1 | |
---|
2 | ! $Id: orografi.f90 5309 2024-11-01 11:39:44Z ymeurdesoif $ |
---|
3 | |
---|
4 | SUBROUTINE drag_noro(nlon, nlev, dtime, paprs, pplay, pmea, pstd, psig, pgam, & |
---|
5 | pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, pvlow, pustr, pvstr, & |
---|
6 | d_t, d_u, d_v) |
---|
7 | |
---|
8 | USE dimphy |
---|
9 | USE yomcst_mod_h |
---|
10 | IMPLICIT NONE |
---|
11 | ! ====================================================================== |
---|
12 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
13 | ! Objet: Frottement de la montagne Interface |
---|
14 | ! ====================================================================== |
---|
15 | ! Arguments: |
---|
16 | ! dtime---input-R- pas d'integration (s) |
---|
17 | ! paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
18 | ! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
19 | ! t-------input-R-temperature (K) |
---|
20 | ! u-------input-R-vitesse horizontale (m/s) |
---|
21 | ! v-------input-R-vitesse horizontale (m/s) |
---|
22 | |
---|
23 | ! d_t-----output-R-increment de la temperature |
---|
24 | ! d_u-----output-R-increment de la vitesse u |
---|
25 | ! d_v-----output-R-increment de la vitesse v |
---|
26 | ! ====================================================================== |
---|
27 | |
---|
28 | |
---|
29 | ! ARGUMENTS |
---|
30 | |
---|
31 | INTEGER nlon, nlev |
---|
32 | REAL dtime |
---|
33 | REAL paprs(klon, klev+1) |
---|
34 | REAL pplay(klon, klev) |
---|
35 | REAL pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
---|
36 | REAL ppic(nlon), pval(nlon) |
---|
37 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
38 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
39 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
40 | |
---|
41 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
42 | |
---|
43 | ! Variables locales: |
---|
44 | |
---|
45 | REAL zgeom(klon, klev) |
---|
46 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
47 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
48 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
49 | |
---|
50 | ! initialiser les variables de sortie (pour securite) |
---|
51 | |
---|
52 | DO i = 1, klon |
---|
53 | pulow(i) = 0.0 |
---|
54 | pvlow(i) = 0.0 |
---|
55 | pustr(i) = 0.0 |
---|
56 | pvstr(i) = 0.0 |
---|
57 | END DO |
---|
58 | DO k = 1, klev |
---|
59 | DO i = 1, klon |
---|
60 | d_t(i, k) = 0.0 |
---|
61 | d_u(i, k) = 0.0 |
---|
62 | d_v(i, k) = 0.0 |
---|
63 | pdudt(i, k) = 0.0 |
---|
64 | pdvdt(i, k) = 0.0 |
---|
65 | pdtdt(i, k) = 0.0 |
---|
66 | END DO |
---|
67 | END DO |
---|
68 | |
---|
69 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
70 | ! verticaux augmente du haut vers le bas) |
---|
71 | |
---|
72 | DO k = 1, klev |
---|
73 | DO i = 1, klon |
---|
74 | pt(i, k) = t(i, klev-k+1) |
---|
75 | pu(i, k) = u(i, klev-k+1) |
---|
76 | pv(i, k) = v(i, klev-k+1) |
---|
77 | papmf(i, k) = pplay(i, klev-k+1) |
---|
78 | END DO |
---|
79 | END DO |
---|
80 | DO k = 1, klev + 1 |
---|
81 | DO i = 1, klon |
---|
82 | papmh(i, k) = paprs(i, klev-k+2) |
---|
83 | END DO |
---|
84 | END DO |
---|
85 | DO i = 1, klon |
---|
86 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
87 | END DO |
---|
88 | DO k = klev - 1, 1, -1 |
---|
89 | DO i = 1, klon |
---|
90 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
91 | 1)/papmf(i,k)) |
---|
92 | END DO |
---|
93 | END DO |
---|
94 | |
---|
95 | ! appeler la routine principale |
---|
96 | |
---|
97 | CALL orodrag(klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, zgeom, pt, & |
---|
98 | pu, pv, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, pvlow, pdudt, & |
---|
99 | pdvdt, pdtdt) |
---|
100 | |
---|
101 | DO k = 1, klev |
---|
102 | DO i = 1, klon |
---|
103 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
104 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
105 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
106 | pustr(i) = pustr(i) & ! IM BUG . |
---|
107 | ! +rg*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
108 | +pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
109 | pvstr(i) = pvstr(i) & ! IM BUG . |
---|
110 | ! +rg*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
111 | +pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
112 | END DO |
---|
113 | END DO |
---|
114 | |
---|
115 | RETURN |
---|
116 | END SUBROUTINE drag_noro |
---|
117 | SUBROUTINE orodrag(nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, papm1, & |
---|
118 | pgeom1, ptm1, pum1, pvm1, pmea, pstd, psig, pgamma, ptheta, ppic, pval & |
---|
119 | ! outputs |
---|
120 | , pulow, pvlow, pvom, pvol, pte) |
---|
121 | |
---|
122 | USE yomcst_mod_h |
---|
123 | USE dimphy |
---|
124 | USE yoegwd_mod_h |
---|
125 | IMPLICIT NONE |
---|
126 | |
---|
127 | |
---|
128 | |
---|
129 | ! **** *gwdrag* - does the gravity wave parametrization. |
---|
130 | |
---|
131 | ! purpose. |
---|
132 | ! -------- |
---|
133 | |
---|
134 | ! this routine computes the physical tendencies of the |
---|
135 | ! prognostic variables u,v and t due to vertical transports by |
---|
136 | ! subgridscale orographically excited gravity waves |
---|
137 | |
---|
138 | ! ** interface. |
---|
139 | ! ---------- |
---|
140 | ! called from *callpar*. |
---|
141 | |
---|
142 | ! the routine takes its input from the long-term storage: |
---|
143 | ! u,v,t and p at t-1. |
---|
144 | |
---|
145 | ! explicit arguments : |
---|
146 | ! -------------------- |
---|
147 | ! ==== inputs === |
---|
148 | ! ==== outputs === |
---|
149 | |
---|
150 | ! implicit arguments : none |
---|
151 | ! -------------------- |
---|
152 | |
---|
153 | ! implicit logical (l) |
---|
154 | |
---|
155 | ! method. |
---|
156 | ! ------- |
---|
157 | |
---|
158 | ! externals. |
---|
159 | ! ---------- |
---|
160 | INTEGER ismin, ismax |
---|
161 | EXTERNAL ismin, ismax |
---|
162 | |
---|
163 | ! reference. |
---|
164 | ! ---------- |
---|
165 | |
---|
166 | ! author. |
---|
167 | ! ------- |
---|
168 | ! m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
169 | |
---|
170 | ! f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
171 | ! ----------------------------------------------------------------------- |
---|
172 | |
---|
173 | ! * 0.1 arguments |
---|
174 | ! --------- |
---|
175 | |
---|
176 | |
---|
177 | ! ym integer nlon, nlev, klevm1 |
---|
178 | INTEGER nlon, nlev |
---|
179 | INTEGER kgwd, jl, ilevp1, jk, ji |
---|
180 | REAL zdelp, ztemp, zforc, ztend |
---|
181 | REAL rover, zb, zc, zconb, zabsv |
---|
182 | REAL zzd1, ratio, zbet, zust, zvst, zdis |
---|
183 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(klon), & |
---|
184 | pvlow(klon) |
---|
185 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), pmea(nlon), & |
---|
186 | pstd(nlon), psig(nlon), pgamma(nlon), ptheta(nlon), ppic(nlon), & |
---|
187 | pval(nlon), pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev+1) |
---|
188 | |
---|
189 | INTEGER kdx(nlon), ktest(nlon) |
---|
190 | ! ----------------------------------------------------------------------- |
---|
191 | |
---|
192 | ! * 0.2 local arrays |
---|
193 | ! ------------ |
---|
194 | INTEGER isect(klon), icrit(klon), ikcrith(klon), ikenvh(klon), iknu(klon), & |
---|
195 | iknu2(klon), ikcrit(klon), ikhlim(klon) |
---|
196 | |
---|
197 | REAL ztau(klon, klev+1), ztauf(klon, klev+1), zstab(klon, klev+1), & |
---|
198 | zvph(klon, klev+1), zrho(klon, klev+1), zri(klon, klev+1), & |
---|
199 | zpsi(klon, klev+1), zzdep(klon, klev) |
---|
