[2897] | 1 | SUBROUTINE drag_noro_strato(partdrag, nlon, nlev, dtime, paprs, pplay, pmea, pstd, & |
---|
[1992] | 2 | psig, pgam, pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, pvlow, & |
---|
| 3 | pustr, pvstr, d_t, d_u, d_v) |
---|
[1001] | 4 | |
---|
[5285] | 5 | USE yomcst_mod_h |
---|
[1992] | 6 | USE dimphy |
---|
[5309] | 7 | USE yoegwd_mod_h |
---|
[1992] | 8 | IMPLICIT NONE |
---|
| 9 | ! ====================================================================== |
---|
| 10 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
| 11 | ! Object: Mountain drag interface. Made necessary because: |
---|
| 12 | ! 1. in the LMD-GCM Layers are from bottom to top, |
---|
| 13 | ! contrary to most European GCM. |
---|
| 14 | ! 2. the altitude above ground of each model layers |
---|
| 15 | ! needs to be known (variable zgeom) |
---|
| 16 | ! ====================================================================== |
---|
| 17 | ! Explicit Arguments: |
---|
| 18 | ! ================== |
---|
[2897] | 19 | ! partdrag-input-I-control which part of the drag we consider (total part or GW part) |
---|
[1992] | 20 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
| 21 | ! nlev----input-I-Number of vertical levels |
---|
| 22 | ! dtime---input-R-Time-step (s) |
---|
| 23 | ! paprs---input-R-Pressure in semi layers (Pa) |
---|
| 24 | ! pplay---input-R-Pressure model-layers (Pa) |
---|
| 25 | ! t-------input-R-temperature (K) |
---|
| 26 | ! u-------input-R-Horizontal wind (m/s) |
---|
| 27 | ! v-------input-R-Meridional wind (m/s) |
---|
| 28 | ! pmea----input-R-Mean Orography (m) |
---|
| 29 | ! pstd----input-R-SSO standard deviation (m) |
---|
| 30 | ! psig----input-R-SSO slope |
---|
| 31 | ! pgam----input-R-SSO Anisotropy |
---|
| 32 | ! pthe----input-R-SSO Angle |
---|
| 33 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
| 34 | ! pval----input-R-SSO Valleys elevation (m) |
---|
[1001] | 35 | |
---|
[1992] | 36 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
| 37 | ! ktest--input-I: Flags to indicate active points |
---|
| 38 | ! kdx----input-I: Locate the physical location of an active point. |
---|
[1001] | 39 | |
---|
[1992] | 40 | ! pulow, pvlow -output-R: Low-level wind |
---|
| 41 | ! pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
---|
[1001] | 42 | |
---|
[1992] | 43 | ! d_t-----output-R: T increment |
---|
| 44 | ! d_u-----output-R: U increment |
---|
| 45 | ! d_v-----output-R: V increment |
---|
[1001] | 46 | |
---|
[1992] | 47 | ! Implicit Arguments: |
---|
| 48 | ! =================== |
---|
[1001] | 49 | |
---|
[1992] | 50 | ! iim--common-I: Number of longitude intervals |
---|
| 51 | ! jjm--common-I: Number of latitude intervals |
---|
| 52 | ! klon-common-I: Number of points seen by the physics |
---|
| 53 | ! (iim+1)*(jjm+1) for instance |
---|
| 54 | ! klev-common-I: Number of vertical layers |
---|
| 55 | ! ====================================================================== |
---|
| 56 | ! Local Variables: |
---|
| 57 | ! ================ |
---|
[1001] | 58 | |
---|
[1992] | 59 | ! zgeom-----R: Altitude of layer above ground |
---|
| 60 | ! pt, pu, pv --R: t u v from top to bottom |
---|
| 61 | ! pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
---|
| 62 | ! papmf: pressure at model layer (from top to bottom) |
---|
| 63 | ! papmh: pressure at model 1/2 layer (from top to bottom) |
---|
[1001] | 64 | |
---|
[1992] | 65 | ! ====================================================================== |
---|
[1001] | 66 | |
---|
[1992] | 67 | ! ARGUMENTS |
---|
[1001] | 68 | |
---|
[2897] | 69 | INTEGER partdrag,nlon, nlev |
---|
[1992] | 70 | REAL dtime |
---|
| 71 | REAL paprs(nlon, nlev+1) |
---|
| 72 | REAL pplay(nlon, nlev) |
---|
| 73 | REAL pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
---|
| 74 | REAL ppic(nlon), pval(nlon) |
---|
| 75 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
| 76 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
| 77 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
[1001] | 78 | |
---|
[1992] | 79 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
[1001] | 80 | |
---|
[1992] | 81 | ! LOCAL VARIABLES: |
---|
[1001] | 82 | |
---|
[1992] | 83 | REAL zgeom(klon, klev) |
---|
| 84 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
| 85 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
| 86 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
| 87 | CHARACTER (LEN=20) :: modname = 'orografi_strato' |
---|
| 88 | CHARACTER (LEN=80) :: abort_message |
---|
[1001] | 89 | |
---|
[1992] | 90 | ! INITIALIZE OUTPUT VARIABLES |
---|
[1001] | 91 | |
---|
[1992] | 92 | DO i = 1, klon |
---|
| 93 | pulow(i) = 0.0 |
---|
| 94 | pvlow(i) = 0.0 |
---|
| 95 | pustr(i) = 0.0 |
---|
| 96 | pvstr(i) = 0.0 |
---|
| 97 | END DO |
---|
| 98 | DO k = 1, klev |
---|
| 99 | DO i = 1, klon |
---|
| 100 | d_t(i, k) = 0.0 |
---|
| 101 | d_u(i, k) = 0.0 |
---|
| 102 | d_v(i, k) = 0.0 |
---|
| 103 | pdudt(i, k) = 0.0 |
---|
| 104 | pdvdt(i, k) = 0.0 |
---|
| 105 | pdtdt(i, k) = 0.0 |
---|
| 106 | END DO |
---|
| 107 | END DO |
---|
[1001] | 108 | |
---|
[1992] | 109 | ! PREPARE INPUT VARIABLES FOR ORODRAG (i.e., ORDERED FROM TOP TO BOTTOM) |
---|
| 110 | ! CALCULATE LAYERS HEIGHT ABOVE GROUND) |
---|
[1001] | 111 | |
---|
[1992] | 112 | DO k = 1, klev |
---|
| 113 | DO i = 1, klon |
---|
| 114 | pt(i, k) = t(i, klev-k+1) |
---|
| 115 | pu(i, k) = u(i, klev-k+1) |
---|
| 116 | pv(i, k) = v(i, klev-k+1) |
---|
| 117 | papmf(i, k) = pplay(i, klev-k+1) |
---|
| 118 | END DO |
---|
| 119 | END DO |
---|
| 120 | DO k = 1, klev + 1 |
---|
| 121 | DO i = 1, klon |
---|
| 122 | papmh(i, k) = paprs(i, klev-k+2) |
---|
| 123 | END DO |
---|
| 124 | END DO |
---|
| 125 | DO i = 1, klon |
---|
| 126 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
| 127 | END DO |
---|
| 128 | DO k = klev - 1, 1, -1 |
---|
| 129 | DO i = 1, klon |
---|
| 130 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
| 131 | 1)/papmf(i,k)) |
---|
| 132 | END DO |
---|
| 133 | END DO |
---|
[1001] | 134 | |
---|
[1992] | 135 | ! CALL SSO DRAG ROUTINES |
---|
[1001] | 136 | |
---|
[2897] | 137 | CALL orodrag_strato(partdrag,klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, & |
---|
[1992] | 138 | zgeom, pt, pu, pv, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, & |
---|
| 139 | pvlow, pdudt, pdvdt, pdtdt) |
---|
[1001] | 140 | |
---|
[1992] | 141 | ! COMPUTE INCREMENTS AND STRESS FROM TENDENCIES |
---|
[1001] | 142 | |
---|
[1992] | 143 | DO k = 1, klev |
---|
| 144 | DO i = 1, klon |
---|
| 145 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
| 146 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
| 147 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
| 148 | pustr(i) = pustr(i) + pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 149 | pvstr(i) = pvstr(i) + pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 150 | END DO |
---|
| 151 | END DO |
---|
[1001] | 152 | |
---|
[1992] | 153 | RETURN |
---|
| 154 | END SUBROUTINE drag_noro_strato |
---|
[1001] | 155 | |
---|
[2897] | 156 | SUBROUTINE orodrag_strato(partdrag,nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, & |
---|
[1992] | 157 | papm1, pgeom1, ptm1, pum1, pvm1, pmea, pstd, psig, pgam, pthe, ppic, pval & |
---|
| 158 | ! outputs |
---|
| 159 | , pulow, pvlow, pvom, pvol, pte) |
---|
[1001] | 160 | |
---|
[5285] | 161 | USE yomcst_mod_h |
---|
[1992] | 162 | USE dimphy |
---|
[5309] | 163 | USE yoegwd_mod_h |
---|
[1992] | 164 | IMPLICIT NONE |
---|
[1001] | 165 | |
---|
| 166 | |
---|
[1992] | 167 | ! **** *orodrag* - does the SSO drag parametrization. |
---|
[1001] | 168 | |
---|
[1992] | 169 | ! purpose. |
---|
| 170 | ! -------- |
---|
[1001] | 171 | |
---|
[1992] | 172 | ! this routine computes the physical tendencies of the |
---|
| 173 | ! prognostic variables u,v and t due to vertical transports by |
---|
| 174 | ! subgridscale orographically excited gravity waves, and to |
---|
| 175 | ! low level blocked flow drag. |
---|
[1001] | 176 | |
---|
[1992] | 177 | ! ** interface. |
---|
| 178 | ! ---------- |
---|
| 179 | ! called from *drag_noro*. |
---|
[1001] | 180 | |
---|
[1992] | 181 | ! the routine takes its input from the long-term storage: |
---|
| 182 | ! u,v,t and p at t-1. |
---|
[1001] | 183 | |
---|
[1992] | 184 | ! explicit arguments : |
---|
| 185 | ! -------------------- |
---|
| 186 | ! ==== inputs === |
---|
[2897] | 187 | ! partdrag-input-I-control which part of the drag we consider (total part or GW part) |
---|
[1992] | 188 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
| 189 | ! nlev----input-I-Number of vertical levels |
---|
[1001] | 190 | |
---|
[1992] | 191 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
| 192 | ! ktest--input-I: Flags to indicate active points |
---|
| 193 | ! kdx----input-I: Locate the physical location of an active point. |
---|
| 194 | ! ptsphy--input-R-Time-step (s) |
---|
| 195 | ! paphm1--input-R: pressure at model 1/2 layer |
---|
| 196 | ! papm1---input-R: pressure at model layer |
---|
| 197 | ! pgeom1--input-R: Altitude of layer above ground |
---|
| 198 | ! ptm1, pum1, pvm1--R-: t, u and v |
---|
| 199 | ! pmea----input-R-Mean Orography (m) |
---|
| 200 | ! pstd----input-R-SSO standard deviation (m) |
---|
| 201 | ! psig----input-R-SSO slope |
---|
| 202 | ! pgam----input-R-SSO Anisotropy |
---|
| 203 | ! pthe----input-R-SSO Angle |
---|
| 204 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
| 205 | ! pval----input-R-SSO Valleys elevation (m) |
---|
[1001] | 206 | |
---|
[2897] | 207 | INTEGER nlon, nlev, kgwd |
---|
[1992] | 208 | REAL ptsphy |
---|
[1001] | 209 | |
---|
[1992] | 210 | ! ==== outputs === |
---|
| 211 | ! pulow, pvlow -output-R: Low-level wind |
---|
[1001] | 212 | |
---|
[1992] | 213 | ! pte -----output-R: T tendency |
---|
| 214 | ! pvom-----output-R: U tendency |
---|
| 215 | ! pvol-----output-R: V tendency |
---|
[1001] | 216 | |
