1 | SUBROUTINE drag_noro_strato(partdrag, nlon, nlev, dtime, paprs, pplay, pmea, pstd, & |
---|
2 | psig, pgam, pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, pvlow, & |
---|
3 | pustr, pvstr, d_t, d_u, d_v) |
---|
4 | |
---|
5 | USE yomcst_mod_h |
---|
6 | USE dimphy |
---|
7 | USE yoegwd_mod_h |
---|
8 | IMPLICIT NONE |
---|
9 | ! ====================================================================== |
---|
10 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
11 | ! Object: Mountain drag interface. Made necessary because: |
---|
12 | ! 1. in the LMD-GCM Layers are from bottom to top, |
---|
13 | ! contrary to most European GCM. |
---|
14 | ! 2. the altitude above ground of each model layers |
---|
15 | ! needs to be known (variable zgeom) |
---|
16 | ! ====================================================================== |
---|
17 | ! Explicit Arguments: |
---|
18 | ! ================== |
---|
19 | ! partdrag-input-I-control which part of the drag we consider (total part or GW part) |
---|
20 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
21 | ! nlev----input-I-Number of vertical levels |
---|
22 | ! dtime---input-R-Time-step (s) |
---|
23 | ! paprs---input-R-Pressure in semi layers (Pa) |
---|
24 | ! pplay---input-R-Pressure model-layers (Pa) |
---|
25 | ! t-------input-R-temperature (K) |
---|
26 | ! u-------input-R-Horizontal wind (m/s) |
---|
27 | ! v-------input-R-Meridional wind (m/s) |
---|
28 | ! pmea----input-R-Mean Orography (m) |
---|
29 | ! pstd----input-R-SSO standard deviation (m) |
---|
30 | ! psig----input-R-SSO slope |
---|
31 | ! pgam----input-R-SSO Anisotropy |
---|
32 | ! pthe----input-R-SSO Angle |
---|
33 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
34 | ! pval----input-R-SSO Valleys elevation (m) |
---|
35 | |
---|
36 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
37 | ! ktest--input-I: Flags to indicate active points |
---|
38 | ! kdx----input-I: Locate the physical location of an active point. |
---|
39 | |
---|
40 | ! pulow, pvlow -output-R: Low-level wind |
---|
41 | ! pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
---|
42 | |
---|
43 | ! d_t-----output-R: T increment |
---|
44 | ! d_u-----output-R: U increment |
---|
45 | ! d_v-----output-R: V increment |
---|
46 | |
---|
47 | ! Implicit Arguments: |
---|
48 | ! =================== |
---|
49 | |
---|
50 | ! iim--common-I: Number of longitude intervals |
---|
51 | ! jjm--common-I: Number of latitude intervals |
---|
52 | ! klon-common-I: Number of points seen by the physics |
---|
53 | ! (iim+1)*(jjm+1) for instance |
---|
54 | ! klev-common-I: Number of vertical layers |
---|
55 | ! ====================================================================== |
---|
56 | ! Local Variables: |
---|
57 | ! ================ |
---|
58 | |
---|
59 | ! zgeom-----R: Altitude of layer above ground |
---|
60 | ! pt, pu, pv --R: t u v from top to bottom |
---|
61 | ! pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
---|
62 | ! papmf: pressure at model layer (from top to bottom) |
---|
63 | ! papmh: pressure at model 1/2 layer (from top to bottom) |
---|
64 | |
---|
65 | ! ====================================================================== |
---|
66 | |
---|
67 | ! ARGUMENTS |
---|
68 | |
---|
69 | INTEGER partdrag,nlon, nlev |
---|
70 | REAL dtime |
---|
71 | REAL paprs(nlon, nlev+1) |
---|
72 | REAL pplay(nlon, nlev) |
---|
73 | REAL pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
---|
74 | REAL ppic(nlon), pval(nlon) |
---|
75 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
76 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
77 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
78 | |
---|
79 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
80 | |
---|
81 | ! LOCAL VARIABLES: |
---|
82 | |
---|
83 | REAL zgeom(klon, klev) |
---|
84 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
85 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
86 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
87 | CHARACTER (LEN=20) :: modname = 'orografi_strato' |
---|
88 | CHARACTER (LEN=80) :: abort_message |
---|
89 | |
---|
90 | ! INITIALIZE OUTPUT VARIABLES |
---|
91 | |
---|
92 | DO i = 1, klon |
---|
93 | pulow(i) = 0.0 |
---|
94 | pvlow(i) = 0.0 |
---|
95 | pustr(i) = 0.0 |
---|
96 | pvstr(i) = 0.0 |
---|
97 | END DO |
---|
98 | DO k = 1, klev |
---|
99 | DO i = 1, klon |
---|
100 | d_t(i, k) = 0.0 |
---|
101 | d_u(i, k) = 0.0 |
---|
102 | d_v(i, k) = 0.0 |
---|
103 | pdudt(i, k) = 0.0 |
---|
104 | pdvdt(i, k) = 0.0 |
---|
105 | pdtdt(i, k) = 0.0 |
---|
106 | END DO |
---|
107 | END DO |
---|
108 | |
---|
109 | ! PREPARE INPUT VARIABLES FOR ORODRAG (i.e., ORDERED FROM TOP TO BOTTOM) |
---|
110 | ! CALCULATE LAYERS HEIGHT ABOVE GROUND) |
---|
111 | |
---|
112 | DO k = 1, klev |
---|
113 | DO i = 1, klon |
---|
114 | pt(i, k) = t(i, klev-k+1) |
---|
115 | pu(i, k) = u(i, klev-k+1) |
---|
116 | pv(i, k) = v(i, klev-k+1) |
---|
117 | papmf(i, k) = pplay(i, klev-k+1) |
---|
118 | END DO |
---|
119 | END DO |
---|
120 | DO k = 1, klev + 1 |
---|
121 | DO i = 1, klon |
---|
122 | papmh(i, k) = paprs(i, klev-k+2) |
---|
123 | END DO |
---|
124 | END DO |
---|
125 | DO i = 1, klon |
---|
126 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
127 | END DO |
---|
128 | DO k = klev - 1, 1, -1 |
---|
129 | DO i = 1, klon |
---|
130 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
131 | 1)/papmf(i,k)) |
---|
132 | END DO |
---|
133 | END DO |
---|
134 | |
---|
135 | ! CALL SSO DRAG ROUTINES |
---|
136 | |
---|
137 | CALL orodrag_strato(partdrag,klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, & |
---|
138 | zgeom, pt, pu, pv, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, & |
---|
139 | pvlow, pdudt, pdvdt, pdtdt) |
---|
140 | |
---|
141 | ! COMPUTE INCREMENTS AND STRESS FROM TENDENCIES |
---|
142 | |
---|
143 | DO k = 1, klev |
---|
144 | DO i = 1, klon |
---|
145 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
146 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
147 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
148 | pustr(i) = pustr(i) + pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
149 | pvstr(i) = pvstr(i) + pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
150 | END DO |
---|
151 | END DO |
---|
152 | |
---|
153 | RETURN |
---|
154 | END SUBROUTINE drag_noro_strato |
---|
155 | |
---|
156 | SUBROUTINE orodrag_strato(partdrag,nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, & |
---|
157 | papm1, pgeom1, ptm1, pum1, pvm1, pmea, pstd, psig, pgam, pthe, ppic, pval & |
---|
158 | ! outputs |
---|
159 | , pulow, pvlow, pvom, pvol, pte) |
---|
160 | |
---|
161 | USE yomcst_mod_h |
---|
162 | USE dimphy |
---|
163 | USE yoegwd_mod_h |
---|
164 | IMPLICIT NONE |
---|
165 | |
---|
166 | |
---|
167 | ! **** *orodrag* - does the SSO drag parametrization. |
---|
168 | |
---|
169 | ! purpose. |
---|
170 | ! -------- |
---|
171 | |
---|
172 | ! this routine computes the physical tendencies of the |
---|
173 | ! prognostic variables u,v and t due to vertical transports by |
---|
174 | ! subgridscale orographically excited gravity waves, and to |
---|
175 | ! low level blocked flow drag. |
---|
176 | |
---|
177 | ! ** interface. |
---|
178 | ! ---------- |
---|
179 | ! called from *drag_noro*. |
---|
180 | |
---|
181 | ! the routine takes its input from the long-term storage: |
---|
182 | ! u,v,t and p at t-1. |
---|
183 | |
---|
184 | ! explicit arguments : |
---|
185 | ! -------------------- |
---|
186 | ! ==== inputs === |
---|
187 | ! partdrag-input-I-control which part of the drag we consider (total part or GW part) |
---|
188 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
189 | ! nlev----input-I-Number of vertical levels |
---|
190 | |
---|
191 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
192 | ! ktest--input-I: Flags to indicate active points |
---|
193 | ! kdx----input-I: Locate the physical location of an active point. |
---|
194 | ! ptsphy--input-R-Time-step (s) |
---|
195 | ! paphm1--input-R: pressure at model 1/2 layer |
---|
196 | ! papm1---input-R: pressure at model layer |
---|
197 | ! pgeom1--input-R: Altitude of layer above ground |
---|
198 | ! ptm1, pum1, pvm1--R-: t, u and v |
---|
199 | ! pmea----input-R-Mean Orography (m) |
---|
200 | ! pstd----input-R-SSO standard deviation (m) |
---|
201 | ! psig----input-R-SSO slope |
---|
202 | ! pgam----input-R-SSO Anisotropy |
---|
203 | ! pthe----input-R-SSO Angle |
---|
204 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
205 | ! pval----input-R-SSO Valleys elevation (m) |
---|
206 | |
---|
207 | INTEGER nlon, nlev, kgwd |
---|
208 | REAL ptsphy |
---|
209 | |
---|
210 | ! ==== outputs === |
---|
211 | ! pulow, pvlow -output-R: Low-level wind |
---|
212 | |
---|
213 | ! pte -----output-R: T tendency |
---|
214 | ! pvom-----output-R: U tendency |
---|
215 | ! pvol-----output-R: V tendency |
---|
216 | |
---|
217 | |
---|
218 | ! Implicit Arguments: |
---|
219 | ! =================== |
---|
220 | |
---|
221 | ! klon-common-I: Number of points seen by the physics |
---|
222 | ! klev-common-I: Number of vertical layers |
---|
223 | |
---|
224 | ! method. |
---|
225 | ! ------- |
---|
226 | |
---|
