[1992] | 1 | |
---|
[1403] | 2 | ! $Id: orografi.f90 5309 2024-11-01 11:39:44Z aborella $ |
---|
[524] | 3 | |
---|
[1992] | 4 | SUBROUTINE drag_noro(nlon, nlev, dtime, paprs, pplay, pmea, pstd, psig, pgam, & |
---|
| 5 | pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, pvlow, pustr, pvstr, & |
---|
| 6 | d_t, d_u, d_v) |
---|
[524] | 7 | |
---|
[1992] | 8 | USE dimphy |
---|
[5285] | 9 | USE yomcst_mod_h |
---|
[5274] | 10 | IMPLICIT NONE |
---|
[1992] | 11 | ! ====================================================================== |
---|
| 12 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
| 13 | ! Objet: Frottement de la montagne Interface |
---|
| 14 | ! ====================================================================== |
---|
| 15 | ! Arguments: |
---|
| 16 | ! dtime---input-R- pas d'integration (s) |
---|
| 17 | ! paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
| 18 | ! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
| 19 | ! t-------input-R-temperature (K) |
---|
| 20 | ! u-------input-R-vitesse horizontale (m/s) |
---|
| 21 | ! v-------input-R-vitesse horizontale (m/s) |
---|
[524] | 22 | |
---|
[1992] | 23 | ! d_t-----output-R-increment de la temperature |
---|
| 24 | ! d_u-----output-R-increment de la vitesse u |
---|
| 25 | ! d_v-----output-R-increment de la vitesse v |
---|
| 26 | ! ====================================================================== |
---|
[524] | 27 | |
---|
[5274] | 28 | |
---|
[1992] | 29 | ! ARGUMENTS |
---|
[524] | 30 | |
---|
[1992] | 31 | INTEGER nlon, nlev |
---|
| 32 | REAL dtime |
---|
| 33 | REAL paprs(klon, klev+1) |
---|
| 34 | REAL pplay(klon, klev) |
---|
| 35 | REAL pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
---|
| 36 | REAL ppic(nlon), pval(nlon) |
---|
| 37 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
| 38 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
| 39 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
[524] | 40 | |
---|
[1992] | 41 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
[524] | 42 | |
---|
[1992] | 43 | ! Variables locales: |
---|
[524] | 44 | |
---|
[1992] | 45 | REAL zgeom(klon, klev) |
---|
| 46 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
| 47 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
| 48 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
[524] | 49 | |
---|
[1992] | 50 | ! initialiser les variables de sortie (pour securite) |
---|
[524] | 51 | |
---|
[1992] | 52 | DO i = 1, klon |
---|
| 53 | pulow(i) = 0.0 |
---|
| 54 | pvlow(i) = 0.0 |
---|
| 55 | pustr(i) = 0.0 |
---|
| 56 | pvstr(i) = 0.0 |
---|
| 57 | END DO |
---|
| 58 | DO k = 1, klev |
---|
| 59 | DO i = 1, klon |
---|
| 60 | d_t(i, k) = 0.0 |
---|
| 61 | d_u(i, k) = 0.0 |
---|
| 62 | d_v(i, k) = 0.0 |
---|
| 63 | pdudt(i, k) = 0.0 |
---|
| 64 | pdvdt(i, k) = 0.0 |
---|
| 65 | pdtdt(i, k) = 0.0 |
---|
| 66 | END DO |
---|
| 67 | END DO |
---|
[524] | 68 | |
---|
[1992] | 69 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 70 | ! verticaux augmente du haut vers le bas) |
---|
[524] | 71 | |
---|
[1992] | 72 | DO k = 1, klev |
---|
| 73 | DO i = 1, klon |
---|
| 74 | pt(i, k) = t(i, klev-k+1) |
---|
| 75 | pu(i, k) = u(i, klev-k+1) |
---|
| 76 | pv(i, k) = v(i, klev-k+1) |
---|
| 77 | papmf(i, k) = pplay(i, klev-k+1) |
---|
| 78 | END DO |
---|
| 79 | END DO |
---|
| 80 | DO k = 1, klev + 1 |
---|
| 81 | DO i = 1, klon |
---|
| 82 | papmh(i, k) = paprs(i, klev-k+2) |
---|
| 83 | END DO |
---|
| 84 | END DO |
---|
| 85 | DO i = 1, klon |
---|
| 86 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
| 87 | END DO |
---|
| 88 | DO k = klev - 1, 1, -1 |
---|
| 89 | DO i = 1, klon |
---|
| 90 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
| 91 | 1)/papmf(i,k)) |
---|
| 92 | END DO |
---|
| 93 | END DO |
---|
[524] | 94 | |
---|
[1992] | 95 | ! appeler la routine principale |
---|
[524] | 96 | |
---|
[1992] | 97 | CALL orodrag(klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, zgeom, pt, & |
---|
| 98 | pu, pv, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, pvlow, pdudt, & |
---|
| 99 | pdvdt, pdtdt) |
---|
[524] | 100 | |
---|
[1992] | 101 | DO k = 1, klev |
---|
| 102 | DO i = 1, klon |
---|
| 103 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
| 104 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
| 105 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
| 106 | pustr(i) = pustr(i) & ! IM BUG . |
---|
| 107 | ! +rg*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
| 108 | +pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 109 | pvstr(i) = pvstr(i) & ! IM BUG . |
---|
| 110 | ! +rg*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
| 111 | +pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 112 | END DO |
---|
| 113 | END DO |
---|
[524] | 114 | |
---|
[1992] | 115 | RETURN |
---|
| 116 | END SUBROUTINE drag_noro |
---|
| 117 | SUBROUTINE orodrag(nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, papm1, & |
---|
| 118 | pgeom1, ptm1, pum1, pvm1, pmea, pstd, psig, pgamma, ptheta, ppic, pval & |
---|
| 119 | ! outputs |
---|
| 120 | , pulow, pvlow, pvom, pvol, pte) |
---|
[524] | 121 | |
---|
[5285] | 122 | USE yomcst_mod_h |
---|
[1992] | 123 | USE dimphy |
---|
[5309] | 124 | USE yoegwd_mod_h |
---|
[1992] | 125 | IMPLICIT NONE |
---|
[524] | 126 | |
---|
| 127 | |
---|
| 128 | |
---|
[1992] | 129 | ! **** *gwdrag* - does the gravity wave parametrization. |
---|
[524] | 130 | |
---|
[1992] | 131 | ! purpose. |
---|
| 132 | ! -------- |
---|
[524] | 133 | |
---|
[1992] | 134 | ! this routine computes the physical tendencies of the |
---|
| 135 | ! prognostic variables u,v and t due to vertical transports by |
---|
| 136 | ! subgridscale orographically excited gravity waves |
---|
[524] | 137 | |
---|
[1992] | 138 | ! ** interface. |
---|
| 139 | ! ---------- |
---|
| 140 | ! called from *callpar*. |
---|
[524] | 141 | |
---|
[1992] | 142 | ! the routine takes its input from the long-term storage: |
---|
| 143 | ! u,v,t and p at t-1. |
---|
[524] | 144 | |
---|
[1992] | 145 | ! explicit arguments : |
---|
| 146 | ! -------------------- |
---|
| 147 | ! ==== inputs === |
---|
| 148 | ! ==== outputs === |
---|
[524] | 149 | |
---|
[1992] | 150 | ! implicit arguments : none |
---|
| 151 | ! -------------------- |
---|
[524] | 152 | |
---|
[1992] | 153 | ! implicit logical (l) |
---|
[524] | 154 | |
---|
[1992] | 155 | ! method. |
---|
| 156 | ! ------- |
---|
[524] | 157 | |
---|
[1992] | 158 | ! externals. |
---|
| 159 | ! ---------- |
---|
| 160 | INTEGER ismin, ismax |
---|
| 161 | EXTERNAL ismin, ismax |
---|
[524] | 162 | |
---|
[1992] | 163 | ! reference. |
---|
| 164 | ! ---------- |
---|
[524] | 165 | |
---|
[1992] | 166 | ! author. |
---|
| 167 | ! ------- |
---|
| 168 | ! m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
[524] | 169 | |
---|
[1992] | 170 | ! f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
| 171 | ! ----------------------------------------------------------------------- |
---|
[524] | 172 | |
---|
[1992] | 173 | ! * 0.1 arguments |
---|
| 174 | ! --------- |
---|
[524] | 175 | |
---|
| 176 | |
---|
[1992] | 177 | ! ym integer nlon, nlev, klevm1 |
---|
| 178 | INTEGER nlon, nlev |
---|
| 179 | INTEGER kgwd, jl, ilevp1, jk, ji |
---|
| 180 | REAL zdelp, ztemp, zforc, ztend |
