM ctes ds clesphys.h CALL LWU(RCO2,RCH4, RN2O, RCFC11, RCFC12, |
---|
| 2267 | CALL lwu_lmdar4(paer, pdp, ppmb, ppsol, zoz, ptave, pview, pwv, zabcu) |
---|
| 2268 | CALL lwbv_lmdar4(ilim, pdp, pdt0, pemis, ppmb, ptl, ptave, zabcu, zfluc, & |
---|
| 2269 | zbint, zbsui, zcts, zcntrb) |
---|
| 2270 | itaplw0 = 0 |
---|
| 2271 | END IF |
---|
| 2272 | itaplw0 = itaplw0 + 1 |
---|
| 2273 | |
---|
| 2274 | IF (mod(itaplw,lwpas)==0) THEN |
---|
| 2275 | CALL lwc_lmdar4(ilim, pcldld, pcldlu, pemis, zfluc, zbint, zbsui, zcts, & |
---|
| 2276 | zcntrb, zflux) |
---|
| 2277 | itaplw = 0 |
---|
| 2278 | END IF |
---|
| 2279 | itaplw = itaplw + 1 |
---|
| 2280 | |
---|
| 2281 | DO k = 1, kflev |
---|
| 2282 | kpl1 = k + 1 |
---|
| 2283 | DO i = 1, kdlon |
---|
| 2284 | pcolr(i, k) = zflux(i, 1, kpl1) + zflux(i, 2, kpl1) - zflux(i, 1, k) - & |
---|
| 2285 | zflux(i, 2, k) |
---|
| 2286 | pcolr(i, k) = pcolr(i, k)*rday*rg/rcpd/pdp(i, k) |
---|
| 2287 | pcolr0(i, k) = zfluc(i, 1, kpl1) + zfluc(i, 2, kpl1) - zfluc(i, 1, k) - & |
---|
| 2288 | zfluc(i, 2, k) |
---|
| 2289 | pcolr0(i, k) = pcolr0(i, k)*rday*rg/rcpd/pdp(i, k) |
---|
| 2290 | END DO |
---|
| 2291 | END DO |
---|
| 2292 | DO i = 1, kdlon |
---|
| 2293 | psollw(i) = -zflux(i, 1, 1) - zflux(i, 2, 1) |
---|
| 2294 | ptoplw(i) = zflux(i, 1, kflev+1) + zflux(i, 2, kflev+1) |
---|
| 2295 | |
---|
| 2296 | psollw0(i) = -zfluc(i, 1, 1) - zfluc(i, 2, 1) |
---|
| 2297 | ptoplw0(i) = zfluc(i, 1, kflev+1) + zfluc(i, 2, kflev+1) |
---|
| 2298 | psollwdown(i) = -zflux(i, 2, 1) |
---|
| 2299 | |
---|
| 2300 | ! IM attention aux signes !; LWtop >0, LWdn < 0 |
---|
| 2301 | DO k = 1, kflev + 1 |
---|
| 2302 | plwup(i, k) = zflux(i, 1, k) |
---|
| 2303 | plwup0(i, k) = zfluc(i, 1, k) |
---|
| 2304 | plwdn(i, k) = zflux(i, 2, k) |
---|
| 2305 | plwdn0(i, k) = zfluc(i, 2, k) |
---|
| 2306 | END DO |
---|
| 2307 | END DO |
---|
| 2308 | ! ------------------------------------------------------------------ |
---|
| 2309 | RETURN |
---|
| 2310 | END SUBROUTINE lw_lmdar4 |
---|
| 2311 | ! IM ctes ds clesphys.h SUBROUTINE LWU(RCO2, RCH4, RN2O, RCFC11, RCFC12, |
---|
| 2312 | SUBROUTINE lwu_lmdar4(paer, pdp, ppmb, ppsol, poz, ptave, pview, pwv, pabcu) |
---|
[5314] | 2313 | USE radopt_mod_h |
---|
| 2314 | USE radepsi_mod_h |
---|
| 2315 | USE raddimlw_mod_h |
---|
| 2316 | USE clesphys_mod_h |
---|
[1992] | 2317 | USE dimphy |
---|
| 2318 | USE radiation_ar4_param, ONLY: tref, rt1, raer, at, bt, oct |
---|
[4389] | 2319 | USE infotrac_phy, ONLY: type_trac |
---|
[5252] | 2320 | USE lmdz_reprobus_wrappers, ONLY: rch42d, rn2o2d, rcfc112d, rcfc122d, ok_rtime2d |
---|
| 2321 | USE lmdz_cppkeys_wrapper, ONLY: CPPKEY_REPROBUS |
---|
[1565] | 2322 | |
---|
[5285] | 2323 | USE yomcst_mod_h |
---|
[5274] | 2324 | IMPLICIT NONE |
---|
| 2325 | |
---|
[1279] | 2326 | |
---|
[1992] | 2327 | ! PURPOSE. |
---|
| 2328 | ! -------- |
---|
| 2329 | ! COMPUTES ABSORBER AMOUNTS INCLUDING PRESSURE AND |
---|
| 2330 | ! TEMPERATURE EFFECTS |
---|
[1565] | 2331 | |
---|
[1992] | 2332 | ! METHOD. |
---|
| 2333 | ! ------- |
---|
| 2334 | |
---|
| 2335 | ! 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
---|
| 2336 | ! ABSORBERS. |
---|
| 2337 | |
---|
| 2338 | |
---|
| 2339 | ! REFERENCE. |
---|
| 2340 | ! ---------- |
---|
| 2341 | |
---|
| 2342 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2343 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2344 | |
---|
| 2345 | ! AUTHOR. |
---|
| 2346 | ! ------- |
---|
| 2347 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2348 | |
---|
| 2349 | ! MODIFICATIONS. |
---|
| 2350 | ! -------------- |
---|
| 2351 | ! ORIGINAL : 89-07-14 |
---|
| 2352 | ! Voigt lines (loop 404 modified) - JJM & PhD - 01/96 |
---|
| 2353 | ! ----------------------------------------------------------------------- |
---|
| 2354 | ! * ARGUMENTS: |
---|
| 2355 | ! IM ctes ds clesphys.h |
---|
| 2356 | ! REAL(KIND=8) RCO2 |
---|
| 2357 | ! REAL(KIND=8) RCH4, RN2O, RCFC11, RCFC12 |
---|
| 2358 | REAL (KIND=8) paer(kdlon, kflev, 5) |
---|
| 2359 | REAL (KIND=8) pdp(kdlon, kflev) |
---|
| 2360 | REAL (KIND=8) ppmb(kdlon, kflev+1) |
---|
| 2361 | REAL (KIND=8) ppsol(kdlon) |
---|
| 2362 | REAL (KIND=8) poz(kdlon, kflev) |
---|
| 2363 | REAL (KIND=8) ptave(kdlon, kflev) |
---|
| 2364 | REAL (KIND=8) pview(kdlon) |
---|
| 2365 | REAL (KIND=8) pwv(kdlon, kflev) |
---|
| 2366 | |
---|
| 2367 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! EFFECTIVE ABSORBER AMOUNTS |
---|
| 2368 | |
---|
| 2369 | ! ----------------------------------------------------------------------- |
---|
| 2370 | ! * LOCAL VARIABLES: |
---|
| 2371 | REAL (KIND=8) zably(kdlon, nua, 3*kflev+1) |
---|
| 2372 | REAL (KIND=8) zduc(kdlon, 3*kflev+1) |
---|
| 2373 | REAL (KIND=8) zphio(kdlon) |
---|
| 2374 | REAL (KIND=8) zpsc2(kdlon) |
---|
| 2375 | REAL (KIND=8) zpsc3(kdlon) |
---|
| 2376 | REAL (KIND=8) zpsh1(kdlon) |
---|
| 2377 | REAL (KIND=8) zpsh2(kdlon) |
---|
| 2378 | REAL (KIND=8) zpsh3(kdlon) |
---|
| 2379 | REAL (KIND=8) zpsh4(kdlon) |
---|
| 2380 | REAL (KIND=8) zpsh5(kdlon) |
---|
| 2381 | REAL (KIND=8) zpsh6(kdlon) |
---|
| 2382 | REAL (KIND=8) zpsio(kdlon) |
---|
| 2383 | REAL (KIND=8) ztcon(kdlon) |
---|
| 2384 | REAL (KIND=8) zphm6(kdlon) |
---|
| 2385 | REAL (KIND=8) zpsm6(kdlon) |
---|
| 2386 | REAL (KIND=8) zphn6(kdlon) |
---|
| 2387 | REAL (KIND=8) zpsn6(kdlon) |
---|
| 2388 | REAL (KIND=8) zssig(kdlon, 3*kflev+1) |
---|
| 2389 | REAL (KIND=8) ztavi(kdlon) |
---|
| 2390 | REAL (KIND=8) zuaer(kdlon, ninter) |
---|
| 2391 | REAL (KIND=8) zxoz(kdlon) |
---|
| 2392 | REAL (KIND=8) zxwv(kdlon) |
---|
| 2393 | |
---|
| 2394 | INTEGER jl, jk, jkj, jkjr, jkjp, ig1 |
---|
| 2395 | INTEGER jki, jkip1, ja, jj |
---|
| 2396 | INTEGER jkl, jkp1, jkk, jkjpn |
---|
| 2397 | INTEGER jae1, jae2, jae3, jae, jjpn |
---|
| 2398 | INTEGER ir, jc, jcp1 |
---|
| 2399 | REAL (KIND=8) zdpm, zupm, zupmh2o, zupmco2, zupmo3, zu6, zup |
---|
| 2400 | REAL (KIND=8) zfppw, ztx, ztx2, zzably |
---|
| 2401 | REAL (KIND=8) zcah1, zcbh1, zcah2, zcbh2, zcah3, zcbh3 |
---|
| 2402 | REAL (KIND=8) zcah4, zcbh4, zcah5, zcbh5, zcah6, zcbh6 |
---|
| 2403 | REAL (KIND=8) zcac8, zcbc8 |
---|
| 2404 | REAL (KIND=8) zalup, zdiff |
---|
| 2405 | |
---|
| 2406 | REAL (KIND=8) pvgco2, pvgh2o, pvgo3 |
---|
| 2407 | |
---|
| 2408 | REAL (KIND=8) r10e ! DECIMAL/NATURAL LOG.FACTOR |
---|
| 2409 | PARAMETER (r10e=0.4342945) |
---|
| 2410 | |
---|
| 2411 | ! ----------------------------------------------------------------------- |
---|
| 2412 | |
---|
| 2413 | IF (levoigt) THEN |
---|
| 2414 | pvgco2 = 60. |
---|
| 2415 | pvgh2o = 30. |
---|
| 2416 | pvgo3 = 400. |
---|
| 2417 | ELSE |
---|
| 2418 | pvgco2 = 0. |
---|
| 2419 | pvgh2o = 0. |
---|
| 2420 | pvgo3 = 0. |
---|
| 2421 | END IF |
---|
| 2422 | |
---|
| 2423 | ! * 2. PRESSURE OVER GAUSS SUB-LEVELS |
---|
| 2424 | ! ------------------------------ |
---|
| 2425 | |
---|
| 2426 | |
---|
| 2427 | DO jl = 1, kdlon |
---|
| 2428 | zssig(jl, 1) = ppmb(jl, 1)*100. |
---|
| 2429 | END DO |
---|
| 2430 | |
---|
| 2431 | DO jk = 1, kflev |
---|
| 2432 | jkj = (jk-1)*ng1p1 + 1 |
---|
| 2433 | jkjr = jkj |
---|
| 2434 | jkjp = jkj + ng1p1 |
---|
| 2435 | DO jl = 1, kdlon |
---|
| 2436 | zssig(jl, jkjp) = ppmb(jl, jk+1)*100. |
---|
| 2437 | END DO |
---|
| 2438 | DO ig1 = 1, ng1 |
---|
| 2439 | jkj = jkj + 1 |
---|
| 2440 | DO jl = 1, kdlon |
---|
| 2441 | zssig(jl, jkj) = (zssig(jl,jkjr)+zssig(jl,jkjp))*0.5 + & |
---|
| 2442 | rt1(ig1)*(zssig(jl,jkjp)-zssig(jl,jkjr))*0.5 |
---|
| 2443 | END DO |
---|
| 2444 | END DO |
---|
| 2445 | END DO |
---|
| 2446 | |
---|
| 2447 | ! ----------------------------------------------------------------------- |
---|
| 2448 | |
---|
| 2449 | |
---|
| 2450 | ! * 4. PRESSURE THICKNESS AND MEAN PRESSURE OF SUB-LAYERS |
---|
| 2451 | ! -------------------------------------------------- |
---|
| 2452 | |
---|
| 2453 | |
---|
| 2454 | DO jki = 1, 3*kflev |
---|
| 2455 | jkip1 = jki + 1 |
---|
| 2456 | DO jl = 1, kdlon |
---|
| 2457 | zably(jl, 5, jki) = (zssig(jl,jki)+zssig(jl,jkip1))*0.5 |
---|
| 2458 | zably(jl, 3, jki) = (zssig(jl,jki)-zssig(jl,jkip1))/(10.*rg) |
---|
| 2459 | END DO |
---|
| 2460 | END DO |
---|
| 2461 | |
---|
| 2462 | DO jk = 1, kflev |
---|
| 2463 | jkp1 = jk + 1 |
---|
| 2464 | jkl = kflev + 1 - jk |
---|
| 2465 | DO jl = 1, kdlon |
---|
| 2466 | zxwv(jl) = max(pwv(jl,jk), zepscq) |
---|
| 2467 | zxoz(jl) = max(poz(jl,jk)/pdp(jl,jk), zepsco) |
---|
| 2468 | END DO |
---|
| 2469 | jkj = (jk-1)*ng1p1 + 1 |
---|
| 2470 | jkjpn = jkj + ng1 |
---|
| 2471 | DO jkk = jkj, jkjpn |
---|
| 2472 | DO jl = 1, kdlon |
---|
| 2473 | zdpm = zably(jl, 3, jkk) |
---|
| 2474 | zupm = zably(jl, 5, jkk)*zdpm/101325. |
---|
| 2475 | zupmco2 = (zably(jl,5,jkk)+pvgco2)*zdpm/101325. |
---|
| 2476 | zupmh2o = (zably(jl,5,jkk)+pvgh2o)*zdpm/101325. |
---|
| 2477 | zupmo3 = (zably(jl,5,jkk)+pvgo3)*zdpm/101325. |
---|
| 2478 | zduc(jl, jkk) = zdpm |
---|
| 2479 | zably(jl, 12, jkk) = zxoz(jl)*zdpm |
---|
| 2480 | zably(jl, 13, jkk) = zxoz(jl)*zupmo3 |
---|
| 2481 | zu6 = zxwv(jl)*zupm |
---|
| 2482 | zfppw = 1.6078*zxwv(jl)/(1.+0.608*zxwv(jl)) |
---|
| 2483 | zably(jl, 6, jkk) = zxwv(jl)*zupmh2o |
---|
| 2484 | zably(jl, 11, jkk) = zu6*zfppw |
---|
| 2485 | zably(jl, 10, jkk) = zu6*(1.-zfppw) |
---|
| 2486 | zably(jl, 9, jkk) = rco2*zupmco2 |
---|
| 2487 | zably(jl, 8, jkk) = rco2*zdpm |
---|
| 2488 | END DO |
---|
| 2489 | END DO |
---|
| 2490 | END DO |
---|
| 2491 | |
---|
| 2492 | ! ----------------------------------------------------------------------- |
---|
| 2493 | |
---|
| 2494 | |
---|
| 2495 | ! * 5. CUMULATIVE ABSORBER AMOUNTS FROM TOP OF ATMOSPHERE |
---|
| 2496 | ! -------------------------------------------------- |
---|
| 2497 | |
---|
| 2498 | |
---|
| 2499 | DO ja = 1, nua |
---|
| 2500 | DO jl = 1, kdlon |
---|
| 2501 | pabcu(jl, ja, 3*kflev+1) = 0. |
---|
| 2502 | END DO |
---|
| 2503 | END DO |
---|
| 2504 | |
---|
| 2505 | DO jk = 1, kflev |
---|
| 2506 | jj = (jk-1)*ng1p1 + 1 |
---|
| 2507 | jjpn = jj + ng1 |
---|
| 2508 | jkl = kflev + 1 - jk |
---|
| 2509 | |
---|
| 2510 | ! * 5.1 CUMULATIVE AEROSOL AMOUNTS FROM TOP OF ATMOSPHERE |
---|
| 2511 | ! -------------------------------------------------- |
---|
| 2512 | |
---|
| 2513 | |
---|
| 2514 | jae1 = 3*kflev + 1 - jj |
---|
| 2515 | jae2 = 3*kflev + 1 - (jj+1) |
---|
| 2516 | jae3 = 3*kflev + 1 - jjpn |
---|
| 2517 | DO jae = 1, 5 |
---|
| 2518 | DO jl = 1, kdlon |
---|
| 2519 | zuaer(jl, jae) = (raer(jae,1)*paer(jl,jkl,1)+raer(jae,2)*paer(jl,jkl, & |
---|
| 2520 | 2)+raer(jae,3)*paer(jl,jkl,3)+raer(jae,4)*paer(jl,jkl,4)+ & |
---|
| 2521 | raer(jae,5)*paer(jl,jkl,5))/(zduc(jl,jae1)+zduc(jl,jae2)+zduc(jl, & |
---|
| 2522 | jae3)) |
---|
| 2523 | END DO |
---|
| 2524 | END DO |
---|
| 2525 | |
---|
| 2526 | ! * 5.2 INTRODUCES TEMPERATURE EFFECTS ON ABSORBER AMOUNTS |
---|
| 2527 | ! -------------------------------------------------- |
---|
| 2528 | |
---|
| 2529 | |
---|
| 2530 | DO jl = 1, kdlon |
---|
| 2531 | ztavi(jl) = ptave(jl, jkl) |
---|
| 2532 | ztcon(jl) = exp(6.08*(296./ztavi(jl)-1.)) |
---|
| 2533 | ztx = ztavi(jl) - tref |
---|
| 2534 | ztx2 = ztx*ztx |
---|
| 2535 | zzably = zably(jl, 6, jae1) + zably(jl, 6, jae2) + zably(jl, 6, jae3) |
---|
| 2536 | zup = min(max(0.5*r10e*log(zzably)+5.,0._8), 6._8) |
---|
| 2537 | zcah1 = at(1, 1) + zup*(at(1,2)+zup*(at(1,3))) |
---|
| 2538 | zcbh1 = bt(1, 1) + zup*(bt(1,2)+zup*(bt(1,3))) |
---|
| 2539 | zpsh1(jl) = exp(zcah1*ztx+zcbh1*ztx2) |
---|
| 2540 | zcah2 = at(2, 1) + zup*(at(2,2)+zup*(at(2,3))) |
---|
| 2541 | zcbh2 = bt(2, 1) + zup*(bt(2,2)+zup*(bt(2,3))) |
---|
| 2542 | zpsh2(jl) = exp(zcah2*ztx+zcbh2*ztx2) |
---|
| 2543 | zcah3 = at(3, 1) + zup*(at(3,2)+zup*(at(3,3))) |
---|
| 2544 | zcbh3 = bt(3, 1) + zup*(bt(3,2)+zup*(bt(3,3))) |
---|
| 2545 | zpsh3(jl) = exp(zcah3*ztx+zcbh3*ztx2) |
---|
| 2546 | zcah4 = at(4, 1) + zup*(at(4,2)+zup*(at(4,3))) |
---|
| 2547 | zcbh4 = bt(4, 1) + zup*(bt(4,2)+zup*(bt(4,3))) |
---|
| 2548 | zpsh4(jl) = exp(zcah4*ztx+zcbh4*ztx2) |
---|
| 2549 | zcah5 = at(5, 1) + zup*(at(5,2)+zup*(at(5,3))) |
---|
| 2550 | zcbh5 = bt(5, 1) + zup*(bt(5,2)+zup*(bt(5,3))) |
---|
| 2551 | zpsh5(jl) = exp(zcah5*ztx+zcbh5*ztx2) |
---|
| 2552 | zcah6 = at(6, 1) + zup*(at(6,2)+zup*(at(6,3))) |
---|
| 2553 | zcbh6 = bt(6, 1) + zup*(bt(6,2)+zup*(bt(6,3))) |
---|
| 2554 | zpsh6(jl) = exp(zcah6*ztx+zcbh6*ztx2) |
---|
| 2555 | zphm6(jl) = exp(-5.81E-4*ztx-1.13E-6*ztx2) |
---|
| 2556 | zpsm6(jl) = exp(-5.57E-4*ztx-3.30E-6*ztx2) |
---|
| 2557 | zphn6(jl) = exp(-3.46E-5*ztx+2.05E-7*ztx2) |
---|
| 2558 | zpsn6(jl) = exp(3.70E-3*ztx-2.30E-6*ztx2) |
---|
| 2559 | END DO |
---|
| 2560 | |
---|
| 2561 | DO jl = 1, kdlon |
---|
| 2562 | ztavi(jl) = ptave(jl, jkl) |
---|
| 2563 | ztx = ztavi(jl) - tref |
---|
| 2564 | ztx2 = ztx*ztx |
---|
| 2565 | zzably = zably(jl, 9, jae1) + zably(jl, 9, jae2) + zably(jl, 9, jae3) |
---|
| 2566 | zalup = r10e*log(zzably) |
---|
| 2567 | zup = max(0._8, 5.0+0.5*zalup) |
---|
| 2568 | zpsc2(jl) = (ztavi(jl)/tref)**zup |
---|
| 2569 | zcac8 = at(8, 1) + zup*(at(8,2)+zup*(at(8,3))) |
---|
| 2570 | zcbc8 = bt(8, 1) + zup*(bt(8,2)+zup*(bt(8,3))) |
---|
| 2571 | zpsc3(jl) = exp(zcac8*ztx+zcbc8*ztx2) |
---|
| 2572 | zphio(jl) = exp(oct(1)*ztx+oct(2)*ztx2) |
---|
| 2573 | zpsio(jl) = exp(2.*(oct(3)*ztx+oct(4)*ztx2)) |
---|
| 2574 | END DO |
---|
| 2575 | |
---|
| 2576 | DO jkk = jj, jjpn |
---|
| 2577 | jc = 3*kflev + 1 - jkk |
---|
| 2578 | jcp1 = jc + 1 |
---|
| 2579 | DO jl = 1, kdlon |
---|
| 2580 | zdiff = pview(jl) |
---|
| 2581 | pabcu(jl, 10, jc) = pabcu(jl, 10, jcp1) + zably(jl, 10, jc)*zdiff |
---|
| 2582 | pabcu(jl, 11, jc) = pabcu(jl, 11, jcp1) + zably(jl, 11, jc)*ztcon(jl) & |
---|
| 2583 | *zdiff |
---|
| 2584 | |
---|
| 2585 | pabcu(jl, 12, jc) = pabcu(jl, 12, jcp1) + zably(jl, 12, jc)*zphio(jl) & |
---|
| 2586 | *zdiff |
---|
| 2587 | pabcu(jl, 13, jc) = pabcu(jl, 13, jcp1) + zably(jl, 13, jc)*zpsio(jl) & |
---|
| 2588 | *zdiff |
---|
| 2589 | |
---|
| 2590 | pabcu(jl, 7, jc) = pabcu(jl, 7, jcp1) + zably(jl, 9, jc)*zpsc2(jl)* & |
---|
| 2591 | zdiff |
---|
| 2592 | pabcu(jl, 8, jc) = pabcu(jl, 8, jcp1) + zably(jl, 9, jc)*zpsc3(jl)* & |
---|
| 2593 | zdiff |
---|
| 2594 | pabcu(jl, 9, jc) = pabcu(jl, 9, jcp1) + zably(jl, 9, jc)*zpsc3(jl)* & |
---|
| 2595 | zdiff |
---|
| 2596 | |
---|
| 2597 | pabcu(jl, 1, jc) = pabcu(jl, 1, jcp1) + zably(jl, 6, jc)*zpsh1(jl)* & |
---|
| 2598 | zdiff |
---|
| 2599 | pabcu(jl, 2, jc) = pabcu(jl, 2, jcp1) + zably(jl, 6, jc)*zpsh2(jl)* & |
---|
| 2600 | zdiff |
---|
| 2601 | pabcu(jl, 3, jc) = pabcu(jl, 3, jcp1) + zably(jl, 6, jc)*zpsh5(jl)* & |
---|
| 2602 | zdiff |
---|
| 2603 | pabcu(jl, 4, jc) = pabcu(jl, 4, jcp1) + zably(jl, 6, jc)*zpsh3(jl)* & |
---|
| 2604 | zdiff |
---|
| 2605 | pabcu(jl, 5, jc) = pabcu(jl, 5, jcp1) + zably(jl, 6, jc)*zpsh4(jl)* & |
---|
| 2606 | zdiff |
---|
| 2607 | pabcu(jl, 6, jc) = pabcu(jl, 6, jcp1) + zably(jl, 6, jc)*zpsh6(jl)* & |
---|
| 2608 | zdiff |
---|
| 2609 | |
---|
| 2610 | pabcu(jl, 14, jc) = pabcu(jl, 14, jcp1) + zuaer(jl, 1)*zduc(jl, jc)* & |
---|
| 2611 | zdiff |
---|
| 2612 | pabcu(jl, 15, jc) = pabcu(jl, 15, jcp1) + zuaer(jl, 2)*zduc(jl, jc)* & |
---|
| 2613 | zdiff |
---|
| 2614 | pabcu(jl, 16, jc) = pabcu(jl, 16, jcp1) + zuaer(jl, 3)*zduc(jl, jc)* & |
---|
| 2615 | zdiff |
---|
| 2616 | pabcu(jl, 17, jc) = pabcu(jl, 17, jcp1) + zuaer(jl, 4)*zduc(jl, jc)* & |
---|
| 2617 | zdiff |
---|
| 2618 | pabcu(jl, 18, jc) = pabcu(jl, 18, jcp1) + zuaer(jl, 5)*zduc(jl, jc)* & |
---|
| 2619 | zdiff |
---|
| 2620 | |
---|
| 2621 | |
---|
| 2622 | |
---|
[4389] | 2623 | IF (type_trac=='repr') THEN |
---|
[5252] | 2624 | IF (CPPKEY_REPROBUS) THEN |
---|
[1992] | 2625 | IF (ok_rtime2d) THEN |
---|
| 2626 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
| 2627 | zably(jl, 8, jc)*rch42d(jl, jc)/rco2*zphm6(jl)*zdiff |
---|
| 2628 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
| 2629 | zably(jl, 9, jc)*rch42d(jl, jc)/rco2*zpsm6(jl)*zdiff |
---|
| 2630 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
| 2631 | zably(jl, 8, jc)*rn2o2d(jl, jc)/rco2*zphn6(jl)*zdiff |
---|
| 2632 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
| 2633 | zably(jl, 9, jc)*rn2o2d(jl, jc)/rco2*zpsn6(jl)*zdiff |
---|
| 2634 | |
---|
| 2635 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
| 2636 | zably(jl, 8, jc)*rcfc112d(jl, jc)/rco2*zdiff |
---|
| 2637 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
| 2638 | zably(jl, 8, jc)*rcfc122d(jl, jc)/rco2*zdiff |
---|
| 2639 | ELSE |
---|
| 2640 | ! Same calculation as for type_trac /= repr |
---|
| 2641 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
| 2642 | zably(jl, 8, jc)*rch4/rco2*zphm6(jl)*zdiff |
---|
| 2643 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
| 2644 | zably(jl, 9, jc)*rch4/rco2*zpsm6(jl)*zdiff |
---|
| 2645 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
| 2646 | zably(jl, 8, jc)*rn2o/rco2*zphn6(jl)*zdiff |
---|
| 2647 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
| 2648 | zably(jl, 9, jc)*rn2o/rco2*zpsn6(jl)*zdiff |
---|
| 2649 | |
---|
| 2650 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
| 2651 | zably(jl, 8, jc)*rcfc11/rco2*zdiff |
---|
| 2652 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
| 2653 | zably(jl, 8, jc)*rcfc12/rco2*zdiff |
---|
| 2654 | END IF |
---|
[5252] | 2655 | END IF |
---|
[1992] | 2656 | ELSE |
---|
| 2657 | pabcu(jl, 19, jc) = pabcu(jl, 19, jcp1) + & |
---|
| 2658 | zably(jl, 8, jc)*rch4/rco2*zphm6(jl)*zdiff |
---|
| 2659 | pabcu(jl, 20, jc) = pabcu(jl, 20, jcp1) + & |
---|
| 2660 | zably(jl, 9, jc)*rch4/rco2*zpsm6(jl)*zdiff |
---|
| 2661 | pabcu(jl, 21, jc) = pabcu(jl, 21, jcp1) + & |
---|
| 2662 | zably(jl, 8, jc)*rn2o/rco2*zphn6(jl)*zdiff |
---|
| 2663 | pabcu(jl, 22, jc) = pabcu(jl, 22, jcp1) + & |
---|
| 2664 | zably(jl, 9, jc)*rn2o/rco2*zpsn6(jl)*zdiff |
---|
| 2665 | |
---|
| 2666 | pabcu(jl, 23, jc) = pabcu(jl, 23, jcp1) + & |
---|
| 2667 | zably(jl, 8, jc)*rcfc11/rco2*zdiff |
---|
| 2668 | pabcu(jl, 24, jc) = pabcu(jl, 24, jcp1) + & |
---|
| 2669 | zably(jl, 8, jc)*rcfc12/rco2*zdiff |
---|
| 2670 | END IF |
---|
| 2671 | |
---|
| 2672 | END DO |
---|
| 2673 | END DO |
---|
| 2674 | |
---|
| 2675 | END DO |
---|
| 2676 | |
---|
| 2677 | |
---|
| 2678 | RETURN |
---|
| 2679 | END SUBROUTINE lwu_lmdar4 |
---|
| 2680 | SUBROUTINE lwbv_lmdar4(klim, pdp, pdt0, pemis, ppmb, ptl, ptave, pabcu, & |
---|
| 2681 | pfluc, pbint, pbsui, pcts, pcntrb) |
---|
[5314] | 2682 | USE raddimlw_mod_h |
---|
| 2683 | USE dimphy |
---|
[5285] | 2684 | USE yomcst_mod_h |
---|
[5274] | 2685 | IMPLICIT NONE |
---|
[1992] | 2686 | |
---|
[5274] | 2687 | |
---|