227 | ! externals. |
---|
228 | ! ---------- |
---|
229 | INTEGER ismin, ismax |
---|
230 | EXTERNAL ismin, ismax |
---|
231 | |
---|
232 | ! reference. |
---|
233 | ! ---------- |
---|
234 | |
---|
235 | ! author. |
---|
236 | ! ------- |
---|
237 | ! m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
238 | |
---|
239 | ! f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
240 | ! ----------------------------------------------------------------------- |
---|
241 | |
---|
242 | ! * 0.1 arguments |
---|
243 | ! --------- |
---|
244 | |
---|
245 | INTEGER partdrag |
---|
246 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
---|
247 | pvlow(nlon) |
---|
248 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), pmea(nlon), & |
---|
249 | pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon), ppic(nlon), pval(nlon), & |
---|
250 | pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev+1) |
---|
251 | |
---|
252 | INTEGER kdx(nlon), ktest(nlon) |
---|
253 | ! ----------------------------------------------------------------------- |
---|
254 | |
---|
255 | ! * 0.2 local arrays |
---|
256 | ! ------------ |
---|
257 | INTEGER isect(klon), icrit(klon), ikcrith(klon), ikenvh(klon), iknu(klon), & |
---|
258 | iknu2(klon), ikcrit(klon), ikhlim(klon) |
---|
259 | |
---|
260 | REAL ztau(klon, klev+1), zstab(klon, klev+1), zvph(klon, klev+1), & |
---|
261 | zrho(klon, klev+1), zri(klon, klev+1), zpsi(klon, klev+1), & |
---|
262 | zzdep(klon, klev) |
---|
263 | REAL zdudt(klon), zdvdt(klon), zdtdt(klon), zdedt(klon), zvidis(klon), & |
---|
264 | ztfr(klon), znu(klon), zd1(klon), zd2(klon), zdmod(klon) |
---|
265 | |
---|
266 | |
---|
267 | ! local quantities: |
---|
268 | |
---|
269 | INTEGER jl, jk, ji |
---|
270 | REAL ztmst, zdelp, ztemp, zforc, ztend, rover, facpart |
---|
271 | REAL zb, zc, zconb, zabsv, zzd1, ratio, zbet, zust, zvst, zdis |
---|
272 | |
---|
273 | ! ------------------------------------------------------------------ |
---|
274 | |
---|
275 | ! * 1. initialization |
---|
276 | ! -------------- |
---|
277 | |
---|
278 | ! print *,' in orodrag' |
---|
279 | |
---|
280 | ! ------------------------------------------------------------------ |
---|
281 | |
---|
282 | ! * 1.1 computational constants |
---|
283 | ! ----------------------- |
---|
284 | |
---|
285 | |
---|
286 | ! ztmst=twodt |
---|
287 | ! if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
288 | ztmst = ptsphy |
---|
289 | |
---|
290 | ! ------------------------------------------------------------------ |
---|
291 | |
---|
292 | ! * 1.3 check whether row contains point for printing |
---|
293 | ! --------------------------------------------- |
---|
294 | |
---|
295 | |
---|
296 | ! ------------------------------------------------------------------ |
---|
297 | |
---|
298 | ! * 2. precompute basic state variables. |
---|
299 | ! * ---------- ----- ----- ---------- |
---|
300 | ! * define low level wind, project winds in plane of |
---|
301 | ! * low level wind, determine sector in which to take |
---|
302 | ! * the variance and set indicator for critical levels. |
---|
303 | |
---|
304 | |
---|
305 | |
---|
306 | |
---|
307 | |
---|
308 | CALL orosetup_strato(nlon, nlev, ktest, ikcrit, ikcrith, icrit, isect, & |
---|
309 | ikhlim, ikenvh, iknu, iknu2, paphm1, papm1, pum1, pvm1, ptm1, pgeom1, & |
---|
310 | pstd, zrho, zri, zstab, ztau, zvph, zpsi, zzdep, pulow, pvlow, pthe, & |
---|
311 | pgam, pmea, ppic, pval, znu, zd1, zd2, zdmod) |
---|
312 | |
---|
313 | ! *********************************************************** |
---|
314 | |
---|
315 | |
---|
316 | ! * 3. compute low level stresses using subcritical and |
---|
317 | ! * supercritical forms.computes anisotropy coefficient |
---|
318 | ! * as measure of orographic twodimensionality. |
---|
319 | |
---|
320 | |
---|
321 | CALL gwstress_strato(nlon, nlev, ikcrit, isect, ikhlim, ktest, ikcrith, & |
---|
322 | icrit, ikenvh, iknu, zrho, zstab, zvph, pstd, psig, pmea, ppic, pval, & |
---|
323 | ztfr, ztau, pgeom1, pgam, zd1, zd2, zdmod, znu) |
---|
324 | |
---|
325 | ! * 4. compute stress profile including |
---|
326 | ! trapped waves, wave breaking, |
---|
327 | ! linear decay in stratosphere. |
---|
328 | |
---|
329 | |
---|
330 | |
---|
331 | |
---|
332 | CALL gwprofil_strato(nlon, nlev, kgwd, kdx, ktest, ikcrit, ikcrith, icrit, & |
---|
333 | ikenvh, iknu, iknu2, paphm1, zrho, zstab, ztfr, zvph, zri, ztau & |
---|
334 | , zdmod, znu, psig, pgam, pstd, ppic, pval) |
---|
335 | |
---|
336 | ! * 5. Compute tendencies from waves stress profile. |
---|
337 | ! Compute low level blocked flow drag. |
---|
338 | ! * -------------------------------------------- |
---|
339 | |
---|
340 | |
---|
341 | |
---|
342 | |
---|
343 | ! explicit solution at all levels for the gravity wave |
---|
344 | ! implicit solution for the blocked levels |
---|
345 | |
---|
346 | DO jl = kidia, kfdia |
---|
347 | zvidis(jl) = 0.0 |
---|
348 | zdudt(jl) = 0.0 |
---|
349 | zdvdt(jl) = 0.0 |
---|
350 | zdtdt(jl) = 0.0 |
---|
351 | END DO |
---|
352 | |
---|
353 | |
---|
354 | DO jk = 1, klev |
---|
355 | |
---|
356 | |
---|
357 | ! WAVE STRESS |
---|
358 | ! ------------- |
---|
359 | |
---|
360 | |
---|
361 | DO ji = kidia, kfdia |
---|
362 | |
---|
363 | IF (ktest(ji)==1) THEN |
---|
364 | |
---|
365 | zdelp = paphm1(ji, jk+1) - paphm1(ji, jk) |
---|
366 | ztemp = -rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,klev+1)*zdelp) |
---|
367 | |
---|
368 | zdudt(ji) = (pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
369 | zdvdt(ji) = (pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
370 | |
---|
371 | ! Control Overshoots |
---|
372 | |
---|
373 | |
---|
374 | IF (jk>=nstra) THEN |
---|
375 | rover = 0.10 |
---|
376 | IF (abs(zdudt(ji))>rover*abs(pum1(ji,jk))/ztmst) zdudt(ji) = rover* & |
---|
377 | abs(pum1(ji,jk))/ztmst*zdudt(ji)/(abs(zdudt(ji))+1.E-10) |
---|
378 | IF (abs(zdvdt(ji))>rover*abs(pvm1(ji,jk))/ztmst) zdvdt(ji) = rover* & |
---|
379 | abs(pvm1(ji,jk))/ztmst*zdvdt(ji)/(abs(zdvdt(ji))+1.E-10) |
---|
380 | END IF |
---|
381 | |
---|
382 | rover = 0.25 |
---|
383 | zforc = sqrt(zdudt(ji)**2+zdvdt(ji)**2) |
---|
384 | ztend = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst |
---|
385 | |
---|
386 | IF (zforc>=rover*ztend) THEN |
---|
387 | zdudt(ji) = rover*ztend/zforc*zdudt(ji) |
---|
388 | zdvdt(ji) = rover*ztend/zforc*zdvdt(ji) |
---|
389 | END IF |
---|
390 | |
---|
391 | ! BLOCKED FLOW DRAG: |
---|
392 | ! ----------------- |
---|
393 | |
---|
394 | IF (partdrag .GE. 2) THEN |
---|
395 | facpart=0. |
---|
396 | ELSE |
---|
397 | facpart=gkwake |
---|
398 | ENDIF |
---|
399 | |
---|
400 | |
---|
401 | IF (jk>ikenvh(ji)) THEN |
---|
402 | zb = 1.0 - 0.18*pgam(ji) - 0.04*pgam(ji)**2 |
---|
403 | zc = 0.48*pgam(ji) + 0.3*pgam(ji)**2 |
---|
404 | zconb = 2.*ztmst*facpart*psig(ji)/(4.*pstd(ji)) |
---|
405 | zabsv = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
406 | zzd1 = zb*cos(zpsi(ji,jk))**2 + zc*sin(zpsi(ji,jk))**2 |
---|
407 | ratio = (cos(zpsi(ji,jk))**2+pgam(ji)*sin(zpsi(ji, & |
---|
408 | jk))**2)/(pgam(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
409 | zbet = max(0., 2.-1./ratio)*zconb*zzdep(ji, jk)*zzd1*zabsv |
---|
410 | |
---|
411 | ! OPPOSED TO THE WIND |
---|
412 | |
---|
413 | zdudt(ji) = -pum1(ji, jk)/ztmst |
---|
414 | zdvdt(ji) = -pvm1(ji, jk)/ztmst |
---|
415 | |
---|
416 | ! PERPENDICULAR TO THE SSO MAIN AXIS: |
---|
417 | |
---|
418 | ! mod zdudt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
---|
419 | ! mod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
---|
420 | ! mod * *cos(pthe(ji)*rpi/180.)/ztmst |
---|
421 | ! mod zdvdt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
---|
422 | ! mod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
---|
423 | ! mod * *sin(pthe(ji)*rpi/180.)/ztmst |
---|
424 | |
---|
425 | zdudt(ji) = zdudt(ji)*(zbet/(1.+zbet)) |
---|
426 | zdvdt(ji) = zdvdt(ji)*(zbet/(1.+zbet)) |
---|
427 | END IF |
---|
428 | pvom(ji, jk) = zdudt(ji) |
---|
429 | pvol(ji, jk) = zdvdt(ji) |
---|
430 | zust = pum1(ji, jk) + ztmst*zdudt(ji) |
---|
431 | zvst = pvm1(ji, jk) + ztmst*zdvdt(ji) |
---|
432 | zdis = 0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
433 | zdedt(ji) = zdis/ztmst |
---|
434 | zvidis(ji) = zvidis(ji) + zdis*zdelp |
---|
435 | zdtdt(ji) = zdedt(ji)/rcpd |
---|
436 | |
---|
437 | ! NO TENDENCIES ON TEMPERATURE ..... |
---|
438 | |
---|
439 | ! Instead of, pte(ji,jk)=zdtdt(ji), due to mechanical dissipation |
---|
440 | |
---|
441 | pte(ji, jk) = 0.0 |
---|
442 | |
---|
443 | END IF |
---|
444 | |
---|
445 | END DO |
---|
446 | END DO |
---|
447 | |
---|
448 | RETURN |
---|
449 | END SUBROUTINE orodrag_strato |
---|
450 | SUBROUTINE orosetup_strato(nlon, nlev, ktest, kkcrit, kkcrith, kcrit, ksect, & |
---|
451 | kkhlim, kkenvh, kknu, kknu2, paphm1, papm1, pum1, pvm1, ptm1, pgeom1, & |
---|
452 | pstd, prho, pri, pstab, ptau, pvph, ppsi, pzdep, pulow, pvlow, ptheta, & |
---|
453 | pgam, pmea, ppic, pval, pnu, pd1, pd2, pdmod) |
---|
454 | |
---|
455 | ! **** *gwsetup* |
---|
456 | |
---|
457 | ! purpose. |
---|
458 | ! -------- |
---|
459 | ! SET-UP THE ESSENTIAL PARAMETERS OF THE SSO DRAG SCHEME: |
---|