---|
| 181 | REAL rover, zb, zc, zconb, zabsv |
---|
| 182 | REAL zzd1, ratio, zbet, zust, zvst, zdis |
---|
| 183 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(klon), & |
---|
| 184 | pvlow(klon) |
---|
| 185 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), pmea(nlon), & |
---|
| 186 | pstd(nlon), psig(nlon), pgamma(nlon), ptheta(nlon), ppic(nlon), & |
---|
| 187 | pval(nlon), pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev+1) |
---|
[524] | 188 | |
---|
[1992] | 189 | INTEGER kdx(nlon), ktest(nlon) |
---|
| 190 | ! ----------------------------------------------------------------------- |
---|
[524] | 191 | |
---|
[1992] | 192 | ! * 0.2 local arrays |
---|
| 193 | ! ------------ |
---|
| 194 | INTEGER isect(klon), icrit(klon), ikcrith(klon), ikenvh(klon), iknu(klon), & |
---|
| 195 | iknu2(klon), ikcrit(klon), ikhlim(klon) |
---|
[524] | 196 | |
---|
[1992] | 197 | REAL ztau(klon, klev+1), ztauf(klon, klev+1), zstab(klon, klev+1), & |
---|
| 198 | zvph(klon, klev+1), zrho(klon, klev+1), zri(klon, klev+1), & |
---|
| 199 | zpsi(klon, klev+1), zzdep(klon, klev) |
---|
| 200 | REAL zdudt(klon), zdvdt(klon), zdtdt(klon), zdedt(klon), zvidis(klon), & |
---|
| 201 | znu(klon), zd1(klon), zd2(klon), zdmod(klon) |
---|
| 202 | REAL ztmst, ptsphy, zrtmst |
---|
[524] | 203 | |
---|
[1992] | 204 | ! ------------------------------------------------------------------ |
---|
[524] | 205 | |
---|
[1992] | 206 | ! * 1. initialization |
---|
| 207 | ! -------------- |
---|
[524] | 208 | |
---|
| 209 | |
---|
[1992] | 210 | ! ------------------------------------------------------------------ |
---|
[524] | 211 | |
---|
[1992] | 212 | ! * 1.1 computational constants |
---|
| 213 | ! ----------------------- |
---|
[524] | 214 | |
---|
| 215 | |
---|
[1992] | 216 | ! ztmst=twodt |
---|
| 217 | ! if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
| 218 | ! ym klevm1=klev-1 |
---|
| 219 | ztmst = ptsphy |
---|
| 220 | zrtmst = 1./ztmst |
---|
[524] | 221 | |
---|
[1992] | 222 | ! ------------------------------------------------------------------ |
---|
[524] | 223 | |
---|
[1992] | 224 | ! * 1.3 check whether row contains point for printing |
---|
| 225 | ! --------------------------------------------- |
---|
[524] | 226 | |
---|
| 227 | |
---|
[1992] | 228 | ! ------------------------------------------------------------------ |
---|
[524] | 229 | |
---|
[1992] | 230 | ! * 2. precompute basic state variables. |
---|
| 231 | ! * ---------- ----- ----- ---------- |
---|
| 232 | ! * define low level wind, project winds in plane of |
---|
| 233 | ! * low level wind, determine sector in which to take |
---|
| 234 | ! * the variance and set indicator for critical levels. |
---|
[524] | 235 | |
---|
| 236 | |
---|
| 237 | |
---|
| 238 | |
---|
[1992] | 239 | CALL orosetup(nlon, ktest, ikcrit, ikcrith, icrit, ikenvh, iknu, iknu2, & |
---|
| 240 | paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, zrho, zri, zstab, ztau, & |
---|
| 241 | zvph, zpsi, zzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, znu, & |
---|
| 242 | zd1, zd2, zdmod) |
---|
[524] | 243 | |
---|
[1992] | 244 | ! *********************************************************** |
---|
[524] | 245 | |
---|
| 246 | |
---|
[1992] | 247 | ! * 3. compute low level stresses using subcritical and |
---|
| 248 | ! * supercritical forms.computes anisotropy coefficient |
---|
| 249 | ! * as measure of orographic twodimensionality. |
---|
[524] | 250 | |
---|
| 251 | |
---|
[1992] | 252 | CALL gwstress(nlon, nlev, ktest, icrit, ikenvh, iknu, zrho, zstab, zvph, & |
---|
| 253 | pstd, psig, pmea, ppic, ztau, pgeom1, zdmod) |
---|
| 254 | |
---|
| 255 | ! * 4. compute stress profile. |
---|
| 256 | ! * ------- ------ -------- |
---|
| 257 | |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | CALL gwprofil(nlon, nlev, kgwd, kdx, ktest, ikcrith, icrit, paphm1, zrho, & |
---|
| 261 | zstab, zvph, zri, ztau, zdmod, psig, pstd) |
---|
| 262 | |
---|
| 263 | ! * 5. compute tendencies. |
---|
| 264 | ! * ------------------- |
---|
| 265 | |
---|
| 266 | |
---|
| 267 | ! explicit solution at all levels for the gravity wave |
---|
| 268 | ! implicit solution for the blocked levels |
---|
| 269 | |
---|
| 270 | DO jl = kidia, kfdia |
---|
| 271 | zvidis(jl) = 0.0 |
---|
| 272 | zdudt(jl) = 0.0 |
---|
| 273 | zdvdt(jl) = 0.0 |
---|
| 274 | zdtdt(jl) = 0.0 |
---|
| 275 | END DO |
---|
| 276 | |
---|
| 277 | ilevp1 = klev + 1 |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | DO jk = 1, klev |
---|
| 281 | |
---|
| 282 | |
---|
| 283 | ! do 523 jl=1,kgwd |
---|
| 284 | ! ji=kdx(jl) |
---|
| 285 | ! Modif vectorisation 02/04/2004 |
---|
| 286 | DO ji = kidia, kfdia |
---|
| 287 | IF (ktest(ji)==1) THEN |
---|
| 288 | |
---|
| 289 | zdelp = paphm1(ji, jk+1) - paphm1(ji, jk) |
---|
| 290 | ztemp = -rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,ilevp1)*zdelp) |
---|
| 291 | zdudt(ji) = (pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
| 292 | zdvdt(ji) = (pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
| 293 | |
---|
| 294 | ! controle des overshoots: |
---|
| 295 | |
---|
| 296 | zforc = sqrt(zdudt(ji)**2+zdvdt(ji)**2) + 1.E-12 |
---|
| 297 | ztend = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst + 1.E-12 |
---|
| 298 | rover = 0.25 |
---|
| 299 | IF (zforc>=rover*ztend) THEN |
---|
| 300 | zdudt(ji) = rover*ztend/zforc*zdudt(ji) |
---|
| 301 | zdvdt(ji) = rover*ztend/zforc*zdvdt(ji) |
---|
| 302 | END IF |
---|
| 303 | |
---|
| 304 | ! fin du controle des overshoots |
---|
| 305 | |
---|
| 306 | IF (jk>=ikenvh(ji)) THEN |
---|
| 307 | zb = 1.0 - 0.18*pgamma(ji) - 0.04*pgamma(ji)**2 |
---|
| 308 | zc = 0.48*pgamma(ji) + 0.3*pgamma(ji)**2 |
---|
| 309 | zconb = 2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
---|
| 310 | zabsv = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
| 311 | zzd1 = zb*cos(zpsi(ji,jk))**2 + zc*sin(zpsi(ji,jk))**2 |
---|
| 312 | ratio = (cos(zpsi(ji,jk))**2+pgamma(ji)*sin(zpsi(ji, & |
---|
| 313 | jk))**2)/(pgamma(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
| 314 | zbet = max(0., 2.-1./ratio)*zconb*zzdep(ji, jk)*zzd1*zabsv |
---|
| 315 | |
---|
| 316 | ! simplement oppose au vent |
---|
| 317 | |
---|
| 318 | zdudt(ji) = -pum1(ji, jk)/ztmst |
---|
| 319 | zdvdt(ji) = -pvm1(ji, jk)/ztmst |
---|
| 320 | |
---|
| 321 | ! projection dans la direction de l'axe principal de l'orographie |
---|
| 322 | ! mod zdudt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
| 323 | ! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
| 324 | ! mod * *cos(ptheta(ji)*rpi/180.)/ztmst |
---|
| 325 | ! mod zdvdt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
| 326 | ! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
| 327 | ! mod * *sin(ptheta(ji)*rpi/180.)/ztmst |
---|
| 328 | zdudt(ji) = zdudt(ji)*(zbet/(1.+zbet)) |
---|
| 329 | zdvdt(ji) = zdvdt(ji)*(zbet/(1.+zbet)) |
---|
| 330 | END IF |
---|
| 331 | pvom(ji, jk) = zdudt(ji) |
---|
| 332 | pvol(ji, jk) = zdvdt(ji) |
---|
| 333 | zust = pum1(ji, jk) + ztmst*zdudt(ji) |
---|
| 334 | zvst = pvm1(ji, jk) + ztmst*zdvdt(ji) |
---|
| 335 | zdis = 0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
| 336 | zdedt(ji) = zdis/ztmst |
---|
| 337 | zvidis(ji) = zvidis(ji) + zdis*zdelp |