---|
| 217 | |
---|
[1992] | 218 | ! Implicit Arguments: |
---|
| 219 | ! =================== |
---|
[1001] | 220 | |
---|
[1992] | 221 | ! klon-common-I: Number of points seen by the physics |
---|
| 222 | ! klev-common-I: Number of vertical layers |
---|
[1001] | 223 | |
---|
[1992] | 224 | ! method. |
---|
| 225 | ! ------- |
---|
[1001] | 226 | |
---|
[1992] | 227 | ! externals. |
---|
| 228 | ! ---------- |
---|
| 229 | INTEGER ismin, ismax |
---|
| 230 | EXTERNAL ismin, ismax |
---|
[1001] | 231 | |
---|
[1992] | 232 | ! reference. |
---|
| 233 | ! ---------- |
---|
[1001] | 234 | |
---|
[1992] | 235 | ! author. |
---|
| 236 | ! ------- |
---|
| 237 | ! m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
[1001] | 238 | |
---|
[1992] | 239 | ! f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
| 240 | ! ----------------------------------------------------------------------- |
---|
[1001] | 241 | |
---|
[1992] | 242 | ! * 0.1 arguments |
---|
| 243 | ! --------- |
---|
[1001] | 244 | |
---|
[2897] | 245 | INTEGER partdrag |
---|
[1992] | 246 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
---|
| 247 | pvlow(nlon) |
---|
| 248 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), pmea(nlon), & |
---|
| 249 | pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon), ppic(nlon), pval(nlon), & |
---|
| 250 | pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev+1) |
---|
[1001] | 251 | |
---|
[1992] | 252 | INTEGER kdx(nlon), ktest(nlon) |
---|
| 253 | ! ----------------------------------------------------------------------- |
---|
[1001] | 254 | |
---|
[1992] | 255 | ! * 0.2 local arrays |
---|
| 256 | ! ------------ |
---|
| 257 | INTEGER isect(klon), icrit(klon), ikcrith(klon), ikenvh(klon), iknu(klon), & |
---|
| 258 | iknu2(klon), ikcrit(klon), ikhlim(klon) |
---|
[1001] | 259 | |
---|
[1992] | 260 | REAL ztau(klon, klev+1), zstab(klon, klev+1), zvph(klon, klev+1), & |
---|
| 261 | zrho(klon, klev+1), zri(klon, klev+1), zpsi(klon, klev+1), & |
---|
| 262 | zzdep(klon, klev) |
---|
| 263 | REAL zdudt(klon), zdvdt(klon), zdtdt(klon), zdedt(klon), zvidis(klon), & |
---|
| 264 | ztfr(klon), znu(klon), zd1(klon), zd2(klon), zdmod(klon) |
---|
[1001] | 265 | |
---|
| 266 | |
---|
[1992] | 267 | ! local quantities: |
---|
[1001] | 268 | |
---|
[1992] | 269 | INTEGER jl, jk, ji |
---|
[2897] | 270 | REAL ztmst, zdelp, ztemp, zforc, ztend, rover, facpart |
---|
[1992] | 271 | REAL zb, zc, zconb, zabsv, zzd1, ratio, zbet, zust, zvst, zdis |
---|
[1001] | 272 | |
---|
[1992] | 273 | ! ------------------------------------------------------------------ |
---|
[1001] | 274 | |
---|
[1992] | 275 | ! * 1. initialization |
---|
| 276 | ! -------------- |
---|
[1001] | 277 | |
---|
[1992] | 278 | ! print *,' in orodrag' |
---|
[1001] | 279 | |
---|
[1992] | 280 | ! ------------------------------------------------------------------ |
---|
[1001] | 281 | |
---|
[1992] | 282 | ! * 1.1 computational constants |
---|
| 283 | ! ----------------------- |
---|
[1001] | 284 | |
---|
| 285 | |
---|
[1992] | 286 | ! ztmst=twodt |
---|
| 287 | ! if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
| 288 | ztmst = ptsphy |
---|
[1001] | 289 | |
---|
[1992] | 290 | ! ------------------------------------------------------------------ |
---|
[1001] | 291 | |
---|
[1992] | 292 | ! * 1.3 check whether row contains point for printing |
---|
| 293 | ! --------------------------------------------- |
---|
[1001] | 294 | |
---|
| 295 | |
---|
[1992] | 296 | ! ------------------------------------------------------------------ |
---|
[1001] | 297 | |
---|
[1992] | 298 | ! * 2. precompute basic state variables. |
---|
| 299 | ! * ---------- ----- ----- ---------- |
---|
| 300 | ! * define low level wind, project winds in plane of |
---|
| 301 | ! * low level wind, determine sector in which to take |
---|
| 302 | ! * the variance and set indicator for critical levels. |
---|
[1001] | 303 | |
---|
| 304 | |
---|
| 305 | |
---|
| 306 | |
---|
| 307 | |
---|
[1992] | 308 | CALL orosetup_strato(nlon, nlev, ktest, ikcrit, ikcrith, icrit, isect, & |
---|
| 309 | ikhlim, ikenvh, iknu, iknu2, paphm1, papm1, pum1, pvm1, ptm1, pgeom1, & |
---|
| 310 | pstd, zrho, zri, zstab, ztau, zvph, zpsi, zzdep, pulow, pvlow, pthe, & |
---|
| 311 | pgam, pmea, ppic, pval, znu, zd1, zd2, zdmod) |
---|
[1001] | 312 | |
---|
[1992] | 313 | ! *********************************************************** |
---|
[1001] | 314 | |
---|
| 315 | |
---|
[1992] | 316 | ! * 3. compute low level stresses using subcritical and |
---|
| 317 | ! * supercritical forms.computes anisotropy coefficient |
---|
| 318 | ! * as measure of orographic twodimensionality. |
---|
[1001] | 319 | |
---|
| 320 | |
---|
[1992] | 321 | CALL gwstress_strato(nlon, nlev, ikcrit, isect, ikhlim, ktest, ikcrith, & |
---|
| 322 | icrit, ikenvh, iknu, zrho, zstab, zvph, pstd, psig, pmea, ppic, pval, & |
---|
| 323 | ztfr, ztau, pgeom1, pgam, zd1, zd2, zdmod, znu) |
---|
[1001] | 324 | |
---|
[1992] | 325 | ! * 4. compute stress profile including |
---|
| 326 | ! trapped waves, wave breaking, |
---|
| 327 | ! linear decay in stratosphere. |
---|
[1001] | 328 | |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | |
---|
[1992] | 332 | CALL gwprofil_strato(nlon, nlev, kgwd, kdx, ktest, ikcrit, ikcrith, icrit, & |
---|
| 333 | ikenvh, iknu, iknu2, paphm1, zrho, zstab, ztfr, zvph, zri, ztau & |
---|
| 334 | , zdmod, znu, psig, pgam, pstd, ppic, pval) |
---|
[1001] | 335 | |
---|
[1992] | 336 | ! * 5. Compute tendencies from waves stress profile. |
---|
| 337 | ! Compute low level blocked flow drag. |
---|
| 338 | ! * -------------------------------------------- |
---|
[1001] | 339 | |
---|
| 340 | |
---|
| 341 | |
---|
[1403] | 342 | |
---|
[1992] | 343 | ! explicit solution at all levels for the gravity wave |
---|
| 344 | ! implicit solution for the blocked levels |
---|
[1001] | 345 | |
---|
[1992] | 346 | DO jl = kidia, kfdia |
---|
| 347 | zvidis(jl) = 0.0 |
---|
| 348 | zdudt(jl) = 0.0 |
---|
| 349 | zdvdt(jl) = 0.0 |
---|
| 350 | zdtdt(jl) = 0.0 |
---|
| 351 | END DO |
---|
[1001] | 352 | |
---|
| 353 | |
---|
[1992] | 354 | DO jk = 1, klev |
---|
[1001] | 355 | |
---|
| 356 | |
---|
[1992] | 357 | ! WAVE STRESS |
---|
| 358 | ! ------------- |
---|
[1001] | 359 | |
---|
| 360 | |
---|
[1992] | 361 | DO ji = kidia, kfdia |
---|
[1001] | 362 | |
---|
[1992] | 363 | IF (ktest(ji)==1) THEN |
---|
[1001] | 364 | |
---|
[1992] | 365 | zdelp = paphm1(ji, jk+1) - paphm1(ji, jk) |
---|
| 366 | ztemp = -rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,klev+1)*zdelp) |
---|
[1001] | 367 | |
---|
[1992] | 368 | zdudt(ji) = (pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
| 369 | zdvdt(ji) = (pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
[1001] | 370 | |
---|
[1992] | 371 | ! Control Overshoots |
---|
[1001] | 372 | |
---|
| 373 | |
---|
[1992] | 374 | IF (jk>=nstra) THEN |
---|
| 375 | rover = 0.10 |
---|
| 376 | IF (abs(zdudt(ji))>rover*abs(pum1(ji,jk))/ztmst) zdudt(ji) = rover* & |
---|
| 377 | abs(pum1(ji,jk))/ztmst*zdudt(ji)/(abs(zdudt(ji))+1.E-10) |
---|
| 378 | IF (abs(zdvdt(ji))>rover*abs(pvm1(ji,jk))/ztmst) zdvdt(ji) = rover* & |
---|
| 379 | abs(pvm1(ji,jk))/ztmst*zdvdt(ji)/(abs(zdvdt(ji))+1.E-10) |
---|
| 380 | END IF |
---|
[1001] | 381 | |
---|
[1992] | 382 | rover = 0.25 |
---|
| 383 | zforc = sqrt(zdudt(ji)**2+zdvdt(ji)**2) |
---|
| 384 | ztend = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst |
---|
[1001] | 385 | |
---|
[1992] | 386 | IF (zforc>=rover*ztend) THEN |
---|
| 387 | zdudt(ji) = rover*ztend/zforc*zdudt(ji) |
---|
| 388 | zdvdt(ji) = rover*ztend/zforc*zdvdt(ji) |
---|
| 389 | END IF |
---|
[1001] | 390 | |
---|
[1992] | 391 | ! BLOCKED FLOW DRAG: |
---|
| 392 | ! ----------------- |
---|
[1001] | 393 | |
---|
[2897] | 394 | IF (partdrag .GE. 2) THEN |
---|
| 395 | facpart=0. |
---|
| 396 | ELSE |
---|
| 397 | facpart=gkwake |
---|
| 398 | ENDIF |
---|
| 399 | |
---|
| 400 | |
---|
[1992] | 401 | IF (jk>ikenvh(ji)) THEN |
---|
| 402 | zb = 1.0 - 0.18*pgam(ji) - 0.04*pgam(ji)**2 |
---|
| 403 | zc = 0.48*pgam(ji) + 0.3*pgam(ji)**2 |
---|
[2897] | 404 | zconb = 2.*ztmst*facpart*psig(ji)/(4.*pstd(ji)) |
---|
[1992] | 405 | zabsv = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
| 406 | zzd1 = zb*cos(zpsi(ji,jk))**2 + zc*sin(zpsi(ji,jk))**2 |
---|
| 407 | ratio = (cos(zpsi(ji,jk))**2+pgam(ji)*sin(zpsi(ji, & |
---|
| 408 | jk))**2)/(pgam(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
| 409 | zbet = max(0., 2.-1./ratio)*zconb*zzdep(ji, jk)*zzd1*zabsv |
---|
[1001] | 410 | |
---|
[1992] | 411 | ! OPPOSED TO THE WIND |
---|
[1001] | 412 | |
---|
[1992] | 413 | zdudt(ji) = -pum1(ji, jk)/ztmst |
---|
| 414 | zdvdt(ji) = -pvm1(ji, jk)/ztmst |
---|
[1001] | 415 | |
---|
[1992] | 416 | ! PERPENDICULAR TO THE SSO MAIN AXIS: |
---|
[1001] | 417 | |
---|
[1992] | 418 | ! mod zdudt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
---|
| 419 | ! mod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
---|
| 420 | ! mod * *cos(pthe(ji)*rpi/180.)/ztmst |
---|
| 421 | ! mod zdvdt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
---|
| 422 | ! mod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
---|
| 423 | ! mod * *sin(pthe(ji)*rpi/180.)/ztmst |
---|
[1001] | 424 | |
---|
[1992] | 425 | zdudt(ji) = zdudt(ji)*(zbet/(1.+zbet)) |
---|
| 426 | zdvdt(ji) = zdvdt(ji)*(zbet/(1.+zbet)) |
---|
| 427 | END IF |
---|
| 428 | pvom(ji, jk) = zdudt(ji) |
---|
| 429 | pvol(ji, jk) = zdvdt(ji) |
---|
| 430 | zust = pum1(ji, jk) + ztmst*zdudt(ji) |
---|
| 431 | zvst = pvm1(ji, jk) + ztmst*zdvdt(ji) |
---|
| 432 | zdis = 0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
| 433 | zdedt(ji) = zdis/ztmst |
---|
| 434 | zvidis(ji) = zvidis(ji) + zdis*zdelp |
---|
| 435 | zdtdt(ji) = zdedt(ji)/rcpd |
---|
[1001] | 436 | |
---|
[1992] | 437 | ! NO TENDENCIES ON TEMPERATURE ..... |
---|
[1001] | 438 | |
---|