[1992] | 2688 | ! PURPOSE. |
---|
| 2689 | ! -------- |
---|
| 2690 | ! TO COMPUTE THE PLANCK FUNCTION AND PERFORM THE |
---|
| 2691 | ! VERTICAL INTEGRATION. SPLIT OUT FROM LW FOR MEMORY |
---|
| 2692 | ! SAVING |
---|
| 2693 | |
---|
| 2694 | ! METHOD. |
---|
| 2695 | ! ------- |
---|
| 2696 | |
---|
| 2697 | ! 1. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
---|
| 2698 | ! GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
---|
| 2699 | ! 2. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
---|
| 2700 | ! TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
---|
| 2701 | ! BOUNDARIES. |
---|
| 2702 | ! 3. COMPUTES THE CLEAR-SKY COOLING RATES. |
---|
| 2703 | |
---|
| 2704 | ! REFERENCE. |
---|
| 2705 | ! ---------- |
---|
| 2706 | |
---|
| 2707 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2708 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2709 | |
---|
| 2710 | ! AUTHOR. |
---|
| 2711 | ! ------- |
---|
| 2712 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2713 | |
---|
| 2714 | ! MODIFICATIONS. |
---|
| 2715 | ! -------------- |
---|
| 2716 | ! ORIGINAL : 89-07-14 |
---|
| 2717 | ! MODIFICATION : 93-10-15 M.HAMRUD (SPLIT OUT FROM LW TO SAVE |
---|
| 2718 | ! MEMORY) |
---|
| 2719 | ! ----------------------------------------------------------------------- |
---|
| 2720 | ! * ARGUMENTS: |
---|
| 2721 | INTEGER klim |
---|
| 2722 | |
---|
| 2723 | REAL (KIND=8) pdp(kdlon, kflev) |
---|
| 2724 | REAL (KIND=8) pdt0(kdlon) |
---|
| 2725 | REAL (KIND=8) pemis(kdlon) |
---|
| 2726 | REAL (KIND=8) ppmb(kdlon, kflev+1) |
---|
| 2727 | REAL (KIND=8) ptl(kdlon, kflev+1) |
---|
| 2728 | REAL (KIND=8) ptave(kdlon, kflev) |
---|
| 2729 | |
---|
| 2730 | REAL (KIND=8) pfluc(kdlon, 2, kflev+1) |
---|
| 2731 | |
---|
| 2732 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) |
---|
| 2733 | REAL (KIND=8) pbint(kdlon, kflev+1) |
---|
| 2734 | REAL (KIND=8) pbsui(kdlon) |
---|
| 2735 | REAL (KIND=8) pcts(kdlon, kflev) |
---|
| 2736 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) |
---|
| 2737 | |
---|
| 2738 | ! ------------------------------------------------------------------------- |
---|
| 2739 | |
---|
| 2740 | ! * LOCAL VARIABLES: |
---|
| 2741 | REAL (KIND=8) zb(kdlon, ninter, kflev+1) |
---|
| 2742 | REAL (KIND=8) zbsur(kdlon, ninter) |
---|
| 2743 | REAL (KIND=8) zbtop(kdlon, ninter) |
---|
| 2744 | REAL (KIND=8) zdbsl(kdlon, ninter, kflev*2) |
---|
| 2745 | REAL (KIND=8) zga(kdlon, 8, 2, kflev) |
---|
| 2746 | REAL (KIND=8) zgb(kdlon, 8, 2, kflev) |
---|
| 2747 | REAL (KIND=8) zgasur(kdlon, 8, 2) |
---|
| 2748 | REAL (KIND=8) zgbsur(kdlon, 8, 2) |
---|
| 2749 | REAL (KIND=8) zgatop(kdlon, 8, 2) |
---|
| 2750 | REAL (KIND=8) zgbtop(kdlon, 8, 2) |
---|
| 2751 | |
---|
| 2752 | INTEGER nuaer, ntraer |
---|
| 2753 | ! ------------------------------------------------------------------ |
---|
| 2754 | ! * COMPUTES PLANCK FUNCTIONS: |
---|
| 2755 | CALL lwb_lmdar4(pdt0, ptave, ptl, zb, pbint, pbsui, zbsur, zbtop, zdbsl, & |
---|
| 2756 | zga, zgb, zgasur, zgbsur, zgatop, zgbtop) |
---|
| 2757 | ! ------------------------------------------------------------------ |
---|
| 2758 | ! * PERFORMS THE VERTICAL INTEGRATION: |
---|
| 2759 | nuaer = nua |
---|
| 2760 | ntraer = ntra |
---|
| 2761 | CALL lwv_lmdar4(nuaer, ntraer, klim, pabcu, zb, pbint, pbsui, zbsur, zbtop, & |
---|
| 2762 | zdbsl, pemis, ppmb, ptave, zga, zgb, zgasur, zgbsur, zgatop, zgbtop, & |
---|
| 2763 | pcntrb, pcts, pfluc) |
---|
| 2764 | ! ------------------------------------------------------------------ |
---|
| 2765 | RETURN |
---|
| 2766 | END SUBROUTINE lwbv_lmdar4 |
---|
| 2767 | SUBROUTINE lwc_lmdar4(klim, pcldld, pcldlu, pemis, pfluc, pbint, pbsuin, & |
---|
| 2768 | pcts, pcntrb, pflux) |
---|
[5314] | 2769 | USE radopt_mod_h |
---|
| 2770 | USE radepsi_mod_h |
---|
| 2771 | USE dimphy |
---|
[1992] | 2772 | IMPLICIT NONE |
---|
| 2773 | |
---|
| 2774 | ! PURPOSE. |
---|
| 2775 | ! -------- |
---|
| 2776 | ! INTRODUCES CLOUD EFFECTS ON LONGWAVE FLUXES OR |
---|
| 2777 | ! RADIANCES |
---|
| 2778 | |
---|
| 2779 | ! EXPLICIT ARGUMENTS : |
---|
| 2780 | ! -------------------- |
---|
| 2781 | ! ==== INPUTS === |
---|
| 2782 | ! PBINT : (KDLON,0:KFLEV) ; HALF LEVEL PLANCK FUNCTION |
---|
| 2783 | ! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
---|
| 2784 | ! PCLDLD : (KDLON,KFLEV) ; DOWNWARD EFFECTIVE CLOUD FRACTION |
---|
| 2785 | ! PCLDLU : (KDLON,KFLEV) ; UPWARD EFFECTIVE CLOUD FRACTION |
---|
| 2786 | ! PCNTRB : (KDLON,KFLEV+1,KFLEV+1); CLEAR-SKY ENERGY EXCHANGE |
---|
| 2787 | ! PCTS : (KDLON,KFLEV) ; CLEAR-SKY LAYER COOLING-TO-SPACE |
---|
| 2788 | ! PEMIS : (KDLON) ; SURFACE EMISSIVITY |
---|
| 2789 | ! PFLUC |
---|
| 2790 | ! ==== OUTPUTS === |
---|
| 2791 | ! PFLUX(KDLON,2,KFLEV) ; RADIATIVE FLUXES : |
---|
| 2792 | ! 1 ==> UPWARD FLUX TOTAL |
---|
| 2793 | ! 2 ==> DOWNWARD FLUX TOTAL |
---|
| 2794 | |
---|
| 2795 | ! METHOD. |
---|
| 2796 | ! ------- |
---|
| 2797 | |
---|
| 2798 | ! 1. INITIALIZES ALL FLUXES TO CLEAR-SKY VALUES |
---|
| 2799 | ! 2. EFFECT OF ONE OVERCAST UNITY EMISSIVITY CLOUD LAYER |
---|
| 2800 | ! 3. EFFECT OF SEMI-TRANSPARENT, PARTIAL OR MULTI-LAYERED |
---|
| 2801 | ! CLOUDS |
---|
| 2802 | |
---|
| 2803 | ! REFERENCE. |
---|
| 2804 | ! ---------- |
---|
| 2805 | |
---|
| 2806 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2807 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2808 | |
---|
| 2809 | ! AUTHOR. |
---|
| 2810 | ! ------- |
---|
| 2811 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2812 | |
---|
| 2813 | ! MODIFICATIONS. |
---|
| 2814 | ! -------------- |
---|
| 2815 | ! ORIGINAL : 89-07-14 |
---|
| 2816 | ! Voigt lines (loop 231 to 233) - JJM & PhD - 01/96 |
---|
| 2817 | ! ----------------------------------------------------------------------- |
---|
| 2818 | ! * ARGUMENTS: |
---|
| 2819 | INTEGER klim |
---|
| 2820 | REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 2821 | REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF LEVEL PLANCK FUNCTION |
---|
| 2822 | REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
| 2823 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) !CLEAR-SKY ENERGY EXCHANGE |
---|
| 2824 | REAL (KIND=8) pcts(kdlon, kflev) ! CLEAR-SKY LAYER COOLING-TO-SPACE |
---|
| 2825 | |
---|
| 2826 | REAL (KIND=8) pcldld(kdlon, kflev) |
---|
| 2827 | REAL (KIND=8) pcldlu(kdlon, kflev) |
---|
| 2828 | REAL (KIND=8) pemis(kdlon) |
---|
| 2829 | |
---|
| 2830 | REAL (KIND=8) pflux(kdlon, 2, kflev+1) |
---|
| 2831 | ! ----------------------------------------------------------------------- |
---|
| 2832 | ! * LOCAL VARIABLES: |
---|
| 2833 | INTEGER imx(kdlon), imxp(kdlon) |
---|
| 2834 | |
---|
| 2835 | REAL (KIND=8) zclear(kdlon), zcloud(kdlon), zdnf(kdlon, kflev+1, kflev+1), & |
---|
| 2836 | zfd(kdlon), zfn10(kdlon), zfu(kdlon), zupf(kdlon, kflev+1, kflev+1) |
---|
| 2837 | REAL (KIND=8) zclm(kdlon, kflev+1, kflev+1) |
---|
| 2838 | |
---|
| 2839 | INTEGER jk, jl, imaxc, imx1, imx2, jkj, jkp1, jkm1 |
---|
| 2840 | INTEGER jk1, jk2, jkc, jkcp1, jcloud |
---|
| 2841 | INTEGER imxm1, imxp1 |
---|
| 2842 | REAL (KIND=8) zcfrac |
---|
| 2843 | |
---|
| 2844 | ! ------------------------------------------------------------------ |
---|
| 2845 | |
---|
| 2846 | ! * 1. INITIALIZATION |
---|
| 2847 | ! -------------- |
---|
| 2848 | |
---|
| 2849 | |
---|
| 2850 | imaxc = 0 |
---|
| 2851 | |
---|
| 2852 | DO jl = 1, kdlon |
---|
| 2853 | imx(jl) = 0 |
---|
| 2854 | imxp(jl) = 0 |
---|
| 2855 | zcloud(jl) = 0. |
---|
| 2856 | END DO |
---|
| 2857 | |
---|
| 2858 | ! * 1.1 SEARCH THE LAYER INDEX OF THE HIGHEST CLOUD |
---|
| 2859 | ! ------------------------------------------- |
---|
| 2860 | |
---|
| 2861 | |
---|
| 2862 | DO jk = 1, kflev |
---|
| 2863 | DO jl = 1, kdlon |
---|
| 2864 | imx1 = imx(jl) |
---|
| 2865 | imx2 = jk |
---|
| 2866 | IF (pcldlu(jl,jk)>zepsc) THEN |
---|
| 2867 | imxp(jl) = imx2 |
---|
[1565] | 2868 | ELSE |
---|
[1992] | 2869 | imxp(jl) = imx1 |
---|
[1565] | 2870 | END IF |
---|
[1992] | 2871 | imaxc = max(imxp(jl), imaxc) |
---|
| 2872 | imx(jl) = imxp(jl) |
---|
| 2873 | END DO |
---|
| 2874 | END DO |
---|
| 2875 | ! GM******* |
---|
| 2876 | imaxc = kflev |
---|
| 2877 | ! GM******* |
---|
| 2878 | |
---|
| 2879 | DO jk = 1, kflev + 1 |
---|
| 2880 | DO jl = 1, kdlon |
---|
| 2881 | pflux(jl, 1, jk) = pfluc(jl, 1, jk) |
---|
| 2882 | pflux(jl, 2, jk) = pfluc(jl, 2, jk) |
---|
| 2883 | END DO |
---|
| 2884 | END DO |
---|
| 2885 | |
---|
| 2886 | ! ------------------------------------------------------------------ |
---|
| 2887 | |
---|
| 2888 | ! * 2. EFFECT OF CLOUDINESS ON LONGWAVE FLUXES |
---|
| 2889 | ! --------------------------------------- |
---|
| 2890 | |
---|
| 2891 | IF (imaxc>0) THEN |
---|
| 2892 | |
---|
| 2893 | imxp1 = imaxc + 1 |
---|
| 2894 | imxm1 = imaxc - 1 |
---|
| 2895 | |
---|
| 2896 | ! * 2.0 INITIALIZE TO CLEAR-SKY FLUXES |
---|
| 2897 | ! ------------------------------ |
---|
| 2898 | |
---|
| 2899 | |
---|
| 2900 | DO jk1 = 1, kflev + 1 |
---|
| 2901 | DO jk2 = 1, kflev + 1 |
---|
| 2902 | DO jl = 1, kdlon |
---|
| 2903 | zupf(jl, jk2, jk1) = pfluc(jl, 1, jk1) |
---|
| 2904 | zdnf(jl, jk2, jk1) = pfluc(jl, 2, jk1) |
---|
| 2905 | END DO |
---|
| 2906 | END DO |
---|
| 2907 | END DO |
---|
| 2908 | |
---|
| 2909 | ! * 2.1 FLUXES FOR ONE OVERCAST UNITY EMISSIVITY CLOUD |
---|
| 2910 | ! ---------------------------------------------- |
---|
| 2911 | |
---|
| 2912 | |
---|
| 2913 | DO jkc = 1, imaxc |
---|
| 2914 | jcloud = jkc |
---|
| 2915 | jkcp1 = jcloud + 1 |
---|
| 2916 | |
---|
| 2917 | ! * 2.1.1 ABOVE THE CLOUD |
---|
| 2918 | ! --------------- |
---|
| 2919 | |
---|
| 2920 | |
---|
| 2921 | DO jk = jkcp1, kflev + 1 |
---|
| 2922 | jkm1 = jk - 1 |
---|
| 2923 | DO jl = 1, kdlon |
---|
| 2924 | zfu(jl) = 0. |
---|
| 2925 | END DO |
---|
| 2926 | IF (jk>jkcp1) THEN |
---|
| 2927 | DO jkj = jkcp1, jkm1 |
---|
| 2928 | DO jl = 1, kdlon |
---|
| 2929 | zfu(jl) = zfu(jl) + pcntrb(jl, jk, jkj) |
---|
| 2930 | END DO |
---|
| 2931 | END DO |
---|
| 2932 | END IF |
---|
| 2933 | |
---|
| 2934 | DO jl = 1, kdlon |
---|
| 2935 | zupf(jl, jkcp1, jk) = pbint(jl, jk) - zfu(jl) |
---|
| 2936 | END DO |
---|
| 2937 | END DO |
---|
| 2938 | |
---|
| 2939 | ! * 2.1.2 BELOW THE CLOUD |
---|
| 2940 | ! --------------- |
---|
| 2941 | |
---|
| 2942 | |
---|
| 2943 | DO jk = 1, jcloud |
---|
| 2944 | jkp1 = jk + 1 |
---|
| 2945 | DO jl = 1, kdlon |
---|
| 2946 | zfd(jl) = 0. |
---|
| 2947 | END DO |
---|
| 2948 | |
---|
| 2949 | IF (jk<jcloud) THEN |
---|
| 2950 | DO jkj = jkp1, jcloud |
---|
| 2951 | DO jl = 1, kdlon |
---|
| 2952 | zfd(jl) = zfd(jl) + pcntrb(jl, jk, jkj) |
---|
| 2953 | END DO |
---|
| 2954 | END DO |
---|
| 2955 | END IF |
---|
| 2956 | DO jl = 1, kdlon |
---|
| 2957 | zdnf(jl, jkcp1, jk) = -pbint(jl, jk) - zfd(jl) |
---|
| 2958 | END DO |
---|
| 2959 | END DO |
---|
| 2960 | |
---|
| 2961 | END DO |
---|
| 2962 | |
---|
| 2963 | ! * 2.2 CLOUD COVER MATRIX |
---|
| 2964 | ! ------------------ |
---|
| 2965 | |
---|
| 2966 | ! * ZCLM(JK1,JK2) IS THE OBSCURATION FACTOR BY CLOUD LAYERS BETWEEN |
---|
| 2967 | ! HALF-LEVELS JK1 AND JK2 AS SEEN FROM JK1 |
---|
| 2968 | |
---|
| 2969 | |
---|
| 2970 | DO jk1 = 1, kflev + 1 |
---|
| 2971 | DO jk2 = 1, kflev + 1 |
---|
| 2972 | DO jl = 1, kdlon |
---|
| 2973 | zclm(jl, jk1, jk2) = 0. |
---|
| 2974 | END DO |
---|
| 2975 | END DO |
---|
| 2976 | END DO |
---|
| 2977 | |
---|
| 2978 | ! * 2.4 CLOUD COVER BELOW THE LEVEL OF CALCULATION |
---|
| 2979 | ! ------------------------------------------ |
---|
| 2980 | |
---|
| 2981 | |
---|
| 2982 | DO jk1 = 2, kflev + 1 |
---|
| 2983 | DO jl = 1, kdlon |
---|
| 2984 | zclear(jl) = 1. |
---|
| 2985 | zcloud(jl) = 0. |
---|
| 2986 | END DO |
---|
| 2987 | DO jk = jk1 - 1, 1, -1 |
---|
| 2988 | DO jl = 1, kdlon |
---|
| 2989 | IF (novlp==1) THEN |
---|
| 2990 | ! * maximum-random |
---|
| 2991 | zclear(jl) = zclear(jl)*(1.0-max(pcldlu(jl, & |
---|
| 2992 | jk),zcloud(jl)))/(1.0-min(zcloud(jl),1.-zepsec)) |
---|
| 2993 | zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
---|
| 2994 | zcloud(jl) = pcldlu(jl, jk) |
---|
| 2995 | ELSE IF (novlp==2) THEN |
---|
| 2996 | ! * maximum |
---|
| 2997 | zcloud(jl) = max(zcloud(jl), pcldlu(jl,jk)) |
---|
| 2998 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
| 2999 | ELSE IF (novlp==3) THEN |
---|
| 3000 | ! * random |
---|
| 3001 | zclear(jl) = zclear(jl)*(1.0-pcldlu(jl,jk)) |
---|
| 3002 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 3003 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
| 3004 | END IF |
---|
| 3005 | END DO |
---|
| 3006 | END DO |
---|
| 3007 | END DO |
---|
| 3008 | |
---|
| 3009 | ! * 2.5 CLOUD COVER ABOVE THE LEVEL OF CALCULATION |
---|
| 3010 | ! ------------------------------------------ |
---|
| 3011 | |
---|
| 3012 | |
---|
| 3013 | DO jk1 = 1, kflev |
---|
| 3014 | DO jl = 1, kdlon |
---|
| 3015 | zclear(jl) = 1. |
---|
| 3016 | zcloud(jl) = 0. |
---|
| 3017 | END DO |
---|
| 3018 | DO jk = jk1, kflev |
---|
| 3019 | DO jl = 1, kdlon |
---|
| 3020 | IF (novlp==1) THEN |
---|
| 3021 | ! * maximum-random |
---|
| 3022 | zclear(jl) = zclear(jl)*(1.0-max(pcldld(jl, & |
---|
| 3023 | jk),zcloud(jl)))/(1.0-min(zcloud(jl),1.-zepsec)) |
---|
| 3024 | zclm(jl, jk1, jk) = 1.0 - zclear(jl) |
---|
| 3025 | zcloud(jl) = pcldld(jl, jk) |
---|
| 3026 | ELSE IF (novlp==2) THEN |
---|
| 3027 | ! * maximum |
---|
| 3028 | zcloud(jl) = max(zcloud(jl), pcldld(jl,jk)) |
---|
| 3029 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
| 3030 | ELSE IF (novlp==3) THEN |
---|
| 3031 | ! * random |
---|
| 3032 | zclear(jl) = zclear(jl)*(1.0-pcldld(jl,jk)) |
---|
| 3033 | zcloud(jl) = 1.0 - zclear(jl) |
---|
| 3034 | zclm(jl, jk1, jk) = zcloud(jl) |
---|
| 3035 | END IF |
---|
| 3036 | END DO |
---|
| 3037 | END DO |
---|
| 3038 | END DO |
---|
| 3039 | |
---|
| 3040 | ! * 3. FLUXES FOR PARTIAL/MULTIPLE LAYERED CLOUDINESS |
---|
| 3041 | ! ---------------------------------------------- |
---|
| 3042 | |
---|
| 3043 | |
---|
| 3044 | ! * 3.1 DOWNWARD FLUXES |
---|
| 3045 | ! --------------- |
---|
| 3046 | |
---|
| 3047 | |
---|
| 3048 | DO jl = 1, kdlon |
---|
| 3049 | pflux(jl, 2, kflev+1) = 0. |
---|
| 3050 | END DO |
---|
| 3051 | |
---|
| 3052 | DO jk1 = kflev, 1, -1 |
---|
| 3053 | |
---|
| 3054 | ! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
---|
| 3055 | |
---|
| 3056 | DO jl = 1, kdlon |
---|
| 3057 | zfd(jl) = (1.-zclm(jl,jk1,kflev))*zdnf(jl, 1, jk1) |
---|
| 3058 | END DO |
---|
| 3059 | |
---|
| 3060 | ! * CONTRIBUTION FROM ADJACENT CLOUD |
---|
| 3061 | |
---|
| 3062 | DO jl = 1, kdlon |
---|
| 3063 | zfd(jl) = zfd(jl) + zclm(jl, jk1, jk1)*zdnf(jl, jk1+1, jk1) |
---|
| 3064 | END DO |
---|
| 3065 | |
---|
| 3066 | ! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
---|
| 3067 | |
---|
| 3068 | DO jk = kflev - 1, jk1, -1 |
---|
| 3069 | DO jl = 1, kdlon |
---|
| 3070 | zcfrac = zclm(jl, jk1, jk+1) - zclm(jl, jk1, jk) |
---|
| 3071 | zfd(jl) = zfd(jl) + zcfrac*zdnf(jl, jk+2, jk1) |
---|
| 3072 | END DO |
---|
| 3073 | END DO |
---|
| 3074 | |
---|
| 3075 | DO jl = 1, kdlon |
---|
| 3076 | pflux(jl, 2, jk1) = zfd(jl) |
---|
| 3077 | END DO |
---|
| 3078 | |
---|
| 3079 | END DO |
---|
| 3080 | |
---|
| 3081 | ! * 3.2 UPWARD FLUX AT THE SURFACE |
---|
| 3082 | ! -------------------------- |
---|
| 3083 | |
---|
| 3084 | |
---|
| 3085 | DO jl = 1, kdlon |
---|
| 3086 | pflux(jl, 1, 1) = pemis(jl)*pbsuin(jl) - (1.-pemis(jl))*pflux(jl, 2, 1) |
---|
| 3087 | END DO |
---|
| 3088 | |
---|
| 3089 | ! * 3.3 UPWARD FLUXES |
---|
| 3090 | ! ------------- |
---|
| 3091 | |
---|
| 3092 | |
---|
| 3093 | DO jk1 = 2, kflev + 1 |
---|
| 3094 | |
---|
| 3095 | ! * CONTRIBUTION FROM CLEAR-SKY FRACTION |
---|
| 3096 | |
---|
| 3097 | DO jl = 1, kdlon |
---|
| 3098 | zfu(jl) = (1.-zclm(jl,jk1,1))*zupf(jl, 1, jk1) |
---|
| 3099 | END DO |
---|
| 3100 | |
---|
| 3101 | ! * CONTRIBUTION FROM ADJACENT CLOUD |
---|
| 3102 | |
---|
| 3103 | DO jl = 1, kdlon |
---|
| 3104 | zfu(jl) = zfu(jl) + zclm(jl, jk1, jk1-1)*zupf(jl, jk1, jk1) |
---|
| 3105 | END DO |
---|
| 3106 | |
---|
| 3107 | ! * CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
---|
| 3108 | |
---|
| 3109 | DO jk = 2, jk1 - 1 |
---|
| 3110 | DO jl = 1, kdlon |
---|
| 3111 | zcfrac = zclm(jl, jk1, jk-1) - zclm(jl, jk1, jk) |
---|
| 3112 | zfu(jl) = zfu(jl) + zcfrac*zupf(jl, jk, jk1) |
---|
| 3113 | END DO |
---|
| 3114 | END DO |
---|
| 3115 | |
---|
| 3116 | DO jl = 1, kdlon |
---|
| 3117 | pflux(jl, 1, jk1) = zfu(jl) |
---|
| 3118 | END DO |
---|
| 3119 | |
---|
| 3120 | END DO |
---|
| 3121 | |
---|
| 3122 | |
---|
| 3123 | END IF |
---|
| 3124 | |
---|
| 3125 | ! * 2.3 END OF CLOUD EFFECT COMPUTATIONS |
---|
| 3126 | |
---|
| 3127 | |
---|
| 3128 | IF (.NOT. levoigt) THEN |
---|
| 3129 | DO jl = 1, kdlon |
---|
| 3130 | zfn10(jl) = pflux(jl, 1, klim) + pflux(jl, 2, klim) |
---|
| 3131 | END DO |
---|
| 3132 | DO jk = klim + 1, kflev + 1 |
---|
| 3133 | DO jl = 1, kdlon |
---|
| 3134 | zfn10(jl) = zfn10(jl) + pcts(jl, jk-1) |
---|
| 3135 | pflux(jl, 1, jk) = zfn10(jl) |
---|
| 3136 | pflux(jl, 2, jk) = 0.0 |
---|
| 3137 | END DO |
---|
| 3138 | END DO |
---|
| 3139 | END IF |
---|
| 3140 | |
---|
| 3141 | RETURN |
---|
| 3142 | END SUBROUTINE lwc_lmdar4 |
---|
| 3143 | SUBROUTINE lwb_lmdar4(pdt0, ptave, ptl, pb, pbint, pbsuin, pbsur, pbtop, & |
---|
| 3144 | pdbsl, pga, pgb, pgasur, pgbsur, pgatop, pgbtop) |
---|
[5314] | 3145 | USE raddimlw_mod_h |
---|
| 3146 | USE dimphy |
---|
[1992] | 3147 | USE radiation_ar4_param, ONLY: tintp, xp, ga, gb |
---|
| 3148 | IMPLICIT NONE |
---|
| 3149 | |
---|
| 3150 | ! ----------------------------------------------------------------------- |
---|
| 3151 | ! PURPOSE. |
---|
| 3152 | ! -------- |
---|
| 3153 | ! COMPUTES PLANCK FUNCTIONS |
---|
| 3154 | |
---|
| 3155 | ! EXPLICIT ARGUMENTS : |
---|
| 3156 | ! -------------------- |
---|
| 3157 | ! ==== INPUTS === |
---|
| 3158 | ! PDT0 : (KDLON) ; SURFACE TEMPERATURE DISCONTINUITY |
---|
| 3159 | ! PTAVE : (KDLON,KFLEV) ; TEMPERATURE |
---|
| 3160 | ! PTL : (KDLON,0:KFLEV) ; HALF LEVEL TEMPERATURE |
---|
| 3161 | ! ==== OUTPUTS === |
---|
| 3162 | ! PB : (KDLON,Ninter,KFLEV+1); SPECTRAL HALF LEVEL PLANCK FUNCTION |
---|
| 3163 | ! PBINT : (KDLON,KFLEV+1) ; HALF LEVEL PLANCK FUNCTION |
---|
| 3164 | ! PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
---|
| 3165 | ! PBSUR : (KDLON,Ninter) ; SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 3166 | ! PBTOP : (KDLON,Ninter) ; TOP SPECTRAL PLANCK FUNCTION |
---|