200 | REAL zdudt(klon), zdvdt(klon), zdtdt(klon), zdedt(klon), zvidis(klon), & |
---|
201 | znu(klon), zd1(klon), zd2(klon), zdmod(klon) |
---|
202 | REAL ztmst, ptsphy, zrtmst |
---|
203 | |
---|
204 | ! ------------------------------------------------------------------ |
---|
205 | |
---|
206 | ! * 1. initialization |
---|
207 | ! -------------- |
---|
208 | |
---|
209 | |
---|
210 | ! ------------------------------------------------------------------ |
---|
211 | |
---|
212 | ! * 1.1 computational constants |
---|
213 | ! ----------------------- |
---|
214 | |
---|
215 | |
---|
216 | ! ztmst=twodt |
---|
217 | ! if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
218 | ! ym klevm1=klev-1 |
---|
219 | ztmst = ptsphy |
---|
220 | zrtmst = 1./ztmst |
---|
221 | |
---|
222 | ! ------------------------------------------------------------------ |
---|
223 | |
---|
224 | ! * 1.3 check whether row contains point for printing |
---|
225 | ! --------------------------------------------- |
---|
226 | |
---|
227 | |
---|
228 | ! ------------------------------------------------------------------ |
---|
229 | |
---|
230 | ! * 2. precompute basic state variables. |
---|
231 | ! * ---------- ----- ----- ---------- |
---|
232 | ! * define low level wind, project winds in plane of |
---|
233 | ! * low level wind, determine sector in which to take |
---|
234 | ! * the variance and set indicator for critical levels. |
---|
235 | |
---|
236 | |
---|
237 | |
---|
238 | |
---|
239 | CALL orosetup(nlon, ktest, ikcrit, ikcrith, icrit, ikenvh, iknu, iknu2, & |
---|
240 | paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, zrho, zri, zstab, ztau, & |
---|
241 | zvph, zpsi, zzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, znu, & |
---|
242 | zd1, zd2, zdmod) |
---|
243 | |
---|
244 | ! *********************************************************** |
---|
245 | |
---|
246 | |
---|
247 | ! * 3. compute low level stresses using subcritical and |
---|
248 | ! * supercritical forms.computes anisotropy coefficient |
---|
249 | ! * as measure of orographic twodimensionality. |
---|
250 | |
---|
251 | |
---|
252 | CALL gwstress(nlon, nlev, ktest, icrit, ikenvh, iknu, zrho, zstab, zvph, & |
---|
253 | pstd, psig, pmea, ppic, ztau, pgeom1, zdmod) |
---|
254 | |
---|
255 | ! * 4. compute stress profile. |
---|
256 | ! * ------- ------ -------- |
---|
257 | |
---|
258 | |
---|
259 | |
---|
260 | CALL gwprofil(nlon, nlev, kgwd, kdx, ktest, ikcrith, icrit, paphm1, zrho, & |
---|
261 | zstab, zvph, zri, ztau, zdmod, psig, pstd) |
---|
262 | |
---|
263 | ! * 5. compute tendencies. |
---|
264 | ! * ------------------- |
---|
265 | |
---|
266 | |
---|
267 | ! explicit solution at all levels for the gravity wave |
---|
268 | ! implicit solution for the blocked levels |
---|
269 | |
---|
270 | DO jl = kidia, kfdia |
---|
271 | zvidis(jl) = 0.0 |
---|
272 | zdudt(jl) = 0.0 |
---|
273 | zdvdt(jl) = 0.0 |
---|
274 | zdtdt(jl) = 0.0 |
---|
275 | END DO |
---|
276 | |
---|
277 | ilevp1 = klev + 1 |
---|
278 | |
---|
279 | |
---|
280 | DO jk = 1, klev |
---|
281 | |
---|
282 | |
---|
283 | ! do 523 jl=1,kgwd |
---|
284 | ! ji=kdx(jl) |
---|
285 | ! Modif vectorisation 02/04/2004 |
---|
286 | DO ji = kidia, kfdia |
---|
287 | IF (ktest(ji)==1) THEN |
---|
288 | |
---|
289 | zdelp = paphm1(ji, jk+1) - paphm1(ji, jk) |
---|
290 | ztemp = -rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,ilevp1)*zdelp) |
---|
291 | zdudt(ji) = (pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
292 | zdvdt(ji) = (pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
293 | |
---|
294 | ! controle des overshoots: |
---|
295 | |
---|
296 | zforc = sqrt(zdudt(ji)**2+zdvdt(ji)**2) + 1.E-12 |
---|
297 | ztend = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst + 1.E-12 |
---|
298 | rover = 0.25 |
---|
299 | IF (zforc>=rover*ztend) THEN |
---|
300 | zdudt(ji) = rover*ztend/zforc*zdudt(ji) |
---|
301 | zdvdt(ji) = rover*ztend/zforc*zdvdt(ji) |
---|
302 | END IF |
---|
303 | |
---|
304 | ! fin du controle des overshoots |
---|
305 | |
---|
306 | IF (jk>=ikenvh(ji)) THEN |
---|
307 | zb = 1.0 - 0.18*pgamma(ji) - 0.04*pgamma(ji)**2 |
---|
308 | zc = 0.48*pgamma(ji) + 0.3*pgamma(ji)**2 |
---|
309 | zconb = 2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
---|
310 | zabsv = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
311 | zzd1 = zb*cos(zpsi(ji,jk))**2 + zc*sin(zpsi(ji,jk))**2 |
---|
312 | ratio = (cos(zpsi(ji,jk))**2+pgamma(ji)*sin(zpsi(ji, & |
---|
313 | jk))**2)/(pgamma(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
314 | zbet = max(0., 2.-1./ratio)*zconb*zzdep(ji, jk)*zzd1*zabsv |
---|
315 | |
---|
316 | ! simplement oppose au vent |
---|
317 | |
---|
318 | zdudt(ji) = -pum1(ji, jk)/ztmst |
---|
319 | zdvdt(ji) = -pvm1(ji, jk)/ztmst |
---|
320 | |
---|
321 | ! projection dans la direction de l'axe principal de l'orographie |
---|
322 | ! mod zdudt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
323 | ! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
324 | ! mod * *cos(ptheta(ji)*rpi/180.)/ztmst |
---|
325 | ! mod zdvdt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
326 | ! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
327 | ! mod * *sin(ptheta(ji)*rpi/180.)/ztmst |
---|
328 | zdudt(ji) = zdudt(ji)*(zbet/(1.+zbet)) |
---|
329 | zdvdt(ji) = zdvdt(ji)*(zbet/(1.+zbet)) |
---|
330 | END IF |
---|
331 | pvom(ji, jk) = zdudt(ji) |
---|
332 | pvol(ji, jk) = zdvdt(ji) |
---|
333 | zust = pum1(ji, jk) + ztmst*zdudt(ji) |
---|
334 | zvst = pvm1(ji, jk) + ztmst*zdvdt(ji) |
---|
335 | zdis = 0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
336 | zdedt(ji) = zdis/ztmst |
---|
337 | zvidis(ji) = zvidis(ji) + zdis*zdelp |
---|
338 | zdtdt(ji) = zdedt(ji)/rcpd |
---|
339 | ! pte(ji,jk)=zdtdt(ji) |
---|
340 | |
---|
341 | ! ENCORE UN TRUC POUR EVITER LES EXPLOSIONS |
---|
342 | |
---|
343 | pte(ji, jk) = 0.0 |
---|
344 | |
---|
345 | END IF |
---|
346 | END DO |
---|
347 | |
---|
348 | END DO |
---|
349 | |
---|
350 | |
---|
351 | RETURN |
---|
352 | END SUBROUTINE orodrag |
---|
353 | SUBROUTINE orosetup(nlon, ktest, kkcrit, kkcrith, kcrit, kkenvh, kknu, kknu2, & |
---|
354 | paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, prho, pri, pstab, ptau, & |
---|
355 | pvph, ppsi, pzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, pnu, & |
---|
356 | pd1, pd2, pdmod) |
---|
357 | |
---|
358 | ! **** *gwsetup* |
---|
359 | |
---|
360 | ! purpose. |
---|
361 | ! -------- |
---|
362 | |
---|
363 | ! ** interface. |
---|
364 | ! ---------- |
---|
365 | ! from *orodrag* |
---|
366 | |
---|
367 | ! explicit arguments : |
---|
368 | ! -------------------- |
---|
369 | ! ==== inputs === |
---|
370 | ! ==== outputs === |
---|
371 | |
---|
372 | ! implicit arguments : none |
---|
373 | ! -------------------- |
---|
374 | |
---|
375 | ! method. |
---|
376 | ! ------- |
---|
377 | |
---|
378 | |
---|
379 | ! externals. |
---|
380 | ! ---------- |
---|
381 | |
---|
382 | |
---|
383 | ! reference. |
---|
384 | ! ---------- |
---|
385 | |
---|
386 | ! see ecmwf research department documentation of the "i.f.s." |
---|
387 | |
---|
388 | ! author. |
---|
389 | ! ------- |
---|
390 | |
---|
391 | ! modifications. |
---|
392 | ! -------------- |
---|
393 | ! f.lott for the new-gwdrag scheme november 1993 |
---|
394 | |
---|
395 | ! ----------------------------------------------------------------------- |
---|
396 | USE yoegwd_mod_h |
---|
397 | USE dimphy |
---|
398 | USE yomcst_mod_h |
---|
399 | IMPLICIT NONE |
---|
400 | |
---|
401 | |
---|
402 | |
---|