[1992] | 439 | ! Instead of, pte(ji,jk)=zdtdt(ji), due to mechanical dissipation |
---|
| 440 | |
---|
| 441 | pte(ji, jk) = 0.0 |
---|
| 442 | |
---|
| 443 | END IF |
---|
| 444 | |
---|
| 445 | END DO |
---|
| 446 | END DO |
---|
| 447 | |
---|
| 448 | RETURN |
---|
| 449 | END SUBROUTINE orodrag_strato |
---|
| 450 | SUBROUTINE orosetup_strato(nlon, nlev, ktest, kkcrit, kkcrith, kcrit, ksect, & |
---|
| 451 | kkhlim, kkenvh, kknu, kknu2, paphm1, papm1, pum1, pvm1, ptm1, pgeom1, & |
---|
| 452 | pstd, prho, pri, pstab, ptau, pvph, ppsi, pzdep, pulow, pvlow, ptheta, & |
---|
| 453 | pgam, pmea, ppic, pval, pnu, pd1, pd2, pdmod) |
---|
| 454 | |
---|
| 455 | ! **** *gwsetup* |
---|
| 456 | |
---|
| 457 | ! purpose. |
---|
| 458 | ! -------- |
---|
| 459 | ! SET-UP THE ESSENTIAL PARAMETERS OF THE SSO DRAG SCHEME: |
---|
| 460 | ! DEPTH OF LOW WBLOCKED LAYER, LOW-LEVEL FLOW, BACKGROUND |
---|
| 461 | ! STRATIFICATION..... |
---|
| 462 | |
---|
| 463 | ! ** interface. |
---|
| 464 | ! ---------- |
---|
| 465 | ! from *orodrag* |
---|
| 466 | |
---|
| 467 | ! explicit arguments : |
---|
| 468 | ! -------------------- |
---|
| 469 | ! ==== inputs === |
---|
| 470 | |
---|
| 471 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
| 472 | ! nlev----input-I-Number of vertical levels |
---|
| 473 | ! ktest--input-I: Flags to indicate active points |
---|
| 474 | |
---|
| 475 | ! ptsphy--input-R-Time-step (s) |
---|
| 476 | ! paphm1--input-R: pressure at model 1/2 layer |
---|
| 477 | ! papm1---input-R: pressure at model layer |
---|
| 478 | ! pgeom1--input-R: Altitude of layer above ground |
---|
| 479 | ! ptm1, pum1, pvm1--R-: t, u and v |
---|
| 480 | ! pmea----input-R-Mean Orography (m) |
---|
| 481 | ! pstd----input-R-SSO standard deviation (m) |
---|
| 482 | ! psig----input-R-SSO slope |
---|
| 483 | ! pgam----input-R-SSO Anisotropy |
---|
| 484 | ! pthe----input-R-SSO Angle |
---|
| 485 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
| 486 | ! pval----input-R-SSO Valleys elevation (m) |
---|
| 487 | |
---|
| 488 | ! ==== outputs === |
---|
| 489 | ! pulow, pvlow -output-R: Low-level wind |
---|
| 490 | ! kkcrit----I-: Security value for top of low level flow |
---|
| 491 | ! kcrit-----I-: Critical level |
---|
| 492 | ! ksect-----I-: Not used |
---|
| 493 | ! kkhlim----I-: Not used |
---|
| 494 | ! kkenvh----I-: Top of blocked flow layer |
---|
| 495 | ! kknu------I-: Layer that sees mountain peacks |
---|
| 496 | ! kknu2-----I-: Layer that sees mountain peacks above mountain mean |
---|
| 497 | ! kknub-----I-: Layer that sees mountain mean above valleys |
---|
| 498 | ! prho------R-: Density at 1/2 layers |
---|
| 499 | ! pri-------R-: Background Richardson Number, Wind shear measured along GW |
---|
| 500 | ! stress |
---|
| 501 | ! pstab-----R-: Brunt-Vaisala freq. at 1/2 layers |
---|
| 502 | ! pvph------R-: Wind in plan of GW stress, Half levels. |
---|
| 503 | ! ppsi------R-: Angle between low level wind and SS0 main axis. |
---|
| 504 | ! pd1-------R-| Compared the ratio of the stress |
---|
| 505 | ! pd2-------R-| that is along the wind to that Normal to it. |
---|
| 506 | ! pdi define the plane of low level stress |
---|
| 507 | ! compared to the low level wind. |
---|
| 508 | ! see p. 108 Lott & Miller (1997). |
---|
| 509 | ! pdmod-----R-: Norme of pdi |
---|
| 510 | |
---|
| 511 | ! === local arrays === |
---|
| 512 | |
---|
| 513 | ! zvpf------R-: Wind projected in the plan of the low-level stress. |
---|
| 514 | |
---|
| 515 | ! ==== outputs === |
---|
| 516 | |
---|
| 517 | ! implicit arguments : none |
---|
| 518 | ! -------------------- |
---|
| 519 | |
---|
| 520 | ! method. |
---|
| 521 | ! ------- |
---|
| 522 | |
---|
| 523 | |
---|
| 524 | ! externals. |
---|
| 525 | ! ---------- |
---|
| 526 | |
---|
| 527 | |
---|
| 528 | ! reference. |
---|
| 529 | ! ---------- |
---|
| 530 | |
---|
| 531 | ! see ecmwf research department documentation of the "i.f.s." |
---|
| 532 | |
---|
| 533 | ! author. |
---|
| 534 | ! ------- |
---|
| 535 | |
---|
| 536 | ! modifications. |
---|
| 537 | ! -------------- |
---|
| 538 | ! f.lott for the new-gwdrag scheme november 1993 |
---|
| 539 | |
---|
| 540 | ! ----------------------------------------------------------------------- |
---|
[5309] | 541 | USE yoegwd_mod_h |
---|
| 542 | USE dimphy |
---|
[5285] | 543 | USE yomcst_mod_h |
---|
[5274] | 544 | IMPLICIT NONE |
---|
[1992] | 545 | |
---|
| 546 | |
---|
[5274] | 547 | |
---|
[1992] | 548 | |
---|
| 549 | ! ----------------------------------------------------------------------- |
---|
| 550 | |
---|
| 551 | ! * 0.1 arguments |
---|
| 552 | ! --------- |
---|
| 553 | |
---|
| 554 | INTEGER nlon, nlev |
---|
| 555 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ksect(nlon), & |
---|
| 556 | kkhlim(nlon), ktest(nlon), kkenvh(nlon) |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | REAL paphm1(nlon, klev+1), papm1(nlon, klev), pum1(nlon, klev), & |
---|
| 560 | pvm1(nlon, klev), ptm1(nlon, klev), pgeom1(nlon, klev), & |
---|
| 561 | prho(nlon, klev+1), pri(nlon, klev+1), pstab(nlon, klev+1), & |
---|
| 562 | ptau(nlon, klev+1), pvph(nlon, klev+1), ppsi(nlon, klev+1), & |
---|
| 563 | pzdep(nlon, klev) |
---|
| 564 | REAL pulow(nlon), pvlow(nlon), ptheta(nlon), pgam(nlon), pnu(nlon), & |
---|
| 565 | pd1(nlon), pd2(nlon), pdmod(nlon) |
---|
| 566 | REAL pstd(nlon), pmea(nlon), ppic(nlon), pval(nlon) |
---|
| 567 | |
---|
| 568 | ! ----------------------------------------------------------------------- |
---|
| 569 | |
---|
| 570 | ! * 0.2 local arrays |
---|
| 571 | ! ------------ |
---|
| 572 | |
---|
| 573 | |
---|
| 574 | INTEGER ilevh, jl, jk |
---|
| 575 | REAL zcons1, zcons2, zhgeo, zu, zphi |
---|
| 576 | REAL zvt1, zvt2, zdwind, zwind, zdelp |
---|
| 577 | REAL zstabm, zstabp, zrhom, zrhop |
---|
| 578 | LOGICAL lo |
---|
| 579 | LOGICAL ll1(klon, klev+1) |
---|
| 580 | INTEGER kknu(klon), kknu2(klon), kknub(klon), kknul(klon), kentp(klon), & |
---|
| 581 | ncount(klon) |
---|
| 582 | |
---|
| 583 | REAL zhcrit(klon, klev), zvpf(klon, klev), zdp(klon, klev) |
---|
| 584 | REAL znorm(klon), zb(klon), zc(klon), zulow(klon), zvlow(klon), znup(klon), & |
---|
| 585 | znum(klon) |
---|
| 586 | |
---|
| 587 | ! ------------------------------------------------------------------ |
---|
| 588 | |
---|
| 589 | ! * 1. initialization |
---|
| 590 | ! -------------- |
---|
| 591 | |
---|
| 592 | ! PRINT *,' in orosetup' |
---|
| 593 | |
---|
| 594 | ! ------------------------------------------------------------------ |
---|
| 595 | |
---|
| 596 | ! * 1.1 computational constants |
---|
| 597 | ! ----------------------- |
---|
| 598 | |
---|
| 599 | |
---|
| 600 | ilevh = klev/3 |
---|
| 601 | |
---|
| 602 | zcons1 = 1./rd |
---|
| 603 | zcons2 = rg**2/rcpd |
---|
| 604 | |
---|
| 605 | ! ------------------------------------------------------------------ |
---|
| 606 | |
---|
| 607 | ! * 2. |
---|
| 608 | ! -------------- |
---|
| 609 | |
---|
| 610 | |
---|
| 611 | ! ------------------------------------------------------------------ |
---|
| 612 | |
---|
| 613 | ! * 2.1 define low level wind, project winds in plane of |
---|
| 614 | ! * low level wind, determine sector in which to take |
---|
| 615 | ! * the variance and set indicator for critical levels. |
---|
| 616 | |
---|
| 617 | |
---|
| 618 | |
---|
| 619 | DO jl = kidia, kfdia |
---|
| 620 | kknu(jl) = klev |
---|
| 621 | kknu2(jl) = klev |
---|
| 622 | kknub(jl) = klev |
---|
| 623 | kknul(jl) = klev |
---|
| 624 | pgam(jl) = max(pgam(jl), gtsec) |
---|
| 625 | ll1(jl, klev+1) = .FALSE. |
---|
| 626 | END DO |
---|
| 627 | |
---|
| 628 | ! Ajouter une initialisation (L. Li, le 23fev99): |
---|
| 629 | |
---|
| 630 | DO jk = klev, ilevh, -1 |
---|
| 631 | DO jl = kidia, kfdia |
---|
| 632 | ll1(jl, jk) = .FALSE. |
---|
| 633 | END DO |
---|
| 634 | END DO |
---|
| 635 | |
---|
| 636 | ! * define top of low level flow |
---|
| 637 | ! ---------------------------- |
---|
| 638 | DO jk = klev, ilevh, -1 |
---|
| 639 | DO jl = kidia, kfdia |
---|
| 640 | IF (ktest(jl)==1) THEN |
---|
| 641 | lo = (paphm1(jl,jk)/paphm1(jl,klev+1)) >= gsigcr |
---|
| 642 | IF (lo) THEN |
---|
| 643 | kkcrit(jl) = jk |
---|
| 644 | END IF |
---|
| 645 | zhcrit(jl, jk) = ppic(jl) - pval(jl) |
---|
| 646 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 647 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 648 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 649 | kknu(jl) = jk |
---|
| 650 | END IF |
---|
| 651 | IF (.NOT. ll1(jl,ilevh)) kknu(jl) = ilevh |
---|
| 652 | END IF |
---|
| 653 | END DO |
---|
| 654 | END DO |
---|
| 655 | DO jk = klev, ilevh, -1 |
---|
| 656 | DO jl = kidia, kfdia |
---|
| 657 | IF (ktest(jl)==1) THEN |
---|
| 658 | zhcrit(jl, jk) = ppic(jl) - pmea(jl) |
---|
| 659 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 660 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 661 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 662 | kknu2(jl) = jk |
---|
| 663 | END IF |
---|
| 664 | IF (.NOT. ll1(jl,ilevh)) kknu2(jl) = ilevh |
---|
| 665 | END IF |
---|
| 666 | END DO |
---|
| 667 | END DO |
---|
| 668 | DO jk = klev, ilevh, -1 |
---|
| 669 | DO jl = kidia, kfdia |
---|
| 670 | IF (ktest(jl)==1) THEN |
---|
| 671 | zhcrit(jl, jk) = amin1(ppic(jl)-pmea(jl), pmea(jl)-pval(jl)) |
---|
| 672 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 673 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 674 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 675 | kknub(jl) = jk |
---|
| 676 | END IF |
---|
| 677 | IF (.NOT. ll1(jl,ilevh)) kknub(jl) = ilevh |
---|
| 678 | END IF |
---|
| 679 | END DO |
---|
| 680 | END DO |
---|
| 681 | |
---|
| 682 | DO jl = kidia, kfdia |
---|
| 683 | IF (ktest(jl)==1) THEN |
---|
| 684 | kknu(jl) = min(kknu(jl), nktopg) |
---|
| 685 | kknu2(jl) = min(kknu2(jl), nktopg) |
---|
| 686 | kknub(jl) = min(kknub(jl), nktopg) |
---|
| 687 | kknul(jl) = klev |