| 3167 | ! PDBSL : (KDLON,Ninter,KFLEV*2); SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 3168 | ! PGA : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3169 | ! PGB : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3170 | ! PGASUR, PGBSUR (KDLON,8,2) ; SURFACE PADE APPROXIMANTS |
---|
| 3171 | ! PGATOP, PGBTOP (KDLON,8,2) ; T.O.A. PADE APPROXIMANTS |
---|
| 3172 | |
---|
| 3173 | ! IMPLICIT ARGUMENTS : NONE |
---|
| 3174 | ! -------------------- |
---|
| 3175 | |
---|
| 3176 | ! METHOD. |
---|
| 3177 | ! ------- |
---|
| 3178 | |
---|
| 3179 | ! 1. COMPUTES THE PLANCK FUNCTION ON ALL LEVELS AND HALF LEVELS |
---|
| 3180 | ! FROM A POLYNOMIAL DEVELOPMENT OF PLANCK FUNCTION |
---|
| 3181 | |
---|
| 3182 | ! REFERENCE. |
---|
| 3183 | ! ---------- |
---|
| 3184 | |
---|
| 3185 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 3186 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS " |
---|
| 3187 | |
---|
| 3188 | ! AUTHOR. |
---|
| 3189 | ! ------- |
---|
| 3190 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 3191 | |
---|
| 3192 | ! MODIFICATIONS. |
---|
| 3193 | ! -------------- |
---|
| 3194 | ! ORIGINAL : 89-07-14 |
---|
| 3195 | |
---|
| 3196 | ! ----------------------------------------------------------------------- |
---|
| 3197 | |
---|
| 3198 | ! ARGUMENTS: |
---|
| 3199 | |
---|
| 3200 | REAL (KIND=8) pdt0(kdlon) |
---|
| 3201 | REAL (KIND=8) ptave(kdlon, kflev) |
---|
| 3202 | REAL (KIND=8) ptl(kdlon, kflev+1) |
---|
| 3203 | |
---|
| 3204 | REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF LEVEL PLANCK FUNCTION |
---|
| 3205 | REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF LEVEL PLANCK FUNCTION |
---|
| 3206 | REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
| 3207 | REAL (KIND=8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 3208 | REAL (KIND=8) pbtop(kdlon, ninter) ! TOP SPECTRAL PLANCK FUNCTION |
---|
| 3209 | REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 3210 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3211 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3212 | REAL (KIND=8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
| 3213 | REAL (KIND=8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
| 3214 | REAL (KIND=8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
| 3215 | REAL (KIND=8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
| 3216 | |
---|
| 3217 | ! ------------------------------------------------------------------------- |
---|
| 3218 | ! * LOCAL VARIABLES: |
---|
| 3219 | INTEGER indb(kdlon), inds(kdlon) |
---|
| 3220 | REAL (KIND=8) zblay(kdlon, kflev), zblev(kdlon, kflev+1) |
---|
| 3221 | REAL (KIND=8) zres(kdlon), zres2(kdlon), zti(kdlon), zti2(kdlon) |
---|
| 3222 | |
---|
| 3223 | INTEGER jk, jl, ic, jnu, jf, jg |
---|
| 3224 | INTEGER jk1, jk2 |
---|
| 3225 | INTEGER k, j, ixtox, indto, ixtx, indt |
---|
| 3226 | INTEGER indsu, indtp |
---|
| 3227 | REAL (KIND=8) zdsto1, zdstox, zdst1, zdstx |
---|
| 3228 | |
---|
| 3229 | ! * Quelques parametres: |
---|
| 3230 | REAL (KIND=8) tstand |
---|
| 3231 | PARAMETER (tstand=250.0) |
---|
| 3232 | REAL (KIND=8) tstp |
---|
| 3233 | PARAMETER (tstp=12.5) |
---|
| 3234 | INTEGER mxixt |
---|
| 3235 | PARAMETER (mxixt=10) |
---|
| 3236 | |
---|
| 3237 | ! * Used Data Block: |
---|
| 3238 | ! REAL*8 TINTP(11) |
---|
| 3239 | ! SAVE TINTP |
---|
| 3240 | ! c$OMP THREADPRIVATE(TINTP) |
---|
| 3241 | ! REAL*8 GA(11,16,3), GB(11,16,3) |
---|
| 3242 | ! SAVE GA, GB |
---|
| 3243 | ! c$OMP THREADPRIVATE(GA, GB) |
---|
| 3244 | ! REAL*8 XP(6,6) |
---|
| 3245 | ! SAVE XP |
---|
| 3246 | ! c$OMP THREADPRIVATE(XP) |
---|
| 3247 | |
---|
| 3248 | ! DATA TINTP / 187.5, 200., 212.5, 225., 237.5, 250., |
---|
| 3249 | ! S 262.5, 275., 287.5, 300., 312.5 / |
---|
| 3250 | ! ----------------------------------------------------------------------- |
---|
| 3251 | ! -- WATER VAPOR -- INT.1 -- 0- 500 CM-1 -- FROM ABS225 ---------------- |
---|
| 3252 | |
---|
| 3253 | |
---|
| 3254 | |
---|
| 3255 | |
---|
| 3256 | ! -- R.D. -- G = - 0.2 SLA |
---|
| 3257 | |
---|
| 3258 | |
---|
| 3259 | ! ----- INTERVAL = 1 ----- T = 187.5 |
---|
| 3260 | |
---|
| 3261 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3262 | ! DATA (GA( 1, 1,IC),IC=1,3) / |
---|
| 3263 | ! S 0.63499072E-02,-0.99506586E-03, 0.00000000E+00/ |
---|
| 3264 | ! DATA (GB( 1, 1,IC),IC=1,3) / |
---|
| 3265 | ! S 0.63499072E-02, 0.97222852E-01, 0.10000000E+01/ |
---|
| 3266 | ! DATA (GA( 1, 2,IC),IC=1,3) / |
---|
| 3267 | ! S 0.77266491E-02,-0.11661515E-02, 0.00000000E+00/ |
---|
| 3268 | ! DATA (GB( 1, 2,IC),IC=1,3) / |
---|
| 3269 | ! S 0.77266491E-02, 0.10681591E+00, 0.10000000E+01/ |
---|
| 3270 | |
---|
| 3271 | ! ----- INTERVAL = 1 ----- T = 200.0 |
---|
| 3272 | |
---|
| 3273 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3274 | ! DATA (GA( 2, 1,IC),IC=1,3) / |
---|
| 3275 | ! S 0.65566348E-02,-0.10184169E-02, 0.00000000E+00/ |
---|
| 3276 | ! DATA (GB( 2, 1,IC),IC=1,3) / |
---|
| 3277 | ! S 0.65566348E-02, 0.98862238E-01, 0.10000000E+01/ |
---|
| 3278 | ! DATA (GA( 2, 2,IC),IC=1,3) / |
---|
| 3279 | ! S 0.81323287E-02,-0.11886130E-02, 0.00000000E+00/ |
---|
| 3280 | ! DATA (GB( 2, 2,IC),IC=1,3) / |
---|
| 3281 | ! S 0.81323287E-02, 0.10921298E+00, 0.10000000E+01/ |
---|
| 3282 | |
---|
| 3283 | ! ----- INTERVAL = 1 ----- T = 212.5 |
---|
| 3284 | |
---|
| 3285 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3286 | ! DATA (GA( 3, 1,IC),IC=1,3) / |
---|
| 3287 | ! S 0.67849730E-02,-0.10404730E-02, 0.00000000E+00/ |
---|
| 3288 | ! DATA (GB( 3, 1,IC),IC=1,3) / |
---|
| 3289 | ! S 0.67849730E-02, 0.10061504E+00, 0.10000000E+01/ |
---|
| 3290 | ! DATA (GA( 3, 2,IC),IC=1,3) / |
---|
| 3291 | ! S 0.86507620E-02,-0.12139929E-02, 0.00000000E+00/ |
---|
| 3292 | ! DATA (GB( 3, 2,IC),IC=1,3) / |
---|
| 3293 | ! S 0.86507620E-02, 0.11198225E+00, 0.10000000E+01/ |
---|
| 3294 | |
---|
| 3295 | ! ----- INTERVAL = 1 ----- T = 225.0 |
---|
| 3296 | |
---|
| 3297 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3298 | ! DATA (GA( 4, 1,IC),IC=1,3) / |
---|
| 3299 | ! S 0.70481947E-02,-0.10621792E-02, 0.00000000E+00/ |
---|
| 3300 | ! DATA (GB( 4, 1,IC),IC=1,3) / |
---|
| 3301 | ! S 0.70481947E-02, 0.10256222E+00, 0.10000000E+01/ |
---|
| 3302 | ! DATA (GA( 4, 2,IC),IC=1,3) / |
---|
| 3303 | ! S 0.92776391E-02,-0.12445811E-02, 0.00000000E+00/ |
---|
| 3304 | ! DATA (GB( 4, 2,IC),IC=1,3) / |
---|
| 3305 | ! S 0.92776391E-02, 0.11487826E+00, 0.10000000E+01/ |
---|
| 3306 | |
---|
| 3307 | ! ----- INTERVAL = 1 ----- T = 237.5 |
---|
| 3308 | |
---|
| 3309 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3310 | ! DATA (GA( 5, 1,IC),IC=1,3) / |
---|
| 3311 | ! S 0.73585943E-02,-0.10847662E-02, 0.00000000E+00/ |
---|
| 3312 | ! DATA (GB( 5, 1,IC),IC=1,3) / |
---|
| 3313 | ! S 0.73585943E-02, 0.10475952E+00, 0.10000000E+01/ |
---|
| 3314 | ! DATA (GA( 5, 2,IC),IC=1,3) / |
---|
| 3315 | ! S 0.99806312E-02,-0.12807672E-02, 0.00000000E+00/ |
---|
| 3316 | ! DATA (GB( 5, 2,IC),IC=1,3) / |
---|
| 3317 | ! S 0.99806312E-02, 0.11751113E+00, 0.10000000E+01/ |
---|
| 3318 | |
---|
| 3319 | ! ----- INTERVAL = 1 ----- T = 250.0 |
---|
| 3320 | |
---|
| 3321 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3322 | ! DATA (GA( 6, 1,IC),IC=1,3) / |
---|
| 3323 | ! S 0.77242818E-02,-0.11094726E-02, 0.00000000E+00/ |
---|
| 3324 | ! DATA (GB( 6, 1,IC),IC=1,3) / |
---|
| 3325 | ! S 0.77242818E-02, 0.10720986E+00, 0.10000000E+01/ |
---|
| 3326 | ! DATA (GA( 6, 2,IC),IC=1,3) / |
---|
| 3327 | ! S 0.10709803E-01,-0.13208251E-02, 0.00000000E+00/ |
---|
| 3328 | ! DATA (GB( 6, 2,IC),IC=1,3) / |
---|
| 3329 | ! S 0.10709803E-01, 0.11951535E+00, 0.10000000E+01/ |
---|
| 3330 | |
---|
| 3331 | ! ----- INTERVAL = 1 ----- T = 262.5 |
---|
| 3332 | |
---|
| 3333 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3334 | ! DATA (GA( 7, 1,IC),IC=1,3) / |
---|
| 3335 | ! S 0.81472693E-02,-0.11372949E-02, 0.00000000E+00/ |
---|
| 3336 | ! DATA (GB( 7, 1,IC),IC=1,3) / |
---|
| 3337 | ! S 0.81472693E-02, 0.10985370E+00, 0.10000000E+01/ |
---|
| 3338 | ! DATA (GA( 7, 2,IC),IC=1,3) / |
---|
| 3339 | ! S 0.11414739E-01,-0.13619034E-02, 0.00000000E+00/ |
---|
| 3340 | ! DATA (GB( 7, 2,IC),IC=1,3) / |
---|
| 3341 | ! S 0.11414739E-01, 0.12069945E+00, 0.10000000E+01/ |
---|
| 3342 | |
---|
| 3343 | ! ----- INTERVAL = 1 ----- T = 275.0 |
---|
| 3344 | |
---|
| 3345 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3346 | ! DATA (GA( 8, 1,IC),IC=1,3) / |
---|
| 3347 | ! S 0.86227527E-02,-0.11687683E-02, 0.00000000E+00/ |
---|
| 3348 | ! DATA (GB( 8, 1,IC),IC=1,3) / |
---|
| 3349 | ! S 0.86227527E-02, 0.11257633E+00, 0.10000000E+01/ |
---|
| 3350 | ! DATA (GA( 8, 2,IC),IC=1,3) / |
---|
| 3351 | ! S 0.12058772E-01,-0.14014165E-02, 0.00000000E+00/ |
---|
| 3352 | ! DATA (GB( 8, 2,IC),IC=1,3) / |
---|
| 3353 | ! S 0.12058772E-01, 0.12108524E+00, 0.10000000E+01/ |
---|
| 3354 | |
---|
| 3355 | ! ----- INTERVAL = 1 ----- T = 287.5 |
---|
| 3356 | |
---|
| 3357 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3358 | ! DATA (GA( 9, 1,IC),IC=1,3) / |
---|
| 3359 | ! S 0.91396814E-02,-0.12038314E-02, 0.00000000E+00/ |
---|
| 3360 | ! DATA (GB( 9, 1,IC),IC=1,3) / |
---|
| 3361 | ! S 0.91396814E-02, 0.11522980E+00, 0.10000000E+01/ |
---|
| 3362 | ! DATA (GA( 9, 2,IC),IC=1,3) / |
---|
| 3363 | ! S 0.12623992E-01,-0.14378639E-02, 0.00000000E+00/ |
---|
| 3364 | ! DATA (GB( 9, 2,IC),IC=1,3) / |
---|
| 3365 | ! S 0.12623992E-01, 0.12084229E+00, 0.10000000E+01/ |
---|
| 3366 | |
---|
| 3367 | ! ----- INTERVAL = 1 ----- T = 300.0 |
---|
| 3368 | |
---|
| 3369 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3370 | ! DATA (GA(10, 1,IC),IC=1,3) / |
---|
| 3371 | ! S 0.96825438E-02,-0.12418367E-02, 0.00000000E+00/ |
---|
| 3372 | ! DATA (GB(10, 1,IC),IC=1,3) / |
---|
| 3373 | ! S 0.96825438E-02, 0.11766343E+00, 0.10000000E+01/ |
---|
| 3374 | ! DATA (GA(10, 2,IC),IC=1,3) / |
---|
| 3375 | ! S 0.13108146E-01,-0.14708488E-02, 0.00000000E+00/ |
---|
| 3376 | ! DATA (GB(10, 2,IC),IC=1,3) / |
---|
| 3377 | ! S 0.13108146E-01, 0.12019005E+00, 0.10000000E+01/ |
---|
| 3378 | |
---|
| 3379 | ! ----- INTERVAL = 1 ----- T = 312.5 |
---|
| 3380 | |
---|
| 3381 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3382 | ! DATA (GA(11, 1,IC),IC=1,3) / |
---|
| 3383 | ! S 0.10233955E-01,-0.12817135E-02, 0.00000000E+00/ |
---|
| 3384 | ! DATA (GB(11, 1,IC),IC=1,3) / |
---|
| 3385 | ! S 0.10233955E-01, 0.11975320E+00, 0.10000000E+01/ |
---|
| 3386 | ! DATA (GA(11, 2,IC),IC=1,3) / |
---|
| 3387 | ! S 0.13518390E-01,-0.15006791E-02, 0.00000000E+00/ |
---|
| 3388 | ! DATA (GB(11, 2,IC),IC=1,3) / |
---|
| 3389 | ! S 0.13518390E-01, 0.11932684E+00, 0.10000000E+01/ |
---|
| 3390 | |
---|
| 3391 | |
---|
| 3392 | |
---|
| 3393 | ! --- WATER VAPOR --- INTERVAL 2 -- 500-800 CM-1--- FROM ABS225 --------- |
---|
| 3394 | |
---|
| 3395 | |
---|
| 3396 | |
---|
| 3397 | |
---|
| 3398 | ! --- R.D. --- G = 0.02 + 0.50 / ( 1 + 4.5 U ) |
---|
| 3399 | |
---|
| 3400 | |
---|
| 3401 | ! ----- INTERVAL = 2 ----- T = 187.5 |
---|
| 3402 | |
---|
| 3403 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3404 | ! DATA (GA( 1, 3,IC),IC=1,3) / |
---|
| 3405 | ! S 0.11644593E+01, 0.41243390E+00, 0.00000000E+00/ |
---|
| 3406 | ! DATA (GB( 1, 3,IC),IC=1,3) / |
---|
| 3407 | ! S 0.11644593E+01, 0.10346097E+01, 0.10000000E+01/ |
---|
| 3408 | ! DATA (GA( 1, 4,IC),IC=1,3) / |
---|
| 3409 | ! S 0.12006968E+01, 0.48318936E+00, 0.00000000E+00/ |
---|
| 3410 | ! DATA (GB( 1, 4,IC),IC=1,3) / |
---|
| 3411 | ! S 0.12006968E+01, 0.10626130E+01, 0.10000000E+01/ |
---|
| 3412 | |
---|
| 3413 | ! ----- INTERVAL = 2 ----- T = 200.0 |
---|
| 3414 | |
---|
| 3415 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3416 | ! DATA (GA( 2, 3,IC),IC=1,3) / |
---|
| 3417 | ! S 0.11747203E+01, 0.43407282E+00, 0.00000000E+00/ |
---|
| 3418 | ! DATA (GB( 2, 3,IC),IC=1,3) / |
---|
| 3419 | ! S 0.11747203E+01, 0.10433655E+01, 0.10000000E+01/ |
---|
| 3420 | ! DATA (GA( 2, 4,IC),IC=1,3) / |
---|
| 3421 | ! S 0.12108196E+01, 0.50501827E+00, 0.00000000E+00/ |
---|
| 3422 | ! DATA (GB( 2, 4,IC),IC=1,3) / |
---|
| 3423 | ! S 0.12108196E+01, 0.10716026E+01, 0.10000000E+01/ |
---|
| 3424 | |
---|
| 3425 | ! ----- INTERVAL = 2 ----- T = 212.5 |
---|
| 3426 | |
---|
| 3427 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3428 | ! DATA (GA( 3, 3,IC),IC=1,3) / |
---|
| 3429 | ! S 0.11837872E+01, 0.45331413E+00, 0.00000000E+00/ |
---|
| 3430 | ! DATA (GB( 3, 3,IC),IC=1,3) / |
---|
| 3431 | ! S 0.11837872E+01, 0.10511933E+01, 0.10000000E+01/ |
---|
| 3432 | ! DATA (GA( 3, 4,IC),IC=1,3) / |
---|
| 3433 | ! S 0.12196717E+01, 0.52409502E+00, 0.00000000E+00/ |
---|
| 3434 | ! DATA (GB( 3, 4,IC),IC=1,3) / |
---|
| 3435 | ! S 0.12196717E+01, 0.10795108E+01, 0.10000000E+01/ |
---|
| 3436 | |
---|
| 3437 | ! ----- INTERVAL = 2 ----- T = 225.0 |
---|
| 3438 | |
---|
| 3439 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3440 | ! DATA (GA( 4, 3,IC),IC=1,3) / |
---|
| 3441 | ! S 0.11918561E+01, 0.47048604E+00, 0.00000000E+00/ |
---|
| 3442 | ! DATA (GB( 4, 3,IC),IC=1,3) / |
---|
| 3443 | ! S 0.11918561E+01, 0.10582150E+01, 0.10000000E+01/ |
---|
| 3444 | ! DATA (GA( 4, 4,IC),IC=1,3) / |
---|
| 3445 | ! S 0.12274493E+01, 0.54085277E+00, 0.00000000E+00/ |
---|
| 3446 | ! DATA (GB( 4, 4,IC),IC=1,3) / |
---|
| 3447 | ! S 0.12274493E+01, 0.10865006E+01, 0.10000000E+01/ |
---|
| 3448 | |
---|
| 3449 | ! ----- INTERVAL = 2 ----- T = 237.5 |
---|
| 3450 | |
---|
| 3451 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3452 | ! DATA (GA( 5, 3,IC),IC=1,3) / |
---|
| 3453 | ! S 0.11990757E+01, 0.48586286E+00, 0.00000000E+00/ |
---|
| 3454 | ! DATA (GB( 5, 3,IC),IC=1,3) / |
---|
| 3455 | ! S 0.11990757E+01, 0.10645317E+01, 0.10000000E+01/ |
---|
| 3456 | ! DATA (GA( 5, 4,IC),IC=1,3) / |
---|
| 3457 | ! S 0.12343189E+01, 0.55565422E+00, 0.00000000E+00/ |
---|
| 3458 | ! DATA (GB( 5, 4,IC),IC=1,3) / |
---|
| 3459 | ! S 0.12343189E+01, 0.10927103E+01, 0.10000000E+01/ |
---|
| 3460 | |
---|
| 3461 | ! ----- INTERVAL = 2 ----- T = 250.0 |
---|
| 3462 | |
---|
| 3463 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3464 | ! DATA (GA( 6, 3,IC),IC=1,3) / |
---|
| 3465 | ! S 0.12055643E+01, 0.49968044E+00, 0.00000000E+00/ |
---|
| 3466 | ! DATA (GB( 6, 3,IC),IC=1,3) / |
---|
| 3467 | ! S 0.12055643E+01, 0.10702313E+01, 0.10000000E+01/ |
---|
| 3468 | ! DATA (GA( 6, 4,IC),IC=1,3) / |
---|
| 3469 | ! S 0.12404147E+01, 0.56878618E+00, 0.00000000E+00/ |
---|
| 3470 | ! DATA (GB( 6, 4,IC),IC=1,3) / |
---|
| 3471 | ! S 0.12404147E+01, 0.10982489E+01, 0.10000000E+01/ |
---|
| 3472 | |
---|
| 3473 | ! ----- INTERVAL = 2 ----- T = 262.5 |
---|
| 3474 | |
---|
| 3475 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3476 | ! DATA (GA( 7, 3,IC),IC=1,3) / |
---|
| 3477 | ! S 0.12114186E+01, 0.51214132E+00, 0.00000000E+00/ |
---|
| 3478 | ! DATA (GB( 7, 3,IC),IC=1,3) / |
---|
| 3479 | ! S 0.12114186E+01, 0.10753907E+01, 0.10000000E+01/ |
---|
| 3480 | ! DATA (GA( 7, 4,IC),IC=1,3) / |
---|
| 3481 | ! S 0.12458431E+01, 0.58047395E+00, 0.00000000E+00/ |
---|
| 3482 | ! DATA (GB( 7, 4,IC),IC=1,3) / |
---|
| 3483 | ! S 0.12458431E+01, 0.11032019E+01, 0.10000000E+01/ |
---|
| 3484 | |
---|
| 3485 | ! ----- INTERVAL = 2 ----- T = 275.0 |
---|
| 3486 | |
---|
| 3487 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3488 | ! DATA (GA( 8, 3,IC),IC=1,3) / |
---|
| 3489 | ! S 0.12167192E+01, 0.52341830E+00, 0.00000000E+00/ |
---|
| 3490 | ! DATA (GB( 8, 3,IC),IC=1,3) / |
---|
| 3491 | ! S 0.12167192E+01, 0.10800762E+01, 0.10000000E+01/ |
---|
| 3492 | ! DATA (GA( 8, 4,IC),IC=1,3) / |
---|
| 3493 | ! S 0.12506907E+01, 0.59089894E+00, 0.00000000E+00/ |
---|
| 3494 | ! DATA (GB( 8, 4,IC),IC=1,3) / |
---|
| 3495 | ! S 0.12506907E+01, 0.11076379E+01, 0.10000000E+01/ |
---|
| 3496 | |
---|
| 3497 | ! ----- INTERVAL = 2 ----- T = 287.5 |
---|
| 3498 | |
---|
| 3499 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3500 | ! DATA (GA( 9, 3,IC),IC=1,3) / |
---|
| 3501 | ! S 0.12215344E+01, 0.53365803E+00, 0.00000000E+00/ |
---|
| 3502 | ! DATA (GB( 9, 3,IC),IC=1,3) / |
---|
| 3503 | ! S 0.12215344E+01, 0.10843446E+01, 0.10000000E+01/ |
---|
| 3504 | ! DATA (GA( 9, 4,IC),IC=1,3) / |
---|
| 3505 | ! S 0.12550299E+01, 0.60021475E+00, 0.00000000E+00/ |
---|
| 3506 | ! DATA (GB( 9, 4,IC),IC=1,3) / |
---|
| 3507 | ! S 0.12550299E+01, 0.11116160E+01, 0.10000000E+01/ |
---|
| 3508 | |
---|
| 3509 | ! ----- INTERVAL = 2 ----- T = 300.0 |
---|
| 3510 | |
---|
| 3511 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3512 | ! DATA (GA(10, 3,IC),IC=1,3) / |
---|
| 3513 | ! S 0.12259226E+01, 0.54298448E+00, 0.00000000E+00/ |
---|
| 3514 | ! DATA (GB(10, 3,IC),IC=1,3) / |
---|
| 3515 | ! S 0.12259226E+01, 0.10882439E+01, 0.10000000E+01/ |
---|
| 3516 | ! DATA (GA(10, 4,IC),IC=1,3) / |
---|
| 3517 | ! S 0.12589256E+01, 0.60856112E+00, 0.00000000E+00/ |
---|
| 3518 | ! DATA (GB(10, 4,IC),IC=1,3) / |
---|
| 3519 | ! S 0.12589256E+01, 0.11151910E+01, 0.10000000E+01/ |
---|
| 3520 | |
---|
| 3521 | ! ----- INTERVAL = 2 ----- T = 312.5 |
---|
| 3522 | |
---|
| 3523 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3524 | ! DATA (GA(11, 3,IC),IC=1,3) / |
---|
| 3525 | ! S 0.12299344E+01, 0.55150227E+00, 0.00000000E+00/ |
---|
| 3526 | ! DATA (GB(11, 3,IC),IC=1,3) / |
---|
| 3527 | ! S 0.12299344E+01, 0.10918144E+01, 0.10000000E+01/ |
---|
| 3528 | ! DATA (GA(11, 4,IC),IC=1,3) / |
---|
| 3529 | ! S 0.12624402E+01, 0.61607594E+00, 0.00000000E+00/ |
---|
| 3530 | ! DATA (GB(11, 4,IC),IC=1,3) / |
---|
| 3531 | ! S 0.12624402E+01, 0.11184188E+01, 0.10000000E+01/ |
---|
| 3532 | |
---|
| 3533 | |
---|
| 3534 | |
---|
| 3535 | |
---|
| 3536 | |
---|
| 3537 | |
---|
| 3538 | ! - WATER VAPOR - INT. 3 -- 800-970 + 1110-1250 CM-1 -- FIT FROM 215 IS - |
---|
| 3539 | |
---|
| 3540 | |
---|
| 3541 | ! -- WATER VAPOR LINES IN THE WINDOW REGION (800-1250 CM-1) |
---|
| 3542 | |
---|
| 3543 | |
---|
| 3544 | |
---|
| 3545 | ! --- G = 3.875E-03 --------------- |
---|
| 3546 | |
---|
| 3547 | ! ----- INTERVAL = 3 ----- T = 187.5 |
---|
| 3548 | |
---|
| 3549 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3550 | ! DATA (GA( 1, 7,IC),IC=1,3) / |
---|
| 3551 | ! S 0.10192131E+02, 0.80737799E+01, 0.00000000E+00/ |
---|
| 3552 | ! DATA (GB( 1, 7,IC),IC=1,3) / |
---|
| 3553 | ! S 0.10192131E+02, 0.82623280E+01, 0.10000000E+01/ |
---|
| 3554 | ! DATA (GA( 1, 8,IC),IC=1,3) / |
---|
| 3555 | ! S 0.92439050E+01, 0.77425778E+01, 0.00000000E+00/ |
---|
| 3556 | ! DATA (GB( 1, 8,IC),IC=1,3) / |
---|
| 3557 | ! S 0.92439050E+01, 0.79342219E+01, 0.10000000E+01/ |
---|
| 3558 | |
---|
| 3559 | ! ----- INTERVAL = 3 ----- T = 200.0 |
---|
| 3560 | |
---|
| 3561 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3562 | ! DATA (GA( 2, 7,IC),IC=1,3) / |