460 | ! DEPTH OF LOW WBLOCKED LAYER, LOW-LEVEL FLOW, BACKGROUND |
---|
461 | ! STRATIFICATION..... |
---|
462 | |
---|
463 | ! ** interface. |
---|
464 | ! ---------- |
---|
465 | ! from *orodrag* |
---|
466 | |
---|
467 | ! explicit arguments : |
---|
468 | ! -------------------- |
---|
469 | ! ==== inputs === |
---|
470 | |
---|
471 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
472 | ! nlev----input-I-Number of vertical levels |
---|
473 | ! ktest--input-I: Flags to indicate active points |
---|
474 | |
---|
475 | ! ptsphy--input-R-Time-step (s) |
---|
476 | ! paphm1--input-R: pressure at model 1/2 layer |
---|
477 | ! papm1---input-R: pressure at model layer |
---|
478 | ! pgeom1--input-R: Altitude of layer above ground |
---|
479 | ! ptm1, pum1, pvm1--R-: t, u and v |
---|
480 | ! pmea----input-R-Mean Orography (m) |
---|
481 | ! pstd----input-R-SSO standard deviation (m) |
---|
482 | ! psig----input-R-SSO slope |
---|
483 | ! pgam----input-R-SSO Anisotropy |
---|
484 | ! pthe----input-R-SSO Angle |
---|
485 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
486 | ! pval----input-R-SSO Valleys elevation (m) |
---|
487 | |
---|
488 | ! ==== outputs === |
---|
489 | ! pulow, pvlow -output-R: Low-level wind |
---|
490 | ! kkcrit----I-: Security value for top of low level flow |
---|
491 | ! kcrit-----I-: Critical level |
---|
492 | ! ksect-----I-: Not used |
---|
493 | ! kkhlim----I-: Not used |
---|
494 | ! kkenvh----I-: Top of blocked flow layer |
---|
495 | ! kknu------I-: Layer that sees mountain peacks |
---|
496 | ! kknu2-----I-: Layer that sees mountain peacks above mountain mean |
---|
497 | ! kknub-----I-: Layer that sees mountain mean above valleys |
---|
498 | ! prho------R-: Density at 1/2 layers |
---|
499 | ! pri-------R-: Background Richardson Number, Wind shear measured along GW |
---|
500 | ! stress |
---|
501 | ! pstab-----R-: Brunt-Vaisala freq. at 1/2 layers |
---|
502 | ! pvph------R-: Wind in plan of GW stress, Half levels. |
---|
503 | ! ppsi------R-: Angle between low level wind and SS0 main axis. |
---|
504 | ! pd1-------R-| Compared the ratio of the stress |
---|
505 | ! pd2-------R-| that is along the wind to that Normal to it. |
---|
506 | ! pdi define the plane of low level stress |
---|
507 | ! compared to the low level wind. |
---|
508 | ! see p. 108 Lott & Miller (1997). |
---|
509 | ! pdmod-----R-: Norme of pdi |
---|
510 | |
---|
511 | ! === local arrays === |
---|
512 | |
---|
513 | ! zvpf------R-: Wind projected in the plan of the low-level stress. |
---|
514 | |
---|
515 | ! ==== outputs === |
---|
516 | |
---|
517 | ! implicit arguments : none |
---|
518 | ! -------------------- |
---|
519 | |
---|
520 | ! method. |
---|
521 | ! ------- |
---|
522 | |
---|
523 | |
---|
524 | ! externals. |
---|
525 | ! ---------- |
---|
526 | |
---|
527 | |
---|
528 | ! reference. |
---|
529 | ! ---------- |
---|
530 | |
---|
531 | ! see ecmwf research department documentation of the "i.f.s." |
---|
532 | |
---|
533 | ! author. |
---|
534 | ! ------- |
---|
535 | |
---|
536 | ! modifications. |
---|
537 | ! -------------- |
---|
538 | ! f.lott for the new-gwdrag scheme november 1993 |
---|
539 | |
---|
540 | ! ----------------------------------------------------------------------- |
---|
541 | USE yoegwd_mod_h |
---|
542 | USE dimphy |
---|
543 | USE yomcst_mod_h |
---|
544 | IMPLICIT NONE |
---|
545 | |
---|
546 | |
---|
547 | |
---|
548 | |
---|
549 | ! ----------------------------------------------------------------------- |
---|
550 | |
---|
551 | ! * 0.1 arguments |
---|
552 | ! --------- |
---|
553 | |
---|
554 | INTEGER nlon, nlev |
---|
555 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ksect(nlon), & |
---|
556 | kkhlim(nlon), ktest(nlon), kkenvh(nlon) |
---|
557 | |
---|
558 | |
---|
559 | REAL paphm1(nlon, klev+1), papm1(nlon, klev), pum1(nlon, klev), & |
---|
560 | pvm1(nlon, klev), ptm1(nlon, klev), pgeom1(nlon, klev), & |
---|
561 | prho(nlon, klev+1), pri(nlon, klev+1), pstab(nlon, klev+1), & |
---|
562 | ptau(nlon, klev+1), pvph(nlon, klev+1), ppsi(nlon, klev+1), & |
---|
563 | pzdep(nlon, klev) |
---|
564 | REAL pulow(nlon), pvlow(nlon), ptheta(nlon), pgam(nlon), pnu(nlon), & |
---|
565 | pd1(nlon), pd2(nlon), pdmod(nlon) |
---|
566 | REAL pstd(nlon), pmea(nlon), ppic(nlon), pval(nlon) |
---|
567 | |
---|
568 | ! ----------------------------------------------------------------------- |
---|
569 | |
---|
570 | ! * 0.2 local arrays |
---|
571 | ! ------------ |
---|
572 | |
---|
573 | |
---|
574 | INTEGER ilevh, jl, jk |
---|
575 | REAL zcons1, zcons2, zhgeo, zu, zphi |
---|
576 | REAL zvt1, zvt2, zdwind, zwind, zdelp |
---|
577 | REAL zstabm, zstabp, zrhom, zrhop |
---|
578 | LOGICAL lo |
---|
579 | LOGICAL ll1(klon, klev+1) |
---|
580 | INTEGER kknu(klon), kknu2(klon), kknub(klon), kknul(klon), kentp(klon), & |
---|
581 | ncount(klon) |
---|
582 | |
---|
583 | REAL zhcrit(klon, klev), zvpf(klon, klev), zdp(klon, klev) |
---|
584 | REAL znorm(klon), zb(klon), zc(klon), zulow(klon), zvlow(klon), znup(klon), & |
---|
585 | znum(klon) |
---|
586 | |
---|
587 | ! ------------------------------------------------------------------ |
---|
588 | |
---|
589 | ! * 1. initialization |
---|
590 | ! -------------- |
---|
591 | |
---|
592 | ! PRINT *,' in orosetup' |
---|
593 | |
---|
594 | ! ------------------------------------------------------------------ |
---|
595 | |
---|
596 | ! * 1.1 computational constants |
---|
597 | ! ----------------------- |
---|
598 | |
---|
599 | |
---|
600 | ilevh = klev/3 |
---|
601 | |
---|
602 | zcons1 = 1./rd |
---|
603 | zcons2 = rg**2/rcpd |
---|
604 | |
---|
605 | ! ------------------------------------------------------------------ |
---|
606 | |
---|
607 | ! * 2. |
---|
608 | ! -------------- |
---|
609 | |
---|
610 | |
---|
611 | ! ------------------------------------------------------------------ |
---|
612 | |
---|
613 | ! * 2.1 define low level wind, project winds in plane of |
---|
614 | ! * low level wind, determine sector in which to take |
---|
615 | ! * the variance and set indicator for critical levels. |
---|
616 | |
---|
617 | |
---|
618 | |
---|
619 | DO jl = kidia, kfdia |
---|
620 | kknu(jl) = klev |
---|
621 | kknu2(jl) = klev |
---|
622 | kknub(jl) = klev |
---|
623 | kknul(jl) = klev |
---|
624 | pgam(jl) = max(pgam(jl), gtsec) |
---|
625 | ll1(jl, klev+1) = .FALSE. |
---|
626 | END DO |
---|
627 | |
---|
628 | ! Ajouter une initialisation (L. Li, le 23fev99): |
---|
629 | |
---|
630 | DO jk = klev, ilevh, -1 |
---|
631 | DO jl = kidia, kfdia |
---|
632 | ll1(jl, jk) = .FALSE. |
---|
633 | END DO |
---|
634 | END DO |
---|
635 | |
---|
636 | ! * define top of low level flow |
---|
637 | ! ---------------------------- |
---|
638 | DO jk = klev, ilevh, -1 |
---|
639 | DO jl = kidia, kfdia |
---|
640 | IF (ktest(jl)==1) THEN |
---|
641 | lo = (paphm1(jl,jk)/paphm1(jl,klev+1)) >= gsigcr |
---|
642 | IF (lo) THEN |
---|
643 | kkcrit(jl) = jk |
---|
644 | END IF |
---|
645 | zhcrit(jl, jk) = ppic(jl) - pval(jl) |
---|
646 | zhgeo = pgeom1(jl, jk)/rg |
---|
647 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
648 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
649 | kknu(jl) = jk |
---|
650 | END IF |
---|
651 | IF (.NOT. ll1(jl,ilevh)) kknu(jl) = ilevh |
---|
652 | END IF |
---|
653 | END DO |
---|
654 | END DO |
---|
655 | DO jk = klev, ilevh, -1 |
---|
656 | DO jl = kidia, kfdia |
---|
657 | IF (ktest(jl)==1) THEN |
---|
658 | zhcrit(jl, jk) = ppic(jl) - pmea(jl) |
---|
659 | zhgeo = pgeom1(jl, jk)/rg |
---|
660 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
661 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
662 | kknu2(jl) = jk |
---|
663 | END IF |
---|
664 | IF (.NOT. ll1(jl,ilevh)) kknu2(jl) = ilevh |
---|
665 | END IF |
---|
666 | END DO |
---|
667 | END DO |
---|
668 | DO jk = klev, ilevh, -1 |
---|
669 | DO jl = kidia, kfdia |
---|
670 | IF (ktest(jl)==1) THEN |
---|
671 | zhcrit(jl, jk) = amin1(ppic(jl)-pmea(jl), pmea(jl)-pval(jl)) |
---|
672 | zhgeo = pgeom1(jl, jk)/rg |
---|
673 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
674 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
675 | kknub(jl) = jk |
---|
676 | END IF |
---|
677 | IF (.NOT. ll1(jl,ilevh)) kknub(jl) = ilevh |
---|
678 | END IF |
---|
679 | END DO |
---|
680 | END DO |
---|
681 | |
---|
682 | DO jl = kidia, kfdia |
---|
683 | IF (ktest(jl)==1) THEN |
---|
684 | kknu(jl) = min(kknu(jl), nktopg) |
---|
685 | kknu2(jl) = min(kknu2(jl), nktopg) |
---|
686 | kknub(jl) = min(kknub(jl), nktopg) |
---|
687 | kknul(jl) = klev |
---|
688 | END IF |
---|
689 | END DO |
---|
690 | |
---|
691 | ! c* initialize various arrays |
---|
692 | |
---|
693 | DO jl = kidia, kfdia |
---|
694 | prho(jl, klev+1) = 0.0 |
---|
695 | ! ym correction en attendant mieux |
---|
696 | prho(jl, 1) = 0.0 |
---|
697 | pstab(jl, klev+1) = 0.0 |
---|
698 | pstab(jl, 1) = 0.0 |
---|
699 | pri(jl, klev+1) = 9999.0 |
---|
700 | ppsi(jl, klev+1) = 0.0 |
---|
701 | pri(jl, 1) = 0.0 |
---|
702 | pvph(jl, 1) = 0.0 |
---|
703 | pvph(jl, klev+1) = 0.0 |
---|
704 | ! ym correction en attendant mieux |
---|
705 | ! ym pvph(jl,klev) =0.0 |
---|
706 | pulow(jl) = 0.0 |
---|
707 | pvlow(jl) = 0.0 |
---|
708 | zulow(jl) = 0.0 |
---|