---|
| 688 | END IF |
---|
| 689 | END DO |
---|
| 690 | |
---|
| 691 | ! c* initialize various arrays |
---|
| 692 | |
---|
| 693 | DO jl = kidia, kfdia |
---|
| 694 | prho(jl, klev+1) = 0.0 |
---|
| 695 | ! ym correction en attendant mieux |
---|
| 696 | prho(jl, 1) = 0.0 |
---|
| 697 | pstab(jl, klev+1) = 0.0 |
---|
| 698 | pstab(jl, 1) = 0.0 |
---|
| 699 | pri(jl, klev+1) = 9999.0 |
---|
| 700 | ppsi(jl, klev+1) = 0.0 |
---|
| 701 | pri(jl, 1) = 0.0 |
---|
| 702 | pvph(jl, 1) = 0.0 |
---|
| 703 | pvph(jl, klev+1) = 0.0 |
---|
| 704 | ! ym correction en attendant mieux |
---|
| 705 | ! ym pvph(jl,klev) =0.0 |
---|
| 706 | pulow(jl) = 0.0 |
---|
| 707 | pvlow(jl) = 0.0 |
---|
| 708 | zulow(jl) = 0.0 |
---|
| 709 | zvlow(jl) = 0.0 |
---|
| 710 | kkcrith(jl) = klev |
---|
| 711 | kkenvh(jl) = klev |
---|
| 712 | kentp(jl) = klev |
---|
| 713 | kcrit(jl) = 1 |
---|
| 714 | ncount(jl) = 0 |
---|
| 715 | ll1(jl, klev+1) = .FALSE. |
---|
| 716 | END DO |
---|
| 717 | |
---|
| 718 | ! * define flow density and stratification (rho and N2) |
---|
| 719 | ! at semi layers. |
---|
| 720 | ! ------------------------------------------------------- |
---|
| 721 | |
---|
| 722 | DO jk = klev, 2, -1 |
---|
| 723 | DO jl = kidia, kfdia |
---|
| 724 | IF (ktest(jl)==1) THEN |
---|
| 725 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
| 726 | prho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
| 727 | pstab(jl, jk) = 2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* & |
---|
| 728 | (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
| 729 | pstab(jl, jk) = max(pstab(jl,jk), gssec) |
---|
| 730 | END IF |
---|
| 731 | END DO |
---|
| 732 | END DO |
---|
| 733 | |
---|
| 734 | ! ******************************************************************** |
---|
| 735 | |
---|
| 736 | ! * define Low level flow (between ground and peacks-valleys) |
---|
| 737 | ! --------------------------------------------------------- |
---|
| 738 | DO jk = klev, ilevh, -1 |
---|
| 739 | DO jl = kidia, kfdia |
---|
| 740 | IF (ktest(jl)==1) THEN |
---|
| 741 | IF (jk>=kknu2(jl) .AND. jk<=kknul(jl)) THEN |
---|
| 742 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
| 743 | ) |
---|
| 744 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
| 745 | ) |
---|
| 746 | pstab(jl, klev+1) = pstab(jl, klev+1) + pstab(jl, jk)*(paphm1(jl,jk & |
---|
| 747 | +1)-paphm1(jl,jk)) |
---|
| 748 | prho(jl, klev+1) = prho(jl, klev+1) + prho(jl, jk)*(paphm1(jl,jk+1) & |
---|
| 749 | -paphm1(jl,jk)) |
---|
| 750 | END IF |
---|
| 751 | END IF |
---|
| 752 | END DO |
---|
| 753 | END DO |
---|
| 754 | DO jl = kidia, kfdia |
---|
| 755 | IF (ktest(jl)==1) THEN |
---|
| 756 | pulow(jl) = pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
| 757 | pvlow(jl) = pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
| 758 | znorm(jl) = max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 759 | pvph(jl, klev+1) = znorm(jl) |
---|
| 760 | pstab(jl, klev+1) = pstab(jl, klev+1)/(paphm1(jl,kknul(jl)+1)-paphm1(jl & |
---|
| 761 | ,kknu2(jl))) |
---|
| 762 | prho(jl, klev+1) = prho(jl, klev+1)/(paphm1(jl,kknul(jl)+1)-paphm1(jl, & |
---|
| 763 | kknu2(jl))) |
---|
| 764 | END IF |
---|
| 765 | END DO |
---|
| 766 | |
---|
| 767 | |
---|
| 768 | ! ******* setup orography orientation relative to the low level |
---|
| 769 | ! wind and define parameters of the Anisotropic wave stress. |
---|
| 770 | |
---|
| 771 | DO jl = kidia, kfdia |
---|
| 772 | IF (ktest(jl)==1) THEN |
---|
| 773 | lo = (pulow(jl)<gvsec) .AND. (pulow(jl)>=-gvsec) |
---|
| 774 | IF (lo) THEN |
---|
| 775 | zu = pulow(jl) + 2.*gvsec |
---|
| 776 | ELSE |
---|
| 777 | zu = pulow(jl) |
---|
| 778 | END IF |
---|
| 779 | zphi = atan(pvlow(jl)/zu) |
---|
| 780 | ppsi(jl, klev+1) = ptheta(jl)*rpi/180. - zphi |
---|
| 781 | zb(jl) = 1. - 0.18*pgam(jl) - 0.04*pgam(jl)**2 |
---|
| 782 | zc(jl) = 0.48*pgam(jl) + 0.3*pgam(jl)**2 |
---|
| 783 | pd1(jl) = zb(jl) - (zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
| 784 | pd2(jl) = (zb(jl)-zc(jl))*sin(ppsi(jl,klev+1))*cos(ppsi(jl,klev+1)) |
---|
| 785 | pdmod(jl) = sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
| 786 | END IF |
---|
| 787 | END DO |
---|
| 788 | |
---|
| 789 | ! ************ projet flow in plane of lowlevel stress ************* |
---|
| 790 | ! ************ Find critical levels... ************* |
---|
| 791 | |
---|
| 792 | DO jk = 1, klev |
---|
| 793 | DO jl = kidia, kfdia |
---|
| 794 | IF (ktest(jl)==1) THEN |
---|
| 795 | zvt1 = pulow(jl)*pum1(jl, jk) + pvlow(jl)*pvm1(jl, jk) |
---|
| 796 | zvt2 = -pvlow(jl)*pum1(jl, jk) + pulow(jl)*pvm1(jl, jk) |
---|
| 797 | zvpf(jl, jk) = (zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
| 798 | END IF |
---|
| 799 | ptau(jl, jk) = 0.0 |
---|
| 800 | pzdep(jl, jk) = 0.0 |
---|
| 801 | ppsi(jl, jk) = 0.0 |
---|
| 802 | ll1(jl, jk) = .FALSE. |
---|
| 803 | END DO |
---|
| 804 | END DO |
---|
| 805 | DO jk = 2, klev |
---|
| 806 | DO jl = kidia, kfdia |
---|
| 807 | IF (ktest(jl)==1) THEN |
---|
| 808 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
| 809 | pvph(jl, jk) = ((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+(papm1(jl, & |
---|
| 810 | jk)-paphm1(jl,jk))*zvpf(jl,jk-1))/zdp(jl, jk) |
---|
| 811 | IF (pvph(jl,jk)<gvsec) THEN |
---|
| 812 | pvph(jl, jk) = gvsec |
---|
| 813 | kcrit(jl) = jk |
---|
| 814 | END IF |
---|
| 815 | END IF |
---|
| 816 | END DO |
---|
| 817 | END DO |
---|
| 818 | |
---|
| 819 | ! * 2.3 mean flow richardson number. |
---|
| 820 | |
---|
| 821 | |
---|
| 822 | DO jk = 2, klev |
---|
| 823 | DO jl = kidia, kfdia |
---|
| 824 | IF (ktest(jl)==1) THEN |
---|
| 825 | zdwind = max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)), gvsec) |
---|
| 826 | pri(jl, jk) = pstab(jl, jk)*(zdp(jl,jk)/(rg*prho(jl,jk)*zdwind))**2 |
---|
| 827 | pri(jl, jk) = max(pri(jl,jk), grcrit) |
---|
| 828 | END IF |
---|
| 829 | END DO |
---|
| 830 | END DO |
---|
| 831 | |
---|
| 832 | |
---|
| 833 | |
---|
| 834 | ! * define top of 'envelope' layer |
---|
| 835 | ! ---------------------------- |
---|
| 836 | |
---|
| 837 | DO jl = kidia, kfdia |
---|
| 838 | pnu(jl) = 0.0 |
---|
| 839 | znum(jl) = 0.0 |
---|
| 840 | END DO |
---|
| 841 | |
---|
| 842 | DO jk = 2, klev - 1 |
---|
| 843 | DO jl = kidia, kfdia |
---|
| 844 | |
---|
| 845 | IF (ktest(jl)==1) THEN |
---|
| 846 | |
---|
| 847 | IF (jk>=kknu2(jl)) THEN |
---|
| 848 | |
---|
| 849 | znum(jl) = pnu(jl) |
---|
| 850 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
| 851 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 852 | zwind = max(sqrt(zwind**2), gvsec) |
---|
| 853 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 854 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
| 855 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
| 856 | zrhom = prho(jl, jk) |
---|
| 857 | zrhop = prho(jl, jk+1) |
---|
| 858 | pnu(jl) = pnu(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
| 859 | zwind |
---|
| 860 | IF ((znum(jl)<=gfrcrit) .AND. (pnu(jl)>gfrcrit) .AND. (kkenvh( & |
---|
| 861 | jl)==klev)) kkenvh(jl) = jk |
---|
| 862 | |
---|
| 863 | END IF |
---|
| 864 | |
---|
| 865 | END IF |
---|
| 866 | |
---|
| 867 | END DO |
---|
| 868 | END DO |
---|
| 869 | |
---|
| 870 | ! calculation of a dynamical mixing height for when the waves |
---|
| 871 | ! BREAK AT LOW LEVEL: The drag will be repartited over |
---|
| 872 | ! a depths that depends on waves vertical wavelength, |
---|
| 873 | ! not just between two adjacent model layers. |
---|
| 874 | ! of gravity waves: |
---|
| 875 | |
---|
| 876 | DO jl = kidia, kfdia |
---|
| 877 | znup(jl) = 0.0 |
---|
| 878 | znum(jl) = 0.0 |
---|
| 879 | END DO |
---|
| 880 | |
---|
| 881 | DO jk = klev - 1, 2, -1 |
---|
| 882 | DO jl = kidia, kfdia |
---|
| 883 | |
---|
| 884 | IF (ktest(jl)==1) THEN |
---|
| 885 | |
---|
| 886 | znum(jl) = znup(jl) |
---|
| 887 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
| 888 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 889 | zwind = max(sqrt(zwind**2), gvsec) |
---|
| 890 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 891 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
| 892 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
| 893 | zrhom = prho(jl, jk) |
---|
| 894 | zrhop = prho(jl, jk+1) |
---|
| 895 | znup(jl) = znup(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
| 896 | zwind |
---|
| 897 | IF ((znum(jl)<=rpi/4.) .AND. (znup(jl)>rpi/4.) .AND. (kkcrith( & |
---|
| 898 | jl)==klev)) kkcrith(jl) = jk |
---|
| 899 | |
---|
| 900 | END IF |
---|
| 901 | |
---|
| 902 | END DO |
---|
| 903 | END DO |
---|
| 904 | |
---|
| 905 | DO jl = kidia, kfdia |
---|
| 906 | IF (ktest(jl)==1) THEN |
---|
| 907 | kkcrith(jl) = max0(kkcrith(jl), ilevh*2) |
---|
| 908 | kkcrith(jl) = max0(kkcrith(jl), kknu(jl)) |
---|
| 909 | IF (kcrit(jl)>=kkcrith(jl)) kcrit(jl) = 1 |
---|
| 910 | END IF |
---|
| 911 | END DO |
---|
| 912 | |
---|
| 913 | ! directional info for flow blocking ************************* |
---|
| 914 | |
---|
| 915 | DO jk = 1, klev |
---|
| 916 | DO jl = kidia, kfdia |
---|
| 917 | IF (ktest(jl)==1) THEN |
---|
| 918 | lo = (pum1(jl,jk)<gvsec) .AND. (pum1(jl,jk)>=-gvsec) |
---|
| 919 | IF (lo) THEN |
---|
| 920 | zu = pum1(jl, jk) + 2.*gvsec |
---|
| 921 | ELSE |
---|
| 922 | zu = pum1(jl, jk) |
---|
| 923 | END IF |
---|
| 924 | zphi = atan(pvm1(jl,jk)/zu) |
---|
| 925 | ppsi(jl, jk) = ptheta(jl)*rpi/180. - zphi |
---|
| 926 | END IF |
---|
| 927 | END DO |
---|
| 928 | END DO |
---|
| 929 | |
---|
| 930 | ! forms the vertical 'leakiness' ************************** |
---|
| 931 | |
---|
| 932 | DO jk = ilevh, klev |
---|
| 933 | DO jl = kidia, kfdia |
---|
| 934 | IF (ktest(jl)==1) THEN |
---|
| 935 | pzdep(jl, jk) = 0 |
---|
| 936 | IF (jk>=kkenvh(jl) .AND. kkenvh(jl)/=klev) THEN |
---|
| 937 | pzdep(jl, jk) = (pgeom1(jl,kkenvh(jl))-pgeom1(jl,jk))/ & |
---|
| 938 | (pgeom1(jl,kkenvh(jl))-pgeom1(jl,klev)) |