---|
| 3563 | ! S 0.97258602E+01, 0.79171158E+01, 0.00000000E+00/ |
---|
| 3564 | ! DATA (GB( 2, 7,IC),IC=1,3) / |
---|
| 3565 | ! S 0.97258602E+01, 0.81072291E+01, 0.10000000E+01/ |
---|
| 3566 | ! DATA (GA( 2, 8,IC),IC=1,3) / |
---|
| 3567 | ! S 0.87567422E+01, 0.75443460E+01, 0.00000000E+00/ |
---|
| 3568 | ! DATA (GB( 2, 8,IC),IC=1,3) / |
---|
| 3569 | ! S 0.87567422E+01, 0.77373458E+01, 0.10000000E+01/ |
---|
| 3570 | |
---|
| 3571 | ! ----- INTERVAL = 3 ----- T = 212.5 |
---|
| 3572 | |
---|
| 3573 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3574 | ! DATA (GA( 3, 7,IC),IC=1,3) / |
---|
| 3575 | ! S 0.92992890E+01, 0.77609605E+01, 0.00000000E+00/ |
---|
| 3576 | ! DATA (GB( 3, 7,IC),IC=1,3) / |
---|
| 3577 | ! S 0.92992890E+01, 0.79523834E+01, 0.10000000E+01/ |
---|
| 3578 | ! DATA (GA( 3, 8,IC),IC=1,3) / |
---|
| 3579 | ! S 0.83270144E+01, 0.73526151E+01, 0.00000000E+00/ |
---|
| 3580 | ! DATA (GB( 3, 8,IC),IC=1,3) / |
---|
| 3581 | ! S 0.83270144E+01, 0.75467334E+01, 0.10000000E+01/ |
---|
| 3582 | |
---|
| 3583 | ! ----- INTERVAL = 3 ----- T = 225.0 |
---|
| 3584 | |
---|
| 3585 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3586 | ! DATA (GA( 4, 7,IC),IC=1,3) / |
---|
| 3587 | ! S 0.89154021E+01, 0.76087371E+01, 0.00000000E+00/ |
---|
| 3588 | ! DATA (GB( 4, 7,IC),IC=1,3) / |
---|
| 3589 | ! S 0.89154021E+01, 0.78012527E+01, 0.10000000E+01/ |
---|
| 3590 | ! DATA (GA( 4, 8,IC),IC=1,3) / |
---|
| 3591 | ! S 0.79528337E+01, 0.71711188E+01, 0.00000000E+00/ |
---|
| 3592 | ! DATA (GB( 4, 8,IC),IC=1,3) / |
---|
| 3593 | ! S 0.79528337E+01, 0.73661786E+01, 0.10000000E+01/ |
---|
| 3594 | |
---|
| 3595 | ! ----- INTERVAL = 3 ----- T = 237.5 |
---|
| 3596 | |
---|
| 3597 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3598 | ! DATA (GA( 5, 7,IC),IC=1,3) / |
---|
| 3599 | ! S 0.85730084E+01, 0.74627112E+01, 0.00000000E+00/ |
---|
| 3600 | ! DATA (GB( 5, 7,IC),IC=1,3) / |
---|
| 3601 | ! S 0.85730084E+01, 0.76561458E+01, 0.10000000E+01/ |
---|
| 3602 | ! DATA (GA( 5, 8,IC),IC=1,3) / |
---|
| 3603 | ! S 0.76286839E+01, 0.70015571E+01, 0.00000000E+00/ |
---|
| 3604 | ! DATA (GB( 5, 8,IC),IC=1,3) / |
---|
| 3605 | ! S 0.76286839E+01, 0.71974319E+01, 0.10000000E+01/ |
---|
| 3606 | |
---|
| 3607 | ! ----- INTERVAL = 3 ----- T = 250.0 |
---|
| 3608 | |
---|
| 3609 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3610 | ! DATA (GA( 6, 7,IC),IC=1,3) / |
---|
| 3611 | ! S 0.82685838E+01, 0.73239981E+01, 0.00000000E+00/ |
---|
| 3612 | ! DATA (GB( 6, 7,IC),IC=1,3) / |
---|
| 3613 | ! S 0.82685838E+01, 0.75182174E+01, 0.10000000E+01/ |
---|
| 3614 | ! DATA (GA( 6, 8,IC),IC=1,3) / |
---|
| 3615 | ! S 0.73477879E+01, 0.68442532E+01, 0.00000000E+00/ |
---|
| 3616 | ! DATA (GB( 6, 8,IC),IC=1,3) / |
---|
| 3617 | ! S 0.73477879E+01, 0.70408543E+01, 0.10000000E+01/ |
---|
| 3618 | |
---|
| 3619 | ! ----- INTERVAL = 3 ----- T = 262.5 |
---|
| 3620 | |
---|
| 3621 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3622 | ! DATA (GA( 7, 7,IC),IC=1,3) / |
---|
| 3623 | ! S 0.79978921E+01, 0.71929934E+01, 0.00000000E+00/ |
---|
| 3624 | ! DATA (GB( 7, 7,IC),IC=1,3) / |
---|
| 3625 | ! S 0.79978921E+01, 0.73878952E+01, 0.10000000E+01/ |
---|
| 3626 | ! DATA (GA( 7, 8,IC),IC=1,3) / |
---|
| 3627 | ! S 0.71035818E+01, 0.66987996E+01, 0.00000000E+00/ |
---|
| 3628 | ! DATA (GB( 7, 8,IC),IC=1,3) / |
---|
| 3629 | ! S 0.71035818E+01, 0.68960649E+01, 0.10000000E+01/ |
---|
| 3630 | |
---|
| 3631 | ! ----- INTERVAL = 3 ----- T = 275.0 |
---|
| 3632 | |
---|
| 3633 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3634 | ! DATA (GA( 8, 7,IC),IC=1,3) / |
---|
| 3635 | ! S 0.77568055E+01, 0.70697065E+01, 0.00000000E+00/ |
---|
| 3636 | ! DATA (GB( 8, 7,IC),IC=1,3) / |
---|
| 3637 | ! S 0.77568055E+01, 0.72652133E+01, 0.10000000E+01/ |
---|
| 3638 | ! DATA (GA( 8, 8,IC),IC=1,3) / |
---|
| 3639 | ! S 0.68903312E+01, 0.65644820E+01, 0.00000000E+00/ |
---|
| 3640 | ! DATA (GB( 8, 8,IC),IC=1,3) / |
---|
| 3641 | ! S 0.68903312E+01, 0.67623672E+01, 0.10000000E+01/ |
---|
| 3642 | |
---|
| 3643 | ! ----- INTERVAL = 3 ----- T = 287.5 |
---|
| 3644 | |
---|
| 3645 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3646 | ! DATA (GA( 9, 7,IC),IC=1,3) / |
---|
| 3647 | ! S 0.75416266E+01, 0.69539626E+01, 0.00000000E+00/ |
---|
| 3648 | ! DATA (GB( 9, 7,IC),IC=1,3) / |
---|
| 3649 | ! S 0.75416266E+01, 0.71500151E+01, 0.10000000E+01/ |
---|
| 3650 | ! DATA (GA( 9, 8,IC),IC=1,3) / |
---|
| 3651 | ! S 0.67032875E+01, 0.64405267E+01, 0.00000000E+00/ |
---|
| 3652 | ! DATA (GB( 9, 8,IC),IC=1,3) / |
---|
| 3653 | ! S 0.67032875E+01, 0.66389989E+01, 0.10000000E+01/ |
---|
| 3654 | |
---|
| 3655 | ! ----- INTERVAL = 3 ----- T = 300.0 |
---|
| 3656 | |
---|
| 3657 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3658 | ! DATA (GA(10, 7,IC),IC=1,3) / |
---|
| 3659 | ! S 0.73491694E+01, 0.68455144E+01, 0.00000000E+00/ |
---|
| 3660 | ! DATA (GB(10, 7,IC),IC=1,3) / |
---|
| 3661 | ! S 0.73491694E+01, 0.70420667E+01, 0.10000000E+01/ |
---|
| 3662 | ! DATA (GA(10, 8,IC),IC=1,3) / |
---|
| 3663 | ! S 0.65386461E+01, 0.63262376E+01, 0.00000000E+00/ |
---|
| 3664 | ! DATA (GB(10, 8,IC),IC=1,3) / |
---|
| 3665 | ! S 0.65386461E+01, 0.65252707E+01, 0.10000000E+01/ |
---|
| 3666 | |
---|
| 3667 | ! ----- INTERVAL = 3 ----- T = 312.5 |
---|
| 3668 | |
---|
| 3669 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3670 | ! DATA (GA(11, 7,IC),IC=1,3) / |
---|
| 3671 | ! S 0.71767400E+01, 0.67441020E+01, 0.00000000E+00/ |
---|
| 3672 | ! DATA (GB(11, 7,IC),IC=1,3) / |
---|
| 3673 | ! S 0.71767400E+01, 0.69411177E+01, 0.10000000E+01/ |
---|
| 3674 | ! DATA (GA(11, 8,IC),IC=1,3) / |
---|
| 3675 | ! S 0.63934377E+01, 0.62210701E+01, 0.00000000E+00/ |
---|
| 3676 | ! DATA (GB(11, 8,IC),IC=1,3) / |
---|
| 3677 | ! S 0.63934377E+01, 0.64206412E+01, 0.10000000E+01/ |
---|
| 3678 | |
---|
| 3679 | |
---|
| 3680 | ! -- WATER VAPOR -- 970-1110 CM-1 ---------------------------------------- |
---|
| 3681 | |
---|
| 3682 | ! -- G = 3.6E-03 |
---|
| 3683 | |
---|
| 3684 | ! ----- INTERVAL = 4 ----- T = 187.5 |
---|
| 3685 | |
---|
| 3686 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3687 | ! DATA (GA( 1, 9,IC),IC=1,3) / |
---|
| 3688 | ! S 0.24870635E+02, 0.10542131E+02, 0.00000000E+00/ |
---|
| 3689 | ! DATA (GB( 1, 9,IC),IC=1,3) / |
---|
| 3690 | ! S 0.24870635E+02, 0.10656640E+02, 0.10000000E+01/ |
---|
| 3691 | ! DATA (GA( 1,10,IC),IC=1,3) / |
---|
| 3692 | ! S 0.24586283E+02, 0.10490353E+02, 0.00000000E+00/ |
---|
| 3693 | ! DATA (GB( 1,10,IC),IC=1,3) / |
---|
| 3694 | ! S 0.24586283E+02, 0.10605856E+02, 0.10000000E+01/ |
---|
| 3695 | |
---|
| 3696 | ! ----- INTERVAL = 4 ----- T = 200.0 |
---|
| 3697 | |
---|
| 3698 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3699 | ! DATA (GA( 2, 9,IC),IC=1,3) / |
---|
| 3700 | ! S 0.24725591E+02, 0.10515895E+02, 0.00000000E+00/ |
---|
| 3701 | ! DATA (GB( 2, 9,IC),IC=1,3) / |
---|
| 3702 | ! S 0.24725591E+02, 0.10630910E+02, 0.10000000E+01/ |
---|
| 3703 | ! DATA (GA( 2,10,IC),IC=1,3) / |
---|
| 3704 | ! S 0.24441465E+02, 0.10463512E+02, 0.00000000E+00/ |
---|
| 3705 | ! DATA (GB( 2,10,IC),IC=1,3) / |
---|
| 3706 | ! S 0.24441465E+02, 0.10579514E+02, 0.10000000E+01/ |
---|
| 3707 | |
---|
| 3708 | ! ----- INTERVAL = 4 ----- T = 212.5 |
---|
| 3709 | |
---|
| 3710 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3711 | ! DATA (GA( 3, 9,IC),IC=1,3) / |
---|
| 3712 | ! S 0.24600320E+02, 0.10492949E+02, 0.00000000E+00/ |
---|
| 3713 | ! DATA (GB( 3, 9,IC),IC=1,3) / |
---|
| 3714 | ! S 0.24600320E+02, 0.10608399E+02, 0.10000000E+01/ |
---|
| 3715 | ! DATA (GA( 3,10,IC),IC=1,3) / |
---|
| 3716 | ! S 0.24311657E+02, 0.10439183E+02, 0.00000000E+00/ |
---|
| 3717 | ! DATA (GB( 3,10,IC),IC=1,3) / |
---|
| 3718 | ! S 0.24311657E+02, 0.10555632E+02, 0.10000000E+01/ |
---|
| 3719 | |
---|
| 3720 | ! ----- INTERVAL = 4 ----- T = 225.0 |
---|
| 3721 | |
---|
| 3722 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3723 | ! DATA (GA( 4, 9,IC),IC=1,3) / |
---|
| 3724 | ! S 0.24487300E+02, 0.10472049E+02, 0.00000000E+00/ |
---|
| 3725 | ! DATA (GB( 4, 9,IC),IC=1,3) / |
---|
| 3726 | ! S 0.24487300E+02, 0.10587891E+02, 0.10000000E+01/ |
---|
| 3727 | ! DATA (GA( 4,10,IC),IC=1,3) / |
---|
| 3728 | ! S 0.24196167E+02, 0.10417324E+02, 0.00000000E+00/ |
---|
| 3729 | ! DATA (GB( 4,10,IC),IC=1,3) / |
---|
| 3730 | ! S 0.24196167E+02, 0.10534169E+02, 0.10000000E+01/ |
---|
| 3731 | |
---|
| 3732 | ! ----- INTERVAL = 4 ----- T = 237.5 |
---|
| 3733 | |
---|
| 3734 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3735 | ! DATA (GA( 5, 9,IC),IC=1,3) / |
---|
| 3736 | ! S 0.24384935E+02, 0.10452961E+02, 0.00000000E+00/ |
---|
| 3737 | ! DATA (GB( 5, 9,IC),IC=1,3) / |
---|
| 3738 | ! S 0.24384935E+02, 0.10569156E+02, 0.10000000E+01/ |
---|
| 3739 | ! DATA (GA( 5,10,IC),IC=1,3) / |
---|
| 3740 | ! S 0.24093406E+02, 0.10397704E+02, 0.00000000E+00/ |
---|
| 3741 | ! DATA (GB( 5,10,IC),IC=1,3) / |
---|
| 3742 | ! S 0.24093406E+02, 0.10514900E+02, 0.10000000E+01/ |
---|
| 3743 | |
---|
| 3744 | ! ----- INTERVAL = 4 ----- T = 250.0 |
---|
| 3745 | |
---|
| 3746 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3747 | ! DATA (GA( 6, 9,IC),IC=1,3) / |
---|
| 3748 | ! S 0.24292341E+02, 0.10435562E+02, 0.00000000E+00/ |
---|
| 3749 | ! DATA (GB( 6, 9,IC),IC=1,3) / |
---|
| 3750 | ! S 0.24292341E+02, 0.10552075E+02, 0.10000000E+01/ |
---|
| 3751 | ! DATA (GA( 6,10,IC),IC=1,3) / |
---|
| 3752 | ! S 0.24001597E+02, 0.10380038E+02, 0.00000000E+00/ |
---|
| 3753 | ! DATA (GB( 6,10,IC),IC=1,3) / |
---|
| 3754 | ! S 0.24001597E+02, 0.10497547E+02, 0.10000000E+01/ |
---|
| 3755 | |
---|
| 3756 | ! ----- INTERVAL = 4 ----- T = 262.5 |
---|
| 3757 | |
---|
| 3758 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3759 | ! DATA (GA( 7, 9,IC),IC=1,3) / |
---|
| 3760 | ! S 0.24208572E+02, 0.10419710E+02, 0.00000000E+00/ |
---|
| 3761 | ! DATA (GB( 7, 9,IC),IC=1,3) / |
---|
| 3762 | ! S 0.24208572E+02, 0.10536510E+02, 0.10000000E+01/ |
---|
| 3763 | ! DATA (GA( 7,10,IC),IC=1,3) / |
---|
| 3764 | ! S 0.23919098E+02, 0.10364052E+02, 0.00000000E+00/ |
---|
| 3765 | ! DATA (GB( 7,10,IC),IC=1,3) / |
---|
| 3766 | ! S 0.23919098E+02, 0.10481842E+02, 0.10000000E+01/ |
---|
| 3767 | |
---|
| 3768 | ! ----- INTERVAL = 4 ----- T = 275.0 |
---|
| 3769 | |
---|
| 3770 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3771 | ! DATA (GA( 8, 9,IC),IC=1,3) / |
---|
| 3772 | ! S 0.24132642E+02, 0.10405247E+02, 0.00000000E+00/ |
---|
| 3773 | ! DATA (GB( 8, 9,IC),IC=1,3) / |
---|
| 3774 | ! S 0.24132642E+02, 0.10522307E+02, 0.10000000E+01/ |
---|
| 3775 | ! DATA (GA( 8,10,IC),IC=1,3) / |
---|
| 3776 | ! S 0.23844511E+02, 0.10349509E+02, 0.00000000E+00/ |
---|
| 3777 | ! DATA (GB( 8,10,IC),IC=1,3) / |
---|
| 3778 | ! S 0.23844511E+02, 0.10467553E+02, 0.10000000E+01/ |
---|
| 3779 | |
---|
| 3780 | ! ----- INTERVAL = 4 ----- T = 287.5 |
---|
| 3781 | |
---|
| 3782 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3783 | ! DATA (GA( 9, 9,IC),IC=1,3) / |
---|
| 3784 | ! S 0.24063614E+02, 0.10392022E+02, 0.00000000E+00/ |
---|
| 3785 | ! DATA (GB( 9, 9,IC),IC=1,3) / |
---|
| 3786 | ! S 0.24063614E+02, 0.10509317E+02, 0.10000000E+01/ |
---|
| 3787 | ! DATA (GA( 9,10,IC),IC=1,3) / |
---|
| 3788 | ! S 0.23776708E+02, 0.10336215E+02, 0.00000000E+00/ |
---|
| 3789 | ! DATA (GB( 9,10,IC),IC=1,3) / |
---|
| 3790 | ! S 0.23776708E+02, 0.10454488E+02, 0.10000000E+01/ |
---|
| 3791 | |
---|
| 3792 | ! ----- INTERVAL = 4 ----- T = 300.0 |
---|
| 3793 | |
---|
| 3794 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3795 | ! DATA (GA(10, 9,IC),IC=1,3) / |
---|
| 3796 | ! S 0.24000649E+02, 0.10379892E+02, 0.00000000E+00/ |
---|
| 3797 | ! DATA (GB(10, 9,IC),IC=1,3) / |
---|
| 3798 | ! S 0.24000649E+02, 0.10497402E+02, 0.10000000E+01/ |
---|
| 3799 | ! DATA (GA(10,10,IC),IC=1,3) / |
---|
| 3800 | ! S 0.23714816E+02, 0.10324018E+02, 0.00000000E+00/ |
---|
| 3801 | ! DATA (GB(10,10,IC),IC=1,3) / |
---|
| 3802 | ! S 0.23714816E+02, 0.10442501E+02, 0.10000000E+01/ |
---|
| 3803 | |
---|
| 3804 | ! ----- INTERVAL = 4 ----- T = 312.5 |
---|
| 3805 | |
---|
| 3806 | ! -- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 3807 | ! DATA (GA(11, 9,IC),IC=1,3) / |
---|
| 3808 | ! S 0.23943021E+02, 0.10368736E+02, 0.00000000E+00/ |
---|
| 3809 | ! DATA (GB(11, 9,IC),IC=1,3) / |
---|
| 3810 | ! S 0.23943021E+02, 0.10486443E+02, 0.10000000E+01/ |
---|
| 3811 | ! DATA (GA(11,10,IC),IC=1,3) / |
---|
| 3812 | ! S 0.23658197E+02, 0.10312808E+02, 0.00000000E+00/ |
---|
| 3813 | ! DATA (GB(11,10,IC),IC=1,3) / |
---|
| 3814 | ! S 0.23658197E+02, 0.10431483E+02, 0.10000000E+01/ |
---|
| 3815 | |
---|
| 3816 | |
---|
| 3817 | |
---|
| 3818 | ! -- H2O -- WEAKER PARTS OF THE STRONG BANDS -- FROM ABS225 ---- |
---|
| 3819 | |
---|
| 3820 | ! -- WATER VAPOR --- 350 - 500 CM-1 |
---|
| 3821 | |
---|
| 3822 | ! -- G = - 0.2*SLA, 0.0 +0.5/(1+0.5U) |
---|
| 3823 | |
---|
| 3824 | ! ----- INTERVAL = 5 ----- T = 187.5 |
---|
| 3825 | |
---|
| 3826 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3827 | ! DATA (GA( 1, 5,IC),IC=1,3) / |
---|
| 3828 | ! S 0.15750172E+00,-0.22159303E-01, 0.00000000E+00/ |
---|
| 3829 | ! DATA (GB( 1, 5,IC),IC=1,3) / |
---|
| 3830 | ! S 0.15750172E+00, 0.38103212E+00, 0.10000000E+01/ |
---|
| 3831 | ! DATA (GA( 1, 6,IC),IC=1,3) / |
---|
| 3832 | ! S 0.17770551E+00,-0.24972399E-01, 0.00000000E+00/ |
---|
| 3833 | ! DATA (GB( 1, 6,IC),IC=1,3) / |
---|
| 3834 | ! S 0.17770551E+00, 0.41646579E+00, 0.10000000E+01/ |
---|
| 3835 | |
---|
| 3836 | ! ----- INTERVAL = 5 ----- T = 200.0 |
---|
| 3837 | |
---|
| 3838 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3839 | ! DATA (GA( 2, 5,IC),IC=1,3) / |
---|
| 3840 | ! S 0.16174076E+00,-0.22748917E-01, 0.00000000E+00/ |
---|
| 3841 | ! DATA (GB( 2, 5,IC),IC=1,3) / |
---|
| 3842 | ! S 0.16174076E+00, 0.38913800E+00, 0.10000000E+01/ |
---|
| 3843 | ! DATA (GA( 2, 6,IC),IC=1,3) / |
---|
| 3844 | ! S 0.18176757E+00,-0.25537247E-01, 0.00000000E+00/ |
---|
| 3845 | ! DATA (GB( 2, 6,IC),IC=1,3) / |
---|
| 3846 | ! S 0.18176757E+00, 0.42345095E+00, 0.10000000E+01/ |
---|
| 3847 | |
---|
| 3848 | ! ----- INTERVAL = 5 ----- T = 212.5 |
---|
| 3849 | |
---|
| 3850 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3851 | ! DATA (GA( 3, 5,IC),IC=1,3) / |
---|
| 3852 | ! S 0.16548628E+00,-0.23269898E-01, 0.00000000E+00/ |
---|
| 3853 | ! DATA (GB( 3, 5,IC),IC=1,3) / |
---|
| 3854 | ! S 0.16548628E+00, 0.39613651E+00, 0.10000000E+01/ |
---|
| 3855 | ! DATA (GA( 3, 6,IC),IC=1,3) / |
---|
| 3856 | ! S 0.18527967E+00,-0.26025624E-01, 0.00000000E+00/ |
---|
| 3857 | ! DATA (GB( 3, 6,IC),IC=1,3) / |
---|
| 3858 | ! S 0.18527967E+00, 0.42937476E+00, 0.10000000E+01/ |
---|
| 3859 | |
---|
| 3860 | ! ----- INTERVAL = 5 ----- T = 225.0 |
---|
| 3861 | |
---|
| 3862 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3863 | ! DATA (GA( 4, 5,IC),IC=1,3) / |
---|
| 3864 | ! S 0.16881124E+00,-0.23732392E-01, 0.00000000E+00/ |
---|
| 3865 | ! DATA (GB( 4, 5,IC),IC=1,3) / |
---|
| 3866 | ! S 0.16881124E+00, 0.40222421E+00, 0.10000000E+01/ |
---|
| 3867 | ! DATA (GA( 4, 6,IC),IC=1,3) / |
---|
| 3868 | ! S 0.18833348E+00,-0.26450280E-01, 0.00000000E+00/ |
---|
| 3869 | ! DATA (GB( 4, 6,IC),IC=1,3) / |
---|
| 3870 | ! S 0.18833348E+00, 0.43444062E+00, 0.10000000E+01/ |
---|
| 3871 | |
---|
| 3872 | ! ----- INTERVAL = 5 ----- T = 237.5 |
---|
| 3873 | |
---|
| 3874 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3875 | ! DATA (GA( 5, 5,IC),IC=1,3) / |
---|
| 3876 | ! S 0.17177839E+00,-0.24145123E-01, 0.00000000E+00/ |
---|
| 3877 | ! DATA (GB( 5, 5,IC),IC=1,3) / |
---|
| 3878 | ! S 0.17177839E+00, 0.40756010E+00, 0.10000000E+01/ |
---|
| 3879 | ! DATA (GA( 5, 6,IC),IC=1,3) / |
---|
| 3880 | ! S 0.19100108E+00,-0.26821236E-01, 0.00000000E+00/ |
---|
| 3881 | ! DATA (GB( 5, 6,IC),IC=1,3) / |
---|
| 3882 | ! S 0.19100108E+00, 0.43880316E+00, 0.10000000E+01/ |
---|
| 3883 | |
---|
| 3884 | ! ----- INTERVAL = 5 ----- T = 250.0 |
---|
| 3885 | |
---|
| 3886 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3887 | ! DATA (GA( 6, 5,IC),IC=1,3) / |
---|
| 3888 | ! S 0.17443933E+00,-0.24515269E-01, 0.00000000E+00/ |
---|
| 3889 | ! DATA (GB( 6, 5,IC),IC=1,3) / |
---|
| 3890 | ! S 0.17443933E+00, 0.41226954E+00, 0.10000000E+01/ |
---|
| 3891 | ! DATA (GA( 6, 6,IC),IC=1,3) / |
---|
| 3892 | ! S 0.19334122E+00,-0.27146657E-01, 0.00000000E+00/ |
---|
| 3893 | ! DATA (GB( 6, 6,IC),IC=1,3) / |
---|
| 3894 | ! S 0.19334122E+00, 0.44258354E+00, 0.10000000E+01/ |
---|
| 3895 | |
---|
| 3896 | ! ----- INTERVAL = 5 ----- T = 262.5 |
---|
| 3897 | |
---|
| 3898 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3899 | ! DATA (GA( 7, 5,IC),IC=1,3) / |
---|
| 3900 | ! S 0.17683622E+00,-0.24848690E-01, 0.00000000E+00/ |
---|
| 3901 | ! DATA (GB( 7, 5,IC),IC=1,3) / |
---|
| 3902 | ! S 0.17683622E+00, 0.41645142E+00, 0.10000000E+01/ |
---|
| 3903 | ! DATA (GA( 7, 6,IC),IC=1,3) / |
---|
| 3904 | ! S 0.19540288E+00,-0.27433354E-01, 0.00000000E+00/ |
---|
| 3905 | ! DATA (GB( 7, 6,IC),IC=1,3) / |
---|
| 3906 | ! S 0.19540288E+00, 0.44587882E+00, 0.10000000E+01/ |
---|
| 3907 | |
---|
| 3908 | ! ----- INTERVAL = 5 ----- T = 275.0 |
---|
| 3909 | |
---|
| 3910 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3911 | ! DATA (GA( 8, 5,IC),IC=1,3) / |
---|
| 3912 | ! S 0.17900375E+00,-0.25150210E-01, 0.00000000E+00/ |
---|
| 3913 | ! DATA (GB( 8, 5,IC),IC=1,3) / |
---|
| 3914 | ! S 0.17900375E+00, 0.42018474E+00, 0.10000000E+01/ |
---|
| 3915 | ! DATA (GA( 8, 6,IC),IC=1,3) / |
---|
| 3916 | ! S 0.19722732E+00,-0.27687065E-01, 0.00000000E+00/ |
---|
| 3917 | ! DATA (GB( 8, 6,IC),IC=1,3) / |
---|
| 3918 | ! S 0.19722732E+00, 0.44876776E+00, 0.10000000E+01/ |
---|
| 3919 | |
---|
| 3920 | ! ----- INTERVAL = 5 ----- T = 287.5 |
---|
| 3921 | |
---|
| 3922 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3923 | ! DATA (GA( 9, 5,IC),IC=1,3) / |
---|
| 3924 | ! S 0.18097099E+00,-0.25423873E-01, 0.00000000E+00/ |
---|
| 3925 | ! DATA (GB( 9, 5,IC),IC=1,3) / |
---|
| 3926 | ! S 0.18097099E+00, 0.42353379E+00, 0.10000000E+01/ |
---|
| 3927 | ! DATA (GA( 9, 6,IC),IC=1,3) / |
---|
| 3928 | ! S 0.19884918E+00,-0.27912608E-01, 0.00000000E+00/ |
---|
| 3929 | ! DATA (GB( 9, 6,IC),IC=1,3) / |
---|
| 3930 | ! S 0.19884918E+00, 0.45131451E+00, 0.10000000E+01/ |
---|
| 3931 | |
---|
| 3932 | ! ----- INTERVAL = 5 ----- T = 300.0 |
---|
| 3933 | |
---|
| 3934 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3935 | ! DATA (GA(10, 5,IC),IC=1,3) / |
---|
| 3936 | ! S 0.18276283E+00,-0.25673139E-01, 0.00000000E+00/ |
---|
| 3937 | ! DATA (GB(10, 5,IC),IC=1,3) / |
---|
| 3938 | ! S 0.18276283E+00, 0.42655211E+00, 0.10000000E+01/ |