709 | zvlow(jl) = 0.0 |
---|
710 | kkcrith(jl) = klev |
---|
711 | kkenvh(jl) = klev |
---|
712 | kentp(jl) = klev |
---|
713 | kcrit(jl) = 1 |
---|
714 | ncount(jl) = 0 |
---|
715 | ll1(jl, klev+1) = .FALSE. |
---|
716 | END DO |
---|
717 | |
---|
718 | ! * define flow density and stratification (rho and N2) |
---|
719 | ! at semi layers. |
---|
720 | ! ------------------------------------------------------- |
---|
721 | |
---|
722 | DO jk = klev, 2, -1 |
---|
723 | DO jl = kidia, kfdia |
---|
724 | IF (ktest(jl)==1) THEN |
---|
725 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
726 | prho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
727 | pstab(jl, jk) = 2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* & |
---|
728 | (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
729 | pstab(jl, jk) = max(pstab(jl,jk), gssec) |
---|
730 | END IF |
---|
731 | END DO |
---|
732 | END DO |
---|
733 | |
---|
734 | ! ******************************************************************** |
---|
735 | |
---|
736 | ! * define Low level flow (between ground and peacks-valleys) |
---|
737 | ! --------------------------------------------------------- |
---|
738 | DO jk = klev, ilevh, -1 |
---|
739 | DO jl = kidia, kfdia |
---|
740 | IF (ktest(jl)==1) THEN |
---|
741 | IF (jk>=kknu2(jl) .AND. jk<=kknul(jl)) THEN |
---|
742 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
743 | ) |
---|
744 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
745 | ) |
---|
746 | pstab(jl, klev+1) = pstab(jl, klev+1) + pstab(jl, jk)*(paphm1(jl,jk & |
---|
747 | +1)-paphm1(jl,jk)) |
---|
748 | prho(jl, klev+1) = prho(jl, klev+1) + prho(jl, jk)*(paphm1(jl,jk+1) & |
---|
749 | -paphm1(jl,jk)) |
---|
750 | END IF |
---|
751 | END IF |
---|
752 | END DO |
---|
753 | END DO |
---|
754 | DO jl = kidia, kfdia |
---|
755 | IF (ktest(jl)==1) THEN |
---|
756 | pulow(jl) = pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
757 | pvlow(jl) = pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
758 | znorm(jl) = max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
759 | pvph(jl, klev+1) = znorm(jl) |
---|
760 | pstab(jl, klev+1) = pstab(jl, klev+1)/(paphm1(jl,kknul(jl)+1)-paphm1(jl & |
---|
761 | ,kknu2(jl))) |
---|
762 | prho(jl, klev+1) = prho(jl, klev+1)/(paphm1(jl,kknul(jl)+1)-paphm1(jl, & |
---|
763 | kknu2(jl))) |
---|
764 | END IF |
---|
765 | END DO |
---|
766 | |
---|
767 | |
---|
768 | ! ******* setup orography orientation relative to the low level |
---|
769 | ! wind and define parameters of the Anisotropic wave stress. |
---|
770 | |
---|
771 | DO jl = kidia, kfdia |
---|
772 | IF (ktest(jl)==1) THEN |
---|
773 | lo = (pulow(jl)<gvsec) .AND. (pulow(jl)>=-gvsec) |
---|
774 | IF (lo) THEN |
---|
775 | zu = pulow(jl) + 2.*gvsec |
---|
776 | ELSE |
---|
777 | zu = pulow(jl) |
---|
778 | END IF |
---|
779 | zphi = atan(pvlow(jl)/zu) |
---|
780 | ppsi(jl, klev+1) = ptheta(jl)*rpi/180. - zphi |
---|
781 | zb(jl) = 1. - 0.18*pgam(jl) - 0.04*pgam(jl)**2 |
---|
782 | zc(jl) = 0.48*pgam(jl) + 0.3*pgam(jl)**2 |
---|
783 | pd1(jl) = zb(jl) - (zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
784 | pd2(jl) = (zb(jl)-zc(jl))*sin(ppsi(jl,klev+1))*cos(ppsi(jl,klev+1)) |
---|
785 | pdmod(jl) = sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
786 | END IF |
---|
787 | END DO |
---|
788 | |
---|
789 | ! ************ projet flow in plane of lowlevel stress ************* |
---|
790 | ! ************ Find critical levels... ************* |
---|
791 | |
---|
792 | DO jk = 1, klev |
---|
793 | DO jl = kidia, kfdia |
---|
794 | IF (ktest(jl)==1) THEN |
---|
795 | zvt1 = pulow(jl)*pum1(jl, jk) + pvlow(jl)*pvm1(jl, jk) |
---|
796 | zvt2 = -pvlow(jl)*pum1(jl, jk) + pulow(jl)*pvm1(jl, jk) |
---|
797 | zvpf(jl, jk) = (zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
798 | END IF |
---|
799 | ptau(jl, jk) = 0.0 |
---|
800 | pzdep(jl, jk) = 0.0 |
---|
801 | ppsi(jl, jk) = 0.0 |
---|
802 | ll1(jl, jk) = .FALSE. |
---|
803 | END DO |
---|
804 | END DO |
---|
805 | DO jk = 2, klev |
---|
806 | DO jl = kidia, kfdia |
---|
807 | IF (ktest(jl)==1) THEN |
---|
808 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
809 | pvph(jl, jk) = ((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+(papm1(jl, & |
---|
810 | jk)-paphm1(jl,jk))*zvpf(jl,jk-1))/zdp(jl, jk) |
---|
811 | IF (pvph(jl,jk)<gvsec) THEN |
---|
812 | pvph(jl, jk) = gvsec |
---|
813 | kcrit(jl) = jk |
---|
814 | END IF |
---|
815 | END IF |
---|
816 | END DO |
---|
817 | END DO |
---|
818 | |
---|
819 | ! * 2.3 mean flow richardson number. |
---|
820 | |
---|
821 | |
---|
822 | DO jk = 2, klev |
---|
823 | DO jl = kidia, kfdia |
---|
824 | IF (ktest(jl)==1) THEN |
---|
825 | zdwind = max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)), gvsec) |
---|
826 | pri(jl, jk) = pstab(jl, jk)*(zdp(jl,jk)/(rg*prho(jl,jk)*zdwind))**2 |
---|
827 | pri(jl, jk) = max(pri(jl,jk), grcrit) |
---|
828 | END IF |
---|
829 | END DO |
---|
830 | END DO |
---|
831 | |
---|
832 | |
---|
833 | |
---|
834 | ! * define top of 'envelope' layer |
---|
835 | ! ---------------------------- |
---|
836 | |
---|
837 | DO jl = kidia, kfdia |
---|
838 | pnu(jl) = 0.0 |
---|
839 | znum(jl) = 0.0 |
---|
840 | END DO |
---|
841 | |
---|
842 | DO jk = 2, klev - 1 |
---|
843 | DO jl = kidia, kfdia |
---|
844 | |
---|
845 | IF (ktest(jl)==1) THEN |
---|
846 | |
---|
847 | IF (jk>=kknu2(jl)) THEN |
---|
848 | |
---|
849 | znum(jl) = pnu(jl) |
---|
850 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
851 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
852 | zwind = max(sqrt(zwind**2), gvsec) |
---|
853 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
854 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
855 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
856 | zrhom = prho(jl, jk) |
---|
857 | zrhop = prho(jl, jk+1) |
---|
858 | pnu(jl) = pnu(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
859 | zwind |
---|
860 | IF ((znum(jl)<=gfrcrit) .AND. (pnu(jl)>gfrcrit) .AND. (kkenvh( & |
---|
861 | jl)==klev)) kkenvh(jl) = jk |
---|
862 | |
---|
863 | END IF |
---|
864 | |
---|
865 | END IF |
---|
866 | |
---|
867 | END DO |
---|
868 | END DO |
---|
869 | |
---|
870 | ! calculation of a dynamical mixing height for when the waves |
---|
871 | ! BREAK AT LOW LEVEL: The drag will be repartited over |
---|
872 | ! a depths that depends on waves vertical wavelength, |
---|
873 | ! not just between two adjacent model layers. |
---|
874 | ! of gravity waves: |
---|
875 | |
---|
876 | DO jl = kidia, kfdia |
---|
877 | znup(jl) = 0.0 |
---|
878 | znum(jl) = 0.0 |
---|
879 | END DO |
---|
880 | |
---|
881 | DO jk = klev - 1, 2, -1 |
---|
882 | DO jl = kidia, kfdia |
---|
883 | |
---|
884 | IF (ktest(jl)==1) THEN |
---|
885 | |
---|
886 | znum(jl) = znup(jl) |
---|
887 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
888 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
889 | zwind = max(sqrt(zwind**2), gvsec) |
---|
890 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
891 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
892 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
893 | zrhom = prho(jl, jk) |
---|
894 | zrhop = prho(jl, jk+1) |
---|
895 | znup(jl) = znup(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
896 | zwind |
---|
897 | IF ((znum(jl)<=rpi/4.) .AND. (znup(jl)>rpi/4.) .AND. (kkcrith( & |
---|
898 | jl)==klev)) kkcrith(jl) = jk |
---|
899 | |
---|
900 | END IF |
---|
901 | |
---|
902 | END DO |
---|
903 | END DO |
---|
904 | |
---|
905 | DO jl = kidia, kfdia |
---|
906 | IF (ktest(jl)==1) THEN |
---|
907 | kkcrith(jl) = max0(kkcrith(jl), ilevh*2) |
---|
908 | kkcrith(jl) = max0(kkcrith(jl), kknu(jl)) |
---|
909 | IF (kcrit(jl)>=kkcrith(jl)) kcrit(jl) = 1 |
---|
910 | END IF |
---|
911 | END DO |
---|
912 | |
---|
913 | ! directional info for flow blocking ************************* |
---|
914 | |
---|
915 | DO jk = 1, klev |
---|
916 | DO jl = kidia, kfdia |
---|
917 | IF (ktest(jl)==1) THEN |
---|
918 | lo = (pum1(jl,jk)<gvsec) .AND. (pum1(jl,jk)>=-gvsec) |
---|
919 | IF (lo) THEN |
---|
920 | zu = pum1(jl, jk) + 2.*gvsec |
---|
921 | ELSE |
---|
922 | zu = pum1(jl, jk) |
---|
923 | END IF |
---|
924 | zphi = atan(pvm1(jl,jk)/zu) |
---|
925 | ppsi(jl, jk) = ptheta(jl)*rpi/180. - zphi |
---|
926 | END IF |
---|
927 | END DO |
---|
928 | END DO |
---|
929 | |
---|
930 | ! forms the vertical 'leakiness' ************************** |
---|
931 | |
---|
932 | DO jk = ilevh, klev |
---|
933 | DO jl = kidia, kfdia |
---|
934 | IF (ktest(jl)==1) THEN |
---|
935 | pzdep(jl, jk) = 0 |
---|
936 | IF (jk>=kkenvh(jl) .AND. kkenvh(jl)/=klev) THEN |
---|
937 | pzdep(jl, jk) = (pgeom1(jl,kkenvh(jl))-pgeom1(jl,jk))/ & |
---|
938 | (pgeom1(jl,kkenvh(jl))-pgeom1(jl,klev)) |
---|
939 | END IF |
---|
940 | END IF |
---|
941 | END DO |
---|
942 | END DO |
---|
943 | |
---|
944 | RETURN |
---|
945 | END SUBROUTINE orosetup_strato |
---|
946 | SUBROUTINE gwstress_strato(nlon, nlev, kkcrit, ksect, kkhlim, ktest, kkcrith, & |
---|
947 | kcrit, kkenvh, kknu, prho, pstab, pvph, pstd, psig, pmea, ppic, pval, & |
---|
948 | ptfr, ptau, pgeom1, pgamma, pd1, pd2, pdmod, pnu) |
---|
949 | |
---|
950 | ! **** *gwstress* |
---|
951 | |
---|