---|
| 338 | zdtdt(ji) = zdedt(ji)/rcpd |
---|
| 339 | ! pte(ji,jk)=zdtdt(ji) |
---|
| 340 | |
---|
| 341 | ! ENCORE UN TRUC POUR EVITER LES EXPLOSIONS |
---|
| 342 | |
---|
| 343 | pte(ji, jk) = 0.0 |
---|
| 344 | |
---|
| 345 | END IF |
---|
| 346 | END DO |
---|
| 347 | |
---|
| 348 | END DO |
---|
| 349 | |
---|
| 350 | |
---|
| 351 | RETURN |
---|
| 352 | END SUBROUTINE orodrag |
---|
| 353 | SUBROUTINE orosetup(nlon, ktest, kkcrit, kkcrith, kcrit, kkenvh, kknu, kknu2, & |
---|
| 354 | paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, prho, pri, pstab, ptau, & |
---|
| 355 | pvph, ppsi, pzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, pnu, & |
---|
| 356 | pd1, pd2, pdmod) |
---|
| 357 | |
---|
| 358 | ! **** *gwsetup* |
---|
| 359 | |
---|
| 360 | ! purpose. |
---|
| 361 | ! -------- |
---|
| 362 | |
---|
| 363 | ! ** interface. |
---|
| 364 | ! ---------- |
---|
| 365 | ! from *orodrag* |
---|
| 366 | |
---|
| 367 | ! explicit arguments : |
---|
| 368 | ! -------------------- |
---|
| 369 | ! ==== inputs === |
---|
| 370 | ! ==== outputs === |
---|
| 371 | |
---|
| 372 | ! implicit arguments : none |
---|
| 373 | ! -------------------- |
---|
| 374 | |
---|
| 375 | ! method. |
---|
| 376 | ! ------- |
---|
| 377 | |
---|
| 378 | |
---|
| 379 | ! externals. |
---|
| 380 | ! ---------- |
---|
| 381 | |
---|
| 382 | |
---|
| 383 | ! reference. |
---|
| 384 | ! ---------- |
---|
| 385 | |
---|
| 386 | ! see ecmwf research department documentation of the "i.f.s." |
---|
| 387 | |
---|
| 388 | ! author. |
---|
| 389 | ! ------- |
---|
| 390 | |
---|
| 391 | ! modifications. |
---|
| 392 | ! -------------- |
---|
| 393 | ! f.lott for the new-gwdrag scheme november 1993 |
---|
| 394 | |
---|
| 395 | ! ----------------------------------------------------------------------- |
---|
[5309] | 396 | USE yoegwd_mod_h |
---|
| 397 | USE dimphy |
---|
[5285] | 398 | USE yomcst_mod_h |
---|
[5274] | 399 | IMPLICIT NONE |
---|
[1992] | 400 | |
---|
| 401 | |
---|
[5274] | 402 | |
---|
[1992] | 403 | |
---|
| 404 | ! ----------------------------------------------------------------------- |
---|
| 405 | |
---|
| 406 | ! * 0.1 arguments |
---|
| 407 | ! --------- |
---|
| 408 | |
---|
| 409 | INTEGER nlon |
---|
| 410 | INTEGER jl, jk |
---|
| 411 | REAL zdelp |
---|
| 412 | |
---|
| 413 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ktest(nlon), kkenvh(nlon) |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | REAL paphm1(nlon, klev+1), papm1(nlon, klev), pum1(nlon, klev), & |
---|
| 417 | pvm1(nlon, klev), ptm1(nlon, klev), pgeom1(nlon, klev), & |
---|
| 418 | prho(nlon, klev+1), pri(nlon, klev+1), pstab(nlon, klev+1), & |
---|
| 419 | ptau(nlon, klev+1), pvph(nlon, klev+1), ppsi(nlon, klev+1), & |
---|
| 420 | pzdep(nlon, klev) |
---|
| 421 | REAL pulow(nlon), pvlow(nlon), ptheta(nlon), pgamma(nlon), pnu(nlon), & |
---|
| 422 | pd1(nlon), pd2(nlon), pdmod(nlon) |
---|
| 423 | REAL pstd(nlon), pmea(nlon), ppic(nlon), pval(nlon) |
---|
| 424 | |
---|
| 425 | ! ----------------------------------------------------------------------- |
---|
| 426 | |
---|
| 427 | ! * 0.2 local arrays |
---|
| 428 | ! ------------ |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | INTEGER ilevm1, ilevm2, ilevh |
---|
| 432 | REAL zcons1, zcons2, zcons3, zhgeo |
---|
| 433 | REAL zu, zphi, zvt1, zvt2, zst, zvar, zdwind, zwind |
---|
| 434 | REAL zstabm, zstabp, zrhom, zrhop, alpha |
---|
| 435 | REAL zggeenv, zggeom1, zgvar |
---|
| 436 | LOGICAL lo |
---|
| 437 | LOGICAL ll1(klon, klev+1) |
---|
| 438 | INTEGER kknu(klon), kknu2(klon), kknub(klon), kknul(klon), kentp(klon), & |
---|
| 439 | ncount(klon) |
---|
| 440 | |
---|
| 441 | REAL zhcrit(klon, klev), zvpf(klon, klev), zdp(klon, klev) |
---|
| 442 | REAL znorm(klon), zb(klon), zc(klon), zulow(klon), zvlow(klon), znup(klon), & |
---|
| 443 | znum(klon) |
---|
| 444 | |
---|
| 445 | ! ------------------------------------------------------------------ |
---|
| 446 | |
---|
| 447 | ! * 1. initialization |
---|
| 448 | ! -------------- |
---|
| 449 | |
---|
| 450 | ! print *,' entree gwsetup' |
---|
| 451 | |
---|
| 452 | ! ------------------------------------------------------------------ |
---|
| 453 | |
---|
| 454 | ! * 1.1 computational constants |
---|
| 455 | ! ----------------------- |
---|
| 456 | |
---|
| 457 | |
---|
| 458 | ilevm1 = klev - 1 |
---|
| 459 | ilevm2 = klev - 2 |
---|
| 460 | ilevh = klev/3 |
---|
| 461 | |
---|
| 462 | zcons1 = 1./rd |
---|
| 463 | ! old zcons2=g**2/cpd |
---|
| 464 | zcons2 = rg**2/rcpd |
---|
| 465 | ! old zcons3=1.5*api |
---|
| 466 | zcons3 = 1.5*rpi |
---|
| 467 | |
---|
| 468 | ! ------------------------------------------------------------------ |
---|
| 469 | |
---|
| 470 | ! * 2. |
---|
| 471 | ! -------------- |
---|
| 472 | |
---|
| 473 | |
---|
| 474 | ! ------------------------------------------------------------------ |
---|
| 475 | |
---|
| 476 | ! * 2.1 define low level wind, project winds in plane of |
---|
| 477 | ! * low level wind, determine sector in which to take |
---|
| 478 | ! * the variance and set indicator for critical levels. |
---|
| 479 | |
---|
| 480 | |
---|
| 481 | |
---|
| 482 | DO jl = kidia, kfdia |
---|
| 483 | kknu(jl) = klev |
---|
| 484 | kknu2(jl) = klev |
---|
| 485 | kknub(jl) = klev |
---|
| 486 | kknul(jl) = klev |
---|
| 487 | pgamma(jl) = max(pgamma(jl), gtsec) |
---|
| 488 | ll1(jl, klev+1) = .FALSE. |
---|
| 489 | END DO |
---|
| 490 | |
---|
| 491 | ! Ajouter une initialisation (L. Li, le 23fev99): |
---|
| 492 | |
---|
| 493 | DO jk = klev, ilevh, -1 |
---|
| 494 | DO jl = kidia, kfdia |
---|
| 495 | ll1(jl, jk) = .FALSE. |
---|
| 496 | END DO |
---|
| 497 | END DO |
---|
| 498 | |
---|
| 499 | ! * define top of low level flow |
---|
| 500 | ! ---------------------------- |
---|
| 501 | DO jk = klev, ilevh, -1 |
---|
| 502 | DO jl = kidia, kfdia |
---|
| 503 | lo = (paphm1(jl,jk)/paphm1(jl,klev+1)) >= gsigcr |
---|
| 504 | IF (lo) THEN |
---|
| 505 | kkcrit(jl) = jk |
---|
| 506 | END IF |
---|
| 507 | zhcrit(jl, jk) = ppic(jl) |
---|
| 508 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 509 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 510 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 511 | kknu(jl) = jk |
---|
| 512 | END IF |
---|
| 513 | IF (.NOT. ll1(jl,ilevh)) kknu(jl) = ilevh |
---|
| 514 | END DO |
---|
| 515 | END DO |
---|
| 516 | DO jk = klev, ilevh, -1 |
---|
| 517 | DO jl = kidia, kfdia |
---|
| 518 | zhcrit(jl, jk) = ppic(jl) - pval(jl) |
---|
| 519 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 520 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 521 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 522 | kknu2(jl) = jk |
---|
| 523 | END IF |
---|
| 524 | IF (.NOT. ll1(jl,ilevh)) kknu2(jl) = ilevh |
---|
| 525 | END DO |
---|
| 526 | END DO |
---|
| 527 | DO jk = klev, ilevh, -1 |
---|
| 528 | DO jl = kidia, kfdia |
---|
| 529 | zhcrit(jl, jk) = amax1(ppic(jl)-pmea(jl), pmea(jl)-pval(jl)) |
---|
| 530 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 531 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 532 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 533 | kknub(jl) = jk |
---|
| 534 | END IF |
---|
| 535 | IF (.NOT. ll1(jl,ilevh)) kknub(jl) = ilevh |