---|
| 3939 | ! DATA (GA(10, 6,IC),IC=1,3) / |
---|
| 3940 | ! S 0.20029696E+00,-0.28113944E-01, 0.00000000E+00/ |
---|
| 3941 | ! DATA (GB(10, 6,IC),IC=1,3) / |
---|
| 3942 | ! S 0.20029696E+00, 0.45357095E+00, 0.10000000E+01/ |
---|
| 3943 | |
---|
| 3944 | ! ----- INTERVAL = 5 ----- T = 312.5 |
---|
| 3945 | |
---|
| 3946 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3947 | ! DATA (GA(11, 5,IC),IC=1,3) / |
---|
| 3948 | ! S 0.18440117E+00,-0.25901055E-01, 0.00000000E+00/ |
---|
| 3949 | ! DATA (GB(11, 5,IC),IC=1,3) / |
---|
| 3950 | ! S 0.18440117E+00, 0.42928533E+00, 0.10000000E+01/ |
---|
| 3951 | ! DATA (GA(11, 6,IC),IC=1,3) / |
---|
| 3952 | ! S 0.20159300E+00,-0.28294180E-01, 0.00000000E+00/ |
---|
| 3953 | ! DATA (GB(11, 6,IC),IC=1,3) / |
---|
| 3954 | ! S 0.20159300E+00, 0.45557797E+00, 0.10000000E+01/ |
---|
| 3955 | |
---|
| 3956 | |
---|
| 3957 | |
---|
| 3958 | |
---|
| 3959 | ! - WATER VAPOR - WINGS OF VIBRATION-ROTATION BAND - 1250-1450+1880-2820 - |
---|
| 3960 | ! --- G = 0.0 |
---|
| 3961 | |
---|
| 3962 | |
---|
| 3963 | ! ----- INTERVAL = 6 ----- T = 187.5 |
---|
| 3964 | |
---|
| 3965 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3966 | ! DATA (GA( 1,11,IC),IC=1,3) / |
---|
| 3967 | ! S 0.11990218E+02,-0.12823142E+01, 0.00000000E+00/ |
---|
| 3968 | ! DATA (GB( 1,11,IC),IC=1,3) / |
---|
| 3969 | ! S 0.11990218E+02, 0.26681588E+02, 0.10000000E+01/ |
---|
| 3970 | ! DATA (GA( 1,12,IC),IC=1,3) / |
---|
| 3971 | ! S 0.79709806E+01,-0.74805226E+00, 0.00000000E+00/ |
---|
| 3972 | ! DATA (GB( 1,12,IC),IC=1,3) / |
---|
| 3973 | ! S 0.79709806E+01, 0.18377807E+02, 0.10000000E+01/ |
---|
| 3974 | |
---|
| 3975 | ! ----- INTERVAL = 6 ----- T = 200.0 |
---|
| 3976 | |
---|
| 3977 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3978 | ! DATA (GA( 2,11,IC),IC=1,3) / |
---|
| 3979 | ! S 0.10904073E+02,-0.10571588E+01, 0.00000000E+00/ |
---|
| 3980 | ! DATA (GB( 2,11,IC),IC=1,3) / |
---|
| 3981 | ! S 0.10904073E+02, 0.24728346E+02, 0.10000000E+01/ |
---|
| 3982 | ! DATA (GA( 2,12,IC),IC=1,3) / |
---|
| 3983 | ! S 0.75400737E+01,-0.56252739E+00, 0.00000000E+00/ |
---|
| 3984 | ! DATA (GB( 2,12,IC),IC=1,3) / |
---|
| 3985 | ! S 0.75400737E+01, 0.17643148E+02, 0.10000000E+01/ |
---|
| 3986 | |
---|
| 3987 | ! ----- INTERVAL = 6 ----- T = 212.5 |
---|
| 3988 | |
---|
| 3989 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 3990 | ! DATA (GA( 3,11,IC),IC=1,3) / |
---|
| 3991 | ! S 0.89126838E+01,-0.74864953E+00, 0.00000000E+00/ |
---|
| 3992 | ! DATA (GB( 3,11,IC),IC=1,3) / |
---|
| 3993 | ! S 0.89126838E+01, 0.20551342E+02, 0.10000000E+01/ |
---|
| 3994 | ! DATA (GA( 3,12,IC),IC=1,3) / |
---|
| 3995 | ! S 0.81804377E+01,-0.46188072E+00, 0.00000000E+00/ |
---|
| 3996 | ! DATA (GB( 3,12,IC),IC=1,3) / |
---|
| 3997 | ! S 0.81804377E+01, 0.19296161E+02, 0.10000000E+01/ |
---|
| 3998 | |
---|
| 3999 | ! ----- INTERVAL = 6 ----- T = 225.0 |
---|
| 4000 | |
---|
| 4001 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4002 | ! DATA (GA( 4,11,IC),IC=1,3) / |
---|
| 4003 | ! S 0.85622405E+01,-0.58705980E+00, 0.00000000E+00/ |
---|
| 4004 | ! DATA (GB( 4,11,IC),IC=1,3) / |
---|
| 4005 | ! S 0.85622405E+01, 0.19955244E+02, 0.10000000E+01/ |
---|
| 4006 | ! DATA (GA( 4,12,IC),IC=1,3) / |
---|
| 4007 | ! S 0.10564339E+02,-0.40712065E+00, 0.00000000E+00/ |
---|
| 4008 | ! DATA (GB( 4,12,IC),IC=1,3) / |
---|
| 4009 | ! S 0.10564339E+02, 0.24951120E+02, 0.10000000E+01/ |
---|
| 4010 | |
---|
| 4011 | ! ----- INTERVAL = 6 ----- T = 237.5 |
---|
| 4012 | |
---|
| 4013 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4014 | ! DATA (GA( 5,11,IC),IC=1,3) / |
---|
| 4015 | ! S 0.94892164E+01,-0.49305772E+00, 0.00000000E+00/ |
---|
| 4016 | ! DATA (GB( 5,11,IC),IC=1,3) / |
---|
| 4017 | ! S 0.94892164E+01, 0.22227100E+02, 0.10000000E+01/ |
---|
| 4018 | ! DATA (GA( 5,12,IC),IC=1,3) / |
---|
| 4019 | ! S 0.46896789E+02,-0.15295996E+01, 0.00000000E+00/ |
---|
| 4020 | ! DATA (GB( 5,12,IC),IC=1,3) / |
---|
| 4021 | ! S 0.46896789E+02, 0.10957372E+03, 0.10000000E+01/ |
---|
| 4022 | |
---|
| 4023 | ! ----- INTERVAL = 6 ----- T = 250.0 |
---|
| 4024 | |
---|
| 4025 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4026 | ! DATA (GA( 6,11,IC),IC=1,3) / |
---|
| 4027 | ! S 0.13580937E+02,-0.51461431E+00, 0.00000000E+00/ |
---|
| 4028 | ! DATA (GB( 6,11,IC),IC=1,3) / |
---|
| 4029 | ! S 0.13580937E+02, 0.31770288E+02, 0.10000000E+01/ |
---|
| 4030 | ! DATA (GA( 6,12,IC),IC=1,3) / |
---|
| 4031 | ! S-0.30926524E+01, 0.43555255E+00, 0.00000000E+00/ |
---|
| 4032 | ! DATA (GB( 6,12,IC),IC=1,3) / |
---|
| 4033 | ! S-0.30926524E+01,-0.67432659E+01, 0.10000000E+01/ |
---|
| 4034 | |
---|
| 4035 | ! ----- INTERVAL = 6 ----- T = 262.5 |
---|
| 4036 | |
---|
| 4037 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4038 | ! DATA (GA( 7,11,IC),IC=1,3) / |
---|
| 4039 | ! S-0.32050918E+03, 0.12373350E+02, 0.00000000E+00/ |
---|
| 4040 | ! DATA (GB( 7,11,IC),IC=1,3) / |
---|
| 4041 | ! S-0.32050918E+03,-0.74061287E+03, 0.10000000E+01/ |
---|
| 4042 | ! DATA (GA( 7,12,IC),IC=1,3) / |
---|
| 4043 | ! S 0.85742941E+00, 0.50380874E+00, 0.00000000E+00/ |
---|
| 4044 | ! DATA (GB( 7,12,IC),IC=1,3) / |
---|
| 4045 | ! S 0.85742941E+00, 0.24550746E+01, 0.10000000E+01/ |
---|
| 4046 | |
---|
| 4047 | ! ----- INTERVAL = 6 ----- T = 275.0 |
---|
| 4048 | |
---|
| 4049 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4050 | ! DATA (GA( 8,11,IC),IC=1,3) / |
---|
| 4051 | ! S-0.37133165E+01, 0.44809588E+00, 0.00000000E+00/ |
---|
| 4052 | ! DATA (GB( 8,11,IC),IC=1,3) / |
---|
| 4053 | ! S-0.37133165E+01,-0.81329826E+01, 0.10000000E+01/ |
---|
| 4054 | ! DATA (GA( 8,12,IC),IC=1,3) / |
---|
| 4055 | ! S 0.19164038E+01, 0.68537352E+00, 0.00000000E+00/ |
---|
| 4056 | ! DATA (GB( 8,12,IC),IC=1,3) / |
---|
| 4057 | ! S 0.19164038E+01, 0.49089917E+01, 0.10000000E+01/ |
---|
| 4058 | |
---|
| 4059 | ! ----- INTERVAL = 6 ----- T = 287.5 |
---|
| 4060 | |
---|
| 4061 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4062 | ! DATA (GA( 9,11,IC),IC=1,3) / |
---|
| 4063 | ! S 0.18890836E+00, 0.46548918E+00, 0.00000000E+00/ |
---|
| 4064 | ! DATA (GB( 9,11,IC),IC=1,3) / |
---|
| 4065 | ! S 0.18890836E+00, 0.90279822E+00, 0.10000000E+01/ |
---|
| 4066 | ! DATA (GA( 9,12,IC),IC=1,3) / |
---|
| 4067 | ! S 0.23513199E+01, 0.89437630E+00, 0.00000000E+00/ |
---|
| 4068 | ! DATA (GB( 9,12,IC),IC=1,3) / |
---|
| 4069 | ! S 0.23513199E+01, 0.59008712E+01, 0.10000000E+01/ |
---|
| 4070 | |
---|
| 4071 | ! ----- INTERVAL = 6 ----- T = 300.0 |
---|
| 4072 | |
---|
| 4073 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4074 | ! DATA (GA(10,11,IC),IC=1,3) / |
---|
| 4075 | ! S 0.14209226E+01, 0.59121475E+00, 0.00000000E+00/ |
---|
| 4076 | ! DATA (GB(10,11,IC),IC=1,3) / |
---|
| 4077 | ! S 0.14209226E+01, 0.37532746E+01, 0.10000000E+01/ |
---|
| 4078 | ! DATA (GA(10,12,IC),IC=1,3) / |
---|
| 4079 | ! S 0.25566644E+01, 0.11127003E+01, 0.00000000E+00/ |
---|
| 4080 | ! DATA (GB(10,12,IC),IC=1,3) / |
---|
| 4081 | ! S 0.25566644E+01, 0.63532616E+01, 0.10000000E+01/ |
---|
| 4082 | |
---|
| 4083 | ! ----- INTERVAL = 6 ----- T = 312.5 |
---|
| 4084 | |
---|
| 4085 | ! -- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4086 | ! DATA (GA(11,11,IC),IC=1,3) / |
---|
| 4087 | ! S 0.19817679E+01, 0.74676119E+00, 0.00000000E+00/ |
---|
| 4088 | ! DATA (GB(11,11,IC),IC=1,3) / |
---|
| 4089 | ! S 0.19817679E+01, 0.50437916E+01, 0.10000000E+01/ |
---|
| 4090 | ! DATA (GA(11,12,IC),IC=1,3) / |
---|
| 4091 | ! S 0.26555181E+01, 0.13329782E+01, 0.00000000E+00/ |
---|
| 4092 | ! DATA (GB(11,12,IC),IC=1,3) / |
---|
| 4093 | ! S 0.26555181E+01, 0.65558627E+01, 0.10000000E+01/ |
---|
| 4094 | |
---|
| 4095 | |
---|
| 4096 | |
---|
| 4097 | |
---|
| 4098 | |
---|
| 4099 | ! -- END WATER VAPOR |
---|
| 4100 | |
---|
| 4101 | |
---|
| 4102 | ! -- CO2 -- INT.2 -- 500-800 CM-1 --- FROM ABS225 ---------------------- |
---|
| 4103 | |
---|
| 4104 | |
---|
| 4105 | |
---|
| 4106 | ! -- FIU = 0.8 + MAX(0.35,(7-IU)*0.9) , X/T, 9 |
---|
| 4107 | |
---|
| 4108 | ! ----- INTERVAL = 2 ----- T = 187.5 |
---|
| 4109 | |
---|
| 4110 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4111 | ! DATA (GA( 1,13,IC),IC=1,3) / |
---|
| 4112 | ! S 0.87668459E-01, 0.13845511E+01, 0.00000000E+00/ |
---|
| 4113 | ! DATA (GB( 1,13,IC),IC=1,3) / |
---|
| 4114 | ! S 0.87668459E-01, 0.23203798E+01, 0.10000000E+01/ |
---|
| 4115 | ! DATA (GA( 1,14,IC),IC=1,3) / |
---|
| 4116 | ! S 0.74878820E-01, 0.11718758E+01, 0.00000000E+00/ |
---|
| 4117 | ! DATA (GB( 1,14,IC),IC=1,3) / |
---|
| 4118 | ! S 0.74878820E-01, 0.20206726E+01, 0.10000000E+01/ |
---|
| 4119 | |
---|
| 4120 | ! ----- INTERVAL = 2 ----- T = 200.0 |
---|
| 4121 | |
---|
| 4122 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4123 | ! DATA (GA( 2,13,IC),IC=1,3) / |
---|
| 4124 | ! S 0.83754276E-01, 0.13187042E+01, 0.00000000E+00/ |
---|
| 4125 | ! DATA (GB( 2,13,IC),IC=1,3) / |
---|
| 4126 | ! S 0.83754276E-01, 0.22288925E+01, 0.10000000E+01/ |
---|
| 4127 | ! DATA (GA( 2,14,IC),IC=1,3) / |
---|
| 4128 | ! S 0.71650966E-01, 0.11216131E+01, 0.00000000E+00/ |
---|
| 4129 | ! DATA (GB( 2,14,IC),IC=1,3) / |
---|
| 4130 | ! S 0.71650966E-01, 0.19441824E+01, 0.10000000E+01/ |
---|
| 4131 | |
---|
| 4132 | ! ----- INTERVAL = 2 ----- T = 212.5 |
---|
| 4133 | |
---|
| 4134 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4135 | ! DATA (GA( 3,13,IC),IC=1,3) / |
---|
| 4136 | ! S 0.80460283E-01, 0.12644396E+01, 0.00000000E+00/ |
---|
| 4137 | ! DATA (GB( 3,13,IC),IC=1,3) / |
---|
| 4138 | ! S 0.80460283E-01, 0.21515593E+01, 0.10000000E+01/ |
---|
| 4139 | ! DATA (GA( 3,14,IC),IC=1,3) / |
---|
| 4140 | ! S 0.68979615E-01, 0.10809473E+01, 0.00000000E+00/ |
---|
| 4141 | ! DATA (GB( 3,14,IC),IC=1,3) / |
---|
| 4142 | ! S 0.68979615E-01, 0.18807257E+01, 0.10000000E+01/ |
---|
| 4143 | |
---|
| 4144 | ! ----- INTERVAL = 2 ----- T = 225.0 |
---|
| 4145 | |
---|
| 4146 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4147 | ! DATA (GA( 4,13,IC),IC=1,3) / |
---|
| 4148 | ! S 0.77659686E-01, 0.12191543E+01, 0.00000000E+00/ |
---|
| 4149 | ! DATA (GB( 4,13,IC),IC=1,3) / |
---|
| 4150 | ! S 0.77659686E-01, 0.20855896E+01, 0.10000000E+01/ |
---|
| 4151 | ! DATA (GA( 4,14,IC),IC=1,3) / |
---|
| 4152 | ! S 0.66745345E-01, 0.10476396E+01, 0.00000000E+00/ |
---|
| 4153 | ! DATA (GB( 4,14,IC),IC=1,3) / |
---|
| 4154 | ! S 0.66745345E-01, 0.18275618E+01, 0.10000000E+01/ |
---|
| 4155 | |
---|
| 4156 | ! ----- INTERVAL = 2 ----- T = 237.5 |
---|
| 4157 | |
---|
| 4158 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4159 | ! DATA (GA( 5,13,IC),IC=1,3) / |
---|
| 4160 | ! S 0.75257056E-01, 0.11809511E+01, 0.00000000E+00/ |
---|
| 4161 | ! DATA (GB( 5,13,IC),IC=1,3) / |
---|
| 4162 | ! S 0.75257056E-01, 0.20288489E+01, 0.10000000E+01/ |
---|
| 4163 | ! DATA (GA( 5,14,IC),IC=1,3) / |
---|
| 4164 | ! S 0.64857571E-01, 0.10200373E+01, 0.00000000E+00/ |
---|
| 4165 | ! DATA (GB( 5,14,IC),IC=1,3) / |
---|
| 4166 | ! S 0.64857571E-01, 0.17825910E+01, 0.10000000E+01/ |
---|
| 4167 | |
---|
| 4168 | ! ----- INTERVAL = 2 ----- T = 250.0 |
---|
| 4169 | |
---|
| 4170 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4171 | ! DATA (GA( 6,13,IC),IC=1,3) / |
---|
| 4172 | ! S 0.73179175E-01, 0.11484154E+01, 0.00000000E+00/ |
---|
| 4173 | ! DATA (GB( 6,13,IC),IC=1,3) / |
---|
| 4174 | ! S 0.73179175E-01, 0.19796791E+01, 0.10000000E+01/ |
---|
| 4175 | ! DATA (GA( 6,14,IC),IC=1,3) / |
---|
| 4176 | ! S 0.63248495E-01, 0.99692726E+00, 0.00000000E+00/ |
---|
| 4177 | ! DATA (GB( 6,14,IC),IC=1,3) / |
---|
| 4178 | ! S 0.63248495E-01, 0.17442308E+01, 0.10000000E+01/ |
---|
| 4179 | |
---|
| 4180 | ! ----- INTERVAL = 2 ----- T = 262.5 |
---|
| 4181 | |
---|
| 4182 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4183 | ! DATA (GA( 7,13,IC),IC=1,3) / |
---|
| 4184 | ! S 0.71369063E-01, 0.11204723E+01, 0.00000000E+00/ |
---|
| 4185 | ! DATA (GB( 7,13,IC),IC=1,3) / |
---|
| 4186 | ! S 0.71369063E-01, 0.19367778E+01, 0.10000000E+01/ |
---|
| 4187 | ! DATA (GA( 7,14,IC),IC=1,3) / |
---|
| 4188 | ! S 0.61866970E-01, 0.97740923E+00, 0.00000000E+00/ |
---|
| 4189 | ! DATA (GB( 7,14,IC),IC=1,3) / |
---|
| 4190 | ! S 0.61866970E-01, 0.17112809E+01, 0.10000000E+01/ |
---|
| 4191 | |
---|
| 4192 | ! ----- INTERVAL = 2 ----- T = 275.0 |
---|
| 4193 | |
---|
| 4194 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4195 | ! DATA (GA( 8,13,IC),IC=1,3) / |
---|
| 4196 | ! S 0.69781812E-01, 0.10962918E+01, 0.00000000E+00/ |
---|
| 4197 | ! DATA (GB( 8,13,IC),IC=1,3) / |
---|
| 4198 | ! S 0.69781812E-01, 0.18991112E+01, 0.10000000E+01/ |
---|
| 4199 | ! DATA (GA( 8,14,IC),IC=1,3) / |
---|
| 4200 | ! S 0.60673632E-01, 0.96080188E+00, 0.00000000E+00/ |
---|
| 4201 | ! DATA (GB( 8,14,IC),IC=1,3) / |
---|
| 4202 | ! S 0.60673632E-01, 0.16828137E+01, 0.10000000E+01/ |
---|
| 4203 | |
---|
| 4204 | ! ----- INTERVAL = 2 ----- T = 287.5 |
---|
| 4205 | |
---|
| 4206 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4207 | ! DATA (GA( 9,13,IC),IC=1,3) / |
---|
| 4208 | ! S 0.68381606E-01, 0.10752229E+01, 0.00000000E+00/ |
---|
| 4209 | ! DATA (GB( 9,13,IC),IC=1,3) / |
---|
| 4210 | ! S 0.68381606E-01, 0.18658501E+01, 0.10000000E+01/ |
---|
| 4211 | ! DATA (GA( 9,14,IC),IC=1,3) / |
---|
| 4212 | ! S 0.59637277E-01, 0.94657562E+00, 0.00000000E+00/ |
---|
| 4213 | ! DATA (GB( 9,14,IC),IC=1,3) / |
---|
| 4214 | ! S 0.59637277E-01, 0.16580908E+01, 0.10000000E+01/ |
---|
| 4215 | |
---|
| 4216 | ! ----- INTERVAL = 2 ----- T = 300.0 |
---|
| 4217 | |
---|
| 4218 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4219 | ! DATA (GA(10,13,IC),IC=1,3) / |
---|
| 4220 | ! S 0.67139539E-01, 0.10567474E+01, 0.00000000E+00/ |
---|
| 4221 | ! DATA (GB(10,13,IC),IC=1,3) / |
---|
| 4222 | ! S 0.67139539E-01, 0.18363226E+01, 0.10000000E+01/ |
---|
| 4223 | ! DATA (GA(10,14,IC),IC=1,3) / |
---|
| 4224 | ! S 0.58732178E-01, 0.93430511E+00, 0.00000000E+00/ |
---|
| 4225 | ! DATA (GB(10,14,IC),IC=1,3) / |
---|
| 4226 | ! S 0.58732178E-01, 0.16365014E+01, 0.10000000E+01/ |
---|
| 4227 | |
---|
| 4228 | ! ----- INTERVAL = 2 ----- T = 312.5 |
---|
| 4229 | |
---|
| 4230 | ! -- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4231 | ! DATA (GA(11,13,IC),IC=1,3) / |
---|
| 4232 | ! S 0.66032012E-01, 0.10404465E+01, 0.00000000E+00/ |
---|
| 4233 | ! DATA (GB(11,13,IC),IC=1,3) / |
---|
| 4234 | ! S 0.66032012E-01, 0.18099779E+01, 0.10000000E+01/ |
---|
| 4235 | ! DATA (GA(11,14,IC),IC=1,3) / |
---|
| 4236 | ! S 0.57936092E-01, 0.92363528E+00, 0.00000000E+00/ |
---|
| 4237 | ! DATA (GB(11,14,IC),IC=1,3) / |
---|
| 4238 | ! S 0.57936092E-01, 0.16175164E+01, 0.10000000E+01/ |
---|
| 4239 | |
---|
| 4240 | |
---|
| 4241 | |
---|
| 4242 | |
---|
| 4243 | |
---|
| 4244 | |
---|
| 4245 | |
---|
| 4246 | |
---|
| 4247 | |
---|
| 4248 | |
---|
| 4249 | ! -- CARBON DIOXIDE LINES IN THE WINDOW REGION (800-1250 CM-1) |
---|
| 4250 | |
---|
| 4251 | |
---|
| 4252 | ! -- G = 0.0 |
---|
| 4253 | |
---|
| 4254 | |
---|
| 4255 | ! ----- INTERVAL = 4 ----- T = 187.5 |
---|
| 4256 | |
---|
| 4257 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4258 | ! DATA (GA( 1,15,IC),IC=1,3) / |
---|
| 4259 | ! S 0.13230067E+02, 0.22042132E+02, 0.00000000E+00/ |
---|
| 4260 | ! DATA (GB( 1,15,IC),IC=1,3) / |
---|
| 4261 | ! S 0.13230067E+02, 0.22051750E+02, 0.10000000E+01/ |
---|
| 4262 | ! DATA (GA( 1,16,IC),IC=1,3) / |
---|
| 4263 | ! S 0.13183816E+02, 0.22169501E+02, 0.00000000E+00/ |
---|
| 4264 | ! DATA (GB( 1,16,IC),IC=1,3) / |
---|
| 4265 | ! S 0.13183816E+02, 0.22178972E+02, 0.10000000E+01/ |
---|
| 4266 | |
---|
| 4267 | ! ----- INTERVAL = 4 ----- T = 200.0 |
---|
| 4268 | |
---|
| 4269 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4270 | ! DATA (GA( 2,15,IC),IC=1,3) / |
---|
| 4271 | ! S 0.13213564E+02, 0.22107298E+02, 0.00000000E+00/ |
---|
| 4272 | ! DATA (GB( 2,15,IC),IC=1,3) / |
---|
| 4273 | ! S 0.13213564E+02, 0.22116850E+02, 0.10000000E+01/ |
---|
| 4274 | ! DATA (GA( 2,16,IC),IC=1,3) / |
---|
| 4275 | ! S 0.13189991E+02, 0.22270075E+02, 0.00000000E+00/ |
---|
| 4276 | ! DATA (GB( 2,16,IC),IC=1,3) / |
---|
| 4277 | ! S 0.13189991E+02, 0.22279484E+02, 0.10000000E+01/ |
---|
| 4278 | |
---|
| 4279 | ! ----- INTERVAL = 4 ----- T = 212.5 |
---|
| 4280 | |
---|
| 4281 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4282 | ! DATA (GA( 3,15,IC),IC=1,3) / |
---|
| 4283 | ! S 0.13209140E+02, 0.22180915E+02, 0.00000000E+00/ |
---|
| 4284 | ! DATA (GB( 3,15,IC),IC=1,3) / |
---|
| 4285 | ! S 0.13209140E+02, 0.22190410E+02, 0.10000000E+01/ |
---|
| 4286 | ! DATA (GA( 3,16,IC),IC=1,3) / |
---|
| 4287 | ! S 0.13209485E+02, 0.22379193E+02, 0.00000000E+00/ |
---|
| 4288 | ! DATA (GB( 3,16,IC),IC=1,3) / |
---|
| 4289 | ! S 0.13209485E+02, 0.22388551E+02, 0.10000000E+01/ |
---|
| 4290 | |
---|
| 4291 | ! ----- INTERVAL = 4 ----- T = 225.0 |
---|
| 4292 | |
---|
| 4293 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4294 | ! DATA (GA( 4,15,IC),IC=1,3) / |
---|
| 4295 | ! S 0.13213894E+02, 0.22259478E+02, 0.00000000E+00/ |
---|
| 4296 | ! DATA (GB( 4,15,IC),IC=1,3) / |
---|
| 4297 | ! S 0.13213894E+02, 0.22268925E+02, 0.10000000E+01/ |
---|
| 4298 | ! DATA (GA( 4,16,IC),IC=1,3) / |
---|
| 4299 | ! S 0.13238789E+02, 0.22492992E+02, 0.00000000E+00/ |
---|
| 4300 | ! DATA (GB( 4,16,IC),IC=1,3) / |
---|
| 4301 | ! S 0.13238789E+02, 0.22502309E+02, 0.10000000E+01/ |
---|
| 4302 | |
---|
| 4303 | ! ----- INTERVAL = 4 ----- T = 237.5 |
---|
| 4304 | |
---|
| 4305 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4306 | ! DATA (GA( 5,15,IC),IC=1,3) / |
---|
| 4307 | ! S 0.13225963E+02, 0.22341039E+02, 0.00000000E+00/ |
---|
| 4308 | ! DATA (GB( 5,15,IC),IC=1,3) / |
---|
| 4309 | ! S 0.13225963E+02, 0.22350445E+02, 0.10000000E+01/ |
---|
| 4310 | ! DATA (GA( 5,16,IC),IC=1,3) / |
---|
| 4311 | ! S 0.13275017E+02, 0.22608508E+02, 0.00000000E+00/ |
---|
| 4312 | ! DATA (GB( 5,16,IC),IC=1,3) / |
---|
| 4313 | ! S 0.13275017E+02, 0.22617792E+02, 0.10000000E+01/ |
---|
| 4314 | |
---|
| 4315 | ! ----- INTERVAL = 4 ----- T = 250.0 |
---|
| 4316 | |
---|
| 4317 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4318 | ! DATA (GA( 6,15,IC),IC=1,3) / |
---|
| 4319 | ! S 0.13243806E+02, 0.22424247E+02, 0.00000000E+00/ |
---|
| 4320 | ! DATA (GB( 6,15,IC),IC=1,3) / |
---|
| 4321 | ! S 0.13243806E+02, 0.22433617E+02, 0.10000000E+01/ |
---|
| 4322 | ! DATA (GA( 6,16,IC),IC=1,3) / |
---|
| 4323 | ! S 0.13316096E+02, 0.22723843E+02, 0.00000000E+00/ |
---|
| 4324 | ! DATA (GB( 6,16,IC),IC=1,3) / |
---|
| 4325 | ! S 0.13316096E+02, 0.22733099E+02, 0.10000000E+01/ |
---|
| 4326 | |
---|
| 4327 | ! ----- INTERVAL = 4 ----- T = 262.5 |
---|
| 4328 | |