403 | |
---|
404 | ! ----------------------------------------------------------------------- |
---|
405 | |
---|
406 | ! * 0.1 arguments |
---|
407 | ! --------- |
---|
408 | |
---|
409 | INTEGER nlon |
---|
410 | INTEGER jl, jk |
---|
411 | REAL zdelp |
---|
412 | |
---|
413 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ktest(nlon), kkenvh(nlon) |
---|
414 | |
---|
415 | |
---|
416 | REAL paphm1(nlon, klev+1), papm1(nlon, klev), pum1(nlon, klev), & |
---|
417 | pvm1(nlon, klev), ptm1(nlon, klev), pgeom1(nlon, klev), & |
---|
418 | prho(nlon, klev+1), pri(nlon, klev+1), pstab(nlon, klev+1), & |
---|
419 | ptau(nlon, klev+1), pvph(nlon, klev+1), ppsi(nlon, klev+1), & |
---|
420 | pzdep(nlon, klev) |
---|
421 | REAL pulow(nlon), pvlow(nlon), ptheta(nlon), pgamma(nlon), pnu(nlon), & |
---|
422 | pd1(nlon), pd2(nlon), pdmod(nlon) |
---|
423 | REAL pstd(nlon), pmea(nlon), ppic(nlon), pval(nlon) |
---|
424 | |
---|
425 | ! ----------------------------------------------------------------------- |
---|
426 | |
---|
427 | ! * 0.2 local arrays |
---|
428 | ! ------------ |
---|
429 | |
---|
430 | |
---|
431 | INTEGER ilevm1, ilevm2, ilevh |
---|
432 | REAL zcons1, zcons2, zcons3, zhgeo |
---|
433 | REAL zu, zphi, zvt1, zvt2, zst, zvar, zdwind, zwind |
---|
434 | REAL zstabm, zstabp, zrhom, zrhop, alpha |
---|
435 | REAL zggeenv, zggeom1, zgvar |
---|
436 | LOGICAL lo |
---|
437 | LOGICAL ll1(klon, klev+1) |
---|
438 | INTEGER kknu(klon), kknu2(klon), kknub(klon), kknul(klon), kentp(klon), & |
---|
439 | ncount(klon) |
---|
440 | |
---|
441 | REAL zhcrit(klon, klev), zvpf(klon, klev), zdp(klon, klev) |
---|
442 | REAL znorm(klon), zb(klon), zc(klon), zulow(klon), zvlow(klon), znup(klon), & |
---|
443 | znum(klon) |
---|
444 | |
---|
445 | ! ------------------------------------------------------------------ |
---|
446 | |
---|
447 | ! * 1. initialization |
---|
448 | ! -------------- |
---|
449 | |
---|
450 | ! print *,' entree gwsetup' |
---|
451 | |
---|
452 | ! ------------------------------------------------------------------ |
---|
453 | |
---|
454 | ! * 1.1 computational constants |
---|
455 | ! ----------------------- |
---|
456 | |
---|
457 | |
---|
458 | ilevm1 = klev - 1 |
---|
459 | ilevm2 = klev - 2 |
---|
460 | ilevh = klev/3 |
---|
461 | |
---|
462 | zcons1 = 1./rd |
---|
463 | ! old zcons2=g**2/cpd |
---|
464 | zcons2 = rg**2/rcpd |
---|
465 | ! old zcons3=1.5*api |
---|
466 | zcons3 = 1.5*rpi |
---|
467 | |
---|
468 | ! ------------------------------------------------------------------ |
---|
469 | |
---|
470 | ! * 2. |
---|
471 | ! -------------- |
---|
472 | |
---|
473 | |
---|
474 | ! ------------------------------------------------------------------ |
---|
475 | |
---|
476 | ! * 2.1 define low level wind, project winds in plane of |
---|
477 | ! * low level wind, determine sector in which to take |
---|
478 | ! * the variance and set indicator for critical levels. |
---|
479 | |
---|
480 | |
---|
481 | |
---|
482 | DO jl = kidia, kfdia |
---|
483 | kknu(jl) = klev |
---|
484 | kknu2(jl) = klev |
---|
485 | kknub(jl) = klev |
---|
486 | kknul(jl) = klev |
---|
487 | pgamma(jl) = max(pgamma(jl), gtsec) |
---|
488 | ll1(jl, klev+1) = .FALSE. |
---|
489 | END DO |
---|
490 | |
---|
491 | ! Ajouter une initialisation (L. Li, le 23fev99): |
---|
492 | |
---|
493 | DO jk = klev, ilevh, -1 |
---|
494 | DO jl = kidia, kfdia |
---|
495 | ll1(jl, jk) = .FALSE. |
---|
496 | END DO |
---|
497 | END DO |
---|
498 | |
---|
499 | ! * define top of low level flow |
---|
500 | ! ---------------------------- |
---|
501 | DO jk = klev, ilevh, -1 |
---|
502 | DO jl = kidia, kfdia |
---|
503 | lo = (paphm1(jl,jk)/paphm1(jl,klev+1)) >= gsigcr |
---|
504 | IF (lo) THEN |
---|
505 | kkcrit(jl) = jk |
---|
506 | END IF |
---|
507 | zhcrit(jl, jk) = ppic(jl) |
---|
508 | zhgeo = pgeom1(jl, jk)/rg |
---|
509 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
510 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
511 | kknu(jl) = jk |
---|
512 | END IF |
---|
513 | IF (.NOT. ll1(jl,ilevh)) kknu(jl) = ilevh |
---|
514 | END DO |
---|
515 | END DO |
---|
516 | DO jk = klev, ilevh, -1 |
---|
517 | DO jl = kidia, kfdia |
---|
518 | zhcrit(jl, jk) = ppic(jl) - pval(jl) |
---|
519 | zhgeo = pgeom1(jl, jk)/rg |
---|
520 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
521 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
522 | kknu2(jl) = jk |
---|
523 | END IF |
---|
524 | IF (.NOT. ll1(jl,ilevh)) kknu2(jl) = ilevh |
---|
525 | END DO |
---|
526 | END DO |
---|
527 | DO jk = klev, ilevh, -1 |
---|
528 | DO jl = kidia, kfdia |
---|
529 | zhcrit(jl, jk) = amax1(ppic(jl)-pmea(jl), pmea(jl)-pval(jl)) |
---|
530 | zhgeo = pgeom1(jl, jk)/rg |
---|
531 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
532 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
533 | kknub(jl) = jk |
---|
534 | END IF |
---|
535 | IF (.NOT. ll1(jl,ilevh)) kknub(jl) = ilevh |
---|
536 | END DO |
---|
537 | END DO |
---|
538 | |
---|
539 | DO jl = kidia, kfdia |
---|
540 | kknu(jl) = min(kknu(jl), nktopg) |
---|
541 | kknu2(jl) = min(kknu2(jl), nktopg) |
---|
542 | kknub(jl) = min(kknub(jl), nktopg) |
---|
543 | kknul(jl) = klev |
---|
544 | END DO |
---|
545 | |
---|
546 | ! c* initialize various arrays |
---|
547 | |
---|
548 | DO jl = kidia, kfdia |
---|
549 | prho(jl, klev+1) = 0.0 |
---|
550 | pstab(jl, klev+1) = 0.0 |
---|
551 | pstab(jl, 1) = 0.0 |
---|
552 | pri(jl, klev+1) = 9999.0 |
---|
553 | ppsi(jl, klev+1) = 0.0 |
---|
554 | pri(jl, 1) = 0.0 |
---|
555 | pvph(jl, 1) = 0.0 |
---|
556 | pulow(jl) = 0.0 |
---|
557 | pvlow(jl) = 0.0 |
---|
558 | zulow(jl) = 0.0 |
---|
559 | zvlow(jl) = 0.0 |
---|
560 | kkcrith(jl) = klev |
---|
561 | kkenvh(jl) = klev |
---|
562 | kentp(jl) = klev |
---|
563 | kcrit(jl) = 1 |
---|
564 | ncount(jl) = 0 |
---|
565 | ll1(jl, klev+1) = .FALSE. |
---|
566 | END DO |
---|
567 | |
---|
568 | ! * define low-level flow |
---|
569 | ! --------------------- |
---|
570 | |
---|
571 | DO jk = klev, 2, -1 |
---|
572 | DO jl = kidia, kfdia |
---|
573 | IF (ktest(jl)==1) THEN |
---|
574 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
575 | prho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
576 | pstab(jl, jk) = 2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* & |
---|
577 | (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
578 | pstab(jl, jk) = max(pstab(jl,jk), gssec) |
---|
579 | END IF |
---|
580 | END DO |
---|
581 | END DO |
---|
582 | |
---|
583 | ! ******************************************************************** |
---|
584 | |
---|
585 | ! * define blocked flow |
---|
586 | ! ------------------- |
---|
587 | DO jk = klev, ilevh, -1 |
---|
588 | DO jl = kidia, kfdia |
---|
589 | IF (jk>=kknub(jl) .AND. jk<=kknul(jl)) THEN |
---|
590 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
591 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
592 | END IF |
---|
593 | END DO |
---|
594 | END DO |
---|
595 | DO jl = kidia, kfdia |
---|
596 | pulow(jl) = pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
597 | pvlow(jl) = pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
598 | znorm(jl) = max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
599 | pvph(jl, klev+1) = znorm(jl) |
---|
600 | END DO |
---|
601 | |
---|
602 | ! ******* setup orography axes and define plane of profiles ******* |
---|
603 | |
---|
604 | DO jl = kidia, kfdia |
---|
605 | lo = (pulow(jl)<gvsec) .AND. (pulow(jl)>=-gvsec) |
---|
606 | IF (lo) THEN |
---|
607 | zu = pulow(jl) + 2.*gvsec |