---|
| 536 | END DO |
---|
| 537 | END DO |
---|
| 538 | |
---|
| 539 | DO jl = kidia, kfdia |
---|
| 540 | kknu(jl) = min(kknu(jl), nktopg) |
---|
| 541 | kknu2(jl) = min(kknu2(jl), nktopg) |
---|
| 542 | kknub(jl) = min(kknub(jl), nktopg) |
---|
| 543 | kknul(jl) = klev |
---|
| 544 | END DO |
---|
| 545 | |
---|
| 546 | ! c* initialize various arrays |
---|
| 547 | |
---|
| 548 | DO jl = kidia, kfdia |
---|
| 549 | prho(jl, klev+1) = 0.0 |
---|
| 550 | pstab(jl, klev+1) = 0.0 |
---|
| 551 | pstab(jl, 1) = 0.0 |
---|
| 552 | pri(jl, klev+1) = 9999.0 |
---|
| 553 | ppsi(jl, klev+1) = 0.0 |
---|
| 554 | pri(jl, 1) = 0.0 |
---|
| 555 | pvph(jl, 1) = 0.0 |
---|
| 556 | pulow(jl) = 0.0 |
---|
| 557 | pvlow(jl) = 0.0 |
---|
| 558 | zulow(jl) = 0.0 |
---|
| 559 | zvlow(jl) = 0.0 |
---|
| 560 | kkcrith(jl) = klev |
---|
| 561 | kkenvh(jl) = klev |
---|
| 562 | kentp(jl) = klev |
---|
| 563 | kcrit(jl) = 1 |
---|
| 564 | ncount(jl) = 0 |
---|
| 565 | ll1(jl, klev+1) = .FALSE. |
---|
| 566 | END DO |
---|
| 567 | |
---|
| 568 | ! * define low-level flow |
---|
| 569 | ! --------------------- |
---|
| 570 | |
---|
| 571 | DO jk = klev, 2, -1 |
---|
| 572 | DO jl = kidia, kfdia |
---|
| 573 | IF (ktest(jl)==1) THEN |
---|
| 574 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
| 575 | prho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
| 576 | pstab(jl, jk) = 2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* & |
---|
| 577 | (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
| 578 | pstab(jl, jk) = max(pstab(jl,jk), gssec) |
---|
| 579 | END IF |
---|
| 580 | END DO |
---|
| 581 | END DO |
---|
| 582 | |
---|
| 583 | ! ******************************************************************** |
---|
| 584 | |
---|
| 585 | ! * define blocked flow |
---|
| 586 | ! ------------------- |
---|
| 587 | DO jk = klev, ilevh, -1 |
---|
| 588 | DO jl = kidia, kfdia |
---|
| 589 | IF (jk>=kknub(jl) .AND. jk<=kknul(jl)) THEN |
---|
| 590 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
| 591 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
| 592 | END IF |
---|
| 593 | END DO |
---|
| 594 | END DO |
---|
| 595 | DO jl = kidia, kfdia |
---|
| 596 | pulow(jl) = pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
| 597 | pvlow(jl) = pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
| 598 | znorm(jl) = max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 599 | pvph(jl, klev+1) = znorm(jl) |
---|
| 600 | END DO |
---|
| 601 | |
---|
| 602 | ! ******* setup orography axes and define plane of profiles ******* |
---|
| 603 | |
---|
| 604 | DO jl = kidia, kfdia |
---|
| 605 | lo = (pulow(jl)<gvsec) .AND. (pulow(jl)>=-gvsec) |
---|
| 606 | IF (lo) THEN |
---|
| 607 | zu = pulow(jl) + 2.*gvsec |
---|
| 608 | ELSE |
---|
| 609 | zu = pulow(jl) |
---|
| 610 | END IF |
---|
| 611 | zphi = atan(pvlow(jl)/zu) |
---|
| 612 | ppsi(jl, klev+1) = ptheta(jl)*rpi/180. - zphi |
---|
| 613 | zb(jl) = 1. - 0.18*pgamma(jl) - 0.04*pgamma(jl)**2 |
---|
| 614 | zc(jl) = 0.48*pgamma(jl) + 0.3*pgamma(jl)**2 |
---|
| 615 | pd1(jl) = zb(jl) - (zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
| 616 | pd2(jl) = (zb(jl)-zc(jl))*sin(ppsi(jl,klev+1))*cos(ppsi(jl,klev+1)) |
---|
| 617 | pdmod(jl) = sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
| 618 | END DO |
---|
| 619 | |
---|
| 620 | ! ************ define flow in plane of lowlevel stress ************* |
---|
| 621 | |
---|
| 622 | DO jk = 1, klev |
---|
| 623 | DO jl = kidia, kfdia |
---|
| 624 | IF (ktest(jl)==1) THEN |
---|
| 625 | zvt1 = pulow(jl)*pum1(jl, jk) + pvlow(jl)*pvm1(jl, jk) |
---|
| 626 | zvt2 = -pvlow(jl)*pum1(jl, jk) + pulow(jl)*pvm1(jl, jk) |
---|
| 627 | zvpf(jl, jk) = (zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
| 628 | END IF |
---|
| 629 | ptau(jl, jk) = 0.0 |
---|
| 630 | pzdep(jl, jk) = 0.0 |
---|
| 631 | ppsi(jl, jk) = 0.0 |
---|
| 632 | ll1(jl, jk) = .FALSE. |
---|
| 633 | END DO |
---|
| 634 | END DO |
---|
| 635 | DO jk = 2, klev |
---|
| 636 | DO jl = kidia, kfdia |
---|
| 637 | IF (ktest(jl)==1) THEN |
---|
| 638 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
| 639 | pvph(jl, jk) = ((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+(papm1(jl, & |
---|
| 640 | jk)-paphm1(jl,jk))*zvpf(jl,jk-1))/zdp(jl, jk) |
---|
| 641 | IF (pvph(jl,jk)<gvsec) THEN |
---|
| 642 | pvph(jl, jk) = gvsec |
---|
| 643 | kcrit(jl) = jk |
---|
| 644 | END IF |
---|
| 645 | END IF |
---|
| 646 | END DO |
---|
| 647 | END DO |
---|
| 648 | |
---|
| 649 | ! * 2.2 brunt-vaisala frequency and density at half levels. |
---|
| 650 | |
---|
| 651 | |
---|
| 652 | DO jk = ilevh, klev |
---|
| 653 | DO jl = kidia, kfdia |
---|
| 654 | IF (ktest(jl)==1) THEN |
---|
| 655 | IF (jk>=(kknub(jl)+1) .AND. jk<=kknul(jl)) THEN |
---|
| 656 | zst = zcons2/ptm1(jl, jk)*(1.-rcpd*prho(jl,jk)*(ptm1(jl, & |
---|
| 657 | jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
| 658 | pstab(jl, klev+1) = pstab(jl, klev+1) + zst*zdp(jl, jk) |
---|
| 659 | pstab(jl, klev+1) = max(pstab(jl,klev+1), gssec) |
---|
| 660 | prho(jl, klev+1) = prho(jl, klev+1) + paphm1(jl, jk)*2.*zdp(jl, jk) & |
---|
| 661 | *zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
| 662 | END IF |
---|
| 663 | END IF |
---|
| 664 | END DO |
---|
| 665 | END DO |
---|
| 666 | |
---|
| 667 | DO jl = kidia, kfdia |
---|
| 668 | pstab(jl, klev+1) = pstab(jl, klev+1)/(papm1(jl,kknul(jl))-papm1(jl,kknub & |
---|
| 669 | (jl))) |
---|
| 670 | prho(jl, klev+1) = prho(jl, klev+1)/(papm1(jl,kknul(jl))-papm1(jl,kknub( & |
---|
| 671 | jl))) |
---|
| 672 | zvar = pstd(jl) |
---|
| 673 | END DO |
---|
| 674 | |
---|
| 675 | ! * 2.3 mean flow richardson number. |
---|
| 676 | ! * and critical height for froude layer |
---|
| 677 | |
---|
| 678 | |
---|
| 679 | DO jk = 2, klev |
---|
| 680 | DO jl = kidia, kfdia |
---|
| 681 | IF (ktest(jl)==1) THEN |
---|
| 682 | zdwind = max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)), gvsec) |
---|
| 683 | pri(jl, jk) = pstab(jl, jk)*(zdp(jl,jk)/(rg*prho(jl,jk)*zdwind))**2 |
---|
| 684 | pri(jl, jk) = max(pri(jl,jk), grcrit) |
---|
| 685 | END IF |
---|
| 686 | END DO |
---|
| 687 | END DO |
---|
| 688 | |
---|
| 689 | |
---|
| 690 | |
---|
| 691 | ! * define top of 'envelope' layer |
---|
| 692 | ! ---------------------------- |
---|
| 693 | |
---|
| 694 | DO jl = kidia, kfdia |
---|
| 695 | pnu(jl) = 0.0 |
---|
| 696 | znum(jl) = 0.0 |
---|
| 697 | END DO |
---|
| 698 | |
---|
| 699 | DO jk = 2, klev - 1 |
---|
| 700 | DO jl = kidia, kfdia |
---|
| 701 | |
---|
| 702 | IF (ktest(jl)==1) THEN |
---|
| 703 | |
---|
| 704 | IF (jk>=kknub(jl)) THEN |
---|
| 705 | |
---|
| 706 | znum(jl) = pnu(jl) |
---|
| 707 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
| 708 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 709 | zwind = max(sqrt(zwind**2), gvsec) |
---|
| 710 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 711 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
| 712 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
| 713 | zrhom = prho(jl, jk) |
---|
| 714 | zrhop = prho(jl, jk+1) |
---|
| 715 | pnu(jl) = pnu(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
| 716 | zwind |
---|
| 717 | IF ((znum(jl)<=gfrcrit) .AND. (pnu(jl)>gfrcrit) .AND. (kkenvh( & |
---|