---|
| 4329 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4330 | ! DATA (GA( 7,15,IC),IC=1,3) / |
---|
| 4331 | ! S 0.13266104E+02, 0.22508089E+02, 0.00000000E+00/ |
---|
| 4332 | ! DATA (GB( 7,15,IC),IC=1,3) / |
---|
| 4333 | ! S 0.13266104E+02, 0.22517429E+02, 0.10000000E+01/ |
---|
| 4334 | ! DATA (GA( 7,16,IC),IC=1,3) / |
---|
| 4335 | ! S 0.13360555E+02, 0.22837837E+02, 0.00000000E+00/ |
---|
| 4336 | ! DATA (GB( 7,16,IC),IC=1,3) / |
---|
| 4337 | ! S 0.13360555E+02, 0.22847071E+02, 0.10000000E+01/ |
---|
| 4338 | |
---|
| 4339 | ! ----- INTERVAL = 4 ----- T = 275.0 |
---|
| 4340 | |
---|
| 4341 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4342 | ! DATA (GA( 8,15,IC),IC=1,3) / |
---|
| 4343 | ! S 0.13291782E+02, 0.22591771E+02, 0.00000000E+00/ |
---|
| 4344 | ! DATA (GB( 8,15,IC),IC=1,3) / |
---|
| 4345 | ! S 0.13291782E+02, 0.22601086E+02, 0.10000000E+01/ |
---|
| 4346 | ! DATA (GA( 8,16,IC),IC=1,3) / |
---|
| 4347 | ! S 0.13407324E+02, 0.22949751E+02, 0.00000000E+00/ |
---|
| 4348 | ! DATA (GB( 8,16,IC),IC=1,3) / |
---|
| 4349 | ! S 0.13407324E+02, 0.22958967E+02, 0.10000000E+01/ |
---|
| 4350 | |
---|
| 4351 | ! ----- INTERVAL = 4 ----- T = 287.5 |
---|
| 4352 | |
---|
| 4353 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4354 | ! DATA (GA( 9,15,IC),IC=1,3) / |
---|
| 4355 | ! S 0.13319961E+02, 0.22674661E+02, 0.00000000E+00/ |
---|
| 4356 | ! DATA (GB( 9,15,IC),IC=1,3) / |
---|
| 4357 | ! S 0.13319961E+02, 0.22683956E+02, 0.10000000E+01/ |
---|
| 4358 | ! DATA (GA( 9,16,IC),IC=1,3) / |
---|
| 4359 | ! S 0.13455544E+02, 0.23059032E+02, 0.00000000E+00/ |
---|
| 4360 | ! DATA (GB( 9,16,IC),IC=1,3) / |
---|
| 4361 | ! S 0.13455544E+02, 0.23068234E+02, 0.10000000E+01/ |
---|
| 4362 | |
---|
| 4363 | ! ----- INTERVAL = 4 ----- T = 300.0 |
---|
| 4364 | |
---|
| 4365 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4366 | ! DATA (GA(10,15,IC),IC=1,3) / |
---|
| 4367 | ! S 0.13349927E+02, 0.22756246E+02, 0.00000000E+00/ |
---|
| 4368 | ! DATA (GB(10,15,IC),IC=1,3) / |
---|
| 4369 | ! S 0.13349927E+02, 0.22765522E+02, 0.10000000E+01/ |
---|
| 4370 | ! DATA (GA(10,16,IC),IC=1,3) / |
---|
| 4371 | ! S 0.13504450E+02, 0.23165146E+02, 0.00000000E+00/ |
---|
| 4372 | ! DATA (GB(10,16,IC),IC=1,3) / |
---|
| 4373 | ! S 0.13504450E+02, 0.23174336E+02, 0.10000000E+01/ |
---|
| 4374 | |
---|
| 4375 | ! ----- INTERVAL = 4 ----- T = 312.5 |
---|
| 4376 | |
---|
| 4377 | ! -- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4378 | ! DATA (GA(11,15,IC),IC=1,3) / |
---|
| 4379 | ! S 0.13381108E+02, 0.22836093E+02, 0.00000000E+00/ |
---|
| 4380 | ! DATA (GB(11,15,IC),IC=1,3) / |
---|
| 4381 | ! S 0.13381108E+02, 0.22845354E+02, 0.10000000E+01/ |
---|
| 4382 | ! DATA (GA(11,16,IC),IC=1,3) / |
---|
| 4383 | ! S 0.13553282E+02, 0.23267456E+02, 0.00000000E+00/ |
---|
| 4384 | ! DATA (GB(11,16,IC),IC=1,3) / |
---|
| 4385 | ! S 0.13553282E+02, 0.23276638E+02, 0.10000000E+01/ |
---|
| 4386 | |
---|
| 4387 | ! ------------------------------------------------------------------ |
---|
| 4388 | ! DATA (( XP( J,K),J=1,6), K=1,6) / |
---|
| 4389 | ! S 0.46430621E+02, 0.12928299E+03, 0.20732648E+03, |
---|
| 4390 | ! S 0.31398411E+03, 0.18373177E+03,-0.11412303E+03, |
---|
| 4391 | ! S 0.73604774E+02, 0.27887914E+03, 0.27076947E+03, |
---|
| 4392 | ! S-0.57322111E+02,-0.64742459E+02, 0.87238280E+02, |
---|
| 4393 | ! S 0.37050866E+02, 0.20498759E+03, 0.37558029E+03, |
---|
| 4394 | ! S 0.17401171E+03,-0.13350302E+03,-0.37651795E+02, |
---|
| 4395 | ! S 0.14930141E+02, 0.89161160E+02, 0.17793062E+03, |
---|
| 4396 | ! S 0.93433860E+02,-0.70646020E+02,-0.26373150E+02, |
---|
| 4397 | ! S 0.40386780E+02, 0.10855270E+03, 0.50755010E+02, |
---|
| 4398 | ! S-0.31496190E+02, 0.12791300E+00, 0.18017770E+01, |
---|
| 4399 | ! S 0.90811926E+01, 0.75073923E+02, 0.24654438E+03, |
---|
| 4400 | ! S 0.39332612E+03, 0.29385281E+03, 0.89107921E+02 / |
---|
| 4401 | |
---|
| 4402 | |
---|
| 4403 | |
---|
| 4404 | ! * 1.0 PLANCK FUNCTIONS AND GRADIENTS |
---|
| 4405 | ! ------------------------------ |
---|
| 4406 | |
---|
| 4407 | |
---|
| 4408 | ! cdir collapse |
---|
| 4409 | DO jk = 1, kflev + 1 |
---|
| 4410 | DO jl = 1, kdlon |
---|
| 4411 | pbint(jl, jk) = 0. |
---|
| 4412 | END DO |
---|
| 4413 | END DO |
---|
| 4414 | DO jl = 1, kdlon |
---|
| 4415 | pbsuin(jl) = 0. |
---|
| 4416 | END DO |
---|
| 4417 | |
---|
| 4418 | DO jnu = 1, ninter |
---|
| 4419 | |
---|
| 4420 | ! * 1.1 LEVELS FROM SURFACE TO KFLEV |
---|
| 4421 | ! ---------------------------- |
---|
| 4422 | |
---|
| 4423 | |
---|
| 4424 | DO jk = 1, kflev |
---|
| 4425 | DO jl = 1, kdlon |
---|
| 4426 | zti(jl) = (ptl(jl,jk)-tstand)/tstand |
---|
| 4427 | zres(jl) = xp(1, jnu) + zti(jl)*(xp(2,jnu)+zti(jl)*(xp(3, & |
---|
| 4428 | jnu)+zti(jl)*(xp(4,jnu)+zti(jl)*(xp(5,jnu)+zti(jl)*(xp(6,jnu)))))) |
---|
| 4429 | pbint(jl, jk) = pbint(jl, jk) + zres(jl) |
---|
| 4430 | pb(jl, jnu, jk) = zres(jl) |
---|
| 4431 | zblev(jl, jk) = zres(jl) |
---|
| 4432 | zti2(jl) = (ptave(jl,jk)-tstand)/tstand |
---|
| 4433 | zres2(jl) = xp(1, jnu) + zti2(jl)*(xp(2,jnu)+zti2(jl)*(xp(3, & |
---|
| 4434 | jnu)+zti2(jl)*(xp(4,jnu)+zti2(jl)*(xp(5,jnu)+zti2(jl)*(xp(6,jnu)))) & |
---|
| 4435 | )) |
---|
| 4436 | zblay(jl, jk) = zres2(jl) |
---|
| 4437 | END DO |
---|
| 4438 | END DO |
---|
| 4439 | |
---|
| 4440 | ! * 1.2 TOP OF THE ATMOSPHERE AND SURFACE |
---|
| 4441 | ! --------------------------------- |
---|
| 4442 | |
---|
| 4443 | |
---|
| 4444 | DO jl = 1, kdlon |
---|
| 4445 | zti(jl) = (ptl(jl,kflev+1)-tstand)/tstand |
---|
| 4446 | zti2(jl) = (ptl(jl,1)+pdt0(jl)-tstand)/tstand |
---|
| 4447 | zres(jl) = xp(1, jnu) + zti(jl)*(xp(2,jnu)+zti(jl)*(xp(3, & |
---|
| 4448 | jnu)+zti(jl)*(xp(4,jnu)+zti(jl)*(xp(5,jnu)+zti(jl)*(xp(6,jnu)))))) |
---|
| 4449 | zres2(jl) = xp(1, jnu) + zti2(jl)*(xp(2,jnu)+zti2(jl)*(xp(3, & |
---|
| 4450 | jnu)+zti2(jl)*(xp(4,jnu)+zti2(jl)*(xp(5,jnu)+zti2(jl)*(xp(6,jnu)))))) |
---|
| 4451 | pbint(jl, kflev+1) = pbint(jl, kflev+1) + zres(jl) |
---|
| 4452 | pb(jl, jnu, kflev+1) = zres(jl) |
---|
| 4453 | zblev(jl, kflev+1) = zres(jl) |
---|
| 4454 | pbtop(jl, jnu) = zres(jl) |
---|
| 4455 | pbsur(jl, jnu) = zres2(jl) |
---|
| 4456 | pbsuin(jl) = pbsuin(jl) + zres2(jl) |
---|
| 4457 | END DO |
---|
| 4458 | |
---|
| 4459 | ! * 1.3 GRADIENTS IN SUB-LAYERS |
---|
| 4460 | ! ----------------------- |
---|
| 4461 | |
---|
| 4462 | |
---|
| 4463 | DO jk = 1, kflev |
---|
| 4464 | jk2 = 2*jk |
---|
| 4465 | jk1 = jk2 - 1 |
---|
| 4466 | DO jl = 1, kdlon |
---|
| 4467 | pdbsl(jl, jnu, jk1) = zblay(jl, jk) - zblev(jl, jk) |
---|
| 4468 | pdbsl(jl, jnu, jk2) = zblev(jl, jk+1) - zblay(jl, jk) |
---|
| 4469 | END DO |
---|
| 4470 | END DO |
---|
| 4471 | |
---|
| 4472 | END DO |
---|
| 4473 | |
---|
| 4474 | ! * 2.0 CHOOSE THE RELEVANT SETS OF PADE APPROXIMANTS |
---|
| 4475 | ! --------------------------------------------- |
---|
| 4476 | |
---|
| 4477 | |
---|
| 4478 | |
---|
| 4479 | |
---|
| 4480 | DO jl = 1, kdlon |
---|
| 4481 | zdsto1 = (ptl(jl,kflev+1)-tintp(1))/tstp |
---|
| 4482 | ixtox = max(1, min(mxixt,int(zdsto1+1.))) |
---|
| 4483 | zdstox = (ptl(jl,kflev+1)-tintp(ixtox))/tstp |
---|
| 4484 | IF (zdstox<0.5) THEN |
---|
| 4485 | indto = ixtox |
---|
| 4486 | ELSE |
---|
| 4487 | indto = ixtox + 1 |
---|
| 4488 | END IF |
---|
| 4489 | indb(jl) = indto |
---|
| 4490 | zdst1 = (ptl(jl,1)-tintp(1))/tstp |
---|
| 4491 | ixtx = max(1, min(mxixt,int(zdst1+1.))) |
---|
| 4492 | zdstx = (ptl(jl,1)-tintp(ixtx))/tstp |
---|
| 4493 | IF (zdstx<0.5) THEN |
---|
| 4494 | indt = ixtx |
---|
| 4495 | ELSE |
---|
| 4496 | indt = ixtx + 1 |
---|
| 4497 | END IF |
---|
| 4498 | inds(jl) = indt |
---|
| 4499 | END DO |
---|
| 4500 | |
---|
| 4501 | DO jf = 1, 2 |
---|
| 4502 | DO jg = 1, 8 |
---|
| 4503 | DO jl = 1, kdlon |
---|
| 4504 | indsu = inds(jl) |
---|
| 4505 | pgasur(jl, jg, jf) = ga(indsu, 2*jg-1, jf) |
---|
| 4506 | pgbsur(jl, jg, jf) = gb(indsu, 2*jg-1, jf) |
---|
| 4507 | indtp = indb(jl) |
---|
| 4508 | pgatop(jl, jg, jf) = ga(indtp, 2*jg-1, jf) |
---|
| 4509 | pgbtop(jl, jg, jf) = gb(indtp, 2*jg-1, jf) |
---|
| 4510 | END DO |
---|
| 4511 | END DO |
---|
| 4512 | END DO |
---|
| 4513 | |
---|
| 4514 | DO jk = 1, kflev |
---|
| 4515 | DO jl = 1, kdlon |
---|
| 4516 | zdst1 = (ptave(jl,jk)-tintp(1))/tstp |
---|
| 4517 | ixtx = max(1, min(mxixt,int(zdst1+1.))) |
---|
| 4518 | zdstx = (ptave(jl,jk)-tintp(ixtx))/tstp |
---|
| 4519 | IF (zdstx<0.5) THEN |
---|
| 4520 | indt = ixtx |
---|
[998] | 4521 | ELSE |
---|
[1992] | 4522 | indt = ixtx + 1 |
---|
[998] | 4523 | END IF |
---|
[1992] | 4524 | indb(jl) = indt |
---|
| 4525 | END DO |
---|
| 4526 | |
---|
| 4527 | DO jf = 1, 2 |
---|
| 4528 | DO jg = 1, 8 |
---|
| 4529 | DO jl = 1, kdlon |
---|
| 4530 | indt = indb(jl) |
---|
| 4531 | pga(jl, jg, jf, jk) = ga(indt, 2*jg, jf) |
---|
| 4532 | pgb(jl, jg, jf, jk) = gb(indt, 2*jg, jf) |
---|
| 4533 | END DO |
---|
| 4534 | END DO |
---|
| 4535 | END DO |
---|
| 4536 | END DO |
---|
| 4537 | |
---|
| 4538 | ! ------------------------------------------------------------------ |
---|
| 4539 | |
---|
| 4540 | RETURN |
---|
| 4541 | END SUBROUTINE lwb_lmdar4 |
---|
| 4542 | SUBROUTINE lwv_lmdar4(kuaer, ktraer, klim, pabcu, pb, pbint, pbsuin, pbsur, & |
---|
| 4543 | pbtop, pdbsl, pemis, ppmb, ptave, pga, pgb, pgasur, pgbsur, pgatop, & |
---|
| 4544 | pgbtop, pcntrb, pcts, pfluc) |
---|
[5314] | 4545 | USE raddimlw_mod_h |
---|
| 4546 | USE dimphy |
---|
[5285] | 4547 | USE yomcst_mod_h |
---|
[5274] | 4548 | IMPLICIT NONE |
---|
[1992] | 4549 | |
---|
[5274] | 4550 | |
---|
[1992] | 4551 | ! ----------------------------------------------------------------------- |
---|
| 4552 | ! PURPOSE. |
---|
| 4553 | ! -------- |
---|
| 4554 | ! CARRIES OUT THE VERTICAL INTEGRATION TO GIVE LONGWAVE |
---|
| 4555 | ! FLUXES OR RADIANCES |
---|
| 4556 | |
---|
| 4557 | ! METHOD. |
---|
| 4558 | ! ------- |
---|
| 4559 | |
---|
| 4560 | ! 1. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING BETWEEN |
---|
| 4561 | ! CONTRIBUTIONS BY - THE NEARBY LAYERS |
---|
| 4562 | ! - THE DISTANT LAYERS |
---|
| 4563 | ! - THE BOUNDARY TERMS |
---|
| 4564 | ! 2. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
---|
| 4565 | |
---|
| 4566 | ! REFERENCE. |
---|
| 4567 | ! ---------- |
---|
| 4568 | |
---|
| 4569 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 4570 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 4571 | |
---|
| 4572 | ! AUTHOR. |
---|
| 4573 | ! ------- |
---|
| 4574 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 4575 | |
---|
| 4576 | ! MODIFICATIONS. |
---|
| 4577 | ! -------------- |
---|
| 4578 | ! ORIGINAL : 89-07-14 |
---|
| 4579 | ! ----------------------------------------------------------------------- |
---|
| 4580 | |
---|
| 4581 | ! * ARGUMENTS: |
---|
| 4582 | INTEGER kuaer, ktraer, klim |
---|
| 4583 | |
---|
| 4584 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! EFFECTIVE ABSORBER AMOUNTS |
---|
| 4585 | REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
---|
| 4586 | REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF-LEVEL PLANCK FUNCTIONS |
---|
| 4587 | REAL (KIND=8) pbsur(kdlon, ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 4588 | REAL (KIND=8) pbsuin(kdlon) ! SURFACE PLANCK FUNCTION |
---|
| 4589 | REAL (KIND=8) pbtop(kdlon, ninter) ! T.O.A. SPECTRAL PLANCK FUNCTION |
---|
| 4590 | REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 4591 | REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
| 4592 | REAL (KIND=8) ppmb(kdlon, kflev+1) ! HALF-LEVEL PRESSURE (MB) |
---|
| 4593 | REAL (KIND=8) ptave(kdlon, kflev) ! TEMPERATURE |
---|
| 4594 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4595 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4596 | REAL (KIND=8) pgasur(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 4597 | REAL (KIND=8) pgbsur(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 4598 | REAL (KIND=8) pgatop(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 4599 | REAL (KIND=8) pgbtop(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 4600 | |
---|
| 4601 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
---|
| 4602 | REAL (KIND=8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
---|
| 4603 | REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 4604 | ! ----------------------------------------------------------------------- |
---|
| 4605 | ! LOCAL VARIABLES: |
---|
| 4606 | REAL (KIND=8) zadjd(kdlon, kflev+1) |
---|
| 4607 | REAL (KIND=8) zadju(kdlon, kflev+1) |
---|
| 4608 | REAL (KIND=8) zdbdt(kdlon, ninter, kflev) |
---|
| 4609 | REAL (KIND=8) zdisd(kdlon, kflev+1) |
---|
| 4610 | REAL (KIND=8) zdisu(kdlon, kflev+1) |
---|
| 4611 | |
---|
| 4612 | INTEGER jk, jl |
---|
| 4613 | ! ----------------------------------------------------------------------- |
---|
| 4614 | |
---|
| 4615 | DO jk = 1, kflev + 1 |
---|
| 4616 | DO jl = 1, kdlon |
---|
| 4617 | zadjd(jl, jk) = 0. |
---|
| 4618 | zadju(jl, jk) = 0. |
---|
| 4619 | zdisd(jl, jk) = 0. |
---|
| 4620 | zdisu(jl, jk) = 0. |
---|
| 4621 | END DO |
---|
| 4622 | END DO |
---|
| 4623 | |
---|
| 4624 | DO jk = 1, kflev |
---|
| 4625 | DO jl = 1, kdlon |
---|
| 4626 | pcts(jl, jk) = 0. |
---|
| 4627 | END DO |
---|
| 4628 | END DO |
---|
| 4629 | |
---|
| 4630 | ! * CONTRIBUTION FROM ADJACENT LAYERS |
---|
| 4631 | |
---|
| 4632 | CALL lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, zadjd, zadju, & |
---|
| 4633 | pcntrb, zdbdt) |
---|
| 4634 | ! * CONTRIBUTION FROM DISTANT LAYERS |
---|
| 4635 | |
---|
| 4636 | CALL lwvd_lmdar4(kuaer, ktraer, pabcu, zdbdt, pga, pgb, pcntrb, zdisd, & |
---|
| 4637 | zdisu) |
---|
| 4638 | |
---|
| 4639 | ! * EXCHANGE WITH THE BOUNDARIES |
---|
| 4640 | |
---|
| 4641 | CALL lwvb_lmdar4(kuaer, ktraer, klim, pabcu, zadjd, zadju, pb, pbint, & |
---|
| 4642 | pbsuin, pbsur, pbtop, zdisd, zdisu, pemis, ppmb, pga, pgb, pgasur, & |
---|
| 4643 | pgbsur, pgatop, pgbtop, pcts, pfluc) |
---|
| 4644 | |
---|
| 4645 | |
---|
| 4646 | RETURN |
---|
| 4647 | END SUBROUTINE lwv_lmdar4 |
---|
| 4648 | SUBROUTINE lwvb_lmdar4(kuaer, ktraer, klim, pabcu, padjd, padju, pb, pbint, & |
---|
| 4649 | pbsui, pbsur, pbtop, pdisd, pdisu, pemis, ppmb, pga, pgb, pgasur, pgbsur, & |
---|
| 4650 | pgatop, pgbtop, pcts, pfluc) |
---|
[5314] | 4651 | USE radopt_mod_h |
---|
| 4652 | USE raddimlw_mod_h |
---|
| 4653 | USE dimphy |
---|
[1992] | 4654 | IMPLICIT NONE |
---|
| 4655 | |
---|
| 4656 | ! ----------------------------------------------------------------------- |
---|
| 4657 | ! PURPOSE. |
---|
| 4658 | ! -------- |
---|
| 4659 | ! INTRODUCES THE EFFECTS OF THE BOUNDARIES IN THE VERTICAL |
---|
| 4660 | ! INTEGRATION |
---|
| 4661 | |
---|
| 4662 | ! METHOD. |
---|
| 4663 | ! ------- |
---|
| 4664 | |
---|
| 4665 | ! 1. COMPUTES THE ENERGY EXCHANGE WITH TOP AND SURFACE OF THE |
---|
| 4666 | ! ATMOSPHERE |
---|
| 4667 | ! 2. COMPUTES THE COOLING-TO-SPACE AND HEATING-FROM-GROUND |
---|
| 4668 | ! TERMS FOR THE APPROXIMATE COOLING RATE ABOVE 10 HPA |
---|
| 4669 | ! 3. ADDS UP ALL CONTRIBUTIONS TO GET THE CLEAR-SKY FLUXES |
---|
| 4670 | |
---|
| 4671 | ! REFERENCE. |
---|
| 4672 | ! ---------- |
---|
| 4673 | |
---|
| 4674 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 4675 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 4676 | |
---|
| 4677 | ! AUTHOR. |
---|
| 4678 | ! ------- |
---|
| 4679 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 4680 | |
---|
| 4681 | ! MODIFICATIONS. |
---|
| 4682 | ! -------------- |
---|
| 4683 | ! ORIGINAL : 89-07-14 |
---|
| 4684 | ! Voigt lines (loop 2413 to 2427) - JJM & PhD - 01/96 |
---|
| 4685 | ! ----------------------------------------------------------------------- |
---|
| 4686 | |
---|
| 4687 | ! * 0.1 ARGUMENTS |
---|
| 4688 | ! --------- |
---|
| 4689 | |
---|
| 4690 | INTEGER kuaer, ktraer, klim |
---|
| 4691 | |
---|
| 4692 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
---|
| 4693 | REAL (KIND=8) padjd(kdlon, kflev+1) ! CONTRIBUTION BY ADJACENT LAYERS |
---|
| 4694 | REAL (KIND=8) padju(kdlon, kflev+1) ! CONTRIBUTION BY ADJACENT LAYERS |
---|
| 4695 | REAL (KIND=8) pb(kdlon, ninter, kflev+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
---|
| 4696 | REAL (KIND=8) pbint(kdlon, kflev+1) ! HALF-LEVEL PLANCK FUNCTIONS |
---|
| 4697 | REAL (KIND=8) pbsur(kdlon, ninter) ! SPECTRAL SURFACE PLANCK FUNCTION |
---|
| 4698 | REAL (KIND=8) pbsui(kdlon) ! SURFACE PLANCK FUNCTION |
---|
| 4699 | REAL (KIND=8) pbtop(kdlon, ninter) ! SPECTRAL T.O.A. PLANCK FUNCTION |
---|
| 4700 | REAL (KIND=8) pdisd(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 4701 | REAL (KIND=8) pdisu(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 4702 | REAL (KIND=8) pemis(kdlon) ! SURFACE EMISSIVITY |
---|
| 4703 | REAL (KIND=8) ppmb(kdlon, kflev+1) ! PRESSURE MB |
---|
| 4704 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4705 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4706 | REAL (KIND=8) pgasur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
| 4707 | REAL (KIND=8) pgbsur(kdlon, 8, 2) ! SURFACE PADE APPROXIMANTS |
---|
| 4708 | REAL (KIND=8) pgatop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
| 4709 | REAL (KIND=8) pgbtop(kdlon, 8, 2) ! T.O.A. PADE APPROXIMANTS |
---|
| 4710 | |
---|
| 4711 | REAL (KIND=8) pfluc(kdlon, 2, kflev+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 4712 | REAL (KIND=8) pcts(kdlon, kflev) ! COOLING-TO-SPACE TERM |
---|
| 4713 | |
---|
| 4714 | ! * LOCAL VARIABLES: |
---|
| 4715 | |
---|
| 4716 | REAL (KIND=8) zbgnd(kdlon) |
---|
| 4717 | REAL (KIND=8) zfd(kdlon) |
---|
| 4718 | REAL (KIND=8) zfn10(kdlon) |
---|
| 4719 | REAL (KIND=8) zfu(kdlon) |
---|
| 4720 | REAL (KIND=8) ztt(kdlon, ntra) |
---|
| 4721 | REAL (KIND=8) ztt1(kdlon, ntra) |
---|
| 4722 | REAL (KIND=8) ztt2(kdlon, ntra) |
---|
| 4723 | REAL (KIND=8) zuu(kdlon, nua) |
---|
| 4724 | REAL (KIND=8) zcnsol(kdlon) |
---|
| 4725 | REAL (KIND=8) zcntop(kdlon) |
---|
| 4726 | |
---|
| 4727 | INTEGER jk, jl, ja |
---|
| 4728 | INTEGER jstra, jstru |
---|
| 4729 | INTEGER ind1, ind2, ind3, ind4, in, jlim |
---|
| 4730 | REAL (KIND=8) zctstr |
---|
| 4731 | |
---|
| 4732 | ! ----------------------------------------------------------------------- |
---|
| 4733 | |
---|
| 4734 | ! * 1. INITIALIZATION |
---|
| 4735 | ! -------------- |
---|
| 4736 | |
---|
| 4737 | |
---|
| 4738 | |
---|
| 4739 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 4740 | ! --------------------------------- |
---|
| 4741 | |
---|
| 4742 | |
---|
| 4743 | DO ja = 1, ntra |
---|
| 4744 | DO jl = 1, kdlon |
---|
| 4745 | ztt(jl, ja) = 1.0 |
---|
| 4746 | ztt1(jl, ja) = 1.0 |
---|