---|
| 939 | END IF |
---|
| 940 | END IF |
---|
| 941 | END DO |
---|
| 942 | END DO |
---|
| 943 | |
---|
| 944 | RETURN |
---|
| 945 | END SUBROUTINE orosetup_strato |
---|
| 946 | SUBROUTINE gwstress_strato(nlon, nlev, kkcrit, ksect, kkhlim, ktest, kkcrith, & |
---|
| 947 | kcrit, kkenvh, kknu, prho, pstab, pvph, pstd, psig, pmea, ppic, pval, & |
---|
| 948 | ptfr, ptau, pgeom1, pgamma, pd1, pd2, pdmod, pnu) |
---|
| 949 | |
---|
| 950 | ! **** *gwstress* |
---|
| 951 | |
---|
| 952 | ! purpose. |
---|
| 953 | ! -------- |
---|
| 954 | ! Compute the surface stress due to Gravity Waves, according |
---|
| 955 | ! to the Phillips (1979) theory of 3-D flow above |
---|
| 956 | ! anisotropic elliptic ridges. |
---|
| 957 | |
---|
| 958 | ! The stress is reduced two account for cut-off flow over |
---|
| 959 | ! hill. The flow only see that part of the ridge located |
---|
| 960 | ! above the blocked layer (see zeff). |
---|
| 961 | |
---|
| 962 | ! ** interface. |
---|
| 963 | ! ---------- |
---|
| 964 | ! call *gwstress* from *gwdrag* |
---|
| 965 | |
---|
| 966 | ! explicit arguments : |
---|
| 967 | ! -------------------- |
---|
| 968 | ! ==== inputs === |
---|
| 969 | ! ==== outputs === |
---|
| 970 | |
---|
| 971 | ! implicit arguments : none |
---|
| 972 | ! -------------------- |
---|
| 973 | |
---|
| 974 | ! method. |
---|
| 975 | ! ------- |
---|
| 976 | |
---|
| 977 | |
---|
| 978 | ! externals. |
---|
| 979 | ! ---------- |
---|
| 980 | |
---|
| 981 | |
---|
| 982 | ! reference. |
---|
| 983 | ! ---------- |
---|
| 984 | |
---|
| 985 | ! LOTT and MILLER (1997) & LOTT (1999) |
---|
| 986 | |
---|
| 987 | ! author. |
---|
| 988 | ! ------- |
---|
| 989 | |
---|
| 990 | ! modifications. |
---|
| 991 | ! -------------- |
---|
| 992 | ! f. lott put the new gwd on ifs 22/11/93 |
---|
| 993 | |
---|
| 994 | ! ----------------------------------------------------------------------- |
---|
[5309] | 995 | USE yoegwd_mod_h |
---|
| 996 | USE dimphy |
---|
[5285] | 997 | USE yomcst_mod_h |
---|
[5274] | 998 | IMPLICIT NONE |
---|
[1992] | 999 | |
---|
[5274] | 1000 | |
---|
[1992] | 1001 | |
---|
| 1002 | ! ----------------------------------------------------------------------- |
---|
| 1003 | |
---|
| 1004 | ! * 0.1 arguments |
---|
| 1005 | ! --------- |
---|
| 1006 | |
---|
| 1007 | INTEGER nlon, nlev |
---|
| 1008 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ksect(nlon), & |
---|
| 1009 | kkhlim(nlon), ktest(nlon), kkenvh(nlon), kknu(nlon) |
---|
| 1010 | |
---|
| 1011 | REAL prho(nlon, nlev+1), pstab(nlon, nlev+1), ptau(nlon, nlev+1), & |
---|
| 1012 | pvph(nlon, nlev+1), ptfr(nlon), pgeom1(nlon, nlev), pstd(nlon) |
---|
| 1013 | |
---|
| 1014 | REAL pd1(nlon), pd2(nlon), pnu(nlon), psig(nlon), pgamma(nlon) |
---|
| 1015 | REAL pmea(nlon), ppic(nlon), pval(nlon) |
---|
| 1016 | REAL pdmod(nlon) |
---|
| 1017 | |
---|
| 1018 | ! ----------------------------------------------------------------------- |
---|
| 1019 | |
---|
| 1020 | ! * 0.2 local arrays |
---|
| 1021 | ! ------------ |
---|
| 1022 | ! zeff--real: effective height seen by the flow when there is blocking |
---|
| 1023 | |
---|
| 1024 | INTEGER jl |
---|
| 1025 | REAL zeff |
---|
| 1026 | |
---|
| 1027 | ! ----------------------------------------------------------------------- |
---|
| 1028 | |
---|
| 1029 | ! * 0.3 functions |
---|
| 1030 | ! --------- |
---|
| 1031 | ! ------------------------------------------------------------------ |
---|
| 1032 | |
---|
| 1033 | ! * 1. initialization |
---|
| 1034 | ! -------------- |
---|
| 1035 | |
---|
| 1036 | ! PRINT *,' in gwstress' |
---|
| 1037 | |
---|
| 1038 | ! * 3.1 gravity wave stress. |
---|
| 1039 | |
---|
| 1040 | |
---|
| 1041 | |
---|
| 1042 | DO jl = kidia, kfdia |
---|
| 1043 | IF (ktest(jl)==1) THEN |
---|
| 1044 | |
---|
| 1045 | ! effective mountain height above the blocked flow |
---|
| 1046 | |
---|
| 1047 | zeff = ppic(jl) - pval(jl) |
---|
| 1048 | IF (kkenvh(jl)<klev) THEN |
---|
| 1049 | zeff = amin1(gfrcrit*pvph(jl,klev+1)/sqrt(pstab(jl,klev+1)), zeff) |
---|
| 1050 | END IF |
---|
| 1051 | |
---|
| 1052 | |
---|
| 1053 | ptau(jl, klev+1) = gkdrag*prho(jl, klev+1)*psig(jl)*pdmod(jl)/4./ & |
---|
| 1054 | pstd(jl)*pvph(jl, klev+1)*sqrt(pstab(jl,klev+1))*zeff**2 |
---|
| 1055 | |
---|
| 1056 | |
---|
| 1057 | ! too small value of stress or low level flow include critical level |
---|
| 1058 | ! or low level flow: gravity wave stress nul. |
---|
| 1059 | |
---|
| 1060 | ! lo=(ptau(jl,klev+1).lt.gtsec).or.(kcrit(jl).ge.kknu(jl)) |
---|
| 1061 | ! * .or.(pvph(jl,klev+1).lt.gvcrit) |
---|
| 1062 | ! if(lo) ptau(jl,klev+1)=0.0 |
---|
| 1063 | |
---|
| 1064 | ! print *,jl,ptau(jl,klev+1) |
---|
| 1065 | |
---|
| 1066 | ELSE |
---|
| 1067 | |
---|
| 1068 | ptau(jl, klev+1) = 0.0 |
---|
| 1069 | |
---|
| 1070 | END IF |
---|
| 1071 | |
---|
| 1072 | END DO |
---|
| 1073 | |
---|
| 1074 | ! write(21)(ptau(jl,klev+1),jl=kidia,kfdia) |
---|
| 1075 | |
---|
| 1076 | RETURN |
---|
| 1077 | END SUBROUTINE gwstress_strato |
---|
| 1078 | |
---|
| 1079 | SUBROUTINE gwprofil_strato(nlon, nlev, kgwd, kdx, ktest, kkcrit, kkcrith, & |
---|
| 1080 | kcrit, kkenvh, kknu, kknu2, paphm1, prho, pstab, ptfr, pvph, pri, ptau, & |
---|
| 1081 | pdmod, pnu, psig, pgamma, pstd, ppic, pval) |
---|
| 1082 | |
---|
| 1083 | ! **** *gwprofil* |
---|
| 1084 | |
---|
| 1085 | ! purpose. |
---|
| 1086 | ! -------- |
---|
| 1087 | |
---|
| 1088 | ! ** interface. |
---|
| 1089 | ! ---------- |
---|
| 1090 | ! from *gwdrag* |
---|
| 1091 | |
---|
| 1092 | ! explicit arguments : |
---|
| 1093 | ! -------------------- |
---|
| 1094 | ! ==== inputs === |
---|
| 1095 | |
---|
| 1096 | ! ==== outputs === |
---|
| 1097 | |
---|
| 1098 | ! implicit arguments : none |
---|
| 1099 | ! -------------------- |
---|
| 1100 | |
---|
| 1101 | ! method: |
---|
| 1102 | ! ------- |
---|
| 1103 | ! the stress profile for gravity waves is computed as follows: |
---|
| 1104 | ! it decreases linearly with heights from the ground |
---|
| 1105 | ! to the low-level indicated by kkcrith, |
---|
| 1106 | ! to simulates lee waves or |
---|
| 1107 | ! low-level gravity wave breaking. |
---|
| 1108 | ! above it is constant, except when the waves encounter a critical |
---|
| 1109 | ! level (kcrit) or when they break. |
---|
| 1110 | ! The stress is also uniformly distributed above the level |
---|
| 1111 | ! nstra. |
---|
| 1112 | |
---|
[5309] | 1113 | USE yoegwd_mod_h |
---|
| 1114 | USE dimphy |
---|
[5285] | 1115 | USE yomcst_mod_h |
---|
[5274] | 1116 | IMPLICIT NONE |
---|
[1992] | 1117 | |
---|
[5274] | 1118 | |
---|
[1992] | 1119 | |
---|
| 1120 | ! ----------------------------------------------------------------------- |
---|
| 1121 | |
---|
| 1122 | ! * 0.1 ARGUMENTS |
---|
| 1123 | ! --------- |
---|
| 1124 | |
---|
| 1125 | INTEGER nlon, nlev, kgwd |
---|
| 1126 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), kdx(nlon), ktest(nlon), & |
---|
| 1127 | kkenvh(nlon), kknu(nlon), kknu2(nlon) |
---|
| 1128 | |
---|
| 1129 | REAL paphm1(nlon, nlev+1), pstab(nlon, nlev+1), prho(nlon, nlev+1), & |
---|
| 1130 | pvph(nlon, nlev+1), pri(nlon, nlev+1), ptfr(nlon), ptau(nlon, nlev+1) |
---|
| 1131 | |
---|
| 1132 | REAL pdmod(nlon), pnu(nlon), psig(nlon), pgamma(nlon), pstd(nlon), & |
---|
| 1133 | ppic(nlon), pval(nlon) |
---|
| 1134 | |
---|
| 1135 | ! ----------------------------------------------------------------------- |
---|
| 1136 | |
---|
| 1137 | ! * 0.2 local arrays |
---|
| 1138 | ! ------------ |
---|
| 1139 | |
---|
| 1140 | INTEGER jl, jk |
---|
| 1141 | REAL zsqr, zalfa, zriw, zdel, zb, zalpha, zdz2n, zdelp, zdelpt |
---|
| 1142 | |
---|
| 1143 | REAL zdz2(klon, klev), znorm(klon), zoro(klon) |
---|
| 1144 | REAL ztau(klon, klev+1) |
---|
| 1145 | |
---|
| 1146 | ! ----------------------------------------------------------------------- |
---|
| 1147 | |
---|
| 1148 | ! * 1. INITIALIZATION |
---|
| 1149 | ! -------------- |
---|
| 1150 | |
---|
| 1151 | ! print *,' entree gwprofil' |
---|
| 1152 | |
---|
| 1153 | |
---|
| 1154 | ! * COMPUTATIONAL CONSTANTS. |
---|
| 1155 | ! ------------- ---------- |
---|
| 1156 | |
---|
| 1157 | DO jl = kidia, kfdia |
---|
| 1158 | IF (ktest(jl)==1) THEN |
---|
| 1159 | zoro(jl) = psig(jl)*pdmod(jl)/4./pstd(jl) |
---|
| 1160 | ztau(jl, klev+1) = ptau(jl, klev+1) |
---|
| 1161 | ! print *,jl,ptau(jl,klev+1) |
---|
| 1162 | ztau(jl, kkcrith(jl)) = grahilo*ptau(jl, klev+1) |
---|
| 1163 | END IF |
---|
| 1164 | END DO |
---|
| 1165 | |
---|
| 1166 | |
---|
| 1167 | DO jk = klev + 1, 1, -1 |
---|
| 1168 | ! * 4.1 constant shear stress until top of the |
---|
| 1169 | ! low-level breaking/trapped layer |
---|
| 1170 | |
---|
| 1171 | DO jl = kidia, kfdia |
---|
| 1172 | IF (ktest(jl)==1) THEN |
---|
| 1173 | IF (jk>kkcrith(jl)) THEN |
---|
| 1174 | zdelp = paphm1(jl, jk) - paphm1(jl, klev+1) |
---|
| 1175 | zdelpt = paphm1(jl, kkcrith(jl)) - paphm1(jl, klev+1) |
---|
| 1176 | ptau(jl, jk) = ztau(jl, klev+1) + zdelp/zdelpt*(ztau(jl,kkcrith(jl) & |
---|
| 1177 | )-ztau(jl,klev+1)) |
---|
| 1178 | ELSE |
---|
| 1179 | ptau(jl, jk) = ztau(jl, kkcrith(jl)) |
---|
| 1180 | END IF |
---|
| 1181 | END IF |
---|
| 1182 | END DO |
---|
| 1183 | |
---|
| 1184 | ! * 4.15 constant shear stress until the top of the |
---|
| 1185 | ! low level flow layer. |
---|
| 1186 | |
---|
| 1187 | |
---|
| 1188 | ! * 4.2 wave displacement at next level. |
---|
| 1189 | |
---|
| 1190 | |
---|
| 1191 | END DO |
---|
| 1192 | |
---|
| 1193 | |
---|
| 1194 | ! * 4.4 wave richardson number, new wave displacement |
---|
| 1195 | ! * and stress: breaking evaluation and critical |
---|
| 1196 | ! level |
---|
| 1197 | |
---|
| 1198 | |
---|
| 1199 | DO jk = klev, 1, -1 |
---|
| 1200 | |
---|
| 1201 | DO jl = kidia, kfdia |
---|
| 1202 | IF (ktest(jl)==1) THEN |
---|
| 1203 | znorm(jl) = prho(jl, jk)*sqrt(pstab(jl,jk))*pvph(jl, jk) |
---|