---|
608 | ELSE |
---|
609 | zu = pulow(jl) |
---|
610 | END IF |
---|
611 | zphi = atan(pvlow(jl)/zu) |
---|
612 | ppsi(jl, klev+1) = ptheta(jl)*rpi/180. - zphi |
---|
613 | zb(jl) = 1. - 0.18*pgamma(jl) - 0.04*pgamma(jl)**2 |
---|
614 | zc(jl) = 0.48*pgamma(jl) + 0.3*pgamma(jl)**2 |
---|
615 | pd1(jl) = zb(jl) - (zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
616 | pd2(jl) = (zb(jl)-zc(jl))*sin(ppsi(jl,klev+1))*cos(ppsi(jl,klev+1)) |
---|
617 | pdmod(jl) = sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
618 | END DO |
---|
619 | |
---|
620 | ! ************ define flow in plane of lowlevel stress ************* |
---|
621 | |
---|
622 | DO jk = 1, klev |
---|
623 | DO jl = kidia, kfdia |
---|
624 | IF (ktest(jl)==1) THEN |
---|
625 | zvt1 = pulow(jl)*pum1(jl, jk) + pvlow(jl)*pvm1(jl, jk) |
---|
626 | zvt2 = -pvlow(jl)*pum1(jl, jk) + pulow(jl)*pvm1(jl, jk) |
---|
627 | zvpf(jl, jk) = (zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
628 | END IF |
---|
629 | ptau(jl, jk) = 0.0 |
---|
630 | pzdep(jl, jk) = 0.0 |
---|
631 | ppsi(jl, jk) = 0.0 |
---|
632 | ll1(jl, jk) = .FALSE. |
---|
633 | END DO |
---|
634 | END DO |
---|
635 | DO jk = 2, klev |
---|
636 | DO jl = kidia, kfdia |
---|
637 | IF (ktest(jl)==1) THEN |
---|
638 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
639 | pvph(jl, jk) = ((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+(papm1(jl, & |
---|
640 | jk)-paphm1(jl,jk))*zvpf(jl,jk-1))/zdp(jl, jk) |
---|
641 | IF (pvph(jl,jk)<gvsec) THEN |
---|
642 | pvph(jl, jk) = gvsec |
---|
643 | kcrit(jl) = jk |
---|
644 | END IF |
---|
645 | END IF |
---|
646 | END DO |
---|
647 | END DO |
---|
648 | |
---|
649 | ! * 2.2 brunt-vaisala frequency and density at half levels. |
---|
650 | |
---|
651 | |
---|
652 | DO jk = ilevh, klev |
---|
653 | DO jl = kidia, kfdia |
---|
654 | IF (ktest(jl)==1) THEN |
---|
655 | IF (jk>=(kknub(jl)+1) .AND. jk<=kknul(jl)) THEN |
---|
656 | zst = zcons2/ptm1(jl, jk)*(1.-rcpd*prho(jl,jk)*(ptm1(jl, & |
---|
657 | jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
658 | pstab(jl, klev+1) = pstab(jl, klev+1) + zst*zdp(jl, jk) |
---|
659 | pstab(jl, klev+1) = max(pstab(jl,klev+1), gssec) |
---|
660 | prho(jl, klev+1) = prho(jl, klev+1) + paphm1(jl, jk)*2.*zdp(jl, jk) & |
---|
661 | *zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
662 | END IF |
---|
663 | END IF |
---|
664 | END DO |
---|
665 | END DO |
---|
666 | |
---|
667 | DO jl = kidia, kfdia |
---|
668 | pstab(jl, klev+1) = pstab(jl, klev+1)/(papm1(jl,kknul(jl))-papm1(jl,kknub & |
---|
669 | (jl))) |
---|
670 | prho(jl, klev+1) = prho(jl, klev+1)/(papm1(jl,kknul(jl))-papm1(jl,kknub( & |
---|
671 | jl))) |
---|
672 | zvar = pstd(jl) |
---|
673 | END DO |
---|
674 | |
---|
675 | ! * 2.3 mean flow richardson number. |
---|
676 | ! * and critical height for froude layer |
---|
677 | |
---|
678 | |
---|
679 | DO jk = 2, klev |
---|
680 | DO jl = kidia, kfdia |
---|
681 | IF (ktest(jl)==1) THEN |
---|
682 | zdwind = max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)), gvsec) |
---|
683 | pri(jl, jk) = pstab(jl, jk)*(zdp(jl,jk)/(rg*prho(jl,jk)*zdwind))**2 |
---|
684 | pri(jl, jk) = max(pri(jl,jk), grcrit) |
---|
685 | END IF |
---|
686 | END DO |
---|
687 | END DO |
---|
688 | |
---|
689 | |
---|
690 | |
---|
691 | ! * define top of 'envelope' layer |
---|
692 | ! ---------------------------- |
---|
693 | |
---|
694 | DO jl = kidia, kfdia |
---|
695 | pnu(jl) = 0.0 |
---|
696 | znum(jl) = 0.0 |
---|
697 | END DO |
---|
698 | |
---|
699 | DO jk = 2, klev - 1 |
---|
700 | DO jl = kidia, kfdia |
---|
701 | |
---|
702 | IF (ktest(jl)==1) THEN |
---|
703 | |
---|
704 | IF (jk>=kknub(jl)) THEN |
---|
705 | |
---|
706 | znum(jl) = pnu(jl) |
---|
707 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
708 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
709 | zwind = max(sqrt(zwind**2), gvsec) |
---|
710 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
711 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
712 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
713 | zrhom = prho(jl, jk) |
---|
714 | zrhop = prho(jl, jk+1) |
---|
715 | pnu(jl) = pnu(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
716 | zwind |
---|
717 | IF ((znum(jl)<=gfrcrit) .AND. (pnu(jl)>gfrcrit) .AND. (kkenvh( & |
---|
718 | jl)==klev)) kkenvh(jl) = jk |
---|
719 | |
---|
720 | END IF |
---|
721 | |
---|
722 | END IF |
---|
723 | |
---|
724 | END DO |
---|
725 | END DO |
---|
726 | |
---|
727 | ! calculation of a dynamical mixing height for the breaking |
---|
728 | ! of gravity waves: |
---|
729 | |
---|
730 | |
---|
731 | DO jl = kidia, kfdia |
---|
732 | znup(jl) = 0.0 |
---|
733 | znum(jl) = 0.0 |
---|
734 | END DO |
---|
735 | |
---|
736 | DO jk = klev - 1, 2, -1 |
---|
737 | DO jl = kidia, kfdia |
---|
738 | |
---|
739 | IF (ktest(jl)==1) THEN |
---|
740 | |
---|
741 | znum(jl) = znup(jl) |
---|
742 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
743 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
744 | zwind = max(sqrt(zwind**2), gvsec) |
---|
745 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
746 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
747 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
748 | zrhom = prho(jl, jk) |
---|
749 | zrhop = prho(jl, jk+1) |
---|
750 | znup(jl) = znup(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
751 | zwind |
---|
752 | IF ((znum(jl)<=rpi/2.) .AND. (znup(jl)>rpi/2.) .AND. (kkcrith( & |
---|
753 | jl)==klev)) kkcrith(jl) = jk |
---|
754 | |
---|
755 | END IF |
---|
756 | |
---|
757 | END DO |
---|
758 | END DO |
---|
759 | |
---|
760 | DO jl = kidia, kfdia |
---|
761 | kkcrith(jl) = min0(kkcrith(jl), kknu2(jl)) |
---|
762 | kkcrith(jl) = max0(kkcrith(jl), ilevh*2) |
---|
763 | END DO |
---|
764 | |
---|
765 | ! directional info for flow blocking ************************* |
---|
766 | |
---|
767 | DO jk = ilevh, klev |
---|
768 | DO jl = kidia, kfdia |
---|
769 | IF (jk>=kkenvh(jl)) THEN |
---|
770 | lo = (pum1(jl,jk)<gvsec) .AND. (pum1(jl,jk)>=-gvsec) |
---|
771 | IF (lo) THEN |
---|
772 | zu = pum1(jl, jk) + 2.*gvsec |
---|
773 | ELSE |
---|
774 | zu = pum1(jl, jk) |
---|
775 | END IF |
---|
776 | zphi = atan(pvm1(jl,jk)/zu) |
---|
777 | ppsi(jl, jk) = ptheta(jl)*rpi/180. - zphi |
---|
778 | END IF |
---|
779 | END DO |
---|
780 | END DO |
---|
781 | ! forms the vertical 'leakiness' ************************** |
---|
782 | |
---|
783 | alpha = 3. |
---|
784 | |
---|
785 | DO jk = ilevh, klev |
---|
786 | DO jl = kidia, kfdia |
---|
787 | IF (jk>=kkenvh(jl)) THEN |
---|
788 | zggeenv = amax1(1., (pgeom1(jl,kkenvh(jl))+pgeom1(jl, & |
---|
789 | kkenvh(jl)-1))/2.) |
---|
790 | zggeom1 = amax1(pgeom1(jl,jk), 1.) |
---|
791 | zgvar = amax1(pstd(jl)*rg, 1.) |
---|
792 | ! mod pzdep(jl,jk)=sqrt((zggeenv-zggeom1)/(zggeom1+zgvar)) |
---|
793 | pzdep(jl, jk) = (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,jk))/ & |
---|
794 | (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,klev)) |
---|
795 | END IF |
---|
796 | END DO |
---|
797 | END DO |
---|
798 | |
---|
799 | RETURN |
---|
800 | END SUBROUTINE orosetup |
---|
801 | SUBROUTINE gwstress(nlon, nlev, ktest, kcrit, kkenvh, kknu, prho, pstab, & |
---|
802 | pvph, pstd, psig, pmea, ppic, ptau, pgeom1, pdmod) |
---|
803 | |
---|
804 | ! **** *gwstress* |
---|
805 | |
---|
806 | ! purpose. |
---|
807 | ! -------- |
---|
808 | |
---|
809 | ! ** interface. |
---|
810 | ! ---------- |
---|
811 | ! call *gwstress* from *gwdrag* |
---|
812 | |
---|
813 | ! explicit arguments : |