| 4747 | ztt2(jl, ja) = 1.0 |
---|
| 4748 | END DO |
---|
| 4749 | END DO |
---|
| 4750 | |
---|
| 4751 | DO ja = 1, nua |
---|
| 4752 | DO jl = 1, kdlon |
---|
| 4753 | zuu(jl, ja) = 1.0 |
---|
| 4754 | END DO |
---|
| 4755 | END DO |
---|
| 4756 | |
---|
| 4757 | ! ------------------------------------------------------------------ |
---|
| 4758 | |
---|
| 4759 | ! * 2. VERTICAL INTEGRATION |
---|
| 4760 | ! -------------------- |
---|
| 4761 | |
---|
| 4762 | |
---|
| 4763 | ind1 = 0 |
---|
| 4764 | ind3 = 0 |
---|
| 4765 | ind4 = 1 |
---|
| 4766 | ind2 = 1 |
---|
| 4767 | |
---|
| 4768 | ! * 2.3 EXCHANGE WITH TOP OF THE ATMOSPHERE |
---|
| 4769 | ! ----------------------------------- |
---|
| 4770 | |
---|
| 4771 | |
---|
| 4772 | DO jk = 1, kflev |
---|
| 4773 | in = (jk-1)*ng1p1 + 1 |
---|
| 4774 | |
---|
| 4775 | DO ja = 1, kuaer |
---|
| 4776 | DO jl = 1, kdlon |
---|
| 4777 | zuu(jl, ja) = pabcu(jl, ja, in) |
---|
| 4778 | END DO |
---|
| 4779 | END DO |
---|
| 4780 | |
---|
| 4781 | |
---|
| 4782 | CALL lwtt_lmdar4(pgatop(1,1,1), pgbtop(1,1,1), zuu, ztt) |
---|
| 4783 | |
---|
| 4784 | DO jl = 1, kdlon |
---|
| 4785 | zcntop(jl) = pbtop(jl, 1)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
| 4786 | pbtop(jl, 2)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
| 4787 | pbtop(jl, 3)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
| 4788 | pbtop(jl, 4)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
| 4789 | pbtop(jl, 5)*ztt(jl, 3)*ztt(jl, 14) + pbtop(jl, 6)*ztt(jl, 6)*ztt(jl, & |
---|
| 4790 | 15) |
---|
| 4791 | zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
---|
| 4792 | pfluc(jl, 2, jk) = zfd(jl) |
---|
| 4793 | END DO |
---|
| 4794 | |
---|
| 4795 | END DO |
---|
| 4796 | |
---|
| 4797 | jk = kflev + 1 |
---|
| 4798 | in = (jk-1)*ng1p1 + 1 |
---|
| 4799 | |
---|
| 4800 | DO jl = 1, kdlon |
---|
| 4801 | zcntop(jl) = pbtop(jl, 1) + pbtop(jl, 2) + pbtop(jl, 3) + pbtop(jl, 4) + & |
---|
| 4802 | pbtop(jl, 5) + pbtop(jl, 6) |
---|
| 4803 | zfd(jl) = zcntop(jl) - pbint(jl, jk) - pdisd(jl, jk) - padjd(jl, jk) |
---|
| 4804 | pfluc(jl, 2, jk) = zfd(jl) |
---|
| 4805 | END DO |
---|
| 4806 | |
---|
| 4807 | ! * 2.4 COOLING-TO-SPACE OF LAYERS ABOVE 10 HPA |
---|
| 4808 | ! --------------------------------------- |
---|
| 4809 | |
---|
| 4810 | |
---|
| 4811 | |
---|
| 4812 | ! * 2.4.1 INITIALIZATION |
---|
| 4813 | ! -------------- |
---|
| 4814 | |
---|
| 4815 | |
---|
| 4816 | jlim = kflev |
---|
| 4817 | |
---|
| 4818 | IF (.NOT. levoigt) THEN |
---|
| 4819 | DO jk = kflev, 1, -1 |
---|
| 4820 | IF (ppmb(1,jk)<10.0) THEN |
---|
| 4821 | jlim = jk |
---|
[998] | 4822 | END IF |
---|
[1992] | 4823 | END DO |
---|
| 4824 | END IF |
---|
| 4825 | klim = jlim |
---|
| 4826 | |
---|
| 4827 | IF (.NOT. levoigt) THEN |
---|
| 4828 | DO ja = 1, ktraer |
---|
| 4829 | DO jl = 1, kdlon |
---|
| 4830 | ztt1(jl, ja) = 1.0 |
---|
| 4831 | END DO |
---|
| 4832 | END DO |
---|
| 4833 | |
---|
| 4834 | ! * 2.4.2 LOOP OVER LAYERS ABOVE 10 HPA |
---|
| 4835 | ! ----------------------------- |
---|
| 4836 | |
---|
| 4837 | |
---|
| 4838 | DO jstra = kflev, jlim, -1 |
---|
| 4839 | jstru = (jstra-1)*ng1p1 + 1 |
---|
| 4840 | |
---|
| 4841 | DO ja = 1, kuaer |
---|
| 4842 | DO jl = 1, kdlon |
---|
| 4843 | zuu(jl, ja) = pabcu(jl, ja, jstru) |
---|
| 4844 | END DO |
---|
| 4845 | END DO |
---|
| 4846 | |
---|
| 4847 | |
---|
| 4848 | CALL lwtt_lmdar4(pga(1,1,1,jstra), pgb(1,1,1,jstra), zuu, ztt) |
---|
| 4849 | |
---|
| 4850 | DO jl = 1, kdlon |
---|
| 4851 | zctstr = (pb(jl,1,jstra)+pb(jl,1,jstra+1))* & |
---|
| 4852 | (ztt1(jl,1)*ztt1(jl,10)-ztt(jl,1)*ztt(jl,10)) + & |
---|
| 4853 | (pb(jl,2,jstra)+pb(jl,2,jstra+1))*(ztt1(jl,2)*ztt1(jl,7)*ztt1(jl,11 & |
---|
| 4854 | )-ztt(jl,2)*ztt(jl,7)*ztt(jl,11)) + (pb(jl,3,jstra)+pb(jl,3,jstra+1 & |
---|
| 4855 | ))*(ztt1(jl,4)*ztt1(jl,8)*ztt1(jl,12)-ztt(jl,4)*ztt(jl,8)*ztt(jl,12 & |
---|
| 4856 | )) + (pb(jl,4,jstra)+pb(jl,4,jstra+1))*(ztt1(jl,5)*ztt1(jl,9)*ztt1( & |
---|
| 4857 | jl,13)-ztt(jl,5)*ztt(jl,9)*ztt(jl,13)) + (pb(jl,5,jstra)+pb(jl,5, & |
---|
| 4858 | jstra+1))*(ztt1(jl,3)*ztt1(jl,14)-ztt(jl,3)*ztt(jl,14)) + & |
---|
| 4859 | (pb(jl,6,jstra)+pb(jl,6,jstra+1))*(ztt1(jl,6)*ztt1(jl,15)-ztt(jl,6) & |
---|
| 4860 | *ztt(jl,15)) |
---|
| 4861 | pcts(jl, jstra) = zctstr*0.5 |
---|
| 4862 | END DO |
---|
| 4863 | DO ja = 1, ktraer |
---|
| 4864 | DO jl = 1, kdlon |
---|
| 4865 | ztt1(jl, ja) = ztt(jl, ja) |
---|
| 4866 | END DO |
---|
| 4867 | END DO |
---|
| 4868 | END DO |
---|
| 4869 | END IF |
---|
| 4870 | ! Mise a zero de securite pour PCTS en cas de LEVOIGT |
---|
| 4871 | IF (levoigt) THEN |
---|
| 4872 | DO jstra = 1, kflev |
---|
| 4873 | DO jl = 1, kdlon |
---|
| 4874 | pcts(jl, jstra) = 0. |
---|
| 4875 | END DO |
---|
| 4876 | END DO |
---|
| 4877 | END IF |
---|
| 4878 | |
---|
| 4879 | ! * 2.5 EXCHANGE WITH LOWER LIMIT |
---|
| 4880 | ! ------------------------- |
---|
| 4881 | |
---|
| 4882 | |
---|
| 4883 | DO jl = 1, kdlon |
---|
| 4884 | zbgnd(jl) = pbsui(jl)*pemis(jl) - (1.-pemis(jl))*pfluc(jl, 2, 1) - & |
---|
| 4885 | pbint(jl, 1) |
---|
| 4886 | END DO |
---|
| 4887 | |
---|
| 4888 | jk = 1 |
---|
| 4889 | in = (jk-1)*ng1p1 + 1 |
---|
| 4890 | |
---|
| 4891 | DO jl = 1, kdlon |
---|
| 4892 | zcnsol(jl) = pbsur(jl, 1) + pbsur(jl, 2) + pbsur(jl, 3) + pbsur(jl, 4) + & |
---|
| 4893 | pbsur(jl, 5) + pbsur(jl, 6) |
---|
| 4894 | zcnsol(jl) = zcnsol(jl)*zbgnd(jl)/pbsui(jl) |
---|
| 4895 | zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
---|
| 4896 | pfluc(jl, 1, jk) = zfu(jl) |
---|
| 4897 | END DO |
---|
| 4898 | |
---|
| 4899 | DO jk = 2, kflev + 1 |
---|
| 4900 | in = (jk-1)*ng1p1 + 1 |
---|
| 4901 | |
---|
| 4902 | |
---|
| 4903 | DO ja = 1, kuaer |
---|
| 4904 | DO jl = 1, kdlon |
---|
| 4905 | zuu(jl, ja) = pabcu(jl, ja, 1) - pabcu(jl, ja, in) |
---|
| 4906 | END DO |
---|
| 4907 | END DO |
---|
| 4908 | |
---|
| 4909 | |
---|
| 4910 | CALL lwtt_lmdar4(pgasur(1,1,1), pgbsur(1,1,1), zuu, ztt) |
---|
| 4911 | |
---|
| 4912 | DO jl = 1, kdlon |
---|
| 4913 | zcnsol(jl) = pbsur(jl, 1)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
| 4914 | pbsur(jl, 2)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
| 4915 | pbsur(jl, 3)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
| 4916 | pbsur(jl, 4)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
| 4917 | pbsur(jl, 5)*ztt(jl, 3)*ztt(jl, 14) + pbsur(jl, 6)*ztt(jl, 6)*ztt(jl, & |
---|
| 4918 | 15) |
---|
| 4919 | zcnsol(jl) = zcnsol(jl)*zbgnd(jl)/pbsui(jl) |
---|
| 4920 | zfu(jl) = zcnsol(jl) + pbint(jl, jk) - pdisu(jl, jk) - padju(jl, jk) |
---|
| 4921 | pfluc(jl, 1, jk) = zfu(jl) |
---|
| 4922 | END DO |
---|
| 4923 | |
---|
| 4924 | |
---|
| 4925 | END DO |
---|
| 4926 | |
---|
| 4927 | ! * 2.7 CLEAR-SKY FLUXES |
---|
| 4928 | ! ---------------- |
---|
| 4929 | |
---|
| 4930 | |
---|
| 4931 | IF (.NOT. levoigt) THEN |
---|
| 4932 | DO jl = 1, kdlon |
---|
| 4933 | zfn10(jl) = pfluc(jl, 1, jlim) + pfluc(jl, 2, jlim) |
---|
| 4934 | END DO |
---|
| 4935 | DO jk = jlim + 1, kflev + 1 |
---|
| 4936 | DO jl = 1, kdlon |
---|
| 4937 | zfn10(jl) = zfn10(jl) + pcts(jl, jk-1) |
---|
| 4938 | pfluc(jl, 1, jk) = zfn10(jl) |
---|
| 4939 | pfluc(jl, 2, jk) = 0. |
---|
| 4940 | END DO |
---|
| 4941 | END DO |
---|
| 4942 | END IF |
---|
| 4943 | |
---|
| 4944 | ! ------------------------------------------------------------------ |
---|
| 4945 | |
---|
| 4946 | RETURN |
---|
| 4947 | END SUBROUTINE lwvb_lmdar4 |
---|
| 4948 | SUBROUTINE lwvd_lmdar4(kuaer, ktraer, pabcu, pdbdt, pga, pgb, pcntrb, pdisd, & |
---|
| 4949 | pdisu) |
---|
[5314] | 4950 | USE raddimlw_mod_h |
---|
| 4951 | USE dimphy |
---|
[1992] | 4952 | IMPLICIT NONE |
---|
| 4953 | |
---|
| 4954 | ! ----------------------------------------------------------------------- |
---|
| 4955 | ! PURPOSE. |
---|
| 4956 | ! -------- |
---|
| 4957 | ! CARRIES OUT THE VERTICAL INTEGRATION ON THE DISTANT LAYERS |
---|
| 4958 | |
---|
| 4959 | ! METHOD. |
---|
| 4960 | ! ------- |
---|
| 4961 | |
---|
| 4962 | ! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
---|
| 4963 | ! CONTRIBUTIONS OF THE DISTANT LAYERS USING TRAPEZOIDAL RULE |
---|
| 4964 | |
---|
| 4965 | ! REFERENCE. |
---|
| 4966 | ! ---------- |
---|
| 4967 | |
---|
| 4968 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 4969 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 4970 | |
---|
| 4971 | ! AUTHOR. |
---|
| 4972 | ! ------- |
---|
| 4973 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 4974 | |
---|
| 4975 | ! MODIFICATIONS. |
---|
| 4976 | ! -------------- |
---|
| 4977 | ! ORIGINAL : 89-07-14 |
---|
| 4978 | ! ----------------------------------------------------------------------- |
---|
| 4979 | ! * ARGUMENTS: |
---|
| 4980 | |
---|
| 4981 | INTEGER kuaer, ktraer |
---|
| 4982 | |
---|
| 4983 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
---|
| 4984 | REAL (KIND=8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
---|
| 4985 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4986 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 4987 | |
---|
| 4988 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! ENERGY EXCHANGE MATRIX |
---|
| 4989 | REAL (KIND=8) pdisd(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 4990 | REAL (KIND=8) pdisu(kdlon, kflev+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 4991 | |
---|
| 4992 | ! * LOCAL VARIABLES: |
---|
| 4993 | |
---|
| 4994 | REAL (KIND=8) zglayd(kdlon) |
---|
| 4995 | REAL (KIND=8) zglayu(kdlon) |
---|
| 4996 | REAL (KIND=8) ztt(kdlon, ntra) |
---|
| 4997 | REAL (KIND=8) ztt1(kdlon, ntra) |
---|
| 4998 | REAL (KIND=8) ztt2(kdlon, ntra) |
---|
| 4999 | |
---|
| 5000 | INTEGER jl, jk, ja, ikp1, ikn, ikd1, jkj, ikd2 |
---|
| 5001 | INTEGER ikjp1, ikm1, ikj, jlk, iku1, ijkl, iku2 |
---|
| 5002 | INTEGER ind1, ind2, ind3, ind4, itt |
---|
| 5003 | REAL (KIND=8) zww, zdzxdg, zdzxmg |
---|
| 5004 | |
---|
| 5005 | ! * 1. INITIALIZATION |
---|
| 5006 | ! -------------- |
---|
| 5007 | |
---|
| 5008 | |
---|
| 5009 | ! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
---|
| 5010 | ! ------------------------------ |
---|
| 5011 | |
---|
| 5012 | |
---|
| 5013 | DO jk = 1, kflev + 1 |
---|
| 5014 | DO jl = 1, kdlon |
---|
| 5015 | pdisd(jl, jk) = 0. |
---|
| 5016 | pdisu(jl, jk) = 0. |
---|
| 5017 | END DO |
---|
| 5018 | END DO |
---|
| 5019 | |
---|
| 5020 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 5021 | ! --------------------------------- |
---|
| 5022 | |
---|
| 5023 | |
---|
| 5024 | |
---|
| 5025 | DO ja = 1, ntra |
---|
| 5026 | DO jl = 1, kdlon |
---|
| 5027 | ztt(jl, ja) = 1.0 |
---|
| 5028 | ztt1(jl, ja) = 1.0 |
---|
| 5029 | ztt2(jl, ja) = 1.0 |
---|
| 5030 | END DO |
---|
| 5031 | END DO |
---|
| 5032 | |
---|
| 5033 | ! ------------------------------------------------------------------ |
---|
| 5034 | |
---|
| 5035 | ! * 2. VERTICAL INTEGRATION |
---|
| 5036 | ! -------------------- |
---|
| 5037 | |
---|
| 5038 | |
---|
| 5039 | ind1 = 0 |
---|
| 5040 | ind3 = 0 |
---|
| 5041 | ind4 = 1 |
---|
| 5042 | ind2 = 1 |
---|
| 5043 | |
---|
| 5044 | ! * 2.2 CONTRIBUTION FROM DISTANT LAYERS |
---|
| 5045 | ! --------------------------------- |
---|
| 5046 | |
---|
| 5047 | |
---|
| 5048 | |
---|
| 5049 | ! * 2.2.1 DISTANT AND ABOVE LAYERS |
---|
| 5050 | ! ------------------------ |
---|
| 5051 | |
---|
| 5052 | |
---|
| 5053 | |
---|
| 5054 | |
---|
| 5055 | ! * 2.2.2 FIRST UPPER LEVEL |
---|
| 5056 | ! ----------------- |
---|
| 5057 | |
---|
| 5058 | |
---|
| 5059 | DO jk = 1, kflev - 1 |
---|
| 5060 | ikp1 = jk + 1 |
---|
| 5061 | ikn = (jk-1)*ng1p1 + 1 |
---|
| 5062 | ikd1 = jk*ng1p1 + 1 |
---|
| 5063 | |
---|
| 5064 | CALL lwttm_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), pabcu(1,1,ikn), & |
---|
| 5065 | pabcu(1,1,ikd1), ztt1) |
---|
| 5066 | |
---|
| 5067 | ! * 2.2.3 HIGHER UP |
---|
| 5068 | ! --------- |
---|
| 5069 | |
---|
| 5070 | |
---|
| 5071 | itt = 1 |
---|
| 5072 | DO jkj = ikp1, kflev |
---|
| 5073 | IF (itt==1) THEN |
---|
| 5074 | itt = 2 |
---|
| 5075 | ELSE |
---|
| 5076 | itt = 1 |
---|
[998] | 5077 | END IF |
---|
[1992] | 5078 | ikjp1 = jkj + 1 |
---|
| 5079 | ikd2 = jkj*ng1p1 + 1 |
---|
[998] | 5080 | |
---|
[1992] | 5081 | IF (itt==1) THEN |
---|
| 5082 | CALL lwttm_lmdar4(pga(1,1,1,jkj), pgb(1,1,1,jkj), pabcu(1,1,ikn), & |
---|
| 5083 | pabcu(1,1,ikd2), ztt1) |
---|
[998] | 5084 | ELSE |
---|
[1992] | 5085 | CALL lwttm_lmdar4(pga(1,1,1,jkj), pgb(1,1,1,jkj), pabcu(1,1,ikn), & |
---|
| 5086 | pabcu(1,1,ikd2), ztt2) |
---|
[998] | 5087 | END IF |
---|
[1992] | 5088 | |
---|
| 5089 | DO ja = 1, ktraer |
---|
| 5090 | DO jl = 1, kdlon |
---|
| 5091 | ztt(jl, ja) = (ztt1(jl,ja)+ztt2(jl,ja))*0.5 |
---|
| 5092 | END DO |
---|
| 5093 | END DO |
---|
| 5094 | |
---|
| 5095 | DO jl = 1, kdlon |
---|
| 5096 | zww = pdbdt(jl, 1, jkj)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
| 5097 | pdbdt(jl, 2, jkj)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
| 5098 | pdbdt(jl, 3, jkj)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
| 5099 | pdbdt(jl, 4, jkj)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
| 5100 | pdbdt(jl, 5, jkj)*ztt(jl, 3)*ztt(jl, 14) + & |
---|
| 5101 | pdbdt(jl, 6, jkj)*ztt(jl, 6)*ztt(jl, 15) |
---|
| 5102 | zglayd(jl) = zww |
---|
| 5103 | zdzxdg = zglayd(jl) |
---|
| 5104 | pdisd(jl, jk) = pdisd(jl, jk) + zdzxdg |
---|
| 5105 | pcntrb(jl, jk, ikjp1) = zdzxdg |
---|
| 5106 | END DO |
---|
| 5107 | |
---|
| 5108 | |
---|
| 5109 | END DO |
---|
| 5110 | END DO |
---|
| 5111 | |
---|
| 5112 | ! * 2.2.4 DISTANT AND BELOW LAYERS |
---|
| 5113 | ! ------------------------ |
---|
| 5114 | |
---|
| 5115 | |
---|
| 5116 | |
---|
| 5117 | |
---|
| 5118 | ! * 2.2.5 FIRST LOWER LEVEL |
---|
| 5119 | ! ----------------- |
---|
| 5120 | |
---|
| 5121 | |
---|
| 5122 | DO jk = 3, kflev + 1 |
---|
| 5123 | ikn = (jk-1)*ng1p1 + 1 |
---|
| 5124 | ikm1 = jk - 1 |
---|
| 5125 | ikj = jk - 2 |
---|
| 5126 | iku1 = ikj*ng1p1 + 1 |
---|
| 5127 | |
---|
| 5128 | |
---|
| 5129 | CALL lwttm_lmdar4(pga(1,1,1,ikj), pgb(1,1,1,ikj), pabcu(1,1,iku1), & |
---|
| 5130 | pabcu(1,1,ikn), ztt1) |
---|
| 5131 | |
---|
| 5132 | ! * 2.2.6 DOWN BELOW |
---|
| 5133 | ! ---------- |
---|
| 5134 | |
---|
| 5135 | |
---|
| 5136 | itt = 1 |
---|
| 5137 | DO jlk = 1, ikj |
---|
| 5138 | IF (itt==1) THEN |
---|
| 5139 | itt = 2 |
---|
[998] | 5140 | ELSE |
---|
[1992] | 5141 | itt = 1 |
---|
[998] | 5142 | END IF |
---|
[1992] | 5143 | ijkl = ikm1 - jlk |
---|
| 5144 | iku2 = (ijkl-1)*ng1p1 + 1 |
---|
| 5145 | |
---|
| 5146 | |
---|
| 5147 | IF (itt==1) THEN |
---|
| 5148 | CALL lwttm_lmdar4(pga(1,1,1,ijkl), pgb(1,1,1,ijkl), pabcu(1,1,iku2), & |
---|
| 5149 | pabcu(1,1,ikn), ztt1) |
---|
[998] | 5150 | ELSE |
---|
[1992] | 5151 | CALL lwttm_lmdar4(pga(1,1,1,ijkl), pgb(1,1,1,ijkl), pabcu(1,1,iku2), & |
---|
| 5152 | pabcu(1,1,ikn), ztt2) |
---|
[998] | 5153 | END IF |
---|
[1279] | 5154 | |
---|
[1992] | 5155 | DO ja = 1, ktraer |
---|
| 5156 | DO jl = 1, kdlon |
---|
| 5157 | ztt(jl, ja) = (ztt1(jl,ja)+ztt2(jl,ja))*0.5 |
---|
| 5158 | END DO |
---|
| 5159 | END DO |
---|
[1279] | 5160 | |
---|
[1992] | 5161 | DO jl = 1, kdlon |
---|
| 5162 | zww = pdbdt(jl, 1, ijkl)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
| 5163 | pdbdt(jl, 2, ijkl)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
| 5164 | pdbdt(jl, 3, ijkl)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
| 5165 | pdbdt(jl, 4, ijkl)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
| 5166 | pdbdt(jl, 5, ijkl)*ztt(jl, 3)*ztt(jl, 14) + & |
---|
| 5167 | pdbdt(jl, 6, ijkl)*ztt(jl, 6)*ztt(jl, 15) |
---|
| 5168 | zglayu(jl) = zww |
---|
| 5169 | zdzxmg = zglayu(jl) |
---|
| 5170 | pdisu(jl, jk) = pdisu(jl, jk) + zdzxmg |
---|
| 5171 | pcntrb(jl, jk, ijkl) = zdzxmg |
---|
| 5172 | END DO |
---|
| 5173 | |
---|
| 5174 | |
---|
| 5175 | END DO |
---|
| 5176 | END DO |
---|
| 5177 | |
---|
| 5178 | RETURN |
---|
| 5179 | END SUBROUTINE lwvd_lmdar4 |
---|
| 5180 | SUBROUTINE lwvn_lmdar4(kuaer, ktraer, pabcu, pdbsl, pga, pgb, padjd, padju, & |
---|
| 5181 | pcntrb, pdbdt) |
---|
[5314] | 5182 | USE raddimlw_mod_h |
---|
| 5183 | USE dimphy |
---|
[1992] | 5184 | USE radiation_ar4_param, ONLY: wg1 |
---|
| 5185 | IMPLICIT NONE |
---|
| 5186 | |
---|
| 5187 | ! ----------------------------------------------------------------------- |
---|
| 5188 | ! PURPOSE. |
---|
| 5189 | ! -------- |
---|
| 5190 | ! CARRIES OUT THE VERTICAL INTEGRATION ON NEARBY LAYERS |
---|
| 5191 | ! TO GIVE LONGWAVE FLUXES OR RADIANCES |
---|
| 5192 | |
---|
| 5193 | ! METHOD. |
---|
| 5194 | ! ------- |
---|
| 5195 | |
---|
| 5196 | ! 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
---|
| 5197 | ! CONTRIBUTIONS OF THE ADJACENT LAYERS USING A GAUSSIAN QUADRATURE |
---|
| 5198 | |
---|
| 5199 | ! REFERENCE. |
---|
| 5200 | ! ---------- |
---|
| 5201 | |
---|
| 5202 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5203 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5204 | |
---|
| 5205 | ! AUTHOR. |
---|
| 5206 | ! ------- |
---|
| 5207 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5208 | |
---|
| 5209 | ! MODIFICATIONS. |
---|
| 5210 | ! -------------- |
---|
| 5211 | ! ORIGINAL : 89-07-14 |
---|
| 5212 | ! ----------------------------------------------------------------------- |
---|
| 5213 | |
---|
| 5214 | ! * ARGUMENTS: |
---|
| 5215 | |
---|
| 5216 | INTEGER kuaer, ktraer |
---|
| 5217 | |
---|
| 5218 | REAL (KIND=8) pabcu(kdlon, nua, 3*kflev+1) ! ABSORBER AMOUNTS |
---|
| 5219 | REAL (KIND=8) pdbsl(kdlon, ninter, kflev*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 5220 | REAL (KIND=8) pga(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 5221 | REAL (KIND=8) pgb(kdlon, 8, 2, kflev) ! PADE APPROXIMANTS |
---|
| 5222 | |
---|
| 5223 | REAL (KIND=8) padjd(kdlon, kflev+1) ! CONTRIBUTION OF ADJACENT LAYERS |
---|
| 5224 | REAL (KIND=8) padju(kdlon, kflev+1) ! CONTRIBUTION OF ADJACENT LAYERS |
---|
| 5225 | REAL (KIND=8) pcntrb(kdlon, kflev+1, kflev+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
---|
| 5226 | REAL (KIND=8) pdbdt(kdlon, ninter, kflev) ! LAYER PLANCK FUNCTION GRADIENT |
---|
| 5227 | |
---|
| 5228 | ! * LOCAL ARRAYS: |
---|
| 5229 | |
---|
| 5230 | REAL (KIND=8) zglayd(kdlon) |
---|
| 5231 | REAL (KIND=8) zglayu(kdlon) |
---|
| 5232 | REAL (KIND=8) ztt(kdlon, ntra) |
---|
| 5233 | REAL (KIND=8) ztt1(kdlon, ntra) |
---|
| 5234 | REAL (KIND=8) ztt2(kdlon, ntra) |
---|
| 5235 | REAL (KIND=8) zuu(kdlon, nua) |
---|
| 5236 | |
---|
| 5237 | INTEGER jk, jl, ja, im12, ind, inu, ixu, jg |
---|
| 5238 | INTEGER ixd, ibs, idd, imu, jk1, jk2, jnu |
---|
| 5239 | REAL (KIND=8) zwtr |
---|
| 5240 | |
---|