| 1204 | zdz2(jl, jk) = ptau(jl, jk)/amax1(znorm(jl), gssec)/zoro(jl) |
---|
| 1205 | END IF |
---|
| 1206 | END DO |
---|
| 1207 | |
---|
| 1208 | DO jl = kidia, kfdia |
---|
| 1209 | IF (ktest(jl)==1) THEN |
---|
| 1210 | IF (jk<kkcrith(jl)) THEN |
---|
| 1211 | IF ((ptau(jl,jk+1)<gtsec) .OR. (jk<=kcrit(jl))) THEN |
---|
| 1212 | ptau(jl, jk) = 0.0 |
---|
| 1213 | ELSE |
---|
| 1214 | zsqr = sqrt(pri(jl,jk)) |
---|
| 1215 | zalfa = sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl, jk) |
---|
| 1216 | zriw = pri(jl, jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
---|
| 1217 | IF (zriw<grcrit) THEN |
---|
| 1218 | ! print *,' breaking!!!',ptau(jl,jk) |
---|
| 1219 | zdel = 4./zsqr/grcrit + 1./grcrit**2 + 4./grcrit |
---|
| 1220 | zb = 1./grcrit + 2./zsqr |
---|
| 1221 | zalpha = 0.5*(-zb+sqrt(zdel)) |
---|
| 1222 | zdz2n = (pvph(jl,jk)*zalpha)**2/pstab(jl, jk) |
---|
| 1223 | ptau(jl, jk) = znorm(jl)*zdz2n*zoro(jl) |
---|
| 1224 | END IF |
---|
| 1225 | |
---|
| 1226 | ptau(jl, jk) = amin1(ptau(jl,jk), ptau(jl,jk+1)) |
---|
| 1227 | |
---|
| 1228 | END IF |
---|
| 1229 | END IF |
---|
| 1230 | END IF |
---|
| 1231 | END DO |
---|
| 1232 | END DO |
---|
| 1233 | |
---|
| 1234 | ! REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
| 1235 | |
---|
| 1236 | DO jl = kidia, kfdia |
---|
| 1237 | IF (ktest(jl)==1) THEN |
---|
| 1238 | ztau(jl, kkcrith(jl)-1) = ptau(jl, kkcrith(jl)-1) |
---|
| 1239 | ztau(jl, nstra) = ptau(jl, nstra) |
---|
| 1240 | END IF |
---|
| 1241 | END DO |
---|
| 1242 | |
---|
| 1243 | DO jk = 1, klev |
---|
| 1244 | |
---|
| 1245 | DO jl = kidia, kfdia |
---|
| 1246 | IF (ktest(jl)==1) THEN |
---|
| 1247 | |
---|
| 1248 | IF (jk>kkcrith(jl)-1) THEN |
---|
| 1249 | |
---|
| 1250 | zdelp = paphm1(jl, jk) - paphm1(jl, klev+1) |
---|
| 1251 | zdelpt = paphm1(jl, kkcrith(jl)-1) - paphm1(jl, klev+1) |
---|
| 1252 | ptau(jl, jk) = ztau(jl, klev+1) + (ztau(jl,kkcrith(jl)-1)-ztau(jl, & |
---|
| 1253 | klev+1))*zdelp/zdelpt |
---|
| 1254 | |
---|
| 1255 | END IF |
---|
| 1256 | END IF |
---|
| 1257 | |
---|
| 1258 | END DO |
---|
| 1259 | |
---|
| 1260 | ! REORGANISATION AT THE MODEL TOP.... |
---|
| 1261 | |
---|
| 1262 | DO jl = kidia, kfdia |
---|
| 1263 | IF (ktest(jl)==1) THEN |
---|
| 1264 | |
---|
| 1265 | IF (jk<nstra) THEN |
---|
| 1266 | |
---|
| 1267 | zdelp = paphm1(jl, nstra) |
---|
| 1268 | zdelpt = paphm1(jl, jk) |
---|
| 1269 | ptau(jl, jk) = ztau(jl, nstra)*zdelpt/zdelp |
---|
| 1270 | ! ptau(jl,jk)=ztau(jl,nstra) |
---|
| 1271 | |
---|
| 1272 | END IF |
---|
| 1273 | |
---|
| 1274 | END IF |
---|
| 1275 | |
---|
| 1276 | END DO |
---|
| 1277 | |
---|
| 1278 | |
---|
| 1279 | END DO |
---|
| 1280 | |
---|
| 1281 | |
---|
| 1282 | 123 FORMAT (I4, 1X, 20(F6.3,1X)) |
---|
| 1283 | |
---|
| 1284 | |
---|
| 1285 | RETURN |
---|
| 1286 | END SUBROUTINE gwprofil_strato |
---|
| 1287 | SUBROUTINE lift_noro_strato(nlon, nlev, dtime, paprs, pplay, plat, pmea, & |
---|
| 1288 | pstd, psig, pgam, pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, & |
---|
| 1289 | pvlow, pustr, pvstr, d_t, d_u, d_v) |
---|
| 1290 | |
---|
[5285] | 1291 | USE yomcst_mod_h |
---|
[1992] | 1292 | USE dimphy |
---|
[5309] | 1293 | USE yoegwd_mod_h |
---|
[1992] | 1294 | IMPLICIT NONE |
---|
| 1295 | ! ====================================================================== |
---|
| 1296 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
| 1297 | ! Object: Mountain lift interface (enhanced vortex stretching). |
---|
| 1298 | ! Made necessary because: |
---|
| 1299 | ! 1. in the LMD-GCM Layers are from bottom to top, |
---|
| 1300 | ! contrary to most European GCM. |
---|
| 1301 | ! 2. the altitude above ground of each model layers |
---|
| 1302 | ! needs to be known (variable zgeom) |
---|
| 1303 | ! ====================================================================== |
---|
| 1304 | ! Explicit Arguments: |
---|
| 1305 | ! ================== |
---|
| 1306 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
| 1307 | ! nlev----input-I-Number of vertical levels |
---|
| 1308 | ! dtime---input-R-Time-step (s) |
---|
| 1309 | ! paprs---input-R-Pressure in semi layers (Pa) |
---|
| 1310 | ! pplay---input-R-Pressure model-layers (Pa) |
---|
| 1311 | ! t-------input-R-temperature (K) |
---|
| 1312 | ! u-------input-R-Horizontal wind (m/s) |
---|
| 1313 | ! v-------input-R-Meridional wind (m/s) |
---|
| 1314 | ! pmea----input-R-Mean Orography (m) |
---|
| 1315 | ! pstd----input-R-SSO standard deviation (m) |
---|
| 1316 | ! psig----input-R-SSO slope |
---|
| 1317 | ! pgam----input-R-SSO Anisotropy |
---|
| 1318 | ! pthe----input-R-SSO Angle |
---|
| 1319 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
| 1320 | ! pval----input-R-SSO Valleys elevation (m) |
---|
| 1321 | |
---|
| 1322 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
| 1323 | ! ktest--input-I: Flags to indicate active points |
---|
| 1324 | ! kdx----input-I: Locate the physical location of an active point. |
---|
| 1325 | |
---|
| 1326 | ! pulow, pvlow -output-R: Low-level wind |
---|
| 1327 | ! pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
---|
| 1328 | |
---|
| 1329 | ! d_t-----output-R: T increment |
---|
| 1330 | ! d_u-----output-R: U increment |
---|
| 1331 | ! d_v-----output-R: V increment |
---|
| 1332 | |
---|
| 1333 | ! Implicit Arguments: |
---|
| 1334 | ! =================== |
---|
| 1335 | |
---|
| 1336 | ! iim--common-I: Number of longitude intervals |
---|
| 1337 | ! jjm--common-I: Number of latitude intervals |
---|
| 1338 | ! klon-common-I: Number of points seen by the physics |
---|
| 1339 | ! (iim+1)*(jjm+1) for instance |
---|
| 1340 | ! klev-common-I: Number of vertical layers |
---|
| 1341 | ! ====================================================================== |
---|
| 1342 | ! Local Variables: |
---|
| 1343 | ! ================ |
---|
| 1344 | |
---|
| 1345 | ! zgeom-----R: Altitude of layer above ground |
---|
| 1346 | ! pt, pu, pv --R: t u v from top to bottom |
---|
| 1347 | ! pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
---|
| 1348 | ! papmf: pressure at model layer (from top to bottom) |
---|
| 1349 | ! papmh: pressure at model 1/2 layer (from top to bottom) |
---|
| 1350 | |
---|
| 1351 | ! ====================================================================== |
---|
| 1352 | |
---|
| 1353 | ! ARGUMENTS |
---|
| 1354 | |
---|
| 1355 | INTEGER nlon, nlev |
---|
| 1356 | REAL dtime |
---|
| 1357 | REAL paprs(klon, klev+1) |
---|
| 1358 | REAL pplay(klon, klev) |
---|
| 1359 | REAL plat(nlon), pmea(nlon) |
---|
| 1360 | REAL pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
---|
| 1361 | REAL ppic(nlon), pval(nlon) |
---|
| 1362 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
| 1363 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
| 1364 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
| 1365 | |
---|
| 1366 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
| 1367 | |
---|
| 1368 | ! Variables locales: |
---|
| 1369 | |
---|
| 1370 | REAL zgeom(klon, klev) |
---|
| 1371 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
| 1372 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
| 1373 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
| 1374 | |
---|
| 1375 | ! initialiser les variables de sortie (pour securite) |
---|
| 1376 | |
---|
| 1377 | |
---|
| 1378 | ! print *,'in lift_noro' |
---|
| 1379 | DO i = 1, klon |
---|
| 1380 | pulow(i) = 0.0 |
---|
| 1381 | pvlow(i) = 0.0 |
---|
| 1382 | pustr(i) = 0.0 |
---|
| 1383 | pvstr(i) = 0.0 |
---|
| 1384 | END DO |
---|
| 1385 | DO k = 1, klev |
---|
| 1386 | DO i = 1, klon |
---|
| 1387 | d_t(i, k) = 0.0 |
---|
| 1388 | d_u(i, k) = 0.0 |
---|
| 1389 | d_v(i, k) = 0.0 |
---|
| 1390 | pdudt(i, k) = 0.0 |
---|
| 1391 | pdvdt(i, k) = 0.0 |
---|
| 1392 | pdtdt(i, k) = 0.0 |
---|
| 1393 | END DO |
---|
| 1394 | END DO |
---|
| 1395 | |
---|
| 1396 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 1397 | ! verticaux augmente du haut vers le bas) |
---|
| 1398 | |
---|
| 1399 | DO k = 1, klev |
---|
| 1400 | DO i = 1, klon |
---|
| 1401 | pt(i, k) = t(i, klev-k+1) |
---|
| 1402 | pu(i, k) = u(i, klev-k+1) |
---|
| 1403 | pv(i, k) = v(i, klev-k+1) |
---|
| 1404 | papmf(i, k) = pplay(i, klev-k+1) |
---|
| 1405 | END DO |
---|
| 1406 | END DO |
---|
| 1407 | DO k = 1, klev + 1 |
---|
| 1408 | DO i = 1, klon |
---|
| 1409 | papmh(i, k) = paprs(i, klev-k+2) |
---|
| 1410 | END DO |
---|
| 1411 | END DO |
---|
| 1412 | DO i = 1, klon |
---|
| 1413 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
| 1414 | END DO |
---|
| 1415 | DO k = klev - 1, 1, -1 |
---|
| 1416 | DO i = 1, klon |
---|
| 1417 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
| 1418 | 1)/papmf(i,k)) |
---|
| 1419 | END DO |
---|
| 1420 | END DO |
---|
| 1421 | |
---|
| 1422 | ! appeler la routine principale |
---|
| 1423 | |
---|
| 1424 | |
---|
| 1425 | CALL orolift_strato(klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, & |
---|
| 1426 | zgeom, pt, pu, pv, plat, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, & |
---|
| 1427 | pvlow, pdudt, pdvdt, pdtdt) |
---|
| 1428 | |
---|
| 1429 | DO k = 1, klev |
---|
| 1430 | DO i = 1, klon |
---|
| 1431 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
| 1432 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
| 1433 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
| 1434 | pustr(i) = pustr(i) + pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 1435 | pvstr(i) = pvstr(i) + pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 1436 | END DO |
---|
| 1437 | END DO |
---|
| 1438 | |
---|
| 1439 | ! print *,' out lift_noro' |
---|
| 1440 | |
---|
| 1441 | RETURN |
---|
| 1442 | END SUBROUTINE lift_noro_strato |
---|
| 1443 | SUBROUTINE orolift_strato(nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, & |
---|
| 1444 | papm1, pgeom1, ptm1, pum1, pvm1, plat, pmea, pstd, psig, pgam, pthe, & |
---|
| 1445 | ppic, pval & ! OUTPUTS |
---|