---|
814 | ! -------------------- |
---|
815 | ! ==== inputs === |
---|
816 | ! ==== outputs === |
---|
817 | |
---|
818 | ! implicit arguments : none |
---|
819 | ! -------------------- |
---|
820 | |
---|
821 | ! method. |
---|
822 | ! ------- |
---|
823 | |
---|
824 | |
---|
825 | ! externals. |
---|
826 | ! ---------- |
---|
827 | |
---|
828 | |
---|
829 | ! reference. |
---|
830 | ! ---------- |
---|
831 | |
---|
832 | ! see ecmwf research department documentation of the "i.f.s." |
---|
833 | |
---|
834 | ! author. |
---|
835 | ! ------- |
---|
836 | |
---|
837 | ! modifications. |
---|
838 | ! -------------- |
---|
839 | ! f. lott put the new gwd on ifs 22/11/93 |
---|
840 | |
---|
841 | ! ----------------------------------------------------------------------- |
---|
842 | USE yoegwd_mod_h |
---|
843 | USE dimphy |
---|
844 | USE yomcst_mod_h |
---|
845 | IMPLICIT NONE |
---|
846 | |
---|
847 | |
---|
848 | ! ----------------------------------------------------------------------- |
---|
849 | |
---|
850 | ! * 0.1 arguments |
---|
851 | ! --------- |
---|
852 | |
---|
853 | INTEGER nlon, nlev |
---|
854 | INTEGER kcrit(nlon), ktest(nlon), kkenvh(nlon), kknu(nlon) |
---|
855 | |
---|
856 | REAL prho(nlon, nlev+1), pstab(nlon, nlev+1), ptau(nlon, nlev+1), & |
---|
857 | pvph(nlon, nlev+1), pgeom1(nlon, nlev), pstd(nlon) |
---|
858 | |
---|
859 | REAL psig(nlon) |
---|
860 | REAL pmea(nlon), ppic(nlon) |
---|
861 | REAL pdmod(nlon) |
---|
862 | |
---|
863 | ! ----------------------------------------------------------------------- |
---|
864 | |
---|
865 | ! * 0.2 local arrays |
---|
866 | ! ------------ |
---|
867 | INTEGER jl |
---|
868 | REAL zblock, zvar, zeff |
---|
869 | LOGICAL lo |
---|
870 | |
---|
871 | ! ----------------------------------------------------------------------- |
---|
872 | |
---|
873 | ! * 0.3 functions |
---|
874 | ! --------- |
---|
875 | ! ------------------------------------------------------------------ |
---|
876 | |
---|
877 | ! * 1. initialization |
---|
878 | ! -------------- |
---|
879 | |
---|
880 | |
---|
881 | ! * 3.1 gravity wave stress. |
---|
882 | |
---|
883 | |
---|
884 | |
---|
885 | DO jl = kidia, kfdia |
---|
886 | IF (ktest(jl)==1) THEN |
---|
887 | |
---|
888 | ! effective mountain height above the blocked flow |
---|
889 | |
---|
890 | IF (kkenvh(jl)==klev) THEN |
---|
891 | zblock = 0.0 |
---|
892 | ELSE |
---|
893 | zblock = (pgeom1(jl,kkenvh(jl))+pgeom1(jl,kkenvh(jl)+1))/2./rg |
---|
894 | END IF |
---|
895 | |
---|
896 | zvar = ppic(jl) - pmea(jl) |
---|
897 | zeff = amax1(0., zvar-zblock) |
---|
898 | |
---|
899 | ptau(jl, klev+1) = prho(jl, klev+1)*gkdrag*psig(jl)*zeff**2/4./ & |
---|
900 | pstd(jl)*pvph(jl, klev+1)*pdmod(jl)*sqrt(pstab(jl,klev+1)) |
---|
901 | |
---|
902 | ! too small value of stress or low level flow include critical level |
---|
903 | ! or low level flow: gravity wave stress nul. |
---|
904 | |
---|
905 | lo = (ptau(jl,klev+1)<gtsec) .OR. (kcrit(jl)>=kknu(jl)) .OR. & |
---|
906 | (pvph(jl,klev+1)<gvcrit) |
---|
907 | ! if(lo) ptau(jl,klev+1)=0.0 |
---|
908 | |
---|
909 | ELSE |
---|
910 | |
---|
911 | ptau(jl, klev+1) = 0.0 |
---|
912 | |
---|
913 | END IF |
---|
914 | |
---|
915 | END DO |
---|
916 | |
---|
917 | RETURN |
---|
918 | END SUBROUTINE gwstress |
---|
919 | SUBROUTINE gwprofil(nlon, nlev, kgwd, kdx, ktest, kkcrith, kcrit, paphm1, & |
---|
920 | prho, pstab, pvph, pri, ptau, pdmod, psig, pvar) |
---|
921 | |
---|
922 | ! **** *GWPROFIL* |
---|
923 | |
---|
924 | ! PURPOSE. |
---|
925 | ! -------- |
---|
926 | |
---|
927 | ! ** INTERFACE. |
---|
928 | ! ---------- |
---|
929 | ! FROM *GWDRAG* |
---|
930 | |
---|
931 | ! EXPLICIT ARGUMENTS : |
---|
932 | ! -------------------- |
---|
933 | ! ==== INPUTS === |
---|
934 | ! ==== OUTPUTS === |
---|
935 | |
---|
936 | ! IMPLICIT ARGUMENTS : NONE |
---|
937 | ! -------------------- |
---|
938 | |
---|
939 | ! METHOD: |
---|
940 | ! ------- |
---|
941 | ! THE STRESS PROFILE FOR GRAVITY WAVES IS COMPUTED AS FOLLOWS: |
---|
942 | ! IT IS CONSTANT (NO GWD) AT THE LEVELS BETWEEN THE GROUND |
---|
943 | ! AND THE TOP OF THE BLOCKED LAYER (KKENVH). |
---|
944 | ! IT DECREASES LINEARLY WITH HEIGHTS FROM THE TOP OF THE |
---|
945 | ! BLOCKED LAYER TO 3*VAROR (kKNU), TO SIMULATES LEE WAVES OR |
---|
946 | ! NONLINEAR GRAVITY WAVE BREAKING. |
---|
947 | ! ABOVE IT IS CONSTANT, EXCEPT WHEN THE WAVE ENCOUNTERS A CRITICAL |
---|
948 | ! LEVEL (KCRIT) OR WHEN IT BREAKS. |
---|
949 | |
---|
950 | |
---|
951 | |
---|
952 | ! EXTERNALS. |
---|
953 | ! ---------- |
---|
954 | |
---|
955 | |
---|
956 | ! REFERENCE. |
---|
957 | ! ---------- |
---|
958 | |
---|
959 | ! SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
---|
960 | |
---|
961 | ! AUTHOR. |
---|
962 | ! ------- |
---|
963 | |
---|
964 | ! MODIFICATIONS. |
---|
965 | ! -------------- |
---|
966 | ! PASSAGE OF THE NEW GWDRAG TO I.F.S. (F. LOTT, 22/11/93) |
---|
967 | ! ----------------------------------------------------------------------- |
---|
968 | USE yoegwd_mod_h |
---|
969 | USE dimphy |
---|
970 | USE yomcst_mod_h |
---|
971 | IMPLICIT NONE |
---|
972 | |
---|
973 | |
---|
974 | |
---|
975 | |
---|
976 | |
---|
977 | |
---|
978 | ! ----------------------------------------------------------------------- |
---|
979 | |
---|
980 | ! * 0.1 ARGUMENTS |
---|
981 | ! --------- |
---|
982 | |
---|
983 | INTEGER nlon, nlev |
---|
984 | INTEGER kkcrith(nlon), kcrit(nlon), kdx(nlon), ktest(nlon) |
---|
985 | |
---|
986 | |
---|
987 | REAL paphm1(nlon, nlev+1), pstab(nlon, nlev+1), prho(nlon, nlev+1), & |
---|
988 | pvph(nlon, nlev+1), pri(nlon, nlev+1), ptau(nlon, nlev+1) |
---|
989 | |
---|
990 | REAL pdmod(nlon), psig(nlon), pvar(nlon) |
---|
991 | |
---|
992 | ! ----------------------------------------------------------------------- |
---|
993 | |
---|
994 | ! * 0.2 LOCAL ARRAYS |
---|
995 | ! ------------ |
---|
996 | |
---|
997 | INTEGER ilevh, ji, kgwd, jl, jk |
---|
998 | REAL zsqr, zalfa, zriw, zdel, zb, zalpha, zdz2n |
---|
999 | REAL zdelp, zdelpt |
---|
1000 | REAL zdz2(klon, klev), znorm(klon), zoro(klon) |
---|
1001 | REAL ztau(klon, klev+1) |
---|
1002 | |
---|
1003 | ! ----------------------------------------------------------------------- |
---|
1004 | |
---|
1005 | ! * 1. INITIALIZATION |
---|
1006 | ! -------------- |
---|
1007 | |
---|
1008 | ! print *,' entree gwprofil' |
---|
1009 | |
---|
1010 | |
---|
1011 | ! * COMPUTATIONAL CONSTANTS. |
---|
1012 | ! ------------- ---------- |
---|
1013 | |
---|
1014 | ilevh = klev/3 |
---|
1015 | |
---|
1016 | ! DO 400 ji=1,kgwd |
---|
1017 | ! jl=kdx(ji) |
---|
1018 | ! Modif vectorisation 02/04/2004 |
---|
1019 | DO jl = kidia, kfdia |
---|
1020 | IF (ktest(jl)==1) THEN |
---|
1021 | zoro(jl) = psig(jl)*pdmod(jl)/4./max(pvar(jl), 1.0) |
---|
1022 | ztau(jl, klev+1) = ptau(jl, klev+1) |
---|
1023 | END IF |
---|
1024 | END DO |
---|
1025 | |
---|
1026 | |
---|
1027 | DO jk = klev, 2, -1 |
---|
1028 | |
---|
1029 | ! * 4.1 CONSTANT WAVE STRESS UNTIL TOP OF THE |
---|
1030 | ! BLOCKING LAYER. |
---|
1031 | |
---|
1032 | ! DO 411 ji=1,kgwd |
---|
1033 | ! jl=kdx(ji) |
---|
1034 | ! Modif vectorisation 02/04/2004 |
---|
1035 | DO jl = kidia, kfdia |
---|
1036 | IF (ktest(jl)==1) THEN |
---|
1037 | IF (jk>kkcrith(jl)) THEN |
---|
1038 | ptau(jl, jk) = ztau(jl, klev+1) |
---|
1039 | ! ENDIF |
---|
1040 | ! IF(JK.EQ.KKCRITH(JL)) THEN |
---|
1041 | ELSE |
---|
1042 | ptau(jl, jk) = grahilo*ztau(jl, klev+1) |
---|
1043 | END IF |
---|
1044 | END IF |
---|
1045 | END DO |