952 | ! purpose. |
---|
953 | ! -------- |
---|
954 | ! Compute the surface stress due to Gravity Waves, according |
---|
955 | ! to the Phillips (1979) theory of 3-D flow above |
---|
956 | ! anisotropic elliptic ridges. |
---|
957 | |
---|
958 | ! The stress is reduced two account for cut-off flow over |
---|
959 | ! hill. The flow only see that part of the ridge located |
---|
960 | ! above the blocked layer (see zeff). |
---|
961 | |
---|
962 | ! ** interface. |
---|
963 | ! ---------- |
---|
964 | ! call *gwstress* from *gwdrag* |
---|
965 | |
---|
966 | ! explicit arguments : |
---|
967 | ! -------------------- |
---|
968 | ! ==== inputs === |
---|
969 | ! ==== outputs === |
---|
970 | |
---|
971 | ! implicit arguments : none |
---|
972 | ! -------------------- |
---|
973 | |
---|
974 | ! method. |
---|
975 | ! ------- |
---|
976 | |
---|
977 | |
---|
978 | ! externals. |
---|
979 | ! ---------- |
---|
980 | |
---|
981 | |
---|
982 | ! reference. |
---|
983 | ! ---------- |
---|
984 | |
---|
985 | ! LOTT and MILLER (1997) & LOTT (1999) |
---|
986 | |
---|
987 | ! author. |
---|
988 | ! ------- |
---|
989 | |
---|
990 | ! modifications. |
---|
991 | ! -------------- |
---|
992 | ! f. lott put the new gwd on ifs 22/11/93 |
---|
993 | |
---|
994 | ! ----------------------------------------------------------------------- |
---|
995 | USE yoegwd_mod_h |
---|
996 | USE dimphy |
---|
997 | USE yomcst_mod_h |
---|
998 | IMPLICIT NONE |
---|
999 | |
---|
1000 | |
---|
1001 | |
---|
1002 | ! ----------------------------------------------------------------------- |
---|
1003 | |
---|
1004 | ! * 0.1 arguments |
---|
1005 | ! --------- |
---|
1006 | |
---|
1007 | INTEGER nlon, nlev |
---|
1008 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ksect(nlon), & |
---|
1009 | kkhlim(nlon), ktest(nlon), kkenvh(nlon), kknu(nlon) |
---|
1010 | |
---|
1011 | REAL prho(nlon, nlev+1), pstab(nlon, nlev+1), ptau(nlon, nlev+1), & |
---|
1012 | pvph(nlon, nlev+1), ptfr(nlon), pgeom1(nlon, nlev), pstd(nlon) |
---|
1013 | |
---|
1014 | REAL pd1(nlon), pd2(nlon), pnu(nlon), psig(nlon), pgamma(nlon) |
---|
1015 | REAL pmea(nlon), ppic(nlon), pval(nlon) |
---|
1016 | REAL pdmod(nlon) |
---|
1017 | |
---|
1018 | ! ----------------------------------------------------------------------- |
---|
1019 | |
---|
1020 | ! * 0.2 local arrays |
---|
1021 | ! ------------ |
---|
1022 | ! zeff--real: effective height seen by the flow when there is blocking |
---|
1023 | |
---|
1024 | INTEGER jl |
---|
1025 | REAL zeff |
---|
1026 | |
---|
1027 | ! ----------------------------------------------------------------------- |
---|
1028 | |
---|
1029 | ! * 0.3 functions |
---|
1030 | ! --------- |
---|
1031 | ! ------------------------------------------------------------------ |
---|
1032 | |
---|
1033 | ! * 1. initialization |
---|
1034 | ! -------------- |
---|
1035 | |
---|
1036 | ! PRINT *,' in gwstress' |
---|
1037 | |
---|
1038 | ! * 3.1 gravity wave stress. |
---|
1039 | |
---|
1040 | |
---|
1041 | |
---|
1042 | DO jl = kidia, kfdia |
---|
1043 | IF (ktest(jl)==1) THEN |
---|
1044 | |
---|
1045 | ! effective mountain height above the blocked flow |
---|
1046 | |
---|
1047 | zeff = ppic(jl) - pval(jl) |
---|
1048 | IF (kkenvh(jl)<klev) THEN |
---|
1049 | zeff = amin1(gfrcrit*pvph(jl,klev+1)/sqrt(pstab(jl,klev+1)), zeff) |
---|
1050 | END IF |
---|
1051 | |
---|
1052 | |
---|
1053 | ptau(jl, klev+1) = gkdrag*prho(jl, klev+1)*psig(jl)*pdmod(jl)/4./ & |
---|
1054 | pstd(jl)*pvph(jl, klev+1)*sqrt(pstab(jl,klev+1))*zeff**2 |
---|
1055 | |
---|
1056 | |
---|
1057 | ! too small value of stress or low level flow include critical level |
---|
1058 | ! or low level flow: gravity wave stress nul. |
---|
1059 | |
---|
1060 | ! lo=(ptau(jl,klev+1).lt.gtsec).or.(kcrit(jl).ge.kknu(jl)) |
---|
1061 | ! * .or.(pvph(jl,klev+1).lt.gvcrit) |
---|
1062 | ! if(lo) ptau(jl,klev+1)=0.0 |
---|
1063 | |
---|
1064 | ! print *,jl,ptau(jl,klev+1) |
---|
1065 | |
---|
1066 | ELSE |
---|
1067 | |
---|
1068 | ptau(jl, klev+1) = 0.0 |
---|
1069 | |
---|
1070 | END IF |
---|
1071 | |
---|
1072 | END DO |
---|
1073 | |
---|
1074 | ! write(21)(ptau(jl,klev+1),jl=kidia,kfdia) |
---|
1075 | |
---|
1076 | RETURN |
---|
1077 | END SUBROUTINE gwstress_strato |
---|
1078 | |
---|
1079 | SUBROUTINE gwprofil_strato(nlon, nlev, kgwd, kdx, ktest, kkcrit, kkcrith, & |
---|
1080 | kcrit, kkenvh, kknu, kknu2, paphm1, prho, pstab, ptfr, pvph, pri, ptau, & |
---|
1081 | pdmod, pnu, psig, pgamma, pstd, ppic, pval) |
---|
1082 | |
---|
1083 | ! **** *gwprofil* |
---|
1084 | |
---|
1085 | ! purpose. |
---|
1086 | ! -------- |
---|
1087 | |
---|
1088 | ! ** interface. |
---|
1089 | ! ---------- |
---|
1090 | ! from *gwdrag* |
---|
1091 | |
---|
1092 | ! explicit arguments : |
---|
1093 | ! -------------------- |
---|
1094 | ! ==== inputs === |
---|
1095 | |
---|
1096 | ! ==== outputs === |
---|
1097 | |
---|
1098 | ! implicit arguments : none |
---|
1099 | ! -------------------- |
---|
1100 | |
---|
1101 | ! method: |
---|
1102 | ! ------- |
---|
1103 | ! the stress profile for gravity waves is computed as follows: |
---|
1104 | ! it decreases linearly with heights from the ground |
---|
1105 | ! to the low-level indicated by kkcrith, |
---|
1106 | ! to simulates lee waves or |
---|
1107 | ! low-level gravity wave breaking. |
---|
1108 | ! above it is constant, except when the waves encounter a critical |
---|
1109 | ! level (kcrit) or when they break. |
---|
1110 | ! The stress is also uniformly distributed above the level |
---|
1111 | ! nstra. |
---|
1112 | |
---|
1113 | USE yoegwd_mod_h |
---|
1114 | USE dimphy |
---|
1115 | USE yomcst_mod_h |
---|
1116 | IMPLICIT NONE |
---|
1117 | |
---|
1118 | |
---|
1119 | |
---|
1120 | ! ----------------------------------------------------------------------- |
---|
1121 | |
---|
1122 | ! * 0.1 ARGUMENTS |
---|
1123 | ! --------- |
---|
1124 | |
---|
1125 | INTEGER nlon, nlev, kgwd |
---|
1126 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), kdx(nlon), ktest(nlon), & |
---|
1127 | kkenvh(nlon), kknu(nlon), kknu2(nlon) |
---|
1128 | |
---|
1129 | REAL paphm1(nlon, nlev+1), pstab(nlon, nlev+1), prho(nlon, nlev+1), & |
---|
1130 | pvph(nlon, nlev+1), pri(nlon, nlev+1), ptfr(nlon), ptau(nlon, nlev+1) |
---|
1131 | |
---|
1132 | REAL pdmod(nlon), pnu(nlon), psig(nlon), pgamma(nlon), pstd(nlon), & |
---|
1133 | ppic(nlon), pval(nlon) |
---|
1134 | |
---|
1135 | ! ----------------------------------------------------------------------- |
---|
1136 | |
---|
1137 | ! * 0.2 local arrays |
---|
1138 | ! ------------ |
---|
1139 | |
---|
1140 | INTEGER jl, jk |
---|
1141 | REAL zsqr, zalfa, zriw, zdel, zb, zalpha, zdz2n, zdelp, zdelpt |
---|
1142 | |
---|
1143 | REAL zdz2(klon, klev), znorm(klon), zoro(klon) |
---|
1144 | REAL ztau(klon, klev+1) |
---|
1145 | |
---|
1146 | ! ----------------------------------------------------------------------- |
---|
1147 | |
---|
1148 | ! * 1. INITIALIZATION |
---|
1149 | ! -------------- |
---|
1150 | |
---|
1151 | ! print *,' entree gwprofil' |
---|
1152 | |
---|
1153 | |
---|
1154 | ! * COMPUTATIONAL CONSTANTS. |
---|
1155 | ! ------------- ---------- |
---|
1156 | |
---|
1157 | DO jl = kidia, kfdia |
---|
1158 | IF (ktest(jl)==1) THEN |
---|
1159 | zoro(jl) = psig(jl)*pdmod(jl)/4./pstd(jl) |
---|
1160 | ztau(jl, klev+1) = ptau(jl, klev+1) |
---|
1161 | ! print *,jl,ptau(jl,klev+1) |
---|
1162 | ztau(jl, kkcrith(jl)) = grahilo*ptau(jl, klev+1) |
---|
1163 | END IF |
---|
1164 | END DO |
---|
1165 | |
---|
1166 | |
---|
1167 | DO jk = klev + 1, 1, -1 |
---|
1168 | ! * 4.1 constant shear stress until top of the |
---|
1169 | ! low-level breaking/trapped layer |
---|
1170 | |
---|
1171 | DO jl = kidia, kfdia |
---|
1172 | IF (ktest(jl)==1) THEN |
---|
1173 | IF (jk>kkcrith(jl)) THEN |
---|
1174 | zdelp = paphm1(jl, jk) - paphm1(jl, klev+1) |
---|
1175 | zdelpt = paphm1(jl, kkcrith(jl)) - paphm1(jl, klev+1) |
---|
1176 | ptau(jl, jk) = ztau(jl, klev+1) + zdelp/zdelpt*(ztau(jl,kkcrith(jl) & |
---|
1177 | )-ztau(jl,klev+1)) |
---|
1178 | ELSE |
---|
1179 | ptau(jl, jk) = ztau(jl, kkcrith(jl)) |
---|
1180 | END IF |
---|
1181 | END IF |
---|
1182 | END DO |
---|
1183 | |
---|
1184 | ! * 4.15 constant shear stress until the top of the |
---|
1185 | ! low level flow layer. |
---|
1186 | |
---|
1187 | |
---|
1188 | ! * 4.2 wave displacement at next level. |
---|
1189 | |
---|
1190 | |
---|
1191 | END DO |
---|
1192 | |
---|
1193 | |
---|
1194 | ! * 4.4 wave richardson number, new wave displacement |
---|
1195 | ! * and stress: breaking evaluation and critical |
---|
1196 | ! level |
---|
1197 | |
---|
1198 | |
---|
1199 | DO jk = klev, 1, -1 |
---|
1200 | |
---|
1201 | DO jl = kidia, kfdia |
---|
1202 | IF (ktest(jl)==1) THEN |
---|
1203 | znorm(jl) = prho(jl, jk)*sqrt(pstab(jl,jk))*pvph(jl, jk) |
---|
1204 | zdz2(jl, jk) = ptau(jl, jk)/amax1(znorm(jl), gssec)/zoro(jl) |
---|
1205 | END IF |
---|
1206 | END DO |
---|
1207 | |
---|
1208 | DO jl = kidia, kfdia |
---|
1209 | IF (ktest(jl)==1) THEN |
---|
1210 | IF (jk<kkcrith(jl)) THEN |
---|
1211 | IF ((ptau(jl,jk+1)<gtsec) .OR. (jk<=kcrit(jl))) THEN |
---|
1212 | ptau(jl, jk) = 0.0 |
---|
1213 | ELSE |
---|
1214 | zsqr = sqrt(pri(jl,jk)) |