| 1446 | , pulow, pvlow, pvom, pvol, pte) |
---|
| 1447 | |
---|
| 1448 | |
---|
| 1449 | ! **** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
| 1450 | |
---|
| 1451 | ! PURPOSE. |
---|
| 1452 | ! -------- |
---|
| 1453 | ! this routine computes the physical tendencies of the |
---|
| 1454 | ! prognostic variables u,v when enhanced vortex stretching |
---|
| 1455 | ! is needed. |
---|
| 1456 | |
---|
| 1457 | ! ** INTERFACE. |
---|
| 1458 | ! ---------- |
---|
| 1459 | ! CALLED FROM *lift_noro |
---|
| 1460 | ! explicit arguments : |
---|
| 1461 | ! -------------------- |
---|
| 1462 | ! ==== inputs === |
---|
| 1463 | ! nlon----input-I-Total number of horizontal points that get into physics |
---|
| 1464 | ! nlev----input-I-Number of vertical levels |
---|
| 1465 | |
---|
| 1466 | ! kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
| 1467 | ! ktest--input-I: Flags to indicate active points |
---|
| 1468 | ! kdx----input-I: Locate the physical location of an active point. |
---|
| 1469 | ! ptsphy--input-R-Time-step (s) |
---|
| 1470 | ! paphm1--input-R: pressure at model 1/2 layer |
---|
| 1471 | ! papm1---input-R: pressure at model layer |
---|
| 1472 | ! pgeom1--input-R: Altitude of layer above ground |
---|
| 1473 | ! ptm1, pum1, pvm1--R-: t, u and v |
---|
| 1474 | ! pmea----input-R-Mean Orography (m) |
---|
| 1475 | ! pstd----input-R-SSO standard deviation (m) |
---|
| 1476 | ! psig----input-R-SSO slope |
---|
| 1477 | ! pgam----input-R-SSO Anisotropy |
---|
| 1478 | ! pthe----input-R-SSO Angle |
---|
| 1479 | ! ppic----input-R-SSO Peacks elevation (m) |
---|
| 1480 | ! pval----input-R-SSO Valleys elevation (m) |
---|
| 1481 | ! plat----input-R-Latitude (degree) |
---|
| 1482 | |
---|
| 1483 | ! ==== outputs === |
---|
| 1484 | ! pulow, pvlow -output-R: Low-level wind |
---|
| 1485 | |
---|
| 1486 | ! pte -----output-R: T tendency |
---|
| 1487 | ! pvom-----output-R: U tendency |
---|
| 1488 | ! pvol-----output-R: V tendency |
---|
| 1489 | |
---|
| 1490 | |
---|
| 1491 | ! Implicit Arguments: |
---|
| 1492 | ! =================== |
---|
| 1493 | |
---|
| 1494 | ! klon-common-I: Number of points seen by the physics |
---|
| 1495 | ! klev-common-I: Number of vertical layers |
---|
| 1496 | |
---|
| 1497 | |
---|
| 1498 | ! ---------- |
---|
| 1499 | |
---|
| 1500 | ! AUTHOR. |
---|
| 1501 | ! ------- |
---|
| 1502 | ! F.LOTT LMD 22/11/95 |
---|
| 1503 | |
---|
[5309] | 1504 | USE yoegwd_mod_h |
---|
| 1505 | USE dimphy |
---|
[5285] | 1506 | USE yomcst_mod_h |
---|
[5274] | 1507 | IMPLICIT NONE |
---|
[1992] | 1508 | |
---|
| 1509 | |
---|
[5274] | 1510 | |
---|
[1992] | 1511 | ! ----------------------------------------------------------------------- |
---|
| 1512 | |
---|
| 1513 | ! * 0.1 ARGUMENTS |
---|
| 1514 | ! --------- |
---|
| 1515 | |
---|
| 1516 | |
---|
| 1517 | INTEGER nlon, nlev, kgwd |
---|
| 1518 | REAL ptsphy |
---|
| 1519 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
---|
| 1520 | pvlow(nlon) |
---|
| 1521 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), plat(nlon), & |
---|
| 1522 | pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon), ppic(nlon), & |
---|
| 1523 | pval(nlon), pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev+1) |
---|
| 1524 | |
---|
| 1525 | INTEGER kdx(nlon), ktest(nlon) |
---|
| 1526 | ! ----------------------------------------------------------------------- |
---|
| 1527 | |
---|
| 1528 | ! * 0.2 local arrays |
---|
| 1529 | |
---|
| 1530 | INTEGER jl, ilevh, jk |
---|
| 1531 | REAL zhgeo, zdelp, zslow, zsqua, zscav, zbet |
---|
| 1532 | ! ------------ |
---|
| 1533 | INTEGER iknub(klon), iknul(klon) |
---|
| 1534 | LOGICAL ll1(klon, klev+1) |
---|
| 1535 | |
---|
| 1536 | REAL ztau(klon, klev+1), ztav(klon, klev+1), zrho(klon, klev+1) |
---|
| 1537 | REAL zdudt(klon), zdvdt(klon) |
---|
| 1538 | REAL zhcrit(klon, klev) |
---|
| 1539 | |
---|
| 1540 | LOGICAL lifthigh |
---|
| 1541 | REAL zcons1, ztmst |
---|
| 1542 | CHARACTER (LEN=20) :: modname = 'orolift_strato' |
---|
| 1543 | CHARACTER (LEN=80) :: abort_message |
---|
| 1544 | |
---|
| 1545 | |
---|
| 1546 | ! ----------------------------------------------------------------------- |
---|
| 1547 | |
---|
| 1548 | ! * 1.1 initialisations |
---|
| 1549 | ! --------------- |
---|
| 1550 | |
---|
| 1551 | lifthigh = .FALSE. |
---|
| 1552 | |
---|
| 1553 | IF (nlon/=klon .OR. nlev/=klev) THEN |
---|
| 1554 | abort_message = 'pb dimension' |
---|
[2311] | 1555 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 1556 | END IF |
---|
| 1557 | zcons1 = 1./rd |
---|
| 1558 | ztmst = ptsphy |
---|
| 1559 | |
---|
| 1560 | DO jl = kidia, kfdia |
---|
| 1561 | zrho(jl, klev+1) = 0.0 |
---|
| 1562 | pulow(jl) = 0.0 |
---|
| 1563 | pvlow(jl) = 0.0 |
---|
| 1564 | iknub(jl) = klev |
---|
| 1565 | iknul(jl) = klev |
---|
| 1566 | ilevh = klev/3 |
---|
| 1567 | ll1(jl, klev+1) = .FALSE. |
---|
| 1568 | DO jk = 1, klev |
---|
| 1569 | pvom(jl, jk) = 0.0 |
---|
| 1570 | pvol(jl, jk) = 0.0 |
---|
| 1571 | pte(jl, jk) = 0.0 |
---|
| 1572 | END DO |
---|
| 1573 | END DO |
---|
| 1574 | |
---|
| 1575 | |
---|
| 1576 | ! * 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
| 1577 | ! * LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
| 1578 | ! * THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
| 1579 | |
---|
| 1580 | |
---|
| 1581 | |
---|
| 1582 | DO jk = klev, 1, -1 |
---|
| 1583 | DO jl = kidia, kfdia |
---|
| 1584 | IF (ktest(jl)==1) THEN |
---|
| 1585 | zhcrit(jl, jk) = amax1(ppic(jl)-pval(jl), 100.) |
---|
| 1586 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 1587 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 1588 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 1589 | iknub(jl) = jk |
---|
| 1590 | END IF |
---|
| 1591 | END IF |
---|
| 1592 | END DO |
---|
| 1593 | END DO |
---|
| 1594 | |
---|
| 1595 | |
---|
| 1596 | DO jl = kidia, kfdia |
---|
| 1597 | IF (ktest(jl)==1) THEN |
---|
| 1598 | iknub(jl) = max(iknub(jl), klev/2) |
---|
| 1599 | iknul(jl) = max(iknul(jl), 2*klev/3) |
---|
| 1600 | IF (iknub(jl)>nktopg) iknub(jl) = nktopg |
---|
| 1601 | IF (iknub(jl)==nktopg) iknul(jl) = klev |
---|
| 1602 | IF (iknub(jl)==iknul(jl)) iknub(jl) = iknul(jl) - 1 |
---|
| 1603 | END IF |
---|
| 1604 | END DO |
---|
| 1605 | |
---|
| 1606 | DO jk = klev, 2, -1 |
---|
| 1607 | DO jl = kidia, kfdia |
---|
| 1608 | zrho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
| 1609 | END DO |
---|
| 1610 | END DO |
---|
| 1611 | ! print *,' dans orolift: 223' |
---|
| 1612 | |
---|
| 1613 | ! ******************************************************************** |
---|
| 1614 | |
---|
| 1615 | ! * define low level flow |
---|
| 1616 | ! ------------------- |
---|
| 1617 | DO jk = klev, 1, -1 |
---|
| 1618 | DO jl = kidia, kfdia |
---|
| 1619 | IF (ktest(jl)==1) THEN |
---|
| 1620 | IF (jk>=iknub(jl) .AND. jk<=iknul(jl)) THEN |
---|
| 1621 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
| 1622 | ) |
---|
| 1623 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
| 1624 | ) |
---|
| 1625 | zrho(jl, klev+1) = zrho(jl, klev+1) + zrho(jl, jk)*(paphm1(jl,jk+1) & |
---|
| 1626 | -paphm1(jl,jk)) |
---|
| 1627 | END IF |
---|
| 1628 | END IF |
---|
| 1629 | END DO |
---|
| 1630 | END DO |
---|
| 1631 | DO jl = kidia, kfdia |
---|
| 1632 | IF (ktest(jl)==1) THEN |
---|
| 1633 | pulow(jl) = pulow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
| 1634 | pvlow(jl) = pvlow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
| 1635 | zrho(jl, klev+1) = zrho(jl, klev+1)/(paphm1(jl,iknul(jl)+1)-paphm1(jl, & |
---|
| 1636 | iknub(jl))) |
---|
| 1637 | END IF |
---|
| 1638 | END DO |
---|
| 1639 | |
---|
| 1640 | ! *********************************************************** |
---|
| 1641 | |
---|
| 1642 | ! * 3. COMPUTE MOUNTAIN LIFT |
---|
| 1643 | |
---|
| 1644 | |
---|
| 1645 | DO jl = kidia, kfdia |
---|
| 1646 | IF (ktest(jl)==1) THEN |
---|
| 1647 | ztau(jl, klev+1) = -gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
| 1648 | ! (2*pstd(jl)+pmea(jl))* |
---|
| 1649 | 2*pstd(jl)*sin(rpi/180.*plat(jl))*pvlow(jl) |
---|
| 1650 | ztav(jl, klev+1) = gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
| 1651 | ! (2*pstd(jl)+pmea(jl))* |
---|
| 1652 | 2*pstd(jl)*sin(rpi/180.*plat(jl))*pulow(jl) |
---|
| 1653 | ELSE |
---|
| 1654 | ztau(jl, klev+1) = 0.0 |
---|
| 1655 | ztav(jl, klev+1) = 0.0 |
---|
| 1656 | END IF |
---|
| 1657 | END DO |
---|
| 1658 | |
---|
| 1659 | ! * 4. COMPUTE LIFT PROFILE |
---|
| 1660 | ! * -------------------- |
---|
| 1661 | |
---|
| 1662 | |
---|
| 1663 | |
---|
| 1664 | DO jk = 1, klev |
---|
| 1665 | DO jl = kidia, kfdia |
---|
| 1666 | IF (ktest(jl)==1) THEN |
---|
| 1667 | ztau(jl, jk) = ztau(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
| 1668 | ztav(jl, jk) = ztav(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
| 1669 | ELSE |
---|
| 1670 | ztau(jl, jk) = 0.0 |
---|
| 1671 | ztav(jl, jk) = 0.0 |
---|
| 1672 | END IF |
---|
| 1673 | END DO |
---|
| 1674 | END DO |
---|
| 1675 | |
---|
| 1676 | |
---|
| 1677 | ! * 5. COMPUTE TENDENCIES. |
---|
| 1678 | ! * ------------------- |
---|
| 1679 | IF (lifthigh) THEN |
---|
| 1680 | ! EXPLICIT SOLUTION AT ALL LEVELS |
---|
| 1681 | |
---|
| 1682 | DO jk = 1, klev |
---|
| 1683 | DO jl = kidia, kfdia |
---|
| 1684 | IF (ktest(jl)==1) THEN |
---|
| 1685 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 1686 | zdudt(jl) = -rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
---|
| 1687 | zdvdt(jl) = -rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
---|
| 1688 | END IF |
---|
| 1689 | END DO |
---|
| 1690 | END DO |
---|
| 1691 | |
---|
| 1692 | ! PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
| 1693 | |
---|
| 1694 | DO jk = 1, klev |
---|
| 1695 | DO jl = kidia, kfdia |
---|
| 1696 | IF (ktest(jl)==1) THEN |
---|
| 1697 | |
---|
| 1698 | zslow = sqrt(pulow(jl)**2+pvlow(jl)**2) |
---|