---|
1046 | |
---|
1047 | ! * 4.15 CONSTANT SHEAR STRESS UNTIL THE TOP OF THE |
---|
1048 | ! LOW LEVEL FLOW LAYER. |
---|
1049 | |
---|
1050 | |
---|
1051 | ! * 4.2 WAVE DISPLACEMENT AT NEXT LEVEL. |
---|
1052 | |
---|
1053 | |
---|
1054 | ! DO 421 ji=1,kgwd |
---|
1055 | ! jl=kdx(ji) |
---|
1056 | ! Modif vectorisation 02/04/2004 |
---|
1057 | DO jl = kidia, kfdia |
---|
1058 | IF (ktest(jl)==1) THEN |
---|
1059 | IF (jk<kkcrith(jl)) THEN |
---|
1060 | znorm(jl) = gkdrag*prho(jl, jk)*sqrt(pstab(jl,jk))*pvph(jl, jk)* & |
---|
1061 | zoro(jl) |
---|
1062 | zdz2(jl, jk) = ptau(jl, jk+1)/max(znorm(jl), gssec) |
---|
1063 | END IF |
---|
1064 | END IF |
---|
1065 | END DO |
---|
1066 | |
---|
1067 | ! * 4.3 WAVE RICHARDSON NUMBER, NEW WAVE DISPLACEMENT |
---|
1068 | ! * AND STRESS: BREAKING EVALUATION AND CRITICAL |
---|
1069 | ! LEVEL |
---|
1070 | |
---|
1071 | |
---|
1072 | ! DO 431 ji=1,kgwd |
---|
1073 | ! jl=Kdx(ji) |
---|
1074 | ! Modif vectorisation 02/04/2004 |
---|
1075 | DO jl = kidia, kfdia |
---|
1076 | IF (ktest(jl)==1) THEN |
---|
1077 | |
---|
1078 | IF (jk<kkcrith(jl)) THEN |
---|
1079 | IF ((ptau(jl,jk+1)<gtsec) .OR. (jk<=kcrit(jl))) THEN |
---|
1080 | ptau(jl, jk) = 0.0 |
---|
1081 | ELSE |
---|
1082 | zsqr = sqrt(pri(jl,jk)) |
---|
1083 | zalfa = sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl, jk) |
---|
1084 | zriw = pri(jl, jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
---|
1085 | IF (zriw<grcrit) THEN |
---|
1086 | zdel = 4./zsqr/grcrit + 1./grcrit**2 + 4./grcrit |
---|
1087 | zb = 1./grcrit + 2./zsqr |
---|
1088 | zalpha = 0.5*(-zb+sqrt(zdel)) |
---|
1089 | zdz2n = (pvph(jl,jk)*zalpha)**2/pstab(jl, jk) |
---|
1090 | ptau(jl, jk) = znorm(jl)*zdz2n |
---|
1091 | ELSE |
---|
1092 | ptau(jl, jk) = znorm(jl)*zdz2(jl, jk) |
---|
1093 | END IF |
---|
1094 | ptau(jl, jk) = min(ptau(jl,jk), ptau(jl,jk+1)) |
---|
1095 | END IF |
---|
1096 | END IF |
---|
1097 | END IF |
---|
1098 | END DO |
---|
1099 | |
---|
1100 | END DO |
---|
1101 | |
---|
1102 | ! REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
1103 | |
---|
1104 | ! DO 530 ji=1,kgwd |
---|
1105 | ! jl=kdx(ji) |
---|
1106 | ! Modif vectorisation 02/04/2004 |
---|
1107 | DO jl = kidia, kfdia |
---|
1108 | IF (ktest(jl)==1) THEN |
---|
1109 | ztau(jl, kkcrith(jl)) = ptau(jl, kkcrith(jl)) |
---|
1110 | ztau(jl, nstra) = ptau(jl, nstra) |
---|
1111 | END IF |
---|
1112 | END DO |
---|
1113 | |
---|
1114 | DO jk = 1, klev |
---|
1115 | |
---|
1116 | ! DO 532 ji=1,kgwd |
---|
1117 | ! jl=kdx(ji) |
---|
1118 | ! Modif vectorisation 02/04/2004 |
---|
1119 | DO jl = kidia, kfdia |
---|
1120 | IF (ktest(jl)==1) THEN |
---|
1121 | |
---|
1122 | |
---|
1123 | IF (jk>kkcrith(jl)) THEN |
---|
1124 | |
---|
1125 | zdelp = paphm1(jl, jk) - paphm1(jl, klev+1) |
---|
1126 | zdelpt = paphm1(jl, kkcrith(jl)) - paphm1(jl, klev+1) |
---|
1127 | ptau(jl, jk) = ztau(jl, klev+1) + (ztau(jl,kkcrith(jl))-ztau(jl, & |
---|
1128 | klev+1))*zdelp/zdelpt |
---|
1129 | |
---|
1130 | END IF |
---|
1131 | |
---|
1132 | END IF |
---|
1133 | END DO |
---|
1134 | |
---|
1135 | ! REORGANISATION IN THE STRATOSPHERE |
---|
1136 | |
---|
1137 | ! DO 533 ji=1,kgwd |
---|
1138 | ! jl=kdx(ji) |
---|
1139 | ! Modif vectorisation 02/04/2004 |
---|
1140 | DO jl = kidia, kfdia |
---|
1141 | IF (ktest(jl)==1) THEN |
---|
1142 | |
---|
1143 | |
---|
1144 | IF (jk<nstra) THEN |
---|
1145 | |
---|
1146 | zdelp = paphm1(jl, nstra) |
---|
1147 | zdelpt = paphm1(jl, jk) |
---|
1148 | ptau(jl, jk) = ztau(jl, nstra)*zdelpt/zdelp |
---|
1149 | |
---|
1150 | END IF |
---|
1151 | |
---|
1152 | END IF |
---|
1153 | END DO |
---|
1154 | |
---|
1155 | ! REORGANISATION IN THE TROPOSPHERE |
---|
1156 | |
---|
1157 | ! DO 534 ji=1,kgwd |
---|
1158 | ! jl=kdx(ji) |
---|
1159 | ! Modif vectorisation 02/04/2004 |
---|
1160 | DO jl = kidia, kfdia |
---|
1161 | IF (ktest(jl)==1) THEN |
---|
1162 | |
---|
1163 | |
---|
1164 | IF (jk<kkcrith(jl) .AND. jk>nstra) THEN |
---|
1165 | |
---|
1166 | zdelp = paphm1(jl, jk) - paphm1(jl, kkcrith(jl)) |
---|
1167 | zdelpt = paphm1(jl, nstra) - paphm1(jl, kkcrith(jl)) |
---|
1168 | ptau(jl, jk) = ztau(jl, kkcrith(jl)) + (ztau(jl,nstra)-ztau(jl, & |
---|
1169 | kkcrith(jl)))*zdelp/zdelpt |
---|
1170 | |
---|
1171 | END IF |
---|
1172 | END IF |
---|
1173 | END DO |
---|
1174 | |
---|
1175 | |
---|
1176 | END DO |
---|
1177 | |
---|
1178 | |
---|
1179 | RETURN |
---|
1180 | END SUBROUTINE gwprofil |
---|
1181 | SUBROUTINE lift_noro(nlon, nlev, dtime, paprs, pplay, plat, pmea, pstd, ppic, & |
---|
1182 | ktest, t, u, v, pulow, pvlow, pustr, pvstr, d_t, d_u, d_v) |
---|
1183 | |
---|
1184 | USE dimphy |
---|
1185 | USE yomcst_mod_h |
---|
1186 | IMPLICIT NONE |
---|
1187 | ! ====================================================================== |
---|
1188 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
1189 | ! Objet: Frottement de la montagne Interface |
---|
1190 | ! ====================================================================== |
---|
1191 | ! Arguments: |
---|
1192 | ! dtime---input-R- pas d'integration (s) |
---|
1193 | ! paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
1194 | ! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
1195 | ! t-------input-R-temperature (K) |
---|
1196 | ! u-------input-R-vitesse horizontale (m/s) |
---|
1197 | ! v-------input-R-vitesse horizontale (m/s) |
---|
1198 | |
---|
1199 | ! d_t-----output-R-increment de la temperature |
---|
1200 | ! d_u-----output-R-increment de la vitesse u |
---|
1201 | ! d_v-----output-R-increment de la vitesse v |
---|
1202 | ! ====================================================================== |
---|
1203 | |
---|
1204 | |
---|
1205 | ! ARGUMENTS |
---|
1206 | |
---|
1207 | INTEGER nlon, nlev |
---|
1208 | REAL dtime |
---|
1209 | REAL paprs(klon, klev+1) |
---|
1210 | REAL pplay(klon, klev) |
---|
1211 | REAL plat(nlon), pmea(nlon) |
---|
1212 | REAL pstd(nlon) |
---|
1213 | REAL ppic(nlon) |
---|
1214 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
1215 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
1216 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
1217 | |
---|
1218 | INTEGER i, k, ktest(nlon) |
---|
1219 | |
---|
1220 | ! Variables locales: |
---|
1221 | |
---|
1222 | REAL zgeom(klon, klev) |
---|
1223 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
1224 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
1225 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
1226 | |
---|
1227 | ! initialiser les variables de sortie (pour securite) |
---|
1228 | |
---|
1229 | DO i = 1, klon |
---|
1230 | pulow(i) = 0.0 |
---|
1231 | pvlow(i) = 0.0 |
---|
1232 | pustr(i) = 0.0 |
---|
1233 | pvstr(i) = 0.0 |
---|
1234 | END DO |
---|
1235 | DO k = 1, klev |
---|
1236 | DO i = 1, klon |
---|
1237 | d_t(i, k) = 0.0 |
---|
1238 | d_u(i, k) = 0.0 |
---|
1239 | d_v(i, k) = 0.0 |
---|
1240 | pdudt(i, k) = 0.0 |
---|
1241 | pdvdt(i, k) = 0.0 |
---|
1242 | pdtdt(i, k) = 0.0 |
---|
1243 | END DO |
---|
1244 | END DO |
---|
1245 | |
---|
1246 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
1247 | ! verticaux augmente du haut vers le bas) |
---|
1248 | |
---|
1249 | DO k = 1, klev |
---|
1250 | DO i = 1, klon |
---|
1251 | pt(i, k) = t(i, klev-k+1) |
---|
1252 | pu(i, k) = u(i, klev-k+1) |
---|
1253 | pv(i, k) = v(i, klev-k+1) |
---|
1254 | papmf(i, k) = pplay(i, klev-k+1) |
---|
1255 | END DO |
---|
1256 | END DO |
---|
1257 | DO k = 1, klev + 1 |
---|
1258 | DO i = 1, klon |
---|
1259 | papmh(i, k) = paprs(i, klev-k+2) |
---|