| 718 | jl)==klev)) kkenvh(jl) = jk |
---|
| 719 | |
---|
| 720 | END IF |
---|
| 721 | |
---|
| 722 | END IF |
---|
| 723 | |
---|
| 724 | END DO |
---|
| 725 | END DO |
---|
| 726 | |
---|
| 727 | ! calculation of a dynamical mixing height for the breaking |
---|
| 728 | ! of gravity waves: |
---|
| 729 | |
---|
| 730 | |
---|
| 731 | DO jl = kidia, kfdia |
---|
| 732 | znup(jl) = 0.0 |
---|
| 733 | znum(jl) = 0.0 |
---|
| 734 | END DO |
---|
| 735 | |
---|
| 736 | DO jk = klev - 1, 2, -1 |
---|
| 737 | DO jl = kidia, kfdia |
---|
| 738 | |
---|
| 739 | IF (ktest(jl)==1) THEN |
---|
| 740 | |
---|
| 741 | znum(jl) = znup(jl) |
---|
| 742 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
| 743 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 744 | zwind = max(sqrt(zwind**2), gvsec) |
---|
| 745 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 746 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
| 747 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
| 748 | zrhom = prho(jl, jk) |
---|
| 749 | zrhop = prho(jl, jk+1) |
---|
| 750 | znup(jl) = znup(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
| 751 | zwind |
---|
| 752 | IF ((znum(jl)<=rpi/2.) .AND. (znup(jl)>rpi/2.) .AND. (kkcrith( & |
---|
| 753 | jl)==klev)) kkcrith(jl) = jk |
---|
| 754 | |
---|
| 755 | END IF |
---|
| 756 | |
---|
| 757 | END DO |
---|
| 758 | END DO |
---|
| 759 | |
---|
| 760 | DO jl = kidia, kfdia |
---|
| 761 | kkcrith(jl) = min0(kkcrith(jl), kknu2(jl)) |
---|
| 762 | kkcrith(jl) = max0(kkcrith(jl), ilevh*2) |
---|
| 763 | END DO |
---|
| 764 | |
---|
| 765 | ! directional info for flow blocking ************************* |
---|
| 766 | |
---|
| 767 | DO jk = ilevh, klev |
---|
| 768 | DO jl = kidia, kfdia |
---|
| 769 | IF (jk>=kkenvh(jl)) THEN |
---|
| 770 | lo = (pum1(jl,jk)<gvsec) .AND. (pum1(jl,jk)>=-gvsec) |
---|
| 771 | IF (lo) THEN |
---|
| 772 | zu = pum1(jl, jk) + 2.*gvsec |
---|
| 773 | ELSE |
---|
| 774 | zu = pum1(jl, jk) |
---|
| 775 | END IF |
---|
| 776 | zphi = atan(pvm1(jl,jk)/zu) |
---|
| 777 | ppsi(jl, jk) = ptheta(jl)*rpi/180. - zphi |
---|
| 778 | END IF |
---|
| 779 | END DO |
---|
| 780 | END DO |
---|
| 781 | ! forms the vertical 'leakiness' ************************** |
---|
| 782 | |
---|
| 783 | alpha = 3. |
---|
| 784 | |
---|
| 785 | DO jk = ilevh, klev |
---|
| 786 | DO jl = kidia, kfdia |
---|
| 787 | IF (jk>=kkenvh(jl)) THEN |
---|
| 788 | zggeenv = amax1(1., (pgeom1(jl,kkenvh(jl))+pgeom1(jl, & |
---|
| 789 | kkenvh(jl)-1))/2.) |
---|
| 790 | zggeom1 = amax1(pgeom1(jl,jk), 1.) |
---|
| 791 | zgvar = amax1(pstd(jl)*rg, 1.) |
---|
| 792 | ! mod pzdep(jl,jk)=sqrt((zggeenv-zggeom1)/(zggeom1+zgvar)) |
---|
| 793 | pzdep(jl, jk) = (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,jk))/ & |
---|
| 794 | (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,klev)) |
---|
| 795 | END IF |
---|
| 796 | END DO |
---|
| 797 | END DO |
---|
| 798 | |
---|
| 799 | RETURN |
---|
| 800 | END SUBROUTINE orosetup |
---|
| 801 | SUBROUTINE gwstress(nlon, nlev, ktest, kcrit, kkenvh, kknu, prho, pstab, & |
---|
| 802 | pvph, pstd, psig, pmea, ppic, ptau, pgeom1, pdmod) |
---|
| 803 | |
---|
| 804 | ! **** *gwstress* |
---|
| 805 | |
---|
| 806 | ! purpose. |
---|
| 807 | ! -------- |
---|
| 808 | |
---|
| 809 | ! ** interface. |
---|
| 810 | ! ---------- |
---|
| 811 | ! call *gwstress* from *gwdrag* |
---|
| 812 | |
---|
| 813 | ! explicit arguments : |
---|
| 814 | ! -------------------- |
---|
| 815 | ! ==== inputs === |
---|
| 816 | ! ==== outputs === |
---|
| 817 | |
---|
| 818 | ! implicit arguments : none |
---|
| 819 | ! -------------------- |
---|
| 820 | |
---|
| 821 | ! method. |
---|
| 822 | ! ------- |
---|
| 823 | |
---|
| 824 | |
---|
| 825 | ! externals. |
---|
| 826 | ! ---------- |
---|
| 827 | |
---|
| 828 | |
---|
| 829 | ! reference. |
---|
| 830 | ! ---------- |
---|
| 831 | |
---|
| 832 | ! see ecmwf research department documentation of the "i.f.s." |
---|
| 833 | |
---|
| 834 | ! author. |
---|
| 835 | ! ------- |
---|
| 836 | |
---|
| 837 | ! modifications. |
---|
| 838 | ! -------------- |
---|
| 839 | ! f. lott put the new gwd on ifs 22/11/93 |
---|
| 840 | |
---|
| 841 | ! ----------------------------------------------------------------------- |
---|
[5309] | 842 | USE yoegwd_mod_h |
---|
| 843 | USE dimphy |
---|
[5285] | 844 | USE yomcst_mod_h |
---|
[5274] | 845 | IMPLICIT NONE |
---|
| 846 | |
---|
[1992] | 847 | |
---|
| 848 | ! ----------------------------------------------------------------------- |
---|
| 849 | |
---|
| 850 | ! * 0.1 arguments |
---|
| 851 | ! --------- |
---|
| 852 | |
---|
| 853 | INTEGER nlon, nlev |
---|
| 854 | INTEGER kcrit(nlon), ktest(nlon), kkenvh(nlon), kknu(nlon) |
---|
| 855 | |
---|
| 856 | REAL prho(nlon, nlev+1), pstab(nlon, nlev+1), ptau(nlon, nlev+1), & |
---|
| 857 | pvph(nlon, nlev+1), pgeom1(nlon, nlev), pstd(nlon) |
---|
| 858 | |
---|
| 859 | REAL psig(nlon) |
---|
| 860 | REAL pmea(nlon), ppic(nlon) |
---|
| 861 | REAL pdmod(nlon) |
---|
| 862 | |
---|
| 863 | ! ----------------------------------------------------------------------- |
---|
| 864 | |
---|
| 865 | ! * 0.2 local arrays |
---|
| 866 | ! ------------ |
---|
| 867 | INTEGER jl |
---|
| 868 | REAL zblock, zvar, zeff |
---|
| 869 | LOGICAL lo |
---|
| 870 | |
---|
| 871 | ! ----------------------------------------------------------------------- |
---|
| 872 | |
---|
| 873 | ! * 0.3 functions |
---|
| 874 | ! --------- |
---|
| 875 | ! ------------------------------------------------------------------ |
---|
| 876 | |
---|
| 877 | ! * 1. initialization |
---|
| 878 | ! -------------- |
---|
| 879 | |
---|
| 880 | |
---|
| 881 | ! * 3.1 gravity wave stress. |
---|
| 882 | |
---|
| 883 | |
---|
| 884 | |
---|
| 885 | DO jl = kidia, kfdia |
---|
| 886 | IF (ktest(jl)==1) THEN |
---|
| 887 | |
---|
| 888 | ! effective mountain height above the blocked flow |
---|
| 889 | |
---|
| 890 | IF (kkenvh(jl)==klev) THEN |
---|
| 891 | zblock = 0.0 |
---|
[524] | 892 | ELSE |
---|
[1992] | 893 | zblock = (pgeom1(jl,kkenvh(jl))+pgeom1(jl,kkenvh(jl)+1))/2./rg |
---|
| 894 | END IF |
---|
[524] | 895 | |
---|
[1992] | 896 | zvar = ppic(jl) - pmea(jl) |
---|
| 897 | zeff = amax1(0., zvar-zblock) |
---|
| 898 | |
---|
| 899 | ptau(jl, klev+1) = prho(jl, klev+1)*gkdrag*psig(jl)*zeff**2/4./ & |
---|
| 900 | pstd(jl)*pvph(jl, klev+1)*pdmod(jl)*sqrt(pstab(jl,klev+1)) |
---|
| 901 | |
---|
| 902 | ! too small value of stress or low level flow include critical level |
---|
| 903 | ! or low level flow: gravity wave stress nul. |
---|
| 904 | |
---|
| 905 | lo = (ptau(jl,klev+1)<gtsec) .OR. (kcrit(jl)>=kknu(jl)) .OR. & |
---|
| 906 | (pvph(jl,klev+1)<gvcrit) |
---|
| 907 | ! if(lo) ptau(jl,klev+1)=0.0 |
---|
| 908 | |
---|
| 909 | ELSE |
---|
| 910 | |
---|
| 911 | ptau(jl, klev+1) = 0.0 |
---|
| 912 | |
---|
| 913 | END IF |
---|
| 914 | |
---|
| 915 | END DO |
---|
| 916 | |
---|
| 917 | RETURN |
---|
| 918 | END SUBROUTINE gwstress |
---|
| 919 | SUBROUTINE gwprofil(nlon, nlev, kgwd, kdx, ktest, kkcrith, kcrit, paphm1, & |
---|
| 920 | prho, pstab, pvph, pri, ptau, pdmod, psig, pvar) |
---|
| 921 | |
---|
| 922 | ! **** *GWPROFIL* |
---|
| 923 | |
---|
| 924 | ! PURPOSE. |
---|
| 925 | ! -------- |
---|
| 926 | |
---|
| 927 | ! ** INTERFACE. |