| 5241 | ! ----------------------------------------------------------------------- |
---|
| 5242 | |
---|
| 5243 | ! * 1. INITIALIZATION |
---|
| 5244 | ! -------------- |
---|
| 5245 | |
---|
| 5246 | |
---|
| 5247 | ! * 1.1 INITIALIZE LAYER CONTRIBUTIONS |
---|
| 5248 | ! ------------------------------ |
---|
| 5249 | |
---|
| 5250 | |
---|
| 5251 | DO jk = 1, kflev + 1 |
---|
| 5252 | DO jl = 1, kdlon |
---|
| 5253 | padjd(jl, jk) = 0. |
---|
| 5254 | padju(jl, jk) = 0. |
---|
| 5255 | END DO |
---|
| 5256 | END DO |
---|
| 5257 | |
---|
| 5258 | ! * 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 5259 | ! --------------------------------- |
---|
| 5260 | |
---|
| 5261 | |
---|
| 5262 | DO ja = 1, ntra |
---|
| 5263 | DO jl = 1, kdlon |
---|
| 5264 | ztt(jl, ja) = 1.0 |
---|
| 5265 | ztt1(jl, ja) = 1.0 |
---|
| 5266 | ztt2(jl, ja) = 1.0 |
---|
| 5267 | END DO |
---|
| 5268 | END DO |
---|
| 5269 | |
---|
| 5270 | DO ja = 1, nua |
---|
| 5271 | DO jl = 1, kdlon |
---|
| 5272 | zuu(jl, ja) = 0. |
---|
| 5273 | END DO |
---|
| 5274 | END DO |
---|
| 5275 | |
---|
| 5276 | ! ------------------------------------------------------------------ |
---|
| 5277 | |
---|
| 5278 | ! * 2. VERTICAL INTEGRATION |
---|
| 5279 | ! -------------------- |
---|
| 5280 | |
---|
| 5281 | |
---|
| 5282 | |
---|
| 5283 | ! * 2.1 CONTRIBUTION FROM ADJACENT LAYERS |
---|
| 5284 | ! --------------------------------- |
---|
| 5285 | |
---|
| 5286 | |
---|
| 5287 | DO jk = 1, kflev |
---|
| 5288 | ! * 2.1.1 DOWNWARD LAYERS |
---|
| 5289 | ! --------------- |
---|
| 5290 | |
---|
| 5291 | |
---|
| 5292 | im12 = 2*(jk-1) |
---|
| 5293 | ind = (jk-1)*ng1p1 + 1 |
---|
| 5294 | ixd = ind |
---|
| 5295 | inu = jk*ng1p1 + 1 |
---|
| 5296 | ixu = ind |
---|
| 5297 | |
---|
| 5298 | DO jl = 1, kdlon |
---|
| 5299 | zglayd(jl) = 0. |
---|
| 5300 | zglayu(jl) = 0. |
---|
| 5301 | END DO |
---|
| 5302 | |
---|
| 5303 | DO jg = 1, ng1 |
---|
| 5304 | ibs = im12 + jg |
---|
| 5305 | idd = ixd + jg |
---|
| 5306 | DO ja = 1, kuaer |
---|
| 5307 | DO jl = 1, kdlon |
---|
| 5308 | zuu(jl, ja) = pabcu(jl, ja, ind) - pabcu(jl, ja, idd) |
---|
| 5309 | END DO |
---|
| 5310 | END DO |
---|
| 5311 | |
---|
| 5312 | |
---|
| 5313 | CALL lwtt_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), zuu, ztt) |
---|
| 5314 | |
---|
| 5315 | DO jl = 1, kdlon |
---|
| 5316 | zwtr = pdbsl(jl, 1, ibs)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
| 5317 | pdbsl(jl, 2, ibs)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
| 5318 | pdbsl(jl, 3, ibs)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
| 5319 | pdbsl(jl, 4, ibs)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
| 5320 | pdbsl(jl, 5, ibs)*ztt(jl, 3)*ztt(jl, 14) + & |
---|
| 5321 | pdbsl(jl, 6, ibs)*ztt(jl, 6)*ztt(jl, 15) |
---|
| 5322 | zglayd(jl) = zglayd(jl) + zwtr*wg1(jg) |
---|
| 5323 | END DO |
---|
| 5324 | |
---|
| 5325 | ! * 2.1.2 DOWNWARD LAYERS |
---|
| 5326 | ! --------------- |
---|
| 5327 | |
---|
| 5328 | |
---|
| 5329 | imu = ixu + jg |
---|
| 5330 | DO ja = 1, kuaer |
---|
| 5331 | DO jl = 1, kdlon |
---|
| 5332 | zuu(jl, ja) = pabcu(jl, ja, imu) - pabcu(jl, ja, inu) |
---|
| 5333 | END DO |
---|
| 5334 | END DO |
---|
| 5335 | |
---|
| 5336 | |
---|
| 5337 | CALL lwtt_lmdar4(pga(1,1,1,jk), pgb(1,1,1,jk), zuu, ztt) |
---|
| 5338 | |
---|
| 5339 | DO jl = 1, kdlon |
---|
| 5340 | zwtr = pdbsl(jl, 1, ibs)*ztt(jl, 1)*ztt(jl, 10) + & |
---|
| 5341 | pdbsl(jl, 2, ibs)*ztt(jl, 2)*ztt(jl, 7)*ztt(jl, 11) + & |
---|
| 5342 | pdbsl(jl, 3, ibs)*ztt(jl, 4)*ztt(jl, 8)*ztt(jl, 12) + & |
---|
| 5343 | pdbsl(jl, 4, ibs)*ztt(jl, 5)*ztt(jl, 9)*ztt(jl, 13) + & |
---|
| 5344 | pdbsl(jl, 5, ibs)*ztt(jl, 3)*ztt(jl, 14) + & |
---|
| 5345 | pdbsl(jl, 6, ibs)*ztt(jl, 6)*ztt(jl, 15) |
---|
| 5346 | zglayu(jl) = zglayu(jl) + zwtr*wg1(jg) |
---|
| 5347 | END DO |
---|
| 5348 | |
---|
| 5349 | END DO |
---|
| 5350 | |
---|
| 5351 | DO jl = 1, kdlon |
---|
| 5352 | padjd(jl, jk) = zglayd(jl) |
---|
| 5353 | pcntrb(jl, jk, jk+1) = zglayd(jl) |
---|
| 5354 | padju(jl, jk+1) = zglayu(jl) |
---|
| 5355 | pcntrb(jl, jk+1, jk) = zglayu(jl) |
---|
| 5356 | pcntrb(jl, jk, jk) = 0.0 |
---|
| 5357 | END DO |
---|
| 5358 | |
---|
| 5359 | END DO |
---|
| 5360 | |
---|
| 5361 | DO jk = 1, kflev |
---|
| 5362 | jk2 = 2*jk |
---|
| 5363 | jk1 = jk2 - 1 |
---|
| 5364 | DO jnu = 1, ninter |
---|
| 5365 | DO jl = 1, kdlon |
---|
| 5366 | pdbdt(jl, jnu, jk) = pdbsl(jl, jnu, jk1) + pdbsl(jl, jnu, jk2) |
---|
| 5367 | END DO |
---|
| 5368 | END DO |
---|
| 5369 | END DO |
---|
| 5370 | |
---|
| 5371 | RETURN |
---|
| 5372 | |
---|
| 5373 | END SUBROUTINE lwvn_lmdar4 |
---|
| 5374 | SUBROUTINE lwtt_lmdar4(pga, pgb, puu, ptt) |
---|
[5314] | 5375 | USE raddimlw_mod_h |
---|
| 5376 | USE dimphy |
---|
[1992] | 5377 | IMPLICIT NONE |
---|
| 5378 | |
---|
| 5379 | ! ----------------------------------------------------------------------- |
---|
| 5380 | ! PURPOSE. |
---|
| 5381 | ! -------- |
---|
| 5382 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 5383 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
| 5384 | ! INTERVALS. |
---|
| 5385 | |
---|
| 5386 | ! METHOD. |
---|
| 5387 | ! ------- |
---|
| 5388 | |
---|
| 5389 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
| 5390 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
| 5391 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
| 5392 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
| 5393 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
| 5394 | |
---|
| 5395 | ! REFERENCE. |
---|
| 5396 | ! ---------- |
---|
| 5397 | |
---|
| 5398 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5399 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5400 | |
---|
| 5401 | ! AUTHOR. |
---|
| 5402 | ! ------- |
---|
| 5403 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5404 | |
---|
| 5405 | ! MODIFICATIONS. |
---|
| 5406 | ! -------------- |
---|
| 5407 | ! ORIGINAL : 88-12-15 |
---|
| 5408 | |
---|
| 5409 | ! ----------------------------------------------------------------------- |
---|
| 5410 | REAL (KIND=8) o1h, o2h |
---|
| 5411 | PARAMETER (o1h=2230.) |
---|
| 5412 | PARAMETER (o2h=100.) |
---|
| 5413 | REAL (KIND=8) rpialf0 |
---|
| 5414 | PARAMETER (rpialf0=2.0) |
---|
| 5415 | |
---|
| 5416 | ! * ARGUMENTS: |
---|
| 5417 | |
---|
| 5418 | REAL (KIND=8) puu(kdlon, nua) |
---|
| 5419 | REAL (KIND=8) ptt(kdlon, ntra) |
---|
| 5420 | REAL (KIND=8) pga(kdlon, 8, 2) |
---|
| 5421 | REAL (KIND=8) pgb(kdlon, 8, 2) |
---|
| 5422 | |
---|
| 5423 | ! * LOCAL VARIABLES: |
---|
| 5424 | |
---|
| 5425 | REAL (KIND=8) zz, zxd, zxn |
---|
| 5426 | REAL (KIND=8) zpu, zpu10, zpu11, zpu12, zpu13 |
---|
| 5427 | REAL (KIND=8) zeu, zeu10, zeu11, zeu12, zeu13 |
---|
| 5428 | REAL (KIND=8) zx, zy, zsq1, zsq2, zvxy, zuxy |
---|
| 5429 | REAL (KIND=8) zaercn, zto1, zto2, zxch4, zych4, zxn2o, zyn2o |
---|
| 5430 | REAL (KIND=8) zsqn21, zodn21, zsqh42, zodh42 |
---|
| 5431 | REAL (KIND=8) zsqh41, zodh41, zsqn22, zodn22, zttf11, zttf12 |
---|
| 5432 | REAL (KIND=8) zuu11, zuu12, za11, za12 |
---|
| 5433 | INTEGER jl, ja |
---|
| 5434 | |
---|
| 5435 | ! ------------------------------------------------------------------ |
---|
| 5436 | |
---|
| 5437 | ! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
| 5438 | ! ----------------------------------------------- |
---|
| 5439 | |
---|
| 5440 | |
---|
| 5441 | |
---|
| 5442 | ! cdir collapse |
---|
| 5443 | DO ja = 1, 8 |
---|
| 5444 | DO jl = 1, kdlon |
---|
| 5445 | zz = sqrt(puu(jl,ja)) |
---|
| 5446 | ! ZXD(JL,1)=PGB( JL, 1,1) + ZZ(JL, 1)*(PGB( JL, 1,2) + ZZ(JL, 1)) |
---|
| 5447 | ! ZXN(JL,1)=PGA( JL, 1,1) + ZZ(JL, 1)*(PGA( JL, 1,2) ) |
---|
| 5448 | ! PTT(JL,1)=ZXN(JL,1)/ZXD(JL,1) |
---|
| 5449 | zxd = pgb(jl, ja, 1) + zz*(pgb(jl,ja,2)+zz) |
---|
| 5450 | zxn = pga(jl, ja, 1) + zz*(pga(jl,ja,2)) |
---|
| 5451 | ptt(jl, ja) = zxn/zxd |
---|
| 5452 | END DO |
---|
| 5453 | END DO |
---|
| 5454 | |
---|
| 5455 | ! ------------------------------------------------------------------ |
---|
| 5456 | |
---|
| 5457 | ! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
| 5458 | ! --------------------------------------------------- |
---|
| 5459 | |
---|
| 5460 | |
---|
| 5461 | DO jl = 1, kdlon |
---|
| 5462 | ptt(jl, 9) = ptt(jl, 8) |
---|
| 5463 | |
---|
| 5464 | ! - CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
| 5465 | |
---|
| 5466 | zpu = 0.002*puu(jl, 10) |
---|
| 5467 | zpu10 = 112.*zpu |
---|
| 5468 | zpu11 = 6.25*zpu |
---|
| 5469 | zpu12 = 5.00*zpu |
---|
| 5470 | zpu13 = 80.0*zpu |
---|
| 5471 | zeu = puu(jl, 11) |
---|
| 5472 | zeu10 = 12.*zeu |
---|
| 5473 | zeu11 = 6.25*zeu |
---|
| 5474 | zeu12 = 5.00*zeu |
---|
| 5475 | zeu13 = 80.0*zeu |
---|
| 5476 | |
---|
| 5477 | ! - OZONE ABSORPTION |
---|
| 5478 | |
---|
| 5479 | zx = puu(jl, 12) |
---|
| 5480 | zy = puu(jl, 13) |
---|
| 5481 | zuxy = 4.*zx*zx/(rpialf0*zy) |
---|
| 5482 | zsq1 = sqrt(1.+o1h*zuxy) - 1. |
---|
| 5483 | zsq2 = sqrt(1.+o2h*zuxy) - 1. |
---|
| 5484 | zvxy = rpialf0*zy/(2.*zx) |
---|
| 5485 | zaercn = puu(jl, 17) + zeu12 + zpu12 |
---|
| 5486 | zto1 = exp(-zvxy*zsq1-zaercn) |
---|
| 5487 | zto2 = exp(-zvxy*zsq2-zaercn) |
---|
| 5488 | |
---|
| 5489 | ! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
| 5490 | |
---|
| 5491 | ! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5492 | |
---|
| 5493 | ! NEXOTIC=1 |
---|
| 5494 | ! IF (NEXOTIC.EQ.1) THEN |
---|
| 5495 | zxch4 = puu(jl, 19) |
---|
| 5496 | zych4 = puu(jl, 20) |
---|
| 5497 | zuxy = 4.*zxch4*zxch4/(0.103*zych4) |
---|
| 5498 | zsqh41 = sqrt(1.+33.7*zuxy) - 1. |
---|
| 5499 | zvxy = 0.103*zych4/(2.*zxch4) |
---|
| 5500 | zodh41 = zvxy*zsqh41 |
---|
| 5501 | |
---|
| 5502 | ! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5503 | |
---|
| 5504 | zxn2o = puu(jl, 21) |
---|
| 5505 | zyn2o = puu(jl, 22) |
---|
| 5506 | zuxy = 4.*zxn2o*zxn2o/(0.416*zyn2o) |
---|
| 5507 | zsqn21 = sqrt(1.+21.3*zuxy) - 1. |
---|
| 5508 | zvxy = 0.416*zyn2o/(2.*zxn2o) |
---|
| 5509 | zodn21 = zvxy*zsqn21 |
---|
| 5510 | |
---|
| 5511 | ! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 5512 | |
---|
| 5513 | zuxy = 4.*zxch4*zxch4/(0.113*zych4) |
---|
| 5514 | zsqh42 = sqrt(1.+400.*zuxy) - 1. |
---|
| 5515 | zvxy = 0.113*zych4/(2.*zxch4) |
---|
| 5516 | zodh42 = zvxy*zsqh42 |
---|
| 5517 | |
---|
| 5518 | ! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 5519 | |
---|
| 5520 | zuxy = 4.*zxn2o*zxn2o/(0.197*zyn2o) |
---|
| 5521 | zsqn22 = sqrt(1.+2000.*zuxy) - 1. |
---|
| 5522 | zvxy = 0.197*zyn2o/(2.*zxn2o) |
---|
| 5523 | zodn22 = zvxy*zsqn22 |
---|
| 5524 | |
---|
| 5525 | ! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5526 | |
---|
| 5527 | za11 = 2.*puu(jl, 23)*4.404E+05 |
---|
| 5528 | zttf11 = 1. - za11*0.003225 |
---|
| 5529 | |
---|
| 5530 | ! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5531 | |
---|
| 5532 | za12 = 2.*puu(jl, 24)*6.7435E+05 |
---|
| 5533 | zttf12 = 1. - za12*0.003225 |
---|
| 5534 | |
---|
| 5535 | zuu11 = -puu(jl, 15) - zeu10 - zpu10 |
---|
| 5536 | zuu12 = -puu(jl, 16) - zeu11 - zpu11 - zodh41 - zodn21 |
---|
| 5537 | ptt(jl, 10) = exp(-puu(jl,14)) |
---|
| 5538 | ptt(jl, 11) = exp(zuu11) |
---|
| 5539 | ptt(jl, 12) = exp(zuu12)*zttf11*zttf12 |
---|
| 5540 | ptt(jl, 13) = 0.7554*zto1 + 0.2446*zto2 |
---|
| 5541 | ptt(jl, 14) = ptt(jl, 10)*exp(-zeu13-zpu13) |
---|
| 5542 | ptt(jl, 15) = exp(-puu(jl,14)-zodh42-zodn22) |
---|
| 5543 | END DO |
---|
| 5544 | |
---|
| 5545 | RETURN |
---|
| 5546 | END SUBROUTINE lwtt_lmdar4 |
---|
| 5547 | SUBROUTINE lwttm_lmdar4(pga, pgb, puu1, puu2, ptt) |
---|
[5314] | 5548 | USE raddimlw_mod_h |
---|
| 5549 | USE dimphy |
---|
[1992] | 5550 | IMPLICIT NONE |
---|
| 5551 | |
---|
| 5552 | ! ------------------------------------------------------------------ |
---|
| 5553 | ! PURPOSE. |
---|
| 5554 | ! -------- |
---|
| 5555 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 5556 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
| 5557 | ! INTERVALS. |
---|
| 5558 | |
---|
| 5559 | ! METHOD. |
---|
| 5560 | ! ------- |
---|
| 5561 | |
---|
| 5562 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
| 5563 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
| 5564 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
| 5565 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
| 5566 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
| 5567 | |
---|
| 5568 | ! REFERENCE. |
---|
| 5569 | ! ---------- |
---|
| 5570 | |
---|
| 5571 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5572 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5573 | |
---|
| 5574 | ! AUTHOR. |
---|
| 5575 | ! ------- |
---|
| 5576 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5577 | |
---|
| 5578 | ! MODIFICATIONS. |
---|
| 5579 | ! -------------- |
---|
| 5580 | ! ORIGINAL : 88-12-15 |
---|
| 5581 | |
---|
| 5582 | ! ----------------------------------------------------------------------- |
---|
| 5583 | REAL (KIND=8) o1h, o2h |
---|
| 5584 | PARAMETER (o1h=2230.) |
---|
| 5585 | PARAMETER (o2h=100.) |
---|
| 5586 | REAL (KIND=8) rpialf0 |
---|
| 5587 | PARAMETER (rpialf0=2.0) |
---|
| 5588 | |
---|
| 5589 | ! * ARGUMENTS: |
---|
| 5590 | |
---|
| 5591 | REAL (KIND=8) pga(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 5592 | REAL (KIND=8) pgb(kdlon, 8, 2) ! PADE APPROXIMANTS |
---|
| 5593 | REAL (KIND=8) puu1(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
---|
| 5594 | REAL (KIND=8) puu2(kdlon, nua) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
---|
| 5595 | REAL (KIND=8) ptt(kdlon, ntra) ! TRANSMISSION FUNCTIONS |
---|
| 5596 | |
---|
| 5597 | ! * LOCAL VARIABLES: |
---|
| 5598 | |
---|
| 5599 | INTEGER ja, jl |
---|
| 5600 | REAL (KIND=8) zz, zxd, zxn |
---|
| 5601 | REAL (KIND=8) zpu, zpu10, zpu11, zpu12, zpu13 |
---|
| 5602 | REAL (KIND=8) zeu, zeu10, zeu11, zeu12, zeu13 |
---|
| 5603 | REAL (KIND=8) zx, zy, zuxy, zsq1, zsq2, zvxy, zaercn, zto1, zto2 |
---|
| 5604 | REAL (KIND=8) zxch4, zych4, zsqh41, zodh41 |
---|
| 5605 | REAL (KIND=8) zxn2o, zyn2o, zsqn21, zodn21, zsqh42, zodh42 |
---|
| 5606 | REAL (KIND=8) zsqn22, zodn22, za11, zttf11, za12, zttf12 |
---|
| 5607 | REAL (KIND=8) zuu11, zuu12 |
---|
| 5608 | |
---|
| 5609 | ! ------------------------------------------------------------------ |
---|
| 5610 | |
---|
| 5611 | ! * 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
| 5612 | ! ----------------------------------------------- |
---|
| 5613 | |
---|
| 5614 | |
---|
| 5615 | |
---|
| 5616 | |
---|
| 5617 | ! CDIR ON_ADB(PUU1) |
---|
| 5618 | ! CDIR ON_ADB(PUU2) |
---|
| 5619 | ! CDIR COLLAPSE |
---|
| 5620 | DO ja = 1, 8 |
---|
| 5621 | DO jl = 1, kdlon |
---|
| 5622 | zz = sqrt(puu1(jl,ja)-puu2(jl,ja)) |
---|
| 5623 | zxd = pgb(jl, ja, 1) + zz*(pgb(jl,ja,2)+zz) |
---|
| 5624 | zxn = pga(jl, ja, 1) + zz*(pga(jl,ja,2)) |
---|
| 5625 | ptt(jl, ja) = zxn/zxd |
---|
| 5626 | END DO |
---|
| 5627 | END DO |
---|
| 5628 | |
---|
| 5629 | ! ------------------------------------------------------------------ |
---|
| 5630 | |
---|
| 5631 | ! * 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
| 5632 | ! --------------------------------------------------- |
---|
| 5633 | |
---|
| 5634 | |
---|
| 5635 | DO jl = 1, kdlon |
---|
| 5636 | ptt(jl, 9) = ptt(jl, 8) |
---|
| 5637 | |
---|
| 5638 | ! - CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
| 5639 | |
---|
| 5640 | zpu = 0.002*(puu1(jl,10)-puu2(jl,10)) |
---|
| 5641 | zpu10 = 112.*zpu |
---|
| 5642 | zpu11 = 6.25*zpu |
---|
| 5643 | zpu12 = 5.00*zpu |
---|
| 5644 | zpu13 = 80.0*zpu |
---|
| 5645 | zeu = (puu1(jl,11)-puu2(jl,11)) |
---|
| 5646 | zeu10 = 12.*zeu |
---|
| 5647 | zeu11 = 6.25*zeu |
---|
| 5648 | zeu12 = 5.00*zeu |
---|
| 5649 | zeu13 = 80.0*zeu |
---|
| 5650 | |
---|
| 5651 | ! - OZONE ABSORPTION |
---|
| 5652 | |
---|
| 5653 | zx = (puu1(jl,12)-puu2(jl,12)) |
---|
| 5654 | zy = (puu1(jl,13)-puu2(jl,13)) |
---|
| 5655 | zuxy = 4.*zx*zx/(rpialf0*zy) |
---|
| 5656 | zsq1 = sqrt(1.+o1h*zuxy) - 1. |
---|
| 5657 | zsq2 = sqrt(1.+o2h*zuxy) - 1. |
---|
| 5658 | zvxy = rpialf0*zy/(2.*zx) |
---|
| 5659 | zaercn = (puu1(jl,17)-puu2(jl,17)) + zeu12 + zpu12 |
---|
| 5660 | zto1 = exp(-zvxy*zsq1-zaercn) |
---|
| 5661 | zto2 = exp(-zvxy*zsq2-zaercn) |
---|
| 5662 | |
---|
| 5663 | ! -- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
| 5664 | |
---|
| 5665 | ! * CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5666 | |
---|
| 5667 | zxch4 = (puu1(jl,19)-puu2(jl,19)) |
---|
| 5668 | zych4 = (puu1(jl,20)-puu2(jl,20)) |
---|
| 5669 | zuxy = 4.*zxch4*zxch4/(0.103*zych4) |
---|
| 5670 | zsqh41 = sqrt(1.+33.7*zuxy) - 1. |
---|
| 5671 | zvxy = 0.103*zych4/(2.*zxch4) |
---|
| 5672 | zodh41 = zvxy*zsqh41 |
---|
| 5673 | |
---|
| 5674 | ! * N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5675 | |
---|
| 5676 | zxn2o = (puu1(jl,21)-puu2(jl,21)) |
---|
| 5677 | zyn2o = (puu1(jl,22)-puu2(jl,22)) |
---|
| 5678 | zuxy = 4.*zxn2o*zxn2o/(0.416*zyn2o) |
---|
| 5679 | zsqn21 = sqrt(1.+21.3*zuxy) - 1. |
---|
| 5680 | zvxy = 0.416*zyn2o/(2.*zxn2o) |
---|
| 5681 | zodn21 = zvxy*zsqn21 |
---|
| 5682 | |
---|
| 5683 | ! * CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 5684 | |
---|
| 5685 | zuxy = 4.*zxch4*zxch4/(0.113*zych4) |
---|
| 5686 | zsqh42 = sqrt(1.+400.*zuxy) - 1. |
---|
| 5687 | zvxy = 0.113*zych4/(2.*zxch4) |
---|
| 5688 | zodh42 = zvxy*zsqh42 |
---|
| 5689 | |
---|
| 5690 | ! * N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 5691 | |
---|
| 5692 | zuxy = 4.*zxn2o*zxn2o/(0.197*zyn2o) |
---|
| 5693 | zsqn22 = sqrt(1.+2000.*zuxy) - 1. |
---|
| 5694 | zvxy = 0.197*zyn2o/(2.*zxn2o) |
---|
| 5695 | zodn22 = zvxy*zsqn22 |
---|
| 5696 | |
---|
| 5697 | ! * CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5698 | |
---|
| 5699 | za11 = (puu1(jl,23)-puu2(jl,23))*4.404E+05 |
---|
| 5700 | zttf11 = 1. - za11*0.003225 |
---|
| 5701 | |
---|
| 5702 | ! * CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 5703 | |
---|
| 5704 | za12 = (puu1(jl,24)-puu2(jl,24))*6.7435E+05 |
---|
| 5705 | zttf12 = 1. - za12*0.003225 |
---|
| 5706 | |
---|
| 5707 | zuu11 = -(puu1(jl,15)-puu2(jl,15)) - zeu10 - zpu10 |
---|
| 5708 | zuu12 = -(puu1(jl,16)-puu2(jl,16)) - zeu11 - zpu11 - zodh41 - zodn21 |
---|
| 5709 | ptt(jl, 10) = exp(-(puu1(jl,14)-puu2(jl,14))) |
---|
| 5710 | ptt(jl, 11) = exp(zuu11) |
---|
| 5711 | ptt(jl, 12) = exp(zuu12)*zttf11*zttf12 |
---|
| 5712 | ptt(jl, 13) = 0.7554*zto1 + 0.2446*zto2 |
---|
| 5713 | ptt(jl, 14) = ptt(jl, 10)*exp(-zeu13-zpu13) |
---|
| 5714 | ptt(jl, 15) = exp(-(puu1(jl,14)-puu2(jl,14))-zodh42-zodn22) |
---|
| 5715 | END DO |
---|
| 5716 | |
---|
| 5717 | RETURN |
---|
| 5718 | END SUBROUTINE lwttm_lmdar4 |
---|