| 1699 | zsqua = amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2), gvsec) |
---|
| 1700 | zscav = -zdudt(jl)*pvm1(jl, jk) + zdvdt(jl)*pum1(jl, jk) |
---|
| 1701 | IF (zsqua>gvsec) THEN |
---|
| 1702 | pvom(jl, jk) = -zscav*pvm1(jl, jk)/zsqua**2 |
---|
| 1703 | pvol(jl, jk) = zscav*pum1(jl, jk)/zsqua**2 |
---|
| 1704 | ELSE |
---|
| 1705 | pvom(jl, jk) = 0.0 |
---|
| 1706 | pvol(jl, jk) = 0.0 |
---|
| 1707 | END IF |
---|
| 1708 | zsqua = sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
---|
| 1709 | IF (zsqua<zslow) THEN |
---|
| 1710 | pvom(jl, jk) = zsqua/zslow*pvom(jl, jk) |
---|
| 1711 | pvol(jl, jk) = zsqua/zslow*pvol(jl, jk) |
---|
| 1712 | END IF |
---|
| 1713 | |
---|
| 1714 | END IF |
---|
| 1715 | END DO |
---|
| 1716 | END DO |
---|
| 1717 | |
---|
| 1718 | ! 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
| 1719 | ! ---------------------------------- |
---|
| 1720 | |
---|
| 1721 | ELSE |
---|
| 1722 | |
---|
| 1723 | DO jl = kidia, kfdia |
---|
| 1724 | IF (ktest(jl)==1) THEN |
---|
| 1725 | DO jk = klev, iknub(jl), -1 |
---|
| 1726 | zbet = gklift*2.*romega*sin(rpi/180.*plat(jl))*ztmst* & |
---|
| 1727 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,jk))/ & |
---|
| 1728 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
---|
| 1729 | zdudt(jl) = -pum1(jl, jk)/ztmst/(1+zbet**2) |
---|
| 1730 | zdvdt(jl) = -pvm1(jl, jk)/ztmst/(1+zbet**2) |
---|
| 1731 | pvom(jl, jk) = zbet**2*zdudt(jl) - zbet*zdvdt(jl) |
---|
| 1732 | pvol(jl, jk) = zbet*zdudt(jl) + zbet**2*zdvdt(jl) |
---|
| 1733 | END DO |
---|
| 1734 | END IF |
---|
| 1735 | END DO |
---|
| 1736 | |
---|
| 1737 | END IF |
---|
| 1738 | |
---|
| 1739 | ! print *,' out orolift' |
---|
| 1740 | |
---|
| 1741 | RETURN |
---|
| 1742 | END SUBROUTINE orolift_strato |
---|
| 1743 | SUBROUTINE sugwd_strato(nlon, nlev, paprs, pplay) |
---|
| 1744 | |
---|
| 1745 | |
---|
| 1746 | ! **** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
| 1747 | |
---|
| 1748 | ! PURPOSE. |
---|
| 1749 | ! -------- |
---|
| 1750 | ! INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
| 1751 | ! GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
| 1752 | ! VERY IMPORTANT: |
---|
| 1753 | ! ______________ |
---|
| 1754 | ! THIS ROUTINE SET_UP THE "TUNABLE PARAMETERS" OF THE |
---|
| 1755 | ! VARIOUS SSO SCHEMES |
---|
| 1756 | |
---|
| 1757 | ! ** INTERFACE. |
---|
| 1758 | ! ---------- |
---|
| 1759 | ! CALL *SUGWD* FROM *SUPHEC* |
---|
| 1760 | ! ----- ------ |
---|
| 1761 | |
---|
| 1762 | ! EXPLICIT ARGUMENTS : |
---|
| 1763 | ! -------------------- |
---|
| 1764 | ! PAPRS,PPLAY : Pressure at semi and full model levels |
---|
| 1765 | ! NLEV : number of model levels |
---|
| 1766 | ! NLON : number of points treated in the physics |
---|
| 1767 | |
---|
| 1768 | ! IMPLICIT ARGUMENTS : |
---|
| 1769 | ! -------------------- |
---|
| 1770 | ! COMMON YOEGWD |
---|
| 1771 | ! -GFRCRIT-R: Critical Non-dimensional mountain Height |
---|
| 1772 | ! (HNC in (1), LOTT 1999) |
---|
| 1773 | ! -GKWAKE--R: Bluff-body drag coefficient for low level wake |
---|
| 1774 | ! (Cd in (2), LOTT 1999) |
---|
| 1775 | ! -GRCRIT--R: Critical Richardson Number |
---|
| 1776 | ! (Ric, End of first column p791 of LOTT 1999) |
---|
| 1777 | ! -GKDRAG--R: Gravity wave drag coefficient |
---|
| 1778 | ! (G in (3), LOTT 1999) |
---|
| 1779 | ! -GKLIFT--R: Mountain Lift coefficient |
---|
| 1780 | ! (Cl in (4), LOTT 1999) |
---|
| 1781 | ! -GHMAX---R: Not used |
---|
| 1782 | ! -GRAHILO-R: Set-up the trapped waves fraction |
---|
| 1783 | ! (Beta , End of first column, LOTT 1999) |
---|
| 1784 | |
---|
| 1785 | ! -GSIGCR--R: Security value for blocked flow depth |
---|
| 1786 | ! -NKTOPG--I: Security value for blocked flow level |
---|
| 1787 | ! -nstra----I: An estimate to qualify the upper levels of |
---|
| 1788 | ! the model where one wants to impose strees |
---|
| 1789 | ! profiles |
---|
| 1790 | ! -GSSECC--R: Security min value for low-level B-V frequency |
---|
| 1791 | ! -GTSEC---R: Security min value for anisotropy and GW stress. |
---|
| 1792 | ! -GVSEC---R: Security min value for ulow |
---|
| 1793 | |
---|
| 1794 | |
---|
| 1795 | ! METHOD. |
---|
| 1796 | ! ------- |
---|
| 1797 | ! SEE DOCUMENTATION |
---|
| 1798 | |
---|
| 1799 | ! EXTERNALS. |
---|
| 1800 | ! ---------- |
---|
| 1801 | ! NONE |
---|
| 1802 | |
---|
| 1803 | ! REFERENCE. |
---|
| 1804 | ! ---------- |
---|
| 1805 | ! Lott, 1999: Alleviation of stationary biases in a GCM through... |
---|
| 1806 | ! Monthly Weather Review, 127, pp 788-801. |
---|
| 1807 | |
---|
| 1808 | ! AUTHOR. |
---|
| 1809 | ! ------- |
---|
| 1810 | ! FRANCOIS LOTT *LMD* |
---|
| 1811 | |
---|
| 1812 | ! MODIFICATIONS. |
---|
| 1813 | ! -------------- |
---|
| 1814 | ! ORIGINAL : 90-01-01 (MARTIN MILLER, ECMWF) |
---|
| 1815 | ! LAST: 99-07-09 (FRANCOIS LOTT,LMD) |
---|
| 1816 | ! ------------------------------------------------------------------ |
---|
[5309] | 1817 | USE yoegwd_mod_h |
---|
| 1818 | USE dimphy |
---|
[1992] | 1819 | USE mod_phys_lmdz_para |
---|
| 1820 | USE mod_grid_phy_lmdz |
---|
[3468] | 1821 | USE geometry_mod |
---|
[1992] | 1822 | IMPLICIT NONE |
---|
| 1823 | |
---|
| 1824 | ! ----------------------------------------------------------------- |
---|
| 1825 | ! ---------------------------------------------------------------- |
---|
| 1826 | |
---|
| 1827 | ! ARGUMENTS |
---|
| 1828 | INTEGER nlon, nlev |
---|
| 1829 | REAL paprs(nlon, nlev+1) |
---|
| 1830 | REAL pplay(nlon, nlev) |
---|
| 1831 | |
---|
| 1832 | INTEGER jk |
---|
| 1833 | REAL zpr, ztop, zsigt, zpm1r |
---|
[3468] | 1834 | INTEGER :: cell,ij,nstra_tmp,nktopg_tmp |
---|
| 1835 | REAL :: current_dist, dist_min,dist_min_glo |
---|
[1992] | 1836 | |
---|
| 1837 | ! * 1. SET THE VALUES OF THE PARAMETERS |
---|
| 1838 | ! -------------------------------- |
---|
| 1839 | |
---|
| 1840 | |
---|
| 1841 | PRINT *, ' DANS SUGWD NLEV=', nlev |
---|
| 1842 | ghmax = 10000. |
---|
| 1843 | |
---|
| 1844 | zpr = 100000. |
---|
[2333] | 1845 | ZTOP=0.00005 |
---|
[1992] | 1846 | zsigt = 0.94 |
---|
| 1847 | ! old ZPR=80000. |
---|
| 1848 | ! old ZSIGT=0.85 |
---|
| 1849 | |
---|
| 1850 | |
---|
[3468] | 1851 | !ym Take the point at equator close to (0,0) coordinates. |
---|
| 1852 | dist_min=360 |
---|
[3473] | 1853 | dist_min_glo=360. |
---|
[3468] | 1854 | cell=-1 |
---|
| 1855 | DO ij=1,klon |
---|
| 1856 | current_dist=sqrt(longitude_deg(ij)**2+latitude_deg(ij)**2) |
---|
| 1857 | current_dist=current_dist*(1+(1e-10*ind_cell_glo(ij))/klon_glo) ! For point unicity |
---|
| 1858 | IF (dist_min>current_dist) THEN |
---|
| 1859 | dist_min=current_dist |
---|
| 1860 | cell=ij |
---|
| 1861 | ENDIF |
---|
| 1862 | ENDDO |
---|
| 1863 | |
---|
[3586] | 1864 | !PRINT *, 'SUGWD distmin cell=', dist_min,cell |
---|
[3468] | 1865 | CALL reduce_min(dist_min,dist_min_glo) |
---|
[3586] | 1866 | CALL bcast(dist_min_glo) |
---|
[3468] | 1867 | IF (dist_min/=dist_min_glo) cell=-1 |
---|
| 1868 | !ym in future find the point at equator close to (0,0) coordinates. |
---|
[3587] | 1869 | PRINT *, 'SUGWD distmin dist_min_glo cell=', dist_min,dist_min_glo,cell |
---|
[1992] | 1870 | |
---|
[3468] | 1871 | nktopg_tmp=nktopg |
---|
| 1872 | nstra_tmp=nstra |
---|
| 1873 | |
---|
| 1874 | IF (cell/=-1) THEN |
---|
| 1875 | |
---|
[3587] | 1876 | !print*,'SUGWD shape ',shape(pplay),cell+1 |
---|
| 1877 | |
---|
[3468] | 1878 | DO jk = 1, nlev |
---|
[3587] | 1879 | !zpm1r = pplay(cell+1, jk)/paprs(cell+1, 1) |
---|
| 1880 | zpm1r = pplay(cell, jk)/paprs(cell, 1) |
---|
[3468] | 1881 | IF (zpm1r>=zsigt) THEN |
---|
| 1882 | nktopg_tmp = jk |
---|
| 1883 | END IF |
---|
| 1884 | IF (zpm1r>=ztop) THEN |
---|
| 1885 | nstra_tmp = jk |
---|
| 1886 | END IF |
---|
| 1887 | END DO |
---|
| 1888 | ELSE |
---|
| 1889 | nktopg_tmp=0 |
---|
| 1890 | nstra_tmp=0 |
---|
| 1891 | ENDIF |
---|
| 1892 | |
---|
| 1893 | CALL reduce_sum(nktopg_tmp,nktopg) |
---|
| 1894 | CALL bcast(nktopg) |
---|
| 1895 | CALL reduce_sum(nstra_tmp,nstra) |
---|
| 1896 | CALL bcast(nstra) |
---|
| 1897 | |
---|
[1992] | 1898 | ! inversion car dans orodrag on compte les niveaux a l'envers |
---|
| 1899 | nktopg = nlev - nktopg + 1 |
---|
| 1900 | nstra = nlev - nstra |
---|
| 1901 | PRINT *, ' DANS SUGWD nktopg=', nktopg |
---|
| 1902 | PRINT *, ' DANS SUGWD nstra=', nstra |
---|
[2311] | 1903 | if (nstra == 0) call abort_physic("sugwd_strato", "no level in stratosphere", 1) |
---|
[1992] | 1904 | |
---|
[2357] | 1905 | ! Valeurs lues dans les .def, ou attribues dans conf_phys |
---|
| 1906 | !gkdrag = 0.2 |
---|
| 1907 | !grahilo = 0.1 |
---|
| 1908 | !grcrit = 1.00 |
---|
| 1909 | !gfrcrit = 0.70 |
---|
| 1910 | !gkwake = 0.40 |
---|
| 1911 | !gklift = 0.25 |
---|
[1992] | 1912 | |
---|
[2357] | 1913 | gsigcr = 0.80 ! Top of low level flow |
---|
[1992] | 1914 | gvcrit = 0.1 |
---|
| 1915 | |
---|
| 1916 | WRITE (UNIT=6, FMT='('' *** SSO essential constants ***'')') |
---|
| 1917 | WRITE (UNIT=6, FMT='('' *** SPECIFIED IN SUGWD ***'')') |
---|
| 1918 | WRITE (UNIT=6, FMT='('' Gravity wave ct '',E13.7,'' '')') gkdrag |
---|
| 1919 | WRITE (UNIT=6, FMT='('' Trapped/total wave dag '',E13.7,'' '')') grahilo |
---|
| 1920 | WRITE (UNIT=6, FMT='('' Critical Richardson = '',E13.7,'' '')') grcrit |
---|
| 1921 | WRITE (UNIT=6, FMT='('' Critical Froude'',e13.7)') gfrcrit |
---|
| 1922 | WRITE (UNIT=6, FMT='('' Low level Wake bluff cte'',e13.7)') gkwake |
---|
| 1923 | WRITE (UNIT=6, FMT='('' Low level lift cte'',e13.7)') gklift |
---|
| 1924 | |
---|
| 1925 | ! ---------------------------------------------------------------- |
---|
| 1926 | |
---|
| 1927 | ! * 2. SET VALUES OF SECURITY PARAMETERS |
---|
| 1928 | ! --------------------------------- |
---|
| 1929 | |
---|
| 1930 | |
---|
| 1931 | gvsec = 0.10 |
---|
| 1932 | gssec = 0.0001 |
---|
| 1933 | |
---|
| 1934 | gtsec = 0.00001 |
---|
| 1935 | |
---|
| 1936 | RETURN |
---|
[3468] | 1937 | END SUBROUTINE sugwd_strato |
---|