---|
| 928 | ! ---------- |
---|
| 929 | ! FROM *GWDRAG* |
---|
| 930 | |
---|
| 931 | ! EXPLICIT ARGUMENTS : |
---|
| 932 | ! -------------------- |
---|
| 933 | ! ==== INPUTS === |
---|
| 934 | ! ==== OUTPUTS === |
---|
| 935 | |
---|
| 936 | ! IMPLICIT ARGUMENTS : NONE |
---|
| 937 | ! -------------------- |
---|
| 938 | |
---|
| 939 | ! METHOD: |
---|
| 940 | ! ------- |
---|
| 941 | ! THE STRESS PROFILE FOR GRAVITY WAVES IS COMPUTED AS FOLLOWS: |
---|
| 942 | ! IT IS CONSTANT (NO GWD) AT THE LEVELS BETWEEN THE GROUND |
---|
| 943 | ! AND THE TOP OF THE BLOCKED LAYER (KKENVH). |
---|
| 944 | ! IT DECREASES LINEARLY WITH HEIGHTS FROM THE TOP OF THE |
---|
| 945 | ! BLOCKED LAYER TO 3*VAROR (kKNU), TO SIMULATES LEE WAVES OR |
---|
| 946 | ! NONLINEAR GRAVITY WAVE BREAKING. |
---|
| 947 | ! ABOVE IT IS CONSTANT, EXCEPT WHEN THE WAVE ENCOUNTERS A CRITICAL |
---|
| 948 | ! LEVEL (KCRIT) OR WHEN IT BREAKS. |
---|
| 949 | |
---|
| 950 | |
---|
| 951 | |
---|
| 952 | ! EXTERNALS. |
---|
| 953 | ! ---------- |
---|
| 954 | |
---|
| 955 | |
---|
| 956 | ! REFERENCE. |
---|
| 957 | ! ---------- |
---|
| 958 | |
---|
| 959 | ! SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
---|
| 960 | |
---|
| 961 | ! AUTHOR. |
---|
| 962 | ! ------- |
---|
| 963 | |
---|
| 964 | ! MODIFICATIONS. |
---|
| 965 | ! -------------- |
---|
| 966 | ! PASSAGE OF THE NEW GWDRAG TO I.F.S. (F. LOTT, 22/11/93) |
---|
| 967 | ! ----------------------------------------------------------------------- |
---|
[5309] | 968 | USE yoegwd_mod_h |
---|
| 969 | USE dimphy |
---|
[5285] | 970 | USE yomcst_mod_h |
---|
[5274] | 971 | IMPLICIT NONE |
---|
[1992] | 972 | |
---|
| 973 | |
---|
| 974 | |
---|
| 975 | |
---|
[5274] | 976 | |
---|
[1992] | 977 | |
---|
| 978 | ! ----------------------------------------------------------------------- |
---|
| 979 | |
---|
| 980 | ! * 0.1 ARGUMENTS |
---|
| 981 | ! --------- |
---|
| 982 | |
---|
| 983 | INTEGER nlon, nlev |
---|
| 984 | INTEGER kkcrith(nlon), kcrit(nlon), kdx(nlon), ktest(nlon) |
---|
| 985 | |
---|
| 986 | |
---|
| 987 | REAL paphm1(nlon, nlev+1), pstab(nlon, nlev+1), prho(nlon, nlev+1), & |
---|
| 988 | pvph(nlon, nlev+1), pri(nlon, nlev+1), ptau(nlon, nlev+1) |
---|
| 989 | |
---|
| 990 | REAL pdmod(nlon), psig(nlon), pvar(nlon) |
---|
| 991 | |
---|
| 992 | ! ----------------------------------------------------------------------- |
---|
| 993 | |
---|
| 994 | ! * 0.2 LOCAL ARRAYS |
---|
| 995 | ! ------------ |
---|
| 996 | |
---|
| 997 | INTEGER ilevh, ji, kgwd, jl, jk |
---|
| 998 | REAL zsqr, zalfa, zriw, zdel, zb, zalpha, zdz2n |
---|
| 999 | REAL zdelp, zdelpt |
---|
| 1000 | REAL zdz2(klon, klev), znorm(klon), zoro(klon) |
---|
| 1001 | REAL ztau(klon, klev+1) |
---|
| 1002 | |
---|
| 1003 | ! ----------------------------------------------------------------------- |
---|
| 1004 | |
---|
| 1005 | ! * 1. INITIALIZATION |
---|
| 1006 | ! -------------- |
---|
| 1007 | |
---|
| 1008 | ! print *,' entree gwprofil' |
---|
| 1009 | |
---|
| 1010 | |
---|
| 1011 | ! * COMPUTATIONAL CONSTANTS. |
---|
| 1012 | ! ------------- ---------- |
---|
| 1013 | |
---|
| 1014 | ilevh = klev/3 |
---|
| 1015 | |
---|
| 1016 | ! DO 400 ji=1,kgwd |
---|
| 1017 | ! jl=kdx(ji) |
---|
| 1018 | ! Modif vectorisation 02/04/2004 |
---|
| 1019 | DO jl = kidia, kfdia |
---|
| 1020 | IF (ktest(jl)==1) THEN |
---|
| 1021 | zoro(jl) = psig(jl)*pdmod(jl)/4./max(pvar(jl), 1.0) |
---|
| 1022 | ztau(jl, klev+1) = ptau(jl, klev+1) |
---|
| 1023 | END IF |
---|
| 1024 | END DO |
---|
| 1025 | |
---|
| 1026 | |
---|
| 1027 | DO jk = klev, 2, -1 |
---|
| 1028 | |
---|
| 1029 | ! * 4.1 CONSTANT WAVE STRESS UNTIL TOP OF THE |
---|
| 1030 | ! BLOCKING LAYER. |
---|
| 1031 | |
---|
| 1032 | ! DO 411 ji=1,kgwd |
---|
| 1033 | ! jl=kdx(ji) |
---|
| 1034 | ! Modif vectorisation 02/04/2004 |
---|
| 1035 | DO jl = kidia, kfdia |
---|
| 1036 | IF (ktest(jl)==1) THEN |
---|
| 1037 | IF (jk>kkcrith(jl)) THEN |
---|
| 1038 | ptau(jl, jk) = ztau(jl, klev+1) |
---|
| 1039 | ! ENDIF |
---|
| 1040 | ! IF(JK.EQ.KKCRITH(JL)) THEN |
---|
[524] | 1041 | ELSE |
---|
[1992] | 1042 | ptau(jl, jk) = grahilo*ztau(jl, klev+1) |
---|
| 1043 | END IF |
---|
| 1044 | END IF |
---|
| 1045 | END DO |
---|
[524] | 1046 | |
---|
[1992] | 1047 | ! * 4.15 CONSTANT SHEAR STRESS UNTIL THE TOP OF THE |
---|
| 1048 | ! LOW LEVEL FLOW LAYER. |
---|
[524] | 1049 | |
---|
[1992] | 1050 | |
---|
| 1051 | ! * 4.2 WAVE DISPLACEMENT AT NEXT LEVEL. |
---|
| 1052 | |
---|
| 1053 | |
---|
| 1054 | ! DO 421 ji=1,kgwd |
---|
| 1055 | ! jl=kdx(ji) |
---|
| 1056 | ! Modif vectorisation 02/04/2004 |
---|
| 1057 | DO jl = kidia, kfdia |
---|
| 1058 | IF (ktest(jl)==1) THEN |
---|
| 1059 | IF (jk<kkcrith(jl)) THEN |
---|
| 1060 | znorm(jl) = gkdrag*prho(jl, jk)*sqrt(pstab(jl,jk))*pvph(jl, jk)* & |
---|
| 1061 | zoro(jl) |
---|
| 1062 | zdz2(jl, jk) = ptau(jl, jk+1)/max(znorm(jl), gssec) |
---|
| 1063 | END IF |
---|
| 1064 | END IF |
---|
| 1065 | END DO |
---|
| 1066 | |
---|
| 1067 | ! * 4.3 WAVE RICHARDSON NUMBER, NEW WAVE DISPLACEMENT |
---|
| 1068 | ! * AND STRESS: BREAKING EVALUATION AND CRITICAL |
---|
| 1069 | ! LEVEL |
---|
| 1070 | |
---|
| 1071 | |
---|
| 1072 | ! DO 431 ji=1,kgwd |
---|
| 1073 | ! jl=Kdx(ji) |
---|
| 1074 | ! Modif vectorisation 02/04/2004 |
---|
| 1075 | DO jl = kidia, kfdia |
---|
| 1076 | IF (ktest(jl)==1) THEN |
---|
| 1077 | |
---|
| 1078 | IF (jk<kkcrith(jl)) THEN |
---|
| 1079 | IF ((ptau(jl,jk+1)<gtsec) .OR. (jk<=kcrit(jl))) THEN |
---|
| 1080 | ptau(jl, jk) = 0.0 |
---|
| 1081 | ELSE |
---|
| 1082 | zsqr = sqrt(pri(jl,jk)) |
---|
| 1083 | zalfa = sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl, jk) |
---|
| 1084 | zriw = pri(jl, jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
---|
| 1085 | IF (zriw<grcrit) THEN |
---|
| 1086 | zdel = 4./zsqr/grcrit + 1./grcrit**2 + 4./grcrit |
---|
| 1087 | zb = 1./grcrit + 2./zsqr |
---|
| 1088 | zalpha = 0.5*(-zb+sqrt(zdel)) |
---|
| 1089 | zdz2n = (pvph(jl,jk)*zalpha)**2/pstab(jl, jk) |
---|
| 1090 | ptau(jl, jk) = znorm(jl)*zdz2n |
---|
| 1091 | ELSE |
---|
| 1092 | ptau(jl, jk) = znorm(jl)*zdz2(jl, jk) |
---|
| 1093 | END IF |
---|
| 1094 | ptau(jl, jk) = min(ptau(jl,jk), ptau(jl,jk+1)) |
---|
| 1095 | END IF |
---|
| 1096 | END IF |
---|
| 1097 | END IF |
---|
| 1098 | END DO |
---|
| 1099 | |
---|
| 1100 | END DO |
---|
| 1101 | |
---|
| 1102 | ! REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
| 1103 | |
---|
| 1104 | ! DO 530 ji=1,kgwd |
---|
| 1105 | ! jl=kdx(ji) |
---|
| 1106 | ! Modif vectorisation 02/04/2004 |
---|
| 1107 | DO jl = kidia, kfdia |
---|
| 1108 | IF (ktest(jl)==1) THEN |
---|
| 1109 | ztau(jl, kkcrith(jl)) = ptau(jl, kkcrith(jl)) |
---|
| 1110 | ztau(jl, nstra) = ptau(jl, nstra) |
---|
| 1111 | END IF |
---|
| 1112 | END DO |
---|
| 1113 | |
---|
| 1114 | DO jk = 1, klev |
---|
| 1115 | |
---|
| 1116 | ! DO 532 ji=1,kgwd |
---|
| 1117 | ! jl=kdx(ji) |
---|
| 1118 | ! Modif vectorisation 02/04/2004 |
---|
| 1119 | DO jl = kidia, kfdia |
---|
| 1120 | IF (ktest(jl)==1) THEN |
---|
| 1121 | |
---|
| 1122 | |
---|
| 1123 | IF (jk>kkcrith(jl)) THEN |
---|
| 1124 | |
---|
| 1125 | zdelp = paphm1(jl, jk) - paphm1(jl, klev+1) |
---|
| 1126 | zdelpt = paphm1(jl, kkcrith(jl)) - paphm1(jl, klev+1) |
---|