---|
1215 | zalfa = sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl, jk) |
---|
1216 | zriw = pri(jl, jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
---|
1217 | IF (zriw<grcrit) THEN |
---|
1218 | ! print *,' breaking!!!',ptau(jl,jk) |
---|
1219 | zdel = 4./zsqr/grcrit + 1./grcrit**2 + 4./grcrit |
---|
1220 | zb = 1./grcrit + 2./zsqr |
---|
1221 | zalpha = 0.5*(-zb+sqrt(zdel)) |
---|
1222 | zdz2n = (pvph(jl,jk)*zalpha)**2/pstab(jl, jk) |
---|
1223 | ptau(jl, jk) = znorm(jl)*zdz2n*zoro(jl) |
---|
1224 | END IF |
---|
1225 | |
---|
1226 | ptau(jl, jk) = amin1(ptau(jl,jk), ptau(jl,jk+1)) |
---|
1227 | |
---|
1228 | END IF |
---|
1229 | END IF |
---|
1230 | END IF |
---|
1231 | END DO |
---|
1232 | END DO |
---|
1233 | |
---|
1234 | ! REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
1235 | |
---|
1236 | DO jl = kidia, kfdia |
---|
1237 | IF (ktest(jl)==1) THEN |
---|
1238 | ztau(jl, kkcrith(jl)-1) = ptau(jl, kkcrith(jl)-1) |
---|
1239 | ztau(jl, nstra) = ptau(jl, nstra) |
---|
1240 | END IF |
---|
1241 | END DO |
---|
1242 | |
---|
1243 | DO jk = 1, klev |
---|
1244 | |
---|
1245 | DO jl = kidia, kfdia |
---|
1246 | IF (ktest(jl)==1) THEN |
---|
1247 | |
---|
1248 | IF (jk>kkcrith(jl)-1) THEN |
---|
1249 | |
---|
1250 | zdelp = paphm1(jl, jk) - paphm1(jl, klev+1) |
---|
1251 | zdelpt = paphm1(jl, kkcrith(jl)-1) - paphm1(jl, klev+1) |
---|
1252 | ptau(jl, jk) = ztau(jl, klev+1) + (ztau(jl,kkcrith(jl)-1)-ztau(jl, & |
---|
1253 | klev+1))*zdelp/zdelpt |
---|
1254 | |
---|
1255 | END IF |
---|
1256 | END IF |
---|
1257 | |
---|
1258 | END DO |
---|
1259 | |
---|
1260 | ! REORGANISATION AT THE MODEL TOP.... |
---|
1261 | |
---|
1262 | DO jl = kidia, kfdia |
---|
1263 | IF (ktest(jl)==1) THEN |
---|
1264 | |
---|
1265 | IF (jk<nstra) THEN |
---|
1266 | |
---|
1267 | zdelp = paphm1(jl, nstra) |
---|
1268 | zdelpt = paphm1(jl, jk) |
---|
1269 | ptau(jl, jk) = ztau(jl, nstra)*zdelpt/zdelp |
---|
1270 | ! ptau(jl,jk)=ztau(jl,nstra) |
---|
1271 | |
---|
1272 | END IF |
---|
1273 | |
---|
1274 | END IF |
---|
1275 | |
---|
1276 | END DO |
---|
1277 | |
---|
1278 | |
---|
1279 | END DO |
---|
1280 | |
---|
1281 | |
---|
1282 | 123 FORMAT (I4, 1X, 20(F6.3,1X)) |
---|
1283 | |
---|
1284 | |
---|
1285 | RETURN |
---|
1286 | END SUBROUTINE gwprofil_strato |
---|
1287 | SUBROUTINE lift_noro_strato(nlon, nlev, dtime, paprs, pplay, plat, pmea, & |
---|
1288 | pstd, psig, pgam, pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, & |
---|
1289 | pvlow, pustr, pvstr, d_t, d_u, d_v) |
---|
1290 | |
---|
1291 | USE yomcst_mod_h |
---|
1292 | USE dimphy |
---|
1293 | USE yoegwd_mod_h |
---|
1294 | IMPLICIT NONE |
---|
1295 | ! ====================================================================== |
---|
1296 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
1297 | ! Object: Mountain lift interface (enhanced vortex stretching). |
---|
1298 | ! Made necessary because: |
---|
1299 | ! 1. in the LMD-GCM Layers are from bottom to top, |
---|
1300 | ! contrary to most European GCM. |
---|
1301 | ! 2. the altitude above ground of each model layers |
---|
1302 | ! needs to be known (variable zgeom) |
---|
1303 | ! ====================================================================== |
---|
1304 | ! Explicit Arguments: |
---|
1305 | ! ================== |
---|
1306 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
1307 | ! nlev----input-I-Number of vertical levels |
---|
1308 | ! dtime---input-R-Time-step (s) |
---|
1309 | ! paprs---input-R-Pressure in semi layers (Pa) |
---|
1310 | ! pplay---input-R-Pressure model-layers (Pa) |
---|
1311 | ! t-------input-R-temperature (K) |
---|
1312 | ! u-------input-R-Horizontal wind (m/s) |
---|
1313 | ! v-------input-R-Meridional wind (m/s) |
---|
1314 | ! pmea----input-R-Mean Orography (m) |
---|
1315 | ! pstd----input-R-SSO standard deviation (m) |
---|
1316 | ! psig----input-R-SSO slope |
---|
1317 | ! pgam----input-R-SSO Anisotropy |
---|
1318 | ! pthe----input-R-SSO Angle |
---|
1319 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
1320 | ! pval----input-R-SSO Valleys elevation (m) |
---|
1321 | |
---|
1322 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
1323 | ! ktest--input-I: Flags to indicate active points |
---|
1324 | ! kdx----input-I: Locate the physical location of an active point. |
---|
1325 | |
---|
1326 | ! pulow, pvlow -output-R: Low-level wind |
---|
1327 | ! pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
---|
1328 | |
---|
1329 | ! d_t-----output-R: T increment |
---|
1330 | ! d_u-----output-R: U increment |
---|
1331 | ! d_v-----output-R: V increment |
---|
1332 | |
---|
1333 | ! Implicit Arguments: |
---|
1334 | ! =================== |
---|
1335 | |
---|
1336 | ! iim--common-I: Number of longitude intervals |
---|
1337 | ! jjm--common-I: Number of latitude intervals |
---|
1338 | ! klon-common-I: Number of points seen by the physics |
---|
1339 | ! (iim+1)*(jjm+1) for instance |
---|
1340 | ! klev-common-I: Number of vertical layers |
---|
1341 | ! ====================================================================== |
---|
1342 | ! Local Variables: |
---|
1343 | ! ================ |
---|
1344 | |
---|
1345 | ! zgeom-----R: Altitude of layer above ground |
---|
1346 | ! pt, pu, pv --R: t u v from top to bottom |
---|
1347 | ! pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
---|
1348 | ! papmf: pressure at model layer (from top to bottom) |
---|
1349 | ! papmh: pressure at model 1/2 layer (from top to bottom) |
---|
1350 | |
---|
1351 | ! ====================================================================== |
---|
1352 | |
---|
1353 | ! ARGUMENTS |
---|
1354 | |
---|
1355 | INTEGER nlon, nlev |
---|
1356 | REAL dtime |
---|
1357 | REAL paprs(klon, klev+1) |
---|
1358 | REAL pplay(klon, klev) |
---|
1359 | REAL plat(nlon), pmea(nlon) |
---|
1360 | REAL pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
---|
1361 | REAL ppic(nlon), pval(nlon) |
---|
1362 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
1363 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
1364 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
1365 | |
---|
1366 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
1367 | |
---|
1368 | ! Variables locales: |
---|
1369 | |
---|
1370 | REAL zgeom(klon, klev) |
---|
1371 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
1372 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
1373 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
1374 | |
---|
1375 | ! initialiser les variables de sortie (pour securite) |
---|
1376 | |
---|
1377 | |
---|
1378 | ! print *,'in lift_noro' |
---|
1379 | DO i = 1, klon |
---|
1380 | pulow(i) = 0.0 |
---|
1381 | pvlow(i) = 0.0 |
---|
1382 | pustr(i) = 0.0 |
---|
1383 | pvstr(i) = 0.0 |
---|
1384 | END DO |
---|
1385 | DO k = 1, klev |
---|
1386 | DO i = 1, klon |
---|
1387 | d_t(i, k) = 0.0 |
---|
1388 | d_u(i, k) = 0.0 |
---|
1389 | d_v(i, k) = 0.0 |
---|
1390 | pdudt(i, k) = 0.0 |
---|
1391 | pdvdt(i, k) = 0.0 |
---|
1392 | pdtdt(i, k) = 0.0 |
---|
1393 | END DO |
---|
1394 | END DO |
---|
1395 | |
---|
1396 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
1397 | ! verticaux augmente du haut vers le bas) |
---|
1398 | |
---|
1399 | DO k = 1, klev |
---|
1400 | DO i = 1, klon |
---|
1401 | pt(i, k) = t(i, klev-k+1) |
---|
1402 | pu(i, k) = u(i, klev-k+1) |
---|
1403 | pv(i, k) = v(i, klev-k+1) |
---|
1404 | papmf(i, k) = pplay(i, klev-k+1) |
---|
1405 | END DO |
---|
1406 | END DO |
---|
1407 | DO k = 1, klev + 1 |
---|
1408 | DO i = 1, klon |
---|
1409 | papmh(i, k) = paprs(i, klev-k+2) |
---|
1410 | END DO |
---|
1411 | END DO |
---|
1412 | DO i = 1, klon |
---|
1413 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
1414 | END DO |
---|
1415 | DO k = klev - 1, 1, -1 |
---|
1416 | DO i = 1, klon |
---|
1417 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
1418 | 1)/papmf(i,k)) |
---|
1419 | END DO |
---|
1420 | END DO |
---|
1421 | |
---|
1422 | ! appeler la routine principale |
---|
1423 | |
---|
1424 | |
---|
1425 | CALL orolift_strato(klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, & |
---|
1426 | zgeom, pt, pu, pv, plat, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, & |
---|
1427 | pvlow, pdudt, pdvdt, pdtdt) |
---|
1428 | |
---|
1429 | DO k = 1, klev |
---|
1430 | DO i = 1, klon |
---|
1431 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
1432 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
1433 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
1434 | pustr(i) = pustr(i) + pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
1435 | pvstr(i) = pvstr(i) + pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
1436 | END DO |
---|
1437 | END DO |
---|
1438 | |
---|
1439 | ! print *,' out lift_noro' |
---|
1440 | |
---|
1441 | RETURN |
---|
1442 | END SUBROUTINE lift_noro_strato |
---|
1443 | SUBROUTINE orolift_strato(nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, & |
---|
1444 | papm1, pgeom1, ptm1, pum1, pvm1, plat, pmea, pstd, psig, pgam, pthe, & |
---|
1445 | ppic, pval & ! OUTPUTS |
---|
1446 | , pulow, pvlow, pvom, pvol, pte) |
---|
1447 | |
---|
1448 | |
---|
1449 | ! **** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
1450 | |
---|