1260 | END DO |
---|
1261 | END DO |
---|
1262 | DO i = 1, klon |
---|
1263 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
1264 | END DO |
---|
1265 | DO k = klev - 1, 1, -1 |
---|
1266 | DO i = 1, klon |
---|
1267 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
1268 | 1)/papmf(i,k)) |
---|
1269 | END DO |
---|
1270 | END DO |
---|
1271 | |
---|
1272 | ! appeler la routine principale |
---|
1273 | |
---|
1274 | CALL orolift(klon, klev, ktest, dtime, papmh, zgeom, pt, pu, pv, plat, & |
---|
1275 | pmea, pstd, ppic, pulow, pvlow, pdudt, pdvdt, pdtdt) |
---|
1276 | |
---|
1277 | DO k = 1, klev |
---|
1278 | DO i = 1, klon |
---|
1279 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
1280 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
1281 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
1282 | pustr(i) = pustr(i) & ! IM BUG . |
---|
1283 | ! +RG*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
1284 | +pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
1285 | pvstr(i) = pvstr(i) & ! IM BUG . |
---|
1286 | ! +RG*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
1287 | +pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
1288 | END DO |
---|
1289 | END DO |
---|
1290 | |
---|
1291 | RETURN |
---|
1292 | END SUBROUTINE lift_noro |
---|
1293 | SUBROUTINE orolift(nlon, nlev, ktest, ptsphy, paphm1, pgeom1, ptm1, pum1, & |
---|
1294 | pvm1, plat, pmea, pvaror, ppic & ! OUTPUTS |
---|
1295 | , pulow, pvlow, pvom, pvol, pte) |
---|
1296 | |
---|
1297 | |
---|
1298 | ! **** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
1299 | |
---|
1300 | ! PURPOSE. |
---|
1301 | ! -------- |
---|
1302 | |
---|
1303 | ! ** INTERFACE. |
---|
1304 | ! ---------- |
---|
1305 | ! CALLED FROM *lift_noro |
---|
1306 | ! ---------- |
---|
1307 | |
---|
1308 | ! AUTHOR. |
---|
1309 | ! ------- |
---|
1310 | ! F.LOTT LMD 22/11/95 |
---|
1311 | |
---|
1312 | USE yoegwd_mod_h |
---|
1313 | USE dimphy |
---|
1314 | USE yomcst_mod_h |
---|
1315 | IMPLICIT NONE |
---|
1316 | |
---|
1317 | |
---|
1318 | |
---|
1319 | ! ----------------------------------------------------------------------- |
---|
1320 | |
---|
1321 | ! * 0.1 ARGUMENTS |
---|
1322 | ! --------- |
---|
1323 | |
---|
1324 | |
---|
1325 | INTEGER nlon, nlev |
---|
1326 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
---|
1327 | pvlow(nlon) |
---|
1328 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), plat(nlon), & |
---|
1329 | pmea(nlon), pvaror(nlon), ppic(nlon), pgeom1(nlon, nlev), & |
---|
1330 | paphm1(nlon, nlev+1) |
---|
1331 | |
---|
1332 | INTEGER ktest(nlon) |
---|
1333 | REAL ptsphy |
---|
1334 | ! ----------------------------------------------------------------------- |
---|
1335 | |
---|
1336 | ! * 0.2 LOCAL ARRAYS |
---|
1337 | ! ------------ |
---|
1338 | LOGICAL lifthigh |
---|
1339 | ! ym integer klevm1, jl, ilevh, jk |
---|
1340 | INTEGER jl, ilevh, jk |
---|
1341 | REAL zcons1, ztmst, zrtmst, zpi, zhgeo |
---|
1342 | REAL zdelp, zslow, zsqua, zscav, zbet |
---|
1343 | INTEGER iknub(klon), iknul(klon) |
---|
1344 | LOGICAL ll1(klon, klev+1) |
---|
1345 | |
---|
1346 | REAL ztau(klon, klev+1), ztav(klon, klev+1), zrho(klon, klev+1) |
---|
1347 | REAL zdudt(klon), zdvdt(klon) |
---|
1348 | REAL zhcrit(klon, klev) |
---|
1349 | CHARACTER (LEN=20) :: modname = 'orografi' |
---|
1350 | CHARACTER (LEN=80) :: abort_message |
---|
1351 | ! ----------------------------------------------------------------------- |
---|
1352 | |
---|
1353 | ! * 1.1 INITIALIZATIONS |
---|
1354 | ! --------------- |
---|
1355 | |
---|
1356 | lifthigh = .FALSE. |
---|
1357 | |
---|
1358 | IF (nlon/=klon .OR. nlev/=klev) THEN |
---|
1359 | abort_message = 'pb dimension' |
---|
1360 | CALL abort_physic(modname, abort_message, 1) |
---|
1361 | END IF |
---|
1362 | zcons1 = 1./rd |
---|
1363 | ! ym KLEVM1=KLEV-1 |
---|
1364 | ztmst = ptsphy |
---|
1365 | zrtmst = 1./ztmst |
---|
1366 | zpi = acos(-1.) |
---|
1367 | |
---|
1368 | DO jl = kidia, kfdia |
---|
1369 | zrho(jl, klev+1) = 0.0 |
---|
1370 | pulow(jl) = 0.0 |
---|
1371 | pvlow(jl) = 0.0 |
---|
1372 | iknub(jl) = klev |
---|
1373 | iknul(jl) = klev |
---|
1374 | ilevh = klev/3 |
---|
1375 | ll1(jl, klev+1) = .FALSE. |
---|
1376 | DO jk = 1, klev |
---|
1377 | pvom(jl, jk) = 0.0 |
---|
1378 | pvol(jl, jk) = 0.0 |
---|
1379 | pte(jl, jk) = 0.0 |
---|
1380 | END DO |
---|
1381 | END DO |
---|
1382 | |
---|
1383 | |
---|
1384 | ! * 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
1385 | ! * LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
1386 | ! * THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
1387 | |
---|
1388 | |
---|
1389 | |
---|
1390 | DO jk = klev, 1, -1 |
---|
1391 | DO jl = kidia, kfdia |
---|
1392 | IF (ktest(jl)==1) THEN |
---|
1393 | zhcrit(jl, jk) = amax1(ppic(jl)-pmea(jl), 100.) |
---|
1394 | zhgeo = pgeom1(jl, jk)/rg |
---|
1395 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
1396 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
1397 | iknub(jl) = jk |
---|
1398 | END IF |
---|
1399 | END IF |
---|
1400 | END DO |
---|
1401 | END DO |
---|
1402 | |
---|
1403 | DO jl = kidia, kfdia |
---|
1404 | IF (ktest(jl)==1) THEN |
---|
1405 | iknub(jl) = max(iknub(jl), klev/2) |
---|
1406 | iknul(jl) = max(iknul(jl), 2*klev/3) |
---|
1407 | IF (iknub(jl)>nktopg) iknub(jl) = nktopg |
---|
1408 | IF (iknub(jl)==nktopg) iknul(jl) = klev |
---|
1409 | IF (iknub(jl)==iknul(jl)) iknub(jl) = iknul(jl) - 1 |
---|
1410 | END IF |
---|
1411 | END DO |
---|
1412 | |
---|
1413 | ! do 2011 jl=kidia,kfdia |
---|
1414 | ! IF(KTEST(JL).EQ.1) THEN |
---|
1415 | ! print *,' iknul= ',iknul(jl),' iknub=',iknub(jl) |
---|
1416 | ! ENDIF |
---|
1417 | ! 2011 continue |
---|
1418 | |
---|
1419 | ! PRINT *,' DANS OROLIFT: 2010' |
---|
1420 | |
---|
1421 | DO jk = klev, 2, -1 |
---|
1422 | DO jl = kidia, kfdia |
---|
1423 | zrho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
1424 | END DO |
---|
1425 | END DO |
---|
1426 | ! PRINT *,' DANS OROLIFT: 223' |
---|
1427 | |
---|
1428 | ! ******************************************************************** |
---|
1429 | |
---|
1430 | ! * DEFINE LOW LEVEL FLOW |
---|
1431 | ! ------------------- |
---|
1432 | DO jk = klev, 1, -1 |
---|
1433 | DO jl = kidia, kfdia |
---|
1434 | IF (ktest(jl)==1) THEN |
---|
1435 | IF (jk>=iknub(jl) .AND. jk<=iknul(jl)) THEN |
---|
1436 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
1437 | ) |
---|
1438 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
1439 | ) |
---|
1440 | zrho(jl, klev+1) = zrho(jl, klev+1) + zrho(jl, jk)*(paphm1(jl,jk+1) & |
---|
1441 | -paphm1(jl,jk)) |
---|
1442 | END IF |
---|
1443 | END IF |
---|
1444 | END DO |
---|
1445 | END DO |
---|
1446 | DO jl = kidia, kfdia |
---|
1447 | IF (ktest(jl)==1) THEN |
---|
1448 | pulow(jl) = pulow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1449 | pvlow(jl) = pvlow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1450 | zrho(jl, klev+1) = zrho(jl, klev+1)/(paphm1(jl,iknul(jl)+1)-paphm1(jl, & |
---|
1451 | iknub(jl))) |
---|
1452 | END IF |
---|
1453 | END DO |
---|
1454 | |
---|
1455 | ! *********************************************************** |
---|
1456 | |
---|
1457 | ! * 3. COMPUTE MOUNTAIN LIFT |
---|
1458 | |
---|
1459 | |
---|
1460 | DO jl = kidia, kfdia |
---|
1461 | IF (ktest(jl)==1) THEN |
---|
1462 | ztau(jl, klev+1) = -gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
1463 | ! (2*PVAROR(JL)+PMEA(JL))* |
---|
1464 | 2*pvaror(jl)*sin(zpi/180.*plat(jl))*pvlow(jl) |
---|