| 1127 | ptau(jl, jk) = ztau(jl, klev+1) + (ztau(jl,kkcrith(jl))-ztau(jl, & |
---|
| 1128 | klev+1))*zdelp/zdelpt |
---|
| 1129 | |
---|
| 1130 | END IF |
---|
| 1131 | |
---|
| 1132 | END IF |
---|
| 1133 | END DO |
---|
| 1134 | |
---|
| 1135 | ! REORGANISATION IN THE STRATOSPHERE |
---|
| 1136 | |
---|
| 1137 | ! DO 533 ji=1,kgwd |
---|
| 1138 | ! jl=kdx(ji) |
---|
| 1139 | ! Modif vectorisation 02/04/2004 |
---|
| 1140 | DO jl = kidia, kfdia |
---|
| 1141 | IF (ktest(jl)==1) THEN |
---|
| 1142 | |
---|
| 1143 | |
---|
| 1144 | IF (jk<nstra) THEN |
---|
| 1145 | |
---|
| 1146 | zdelp = paphm1(jl, nstra) |
---|
| 1147 | zdelpt = paphm1(jl, jk) |
---|
| 1148 | ptau(jl, jk) = ztau(jl, nstra)*zdelpt/zdelp |
---|
| 1149 | |
---|
| 1150 | END IF |
---|
| 1151 | |
---|
| 1152 | END IF |
---|
| 1153 | END DO |
---|
| 1154 | |
---|
| 1155 | ! REORGANISATION IN THE TROPOSPHERE |
---|
| 1156 | |
---|
| 1157 | ! DO 534 ji=1,kgwd |
---|
| 1158 | ! jl=kdx(ji) |
---|
| 1159 | ! Modif vectorisation 02/04/2004 |
---|
| 1160 | DO jl = kidia, kfdia |
---|
| 1161 | IF (ktest(jl)==1) THEN |
---|
| 1162 | |
---|
| 1163 | |
---|
| 1164 | IF (jk<kkcrith(jl) .AND. jk>nstra) THEN |
---|
| 1165 | |
---|
| 1166 | zdelp = paphm1(jl, jk) - paphm1(jl, kkcrith(jl)) |
---|
| 1167 | zdelpt = paphm1(jl, nstra) - paphm1(jl, kkcrith(jl)) |
---|
| 1168 | ptau(jl, jk) = ztau(jl, kkcrith(jl)) + (ztau(jl,nstra)-ztau(jl, & |
---|
| 1169 | kkcrith(jl)))*zdelp/zdelpt |
---|
| 1170 | |
---|
| 1171 | END IF |
---|
| 1172 | END IF |
---|
| 1173 | END DO |
---|
| 1174 | |
---|
| 1175 | |
---|
| 1176 | END DO |
---|
| 1177 | |
---|
| 1178 | |
---|
| 1179 | RETURN |
---|
| 1180 | END SUBROUTINE gwprofil |
---|
| 1181 | SUBROUTINE lift_noro(nlon, nlev, dtime, paprs, pplay, plat, pmea, pstd, ppic, & |
---|
| 1182 | ktest, t, u, v, pulow, pvlow, pustr, pvstr, d_t, d_u, d_v) |
---|
| 1183 | |
---|
| 1184 | USE dimphy |
---|
[5285] | 1185 | USE yomcst_mod_h |
---|
[5274] | 1186 | IMPLICIT NONE |
---|
[1992] | 1187 | ! ====================================================================== |
---|
| 1188 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
| 1189 | ! Objet: Frottement de la montagne Interface |
---|
| 1190 | ! ====================================================================== |
---|
| 1191 | ! Arguments: |
---|
| 1192 | ! dtime---input-R- pas d'integration (s) |
---|
| 1193 | ! paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
| 1194 | ! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
| 1195 | ! t-------input-R-temperature (K) |
---|
| 1196 | ! u-------input-R-vitesse horizontale (m/s) |
---|
| 1197 | ! v-------input-R-vitesse horizontale (m/s) |
---|
| 1198 | |
---|
| 1199 | ! d_t-----output-R-increment de la temperature |
---|
| 1200 | ! d_u-----output-R-increment de la vitesse u |
---|
| 1201 | ! d_v-----output-R-increment de la vitesse v |
---|
| 1202 | ! ====================================================================== |
---|
| 1203 | |
---|
[5274] | 1204 | |
---|
[1992] | 1205 | ! ARGUMENTS |
---|
| 1206 | |
---|
| 1207 | INTEGER nlon, nlev |
---|
| 1208 | REAL dtime |
---|
| 1209 | REAL paprs(klon, klev+1) |
---|
| 1210 | REAL pplay(klon, klev) |
---|
| 1211 | REAL plat(nlon), pmea(nlon) |
---|
| 1212 | REAL pstd(nlon) |
---|
| 1213 | REAL ppic(nlon) |
---|
| 1214 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
| 1215 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
| 1216 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
| 1217 | |
---|
| 1218 | INTEGER i, k, ktest(nlon) |
---|
| 1219 | |
---|
| 1220 | ! Variables locales: |
---|
| 1221 | |
---|
| 1222 | REAL zgeom(klon, klev) |
---|
| 1223 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
| 1224 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
| 1225 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
| 1226 | |
---|
| 1227 | ! initialiser les variables de sortie (pour securite) |
---|
| 1228 | |
---|
| 1229 | DO i = 1, klon |
---|
| 1230 | pulow(i) = 0.0 |
---|
| 1231 | pvlow(i) = 0.0 |
---|
| 1232 | pustr(i) = 0.0 |
---|
| 1233 | pvstr(i) = 0.0 |
---|
| 1234 | END DO |
---|
| 1235 | DO k = 1, klev |
---|
| 1236 | DO i = 1, klon |
---|
| 1237 | d_t(i, k) = 0.0 |
---|
| 1238 | d_u(i, k) = 0.0 |
---|
| 1239 | d_v(i, k) = 0.0 |
---|
| 1240 | pdudt(i, k) = 0.0 |
---|
| 1241 | pdvdt(i, k) = 0.0 |
---|
| 1242 | pdtdt(i, k) = 0.0 |
---|
| 1243 | END DO |
---|
| 1244 | END DO |
---|
| 1245 | |
---|
| 1246 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 1247 | ! verticaux augmente du haut vers le bas) |
---|
| 1248 | |
---|
| 1249 | DO k = 1, klev |
---|
| 1250 | DO i = 1, klon |
---|
| 1251 | pt(i, k) = t(i, klev-k+1) |
---|
| 1252 | pu(i, k) = u(i, klev-k+1) |
---|
| 1253 | pv(i, k) = v(i, klev-k+1) |
---|
| 1254 | papmf(i, k) = pplay(i, klev-k+1) |
---|
| 1255 | END DO |
---|
| 1256 | END DO |
---|
| 1257 | DO k = 1, klev + 1 |
---|
| 1258 | DO i = 1, klon |
---|
| 1259 | papmh(i, k) = paprs(i, klev-k+2) |
---|
| 1260 | END DO |
---|
| 1261 | END DO |
---|
| 1262 | DO i = 1, klon |
---|
| 1263 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
| 1264 | END DO |
---|
| 1265 | DO k = klev - 1, 1, -1 |
---|
| 1266 | DO i = 1, klon |
---|
| 1267 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
| 1268 | 1)/papmf(i,k)) |
---|
| 1269 | END DO |
---|
| 1270 | END DO |
---|
| 1271 | |
---|
| 1272 | ! appeler la routine principale |
---|
| 1273 | |
---|
| 1274 | CALL orolift(klon, klev, ktest, dtime, papmh, zgeom, pt, pu, pv, plat, & |
---|
| 1275 | pmea, pstd, ppic, pulow, pvlow, pdudt, pdvdt, pdtdt) |
---|
| 1276 | |
---|
| 1277 | DO k = 1, klev |
---|
| 1278 | DO i = 1, klon |
---|
| 1279 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
| 1280 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
| 1281 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
| 1282 | pustr(i) = pustr(i) & ! IM BUG . |
---|
| 1283 | ! +RG*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
| 1284 | +pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 1285 | pvstr(i) = pvstr(i) & ! IM BUG . |
---|
| 1286 | ! +RG*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
| 1287 | +pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 1288 | END DO |
---|
| 1289 | END DO |
---|
| 1290 | |
---|
| 1291 | RETURN |
---|
| 1292 | END SUBROUTINE lift_noro |
---|
| 1293 | SUBROUTINE orolift(nlon, nlev, ktest, ptsphy, paphm1, pgeom1, ptm1, pum1, & |
---|
| 1294 | pvm1, plat, pmea, pvaror, ppic & ! OUTPUTS |
---|
| 1295 | , pulow, pvlow, pvom, pvol, pte) |
---|
| 1296 | |
---|
| 1297 | |
---|
| 1298 | ! **** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
| 1299 | |
---|
| 1300 | ! PURPOSE. |
---|
| 1301 | ! -------- |
---|
| 1302 | |
---|
| 1303 | ! ** INTERFACE. |
---|
| 1304 | ! ---------- |
---|
| 1305 | ! CALLED FROM *lift_noro |
---|
| 1306 | ! ---------- |
---|
| 1307 | |
---|
| 1308 | ! AUTHOR. |
---|
| 1309 | ! ------- |
---|
| 1310 | ! F.LOTT LMD 22/11/95 |
---|
| 1311 | |
---|
[5309] | 1312 | USE yoegwd_mod_h |
---|
| 1313 | USE dimphy |
---|
[5285] | 1314 | USE yomcst_mod_h |
---|
[5274] | 1315 | IMPLICIT NONE |
---|
[1992] | 1316 | |
---|
| 1317 | |
---|
[5274] | 1318 | |
---|
[1992] | 1319 | ! ----------------------------------------------------------------------- |
---|
| 1320 | |
---|
| 1321 | ! * 0.1 ARGUMENTS |