1451 | ! PURPOSE. |
---|
1452 | ! -------- |
---|
1453 | ! this routine computes the physical tendencies of the |
---|
1454 | ! prognostic variables u,v when enhanced vortex stretching |
---|
1455 | ! is needed. |
---|
1456 | |
---|
1457 | ! ** INTERFACE. |
---|
1458 | ! ---------- |
---|
1459 | ! CALLED FROM *lift_noro |
---|
1460 | ! explicit arguments : |
---|
1461 | ! -------------------- |
---|
1462 | ! ==== inputs === |
---|
1463 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
1464 | ! nlev----input-I-Number of vertical levels |
---|
1465 | |
---|
1466 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
1467 | ! ktest--input-I: Flags to indicate active points |
---|
1468 | ! kdx----input-I: Locate the physical location of an active point. |
---|
1469 | ! ptsphy--input-R-Time-step (s) |
---|
1470 | ! paphm1--input-R: pressure at model 1/2 layer |
---|
1471 | ! papm1---input-R: pressure at model layer |
---|
1472 | ! pgeom1--input-R: Altitude of layer above ground |
---|
1473 | ! ptm1, pum1, pvm1--R-: t, u and v |
---|
1474 | ! pmea----input-R-Mean Orography (m) |
---|
1475 | ! pstd----input-R-SSO standard deviation (m) |
---|
1476 | ! psig----input-R-SSO slope |
---|
1477 | ! pgam----input-R-SSO Anisotropy |
---|
1478 | ! pthe----input-R-SSO Angle |
---|
1479 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
1480 | ! pval----input-R-SSO Valleys elevation (m) |
---|
1481 | ! plat----input-R-Latitude (degree) |
---|
1482 | |
---|
1483 | ! ==== outputs === |
---|
1484 | ! pulow, pvlow -output-R: Low-level wind |
---|
1485 | |
---|
1486 | ! pte -----output-R: T tendency |
---|
1487 | ! pvom-----output-R: U tendency |
---|
1488 | ! pvol-----output-R: V tendency |
---|
1489 | |
---|
1490 | |
---|
1491 | ! Implicit Arguments: |
---|
1492 | ! =================== |
---|
1493 | |
---|
1494 | ! klon-common-I: Number of points seen by the physics |
---|
1495 | ! klev-common-I: Number of vertical layers |
---|
1496 | |
---|
1497 | |
---|
1498 | ! ---------- |
---|
1499 | |
---|
1500 | ! AUTHOR. |
---|
1501 | ! ------- |
---|
1502 | ! F.LOTT LMD 22/11/95 |
---|
1503 | |
---|
1504 | USE yoegwd_mod_h |
---|
1505 | USE dimphy |
---|
1506 | USE yomcst_mod_h |
---|
1507 | IMPLICIT NONE |
---|
1508 | |
---|
1509 | |
---|
1510 | |
---|
1511 | ! ----------------------------------------------------------------------- |
---|
1512 | |
---|
1513 | ! * 0.1 ARGUMENTS |
---|
1514 | ! --------- |
---|
1515 | |
---|
1516 | |
---|
1517 | INTEGER nlon, nlev, kgwd |
---|
1518 | REAL ptsphy |
---|
1519 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
---|
1520 | pvlow(nlon) |
---|
1521 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), plat(nlon), & |
---|
1522 | pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon), ppic(nlon), & |
---|
1523 | pval(nlon), pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev+1) |
---|
1524 | |
---|
1525 | INTEGER kdx(nlon), ktest(nlon) |
---|
1526 | ! ----------------------------------------------------------------------- |
---|
1527 | |
---|
1528 | ! * 0.2 local arrays |
---|
1529 | |
---|
1530 | INTEGER jl, ilevh, jk |
---|
1531 | REAL zhgeo, zdelp, zslow, zsqua, zscav, zbet |
---|
1532 | ! ------------ |
---|
1533 | INTEGER iknub(klon), iknul(klon) |
---|
1534 | LOGICAL ll1(klon, klev+1) |
---|
1535 | |
---|
1536 | REAL ztau(klon, klev+1), ztav(klon, klev+1), zrho(klon, klev+1) |
---|
1537 | REAL zdudt(klon), zdvdt(klon) |
---|
1538 | REAL zhcrit(klon, klev) |
---|
1539 | |
---|
1540 | LOGICAL lifthigh |
---|
1541 | REAL zcons1, ztmst |
---|
1542 | CHARACTER (LEN=20) :: modname = 'orolift_strato' |
---|
1543 | CHARACTER (LEN=80) :: abort_message |
---|
1544 | |
---|
1545 | |
---|
1546 | ! ----------------------------------------------------------------------- |
---|
1547 | |
---|
1548 | ! * 1.1 initialisations |
---|
1549 | ! --------------- |
---|
1550 | |
---|
1551 | lifthigh = .FALSE. |
---|
1552 | |
---|
1553 | IF (nlon/=klon .OR. nlev/=klev) THEN |
---|
1554 | abort_message = 'pb dimension' |
---|
1555 | CALL abort_physic(modname, abort_message, 1) |
---|
1556 | END IF |
---|
1557 | zcons1 = 1./rd |
---|
1558 | ztmst = ptsphy |
---|
1559 | |
---|
1560 | DO jl = kidia, kfdia |
---|
1561 | zrho(jl, klev+1) = 0.0 |
---|
1562 | pulow(jl) = 0.0 |
---|
1563 | pvlow(jl) = 0.0 |
---|
1564 | iknub(jl) = klev |
---|
1565 | iknul(jl) = klev |
---|
1566 | ilevh = klev/3 |
---|
1567 | ll1(jl, klev+1) = .FALSE. |
---|
1568 | DO jk = 1, klev |
---|
1569 | pvom(jl, jk) = 0.0 |
---|
1570 | pvol(jl, jk) = 0.0 |
---|
1571 | pte(jl, jk) = 0.0 |
---|
1572 | END DO |
---|
1573 | END DO |
---|
1574 | |
---|
1575 | |
---|
1576 | ! * 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
1577 | ! * LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
1578 | ! * THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
1579 | |
---|
1580 | |
---|
1581 | |
---|
1582 | DO jk = klev, 1, -1 |
---|
1583 | DO jl = kidia, kfdia |
---|
1584 | IF (ktest(jl)==1) THEN |
---|
1585 | zhcrit(jl, jk) = amax1(ppic(jl)-pval(jl), 100.) |
---|
1586 | zhgeo = pgeom1(jl, jk)/rg |
---|
1587 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
1588 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
1589 | iknub(jl) = jk |
---|
1590 | END IF |
---|
1591 | END IF |
---|
1592 | END DO |
---|
1593 | END DO |
---|
1594 | |
---|
1595 | |
---|
1596 | DO jl = kidia, kfdia |
---|
1597 | IF (ktest(jl)==1) THEN |
---|
1598 | iknub(jl) = max(iknub(jl), klev/2) |
---|
1599 | iknul(jl) = max(iknul(jl), 2*klev/3) |
---|
1600 | IF (iknub(jl)>nktopg) iknub(jl) = nktopg |
---|
1601 | IF (iknub(jl)==nktopg) iknul(jl) = klev |
---|
1602 | IF (iknub(jl)==iknul(jl)) iknub(jl) = iknul(jl) - 1 |
---|
1603 | END IF |
---|
1604 | END DO |
---|
1605 | |
---|
1606 | DO jk = klev, 2, -1 |
---|
1607 | DO jl = kidia, kfdia |
---|
1608 | zrho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
1609 | END DO |
---|
1610 | END DO |
---|
1611 | ! print *,' dans orolift: 223' |
---|
1612 | |
---|
1613 | ! ******************************************************************** |
---|
1614 | |
---|
1615 | ! * define low level flow |
---|
1616 | ! ------------------- |
---|
1617 | DO jk = klev, 1, -1 |
---|
1618 | DO jl = kidia, kfdia |
---|
1619 | IF (ktest(jl)==1) THEN |
---|
1620 | IF (jk>=iknub(jl) .AND. jk<=iknul(jl)) THEN |
---|
1621 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
1622 | ) |
---|
1623 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
1624 | ) |
---|
1625 | zrho(jl, klev+1) = zrho(jl, klev+1) + zrho(jl, jk)*(paphm1(jl,jk+1) & |
---|
1626 | -paphm1(jl,jk)) |
---|
1627 | END IF |
---|
1628 | END IF |
---|
1629 | END DO |
---|
1630 | END DO |
---|
1631 | DO jl = kidia, kfdia |
---|
1632 | IF (ktest(jl)==1) THEN |
---|
1633 | pulow(jl) = pulow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1634 | pvlow(jl) = pvlow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1635 | zrho(jl, klev+1) = zrho(jl, klev+1)/(paphm1(jl,iknul(jl)+1)-paphm1(jl, & |
---|
1636 | iknub(jl))) |
---|
1637 | END IF |
---|
1638 | END DO |
---|
1639 | |
---|
1640 | ! *********************************************************** |
---|
1641 | |
---|
1642 | ! * 3. COMPUTE MOUNTAIN LIFT |
---|
1643 | |
---|
1644 | |
---|
1645 | DO jl = kidia, kfdia |
---|
1646 | IF (ktest(jl)==1) THEN |
---|
1647 | ztau(jl, klev+1) = -gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
1648 | ! (2*pstd(jl)+pmea(jl))* |
---|
1649 | 2*pstd(jl)*sin(rpi/180.*plat(jl))*pvlow(jl) |
---|
1650 | ztav(jl, klev+1) = gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
1651 | ! (2*pstd(jl)+pmea(jl))* |
---|
1652 | 2*pstd(jl)*sin(rpi/180.*plat(jl))*pulow(jl) |
---|
1653 | ELSE |
---|
1654 | ztau(jl, klev+1) = 0.0 |
---|
1655 | ztav(jl, klev+1) = 0.0 |
---|
1656 | END IF |
---|
1657 | END DO |
---|
1658 | |
---|
1659 | ! * 4. COMPUTE LIFT PROFILE |
---|
1660 | ! * -------------------- |
---|
1661 | |
---|
1662 | |
---|
1663 | |
---|
1664 | DO jk = 1, klev |
---|
1665 | DO jl = kidia, kfdia |
---|
1666 | IF (ktest(jl)==1) THEN |
---|
1667 | ztau(jl, jk) = ztau(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
1668 | ztav(jl, jk) = ztav(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
1669 | ELSE |
---|
1670 | ztau(jl, jk) = 0.0 |
---|
1671 | ztav(jl, jk) = 0.0 |
---|
1672 | END IF |
---|
1673 | END DO |
---|
1674 | END DO |
---|
1675 | |
---|
1676 | |
---|
1677 | ! * 5. COMPUTE TENDENCIES. |
---|
1678 | ! * ------------------- |
---|
1679 | IF (lifthigh) THEN |
---|
1680 | ! EXPLICIT SOLUTION AT ALL LEVELS |
---|
1681 | |
---|
1682 | DO jk = 1, klev |
---|
1683 | DO jl = kidia, kfdia |
---|
1684 | IF (ktest(jl)==1) THEN |
---|
1685 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
1686 | zdudt(jl) = -rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
---|
1687 | zdvdt(jl) = -rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
---|
1688 | END IF |
---|
1689 | END DO |
---|
1690 | END DO |
---|
1691 | |
---|
1692 | ! PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
1693 | |
---|
1694 | DO jk = 1, klev |
---|
1695 | DO jl = kidia, kfdia |
---|
1696 | IF (ktest(jl)==1) THEN |
---|
1697 | |
---|
1698 | zslow = sqrt(pulow(jl)**2+pvlow(jl)**2) |
---|
1699 | zsqua = amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2), gvsec) |