1465 | ztav(jl, klev+1) = gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
1466 | ! (2*PVAROR(JL)+PMEA(JL))* |
---|
1467 | 2*pvaror(jl)*sin(zpi/180.*plat(jl))*pulow(jl) |
---|
1468 | ELSE |
---|
1469 | ztau(jl, klev+1) = 0.0 |
---|
1470 | ztav(jl, klev+1) = 0.0 |
---|
1471 | END IF |
---|
1472 | END DO |
---|
1473 | |
---|
1474 | ! * 4. COMPUTE LIFT PROFILE |
---|
1475 | ! * -------------------- |
---|
1476 | |
---|
1477 | |
---|
1478 | |
---|
1479 | DO jk = 1, klev |
---|
1480 | DO jl = kidia, kfdia |
---|
1481 | IF (ktest(jl)==1) THEN |
---|
1482 | ztau(jl, jk) = ztau(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
1483 | ztav(jl, jk) = ztav(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
1484 | ELSE |
---|
1485 | ztau(jl, jk) = 0.0 |
---|
1486 | ztav(jl, jk) = 0.0 |
---|
1487 | END IF |
---|
1488 | END DO |
---|
1489 | END DO |
---|
1490 | |
---|
1491 | |
---|
1492 | ! * 5. COMPUTE TENDENCIES. |
---|
1493 | ! * ------------------- |
---|
1494 | IF (lifthigh) THEN |
---|
1495 | ! PRINT *,' DANS OROLIFT: 500' |
---|
1496 | |
---|
1497 | ! EXPLICIT SOLUTION AT ALL LEVELS |
---|
1498 | |
---|
1499 | DO jk = 1, klev |
---|
1500 | DO jl = kidia, kfdia |
---|
1501 | IF (ktest(jl)==1) THEN |
---|
1502 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
1503 | zdudt(jl) = -rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
---|
1504 | zdvdt(jl) = -rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
---|
1505 | END IF |
---|
1506 | END DO |
---|
1507 | END DO |
---|
1508 | |
---|
1509 | ! PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
1510 | |
---|
1511 | DO jk = 1, klev |
---|
1512 | DO jl = kidia, kfdia |
---|
1513 | IF (ktest(jl)==1) THEN |
---|
1514 | |
---|
1515 | zslow = sqrt(pulow(jl)**2+pvlow(jl)**2) |
---|
1516 | zsqua = amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2), gvsec) |
---|
1517 | zscav = -zdudt(jl)*pvm1(jl, jk) + zdvdt(jl)*pum1(jl, jk) |
---|
1518 | IF (zsqua>gvsec) THEN |
---|
1519 | pvom(jl, jk) = -zscav*pvm1(jl, jk)/zsqua**2 |
---|
1520 | pvol(jl, jk) = zscav*pum1(jl, jk)/zsqua**2 |
---|
1521 | ELSE |
---|
1522 | pvom(jl, jk) = 0.0 |
---|
1523 | pvol(jl, jk) = 0.0 |
---|
1524 | END IF |
---|
1525 | zsqua = sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
---|
1526 | IF (zsqua<zslow) THEN |
---|
1527 | pvom(jl, jk) = zsqua/zslow*pvom(jl, jk) |
---|
1528 | pvol(jl, jk) = zsqua/zslow*pvol(jl, jk) |
---|
1529 | END IF |
---|
1530 | |
---|
1531 | END IF |
---|
1532 | END DO |
---|
1533 | END DO |
---|
1534 | |
---|
1535 | ! 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
1536 | ! ---------------------------------- |
---|
1537 | |
---|
1538 | ELSE |
---|
1539 | |
---|
1540 | DO jl = kidia, kfdia |
---|
1541 | IF (ktest(jl)==1) THEN |
---|
1542 | DO jk = klev, iknub(jl), -1 |
---|
1543 | zbet = gklift*2.*romega*sin(zpi/180.*plat(jl))*ztmst* & |
---|
1544 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,jk))/ & |
---|
1545 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
---|
1546 | zdudt(jl) = -pum1(jl, jk)/ztmst/(1+zbet**2) |
---|
1547 | zdvdt(jl) = -pvm1(jl, jk)/ztmst/(1+zbet**2) |
---|
1548 | pvom(jl, jk) = zbet**2*zdudt(jl) - zbet*zdvdt(jl) |
---|
1549 | pvol(jl, jk) = zbet*zdudt(jl) + zbet**2*zdvdt(jl) |
---|
1550 | END DO |
---|
1551 | END IF |
---|
1552 | END DO |
---|
1553 | |
---|
1554 | END IF |
---|
1555 | |
---|
1556 | RETURN |
---|
1557 | END SUBROUTINE orolift |
---|
1558 | |
---|
1559 | |
---|
1560 | SUBROUTINE sugwd(nlon, nlev, paprs, pplay) |
---|
1561 | USE yoegwd_mod_h |
---|
1562 | USE dimphy |
---|
1563 | USE mod_phys_lmdz_para |
---|
1564 | USE mod_grid_phy_lmdz |
---|
1565 | ! USE parallel |
---|
1566 | |
---|
1567 | ! **** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
1568 | |
---|
1569 | ! PURPOSE. |
---|
1570 | ! -------- |
---|
1571 | ! INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
1572 | ! GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
1573 | |
---|
1574 | ! ** INTERFACE. |
---|
1575 | ! ---------- |
---|
1576 | ! CALL *SUGWD* FROM *SUPHEC* |
---|
1577 | ! ----- ------ |
---|
1578 | |
---|
1579 | ! EXPLICIT ARGUMENTS : |
---|
1580 | ! -------------------- |
---|
1581 | ! PSIG : VERTICAL COORDINATE TABLE |
---|
1582 | ! NLEV : NUMBER OF MODEL LEVELS |
---|
1583 | |
---|
1584 | ! IMPLICIT ARGUMENTS : |
---|
1585 | ! -------------------- |
---|
1586 | ! COMMON YOEGWD |
---|
1587 | |
---|
1588 | ! METHOD. |
---|
1589 | ! ------- |
---|
1590 | ! SEE DOCUMENTATION |
---|
1591 | |
---|
1592 | ! EXTERNALS. |
---|
1593 | ! ---------- |
---|
1594 | ! NONE |
---|
1595 | |
---|
1596 | ! REFERENCE. |
---|
1597 | ! ---------- |
---|
1598 | ! ECMWF Research Department documentation of the IFS |
---|
1599 | |
---|
1600 | ! AUTHOR. |
---|
1601 | ! ------- |
---|
1602 | ! MARTIN MILLER *ECMWF* |
---|
1603 | |
---|
1604 | ! MODIFICATIONS. |
---|
1605 | ! -------------- |
---|
1606 | ! ORIGINAL : 90-01-01 |
---|
1607 | ! ------------------------------------------------------------------ |
---|
1608 | IMPLICIT NONE |
---|
1609 | |
---|
1610 | ! ----------------------------------------------------------------- |
---|
1611 | ! ---------------------------------------------------------------- |
---|
1612 | |
---|
1613 | INTEGER nlon, nlev, jk |
---|
1614 | REAL paprs(nlon, nlev+1) |
---|
1615 | REAL pplay(nlon, nlev) |
---|
1616 | REAL zpr, zstra, zsigt, zpm1r |
---|
1617 | REAL :: pplay_glo(klon_glo, nlev) |
---|
1618 | REAL :: paprs_glo(klon_glo, nlev+1) |
---|
1619 | |
---|
1620 | ! * 1. SET THE VALUES OF THE PARAMETERS |
---|
1621 | ! -------------------------------- |
---|
1622 | |
---|
1623 | |
---|
1624 | PRINT *, ' DANS SUGWD NLEV=', nlev |
---|
1625 | ghmax = 10000. |
---|
1626 | |
---|
1627 | zpr = 100000. |
---|
1628 | zstra = 0.1 |
---|
1629 | zsigt = 0.94 |
---|
1630 | ! old ZPR=80000. |
---|
1631 | ! old ZSIGT=0.85 |
---|
1632 | |
---|
1633 | |
---|
1634 | CALL gather(pplay, pplay_glo) |
---|
1635 | CALL bcast(pplay_glo) |
---|
1636 | CALL gather(paprs, paprs_glo) |
---|
1637 | CALL bcast(paprs_glo) |
---|
1638 | |
---|
1639 | |
---|
1640 | DO jk = 1, nlev |
---|
1641 | zpm1r = pplay_glo((klon_glo/2)+1, jk)/paprs_glo((klon_glo/2)+1, 1) |
---|
1642 | IF (zpm1r>=zsigt) THEN |
---|
1643 | nktopg = jk |
---|
1644 | END IF |
---|
1645 | zpm1r = pplay_glo((klon_glo/2)+1, jk)/paprs_glo((klon_glo/2)+1, 1) |
---|
1646 | IF (zpm1r>=zstra) THEN |
---|
1647 | nstra = jk |
---|
1648 | END IF |
---|
1649 | END DO |
---|
1650 | |
---|
1651 | |
---|
1652 | |
---|
1653 | ! inversion car dans orodrag on compte les niveaux a l'envers |
---|
1654 | nktopg = nlev - nktopg + 1 |
---|
1655 | nstra = nlev - nstra |
---|
1656 | PRINT *, ' DANS SUGWD nktopg=', nktopg |
---|
1657 | PRINT *, ' DANS SUGWD nstra=', nstra |
---|
1658 | |
---|
1659 | gsigcr = 0.80 |
---|
1660 | |
---|
1661 | ! Values now specified in run.def, or conf_phys_m.F90 |
---|
1662 | ! gkdrag = 0.2 |
---|
1663 | ! grahilo = 1. |
---|
1664 | ! grcrit = 0.01 |
---|
1665 | ! gfrcrit = 1.0 |
---|
1666 | ! gkwake = 0.50 |
---|
1667 | ! gklift = 0.50 |
---|
1668 | gvcrit = 0.0 |
---|
1669 | |
---|
1670 | ! ---------------------------------------------------------------- |
---|
1671 | |
---|
1672 | ! * 2. SET VALUES OF SECURITY PARAMETERS |
---|
1673 | ! --------------------------------- |
---|
1674 | |
---|
1675 | |
---|
1676 | gvsec = 0.10 |
---|
1677 | gssec = 1.E-12 |
---|
1678 | |
---|
1679 | gtsec = 1.E-07 |
---|
1680 | |
---|
1681 | ! ---------------------------------------------------------------- |
---|
1682 | |
---|
1683 | RETURN |
---|
1684 | END SUBROUTINE sugwd |
---|