---|
1700 | zscav = -zdudt(jl)*pvm1(jl, jk) + zdvdt(jl)*pum1(jl, jk) |
---|
1701 | IF (zsqua>gvsec) THEN |
---|
1702 | pvom(jl, jk) = -zscav*pvm1(jl, jk)/zsqua**2 |
---|
1703 | pvol(jl, jk) = zscav*pum1(jl, jk)/zsqua**2 |
---|
1704 | ELSE |
---|
1705 | pvom(jl, jk) = 0.0 |
---|
1706 | pvol(jl, jk) = 0.0 |
---|
1707 | END IF |
---|
1708 | zsqua = sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
---|
1709 | IF (zsqua<zslow) THEN |
---|
1710 | pvom(jl, jk) = zsqua/zslow*pvom(jl, jk) |
---|
1711 | pvol(jl, jk) = zsqua/zslow*pvol(jl, jk) |
---|
1712 | END IF |
---|
1713 | |
---|
1714 | END IF |
---|
1715 | END DO |
---|
1716 | END DO |
---|
1717 | |
---|
1718 | ! 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
1719 | ! ---------------------------------- |
---|
1720 | |
---|
1721 | ELSE |
---|
1722 | |
---|
1723 | DO jl = kidia, kfdia |
---|
1724 | IF (ktest(jl)==1) THEN |
---|
1725 | DO jk = klev, iknub(jl), -1 |
---|
1726 | zbet = gklift*2.*romega*sin(rpi/180.*plat(jl))*ztmst* & |
---|
1727 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,jk))/ & |
---|
1728 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
---|
1729 | zdudt(jl) = -pum1(jl, jk)/ztmst/(1+zbet**2) |
---|
1730 | zdvdt(jl) = -pvm1(jl, jk)/ztmst/(1+zbet**2) |
---|
1731 | pvom(jl, jk) = zbet**2*zdudt(jl) - zbet*zdvdt(jl) |
---|
1732 | pvol(jl, jk) = zbet*zdudt(jl) + zbet**2*zdvdt(jl) |
---|
1733 | END DO |
---|
1734 | END IF |
---|
1735 | END DO |
---|
1736 | |
---|
1737 | END IF |
---|
1738 | |
---|
1739 | ! print *,' out orolift' |
---|
1740 | |
---|
1741 | RETURN |
---|
1742 | END SUBROUTINE orolift_strato |
---|
1743 | SUBROUTINE sugwd_strato(nlon, nlev, paprs, pplay) |
---|
1744 | |
---|
1745 | |
---|
1746 | ! **** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
1747 | |
---|
1748 | ! PURPOSE. |
---|
1749 | ! -------- |
---|
1750 | ! INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
1751 | ! GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
1752 | ! VERY IMPORTANT: |
---|
1753 | ! ______________ |
---|
1754 | ! THIS ROUTINE SET_UP THE "TUNABLE PARAMETERS" OF THE |
---|
1755 | ! VARIOUS SSO SCHEMES |
---|
1756 | |
---|
1757 | ! ** INTERFACE. |
---|
1758 | ! ---------- |
---|
1759 | ! CALL *SUGWD* FROM *SUPHEC* |
---|
1760 | ! ----- ------ |
---|
1761 | |
---|
1762 | ! EXPLICIT ARGUMENTS : |
---|
1763 | ! -------------------- |
---|
1764 | ! PAPRS,PPLAY : Pressure at semi and full model levels |
---|
1765 | ! NLEV : number of model levels |
---|
1766 | ! NLON : number of points treated in the physics |
---|
1767 | |
---|
1768 | ! IMPLICIT ARGUMENTS : |
---|
1769 | ! -------------------- |
---|
1770 | ! COMMON YOEGWD |
---|
1771 | ! -GFRCRIT-R: Critical Non-dimensional mountain Height |
---|
1772 | ! (HNC in (1), LOTT 1999) |
---|
1773 | ! -GKWAKE--R: Bluff-body drag coefficient for low level wake |
---|
1774 | ! (Cd in (2), LOTT 1999) |
---|
1775 | ! -GRCRIT--R: Critical Richardson Number |
---|
1776 | ! (Ric, End of first column p791 of LOTT 1999) |
---|
1777 | ! -GKDRAG--R: Gravity wave drag coefficient |
---|
1778 | ! (G in (3), LOTT 1999) |
---|
1779 | ! -GKLIFT--R: Mountain Lift coefficient |
---|
1780 | ! (Cl in (4), LOTT 1999) |
---|
1781 | ! -GHMAX---R: Not used |
---|
1782 | ! -GRAHILO-R: Set-up the trapped waves fraction |
---|
1783 | ! (Beta , End of first column, LOTT 1999) |
---|
1784 | |
---|
1785 | ! -GSIGCR--R: Security value for blocked flow depth |
---|
1786 | ! -NKTOPG--I: Security value for blocked flow level |
---|
1787 | ! -nstra----I: An estimate to qualify the upper levels of |
---|
1788 | ! the model where one wants to impose strees |
---|
1789 | ! profiles |
---|
1790 | ! -GSSECC--R: Security min value for low-level B-V frequency |
---|
1791 | ! -GTSEC---R: Security min value for anisotropy and GW stress. |
---|
1792 | ! -GVSEC---R: Security min value for ulow |
---|
1793 | |
---|
1794 | |
---|
1795 | ! METHOD. |
---|
1796 | ! ------- |
---|
1797 | ! SEE DOCUMENTATION |
---|
1798 | |
---|
1799 | ! EXTERNALS. |
---|
1800 | ! ---------- |
---|
1801 | ! NONE |
---|
1802 | |
---|
1803 | ! REFERENCE. |
---|
1804 | ! ---------- |
---|
1805 | ! Lott, 1999: Alleviation of stationary biases in a GCM through... |
---|
1806 | ! Monthly Weather Review, 127, pp 788-801. |
---|
1807 | |
---|
1808 | ! AUTHOR. |
---|
1809 | ! ------- |
---|
1810 | ! FRANCOIS LOTT *LMD* |
---|
1811 | |
---|
1812 | ! MODIFICATIONS. |
---|
1813 | ! -------------- |
---|
1814 | ! ORIGINAL : 90-01-01 (MARTIN MILLER, ECMWF) |
---|
1815 | ! LAST: 99-07-09 (FRANCOIS LOTT,LMD) |
---|
1816 | ! ------------------------------------------------------------------ |
---|
1817 | USE yoegwd_mod_h |
---|
1818 | USE dimphy |
---|
1819 | USE mod_phys_lmdz_para |
---|
1820 | USE mod_grid_phy_lmdz |
---|
1821 | USE geometry_mod |
---|
1822 | IMPLICIT NONE |
---|
1823 | |
---|
1824 | ! ----------------------------------------------------------------- |
---|
1825 | ! ---------------------------------------------------------------- |
---|
1826 | |
---|
1827 | ! ARGUMENTS |
---|
1828 | INTEGER nlon, nlev |
---|
1829 | REAL paprs(nlon, nlev+1) |
---|
1830 | REAL pplay(nlon, nlev) |
---|
1831 | |
---|
1832 | INTEGER jk |
---|
1833 | REAL zpr, ztop, zsigt, zpm1r |
---|
1834 | INTEGER :: cell,ij,nstra_tmp,nktopg_tmp |
---|
1835 | REAL :: current_dist, dist_min,dist_min_glo |
---|
1836 | |
---|
1837 | ! * 1. SET THE VALUES OF THE PARAMETERS |
---|
1838 | ! -------------------------------- |
---|
1839 | |
---|
1840 | |
---|
1841 | PRINT *, ' DANS SUGWD NLEV=', nlev |
---|
1842 | ghmax = 10000. |
---|
1843 | |
---|
1844 | zpr = 100000. |
---|
1845 | ZTOP=0.00005 |
---|
1846 | zsigt = 0.94 |
---|
1847 | ! old ZPR=80000. |
---|
1848 | ! old ZSIGT=0.85 |
---|
1849 | |
---|
1850 | |
---|
1851 | !ym Take the point at equator close to (0,0) coordinates. |
---|
1852 | dist_min=360 |
---|
1853 | dist_min_glo=360. |
---|
1854 | cell=-1 |
---|
1855 | DO ij=1,klon |
---|
1856 | current_dist=sqrt(longitude_deg(ij)**2+latitude_deg(ij)**2) |
---|
1857 | current_dist=current_dist*(1+(1e-10*ind_cell_glo(ij))/klon_glo) ! For point unicity |
---|
1858 | IF (dist_min>current_dist) THEN |
---|
1859 | dist_min=current_dist |
---|
1860 | cell=ij |
---|
1861 | ENDIF |
---|
1862 | ENDDO |
---|
1863 | |
---|
1864 | !PRINT *, 'SUGWD distmin cell=', dist_min,cell |
---|
1865 | CALL reduce_min(dist_min,dist_min_glo) |
---|
1866 | CALL bcast(dist_min_glo) |
---|
1867 | IF (dist_min/=dist_min_glo) cell=-1 |
---|
1868 | !ym in future find the point at equator close to (0,0) coordinates. |
---|
1869 | PRINT *, 'SUGWD distmin dist_min_glo cell=', dist_min,dist_min_glo,cell |
---|
1870 | |
---|
1871 | nktopg_tmp=nktopg |
---|
1872 | nstra_tmp=nstra |
---|
1873 | |
---|
1874 | IF (cell/=-1) THEN |
---|
1875 | |
---|
1876 | !print*,'SUGWD shape ',shape(pplay),cell+1 |
---|
1877 | |
---|
1878 | DO jk = 1, nlev |
---|
1879 | !zpm1r = pplay(cell+1, jk)/paprs(cell+1, 1) |
---|
1880 | zpm1r = pplay(cell, jk)/paprs(cell, 1) |
---|
1881 | IF (zpm1r>=zsigt) THEN |
---|
1882 | nktopg_tmp = jk |
---|
1883 | END IF |
---|
1884 | IF (zpm1r>=ztop) THEN |
---|
1885 | nstra_tmp = jk |
---|
1886 | END IF |
---|
1887 | END DO |
---|
1888 | ELSE |
---|
1889 | nktopg_tmp=0 |
---|
1890 | nstra_tmp=0 |
---|
1891 | ENDIF |
---|
1892 | |
---|
1893 | CALL reduce_sum(nktopg_tmp,nktopg) |
---|
1894 | CALL bcast(nktopg) |
---|
1895 | CALL reduce_sum(nstra_tmp,nstra) |
---|
1896 | CALL bcast(nstra) |
---|
1897 | |
---|
1898 | ! inversion car dans orodrag on compte les niveaux a l'envers |
---|
1899 | nktopg = nlev - nktopg + 1 |
---|
1900 | nstra = nlev - nstra |
---|
1901 | PRINT *, ' DANS SUGWD nktopg=', nktopg |
---|
1902 | PRINT *, ' DANS SUGWD nstra=', nstra |
---|
1903 | if (nstra == 0) call abort_physic("sugwd_strato", "no level in stratosphere", 1) |
---|
1904 | |
---|
1905 | ! Valeurs lues dans les .def, ou attribues dans conf_phys |
---|
1906 | !gkdrag = 0.2 |
---|
1907 | !grahilo = 0.1 |
---|
1908 | !grcrit = 1.00 |
---|
1909 | !gfrcrit = 0.70 |
---|
1910 | !gkwake = 0.40 |
---|
1911 | !gklift = 0.25 |
---|
1912 | |
---|
1913 | gsigcr = 0.80 ! Top of low level flow |
---|
1914 | gvcrit = 0.1 |
---|
1915 | |
---|
1916 | WRITE (UNIT=6, FMT='('' *** SSO essential constants ***'')') |
---|
1917 | WRITE (UNIT=6, FMT='('' *** SPECIFIED IN SUGWD ***'')') |
---|
1918 | WRITE (UNIT=6, FMT='('' Gravity wave ct '',E13.7,'' '')') gkdrag |
---|
1919 | WRITE (UNIT=6, FMT='('' Trapped/total wave dag '',E13.7,'' '')') grahilo |
---|
1920 | WRITE (UNIT=6, FMT='('' Critical Richardson = '',E13.7,'' '')') grcrit |
---|
1921 | WRITE (UNIT=6, FMT='('' Critical Froude'',e13.7)') gfrcrit |
---|
1922 | WRITE (UNIT=6, FMT='('' Low level Wake bluff cte'',e13.7)') gkwake |
---|
1923 | WRITE (UNIT=6, FMT='('' Low level lift cte'',e13.7)') gklift |
---|
1924 | |
---|
1925 | ! ---------------------------------------------------------------- |
---|
1926 | |
---|
1927 | ! * 2. SET VALUES OF SECURITY PARAMETERS |
---|
1928 | ! --------------------------------- |
---|
1929 | |
---|
1930 | |
---|
1931 | gvsec = 0.10 |
---|
1932 | gssec = 0.0001 |
---|
1933 | |
---|
1934 | gtsec = 0.00001 |
---|
1935 | |
---|
1936 | RETURN |
---|
1937 | END SUBROUTINE sugwd_strato |
---|