---|
| 1322 | ! --------- |
---|
| 1323 | |
---|
| 1324 | |
---|
| 1325 | INTEGER nlon, nlev |
---|
| 1326 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
---|
| 1327 | pvlow(nlon) |
---|
| 1328 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), plat(nlon), & |
---|
| 1329 | pmea(nlon), pvaror(nlon), ppic(nlon), pgeom1(nlon, nlev), & |
---|
| 1330 | paphm1(nlon, nlev+1) |
---|
| 1331 | |
---|
| 1332 | INTEGER ktest(nlon) |
---|
| 1333 | REAL ptsphy |
---|
| 1334 | ! ----------------------------------------------------------------------- |
---|
| 1335 | |
---|
| 1336 | ! * 0.2 LOCAL ARRAYS |
---|
| 1337 | ! ------------ |
---|
| 1338 | LOGICAL lifthigh |
---|
| 1339 | ! ym integer klevm1, jl, ilevh, jk |
---|
| 1340 | INTEGER jl, ilevh, jk |
---|
| 1341 | REAL zcons1, ztmst, zrtmst, zpi, zhgeo |
---|
| 1342 | REAL zdelp, zslow, zsqua, zscav, zbet |
---|
| 1343 | INTEGER iknub(klon), iknul(klon) |
---|
| 1344 | LOGICAL ll1(klon, klev+1) |
---|
| 1345 | |
---|
| 1346 | REAL ztau(klon, klev+1), ztav(klon, klev+1), zrho(klon, klev+1) |
---|
| 1347 | REAL zdudt(klon), zdvdt(klon) |
---|
| 1348 | REAL zhcrit(klon, klev) |
---|
| 1349 | CHARACTER (LEN=20) :: modname = 'orografi' |
---|
| 1350 | CHARACTER (LEN=80) :: abort_message |
---|
| 1351 | ! ----------------------------------------------------------------------- |
---|
| 1352 | |
---|
| 1353 | ! * 1.1 INITIALIZATIONS |
---|
| 1354 | ! --------------- |
---|
| 1355 | |
---|
| 1356 | lifthigh = .FALSE. |
---|
| 1357 | |
---|
| 1358 | IF (nlon/=klon .OR. nlev/=klev) THEN |
---|
| 1359 | abort_message = 'pb dimension' |
---|
[2311] | 1360 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 1361 | END IF |
---|
| 1362 | zcons1 = 1./rd |
---|
| 1363 | ! ym KLEVM1=KLEV-1 |
---|
| 1364 | ztmst = ptsphy |
---|
| 1365 | zrtmst = 1./ztmst |
---|
| 1366 | zpi = acos(-1.) |
---|
| 1367 | |
---|
| 1368 | DO jl = kidia, kfdia |
---|
| 1369 | zrho(jl, klev+1) = 0.0 |
---|
| 1370 | pulow(jl) = 0.0 |
---|
| 1371 | pvlow(jl) = 0.0 |
---|
| 1372 | iknub(jl) = klev |
---|
| 1373 | iknul(jl) = klev |
---|
| 1374 | ilevh = klev/3 |
---|
| 1375 | ll1(jl, klev+1) = .FALSE. |
---|
| 1376 | DO jk = 1, klev |
---|
| 1377 | pvom(jl, jk) = 0.0 |
---|
| 1378 | pvol(jl, jk) = 0.0 |
---|
| 1379 | pte(jl, jk) = 0.0 |
---|
| 1380 | END DO |
---|
| 1381 | END DO |
---|
| 1382 | |
---|
| 1383 | |
---|
| 1384 | ! * 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
| 1385 | ! * LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
| 1386 | ! * THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
| 1387 | |
---|
| 1388 | |
---|
| 1389 | |
---|
| 1390 | DO jk = klev, 1, -1 |
---|
| 1391 | DO jl = kidia, kfdia |
---|
| 1392 | IF (ktest(jl)==1) THEN |
---|
| 1393 | zhcrit(jl, jk) = amax1(ppic(jl)-pmea(jl), 100.) |
---|
| 1394 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 1395 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 1396 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 1397 | iknub(jl) = jk |
---|
| 1398 | END IF |
---|
| 1399 | END IF |
---|
| 1400 | END DO |
---|
| 1401 | END DO |
---|
| 1402 | |
---|
| 1403 | DO jl = kidia, kfdia |
---|
| 1404 | IF (ktest(jl)==1) THEN |
---|
| 1405 | iknub(jl) = max(iknub(jl), klev/2) |
---|
| 1406 | iknul(jl) = max(iknul(jl), 2*klev/3) |
---|
| 1407 | IF (iknub(jl)>nktopg) iknub(jl) = nktopg |
---|
| 1408 | IF (iknub(jl)==nktopg) iknul(jl) = klev |
---|
| 1409 | IF (iknub(jl)==iknul(jl)) iknub(jl) = iknul(jl) - 1 |
---|
| 1410 | END IF |
---|
| 1411 | END DO |
---|
| 1412 | |
---|
| 1413 | ! do 2011 jl=kidia,kfdia |
---|
| 1414 | ! IF(KTEST(JL).EQ.1) THEN |
---|
| 1415 | ! print *,' iknul= ',iknul(jl),' iknub=',iknub(jl) |
---|
| 1416 | ! ENDIF |
---|
| 1417 | ! 2011 continue |
---|
| 1418 | |
---|
| 1419 | ! PRINT *,' DANS OROLIFT: 2010' |
---|
| 1420 | |
---|
| 1421 | DO jk = klev, 2, -1 |
---|
| 1422 | DO jl = kidia, kfdia |
---|
| 1423 | zrho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
| 1424 | END DO |
---|
| 1425 | END DO |
---|
| 1426 | ! PRINT *,' DANS OROLIFT: 223' |
---|
| 1427 | |
---|
| 1428 | ! ******************************************************************** |
---|
| 1429 | |
---|
| 1430 | ! * DEFINE LOW LEVEL FLOW |
---|
| 1431 | ! ------------------- |
---|
| 1432 | DO jk = klev, 1, -1 |
---|
| 1433 | DO jl = kidia, kfdia |
---|
| 1434 | IF (ktest(jl)==1) THEN |
---|
| 1435 | IF (jk>=iknub(jl) .AND. jk<=iknul(jl)) THEN |
---|
| 1436 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
| 1437 | ) |
---|
| 1438 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
| 1439 | ) |
---|
| 1440 | zrho(jl, klev+1) = zrho(jl, klev+1) + zrho(jl, jk)*(paphm1(jl,jk+1) & |
---|
| 1441 | -paphm1(jl,jk)) |
---|
| 1442 | END IF |
---|
| 1443 | END IF |
---|
| 1444 | END DO |
---|
| 1445 | END DO |
---|
| 1446 | DO jl = kidia, kfdia |
---|
| 1447 | IF (ktest(jl)==1) THEN |
---|
| 1448 | pulow(jl) = pulow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
| 1449 | pvlow(jl) = pvlow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
| 1450 | zrho(jl, klev+1) = zrho(jl, klev+1)/(paphm1(jl,iknul(jl)+1)-paphm1(jl, & |
---|
| 1451 | iknub(jl))) |
---|
| 1452 | END IF |
---|
| 1453 | END DO |
---|
| 1454 | |
---|
| 1455 | ! *********************************************************** |
---|
| 1456 | |
---|
| 1457 | ! * 3. COMPUTE MOUNTAIN LIFT |
---|
| 1458 | |
---|
| 1459 | |
---|
| 1460 | DO jl = kidia, kfdia |
---|
| 1461 | IF (ktest(jl)==1) THEN |
---|
| 1462 | ztau(jl, klev+1) = -gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
| 1463 | ! (2*PVAROR(JL)+PMEA(JL))* |
---|
| 1464 | 2*pvaror(jl)*sin(zpi/180.*plat(jl))*pvlow(jl) |
---|
| 1465 | ztav(jl, klev+1) = gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
| 1466 | ! (2*PVAROR(JL)+PMEA(JL))* |
---|
| 1467 | 2*pvaror(jl)*sin(zpi/180.*plat(jl))*pulow(jl) |
---|
| 1468 | ELSE |
---|
| 1469 | ztau(jl, klev+1) = 0.0 |
---|
| 1470 | ztav(jl, klev+1) = 0.0 |
---|
| 1471 | END IF |
---|
| 1472 | END DO |
---|
| 1473 | |
---|
| 1474 | ! * 4. COMPUTE LIFT PROFILE |
---|
| 1475 | ! * -------------------- |
---|
| 1476 | |
---|
| 1477 | |
---|
| 1478 | |
---|
| 1479 | DO jk = 1, klev |
---|
| 1480 | DO jl = kidia, kfdia |
---|
| 1481 | IF (ktest(jl)==1) THEN |
---|
| 1482 | ztau(jl, jk) = ztau(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
| 1483 | ztav(jl, jk) = ztav(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
[524] | 1484 | ELSE |
---|
[1992] | 1485 | ztau(jl, jk) = 0.0 |
---|
| 1486 | ztav(jl, jk) = 0.0 |
---|
| 1487 | END IF |
---|
| 1488 | END DO |
---|
| 1489 | END DO |
---|
[524] | 1490 | |
---|
| 1491 | |
---|
[1992] | 1492 | ! * 5. COMPUTE TENDENCIES. |
---|
| 1493 | ! * ------------------- |
---|
| 1494 | IF (lifthigh) THEN |
---|
| 1495 | ! PRINT *,' DANS OROLIFT: 500' |
---|
[524] | 1496 | |
---|
[1992] | 1497 | ! EXPLICIT SOLUTION AT ALL LEVELS |
---|
[766] | 1498 | |
---|
[1992] | 1499 | DO jk = 1, klev |
---|
| 1500 | DO jl = kidia, kfdia |
---|
| 1501 | IF (ktest(jl)==1) THEN |
---|
| 1502 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 1503 | zdudt(jl) = -rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
---|
| 1504 | zdvdt(jl) = -rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
---|
| 1505 | END IF |
---|
| 1506 | END DO |
---|
| 1507 | END DO |
---|
[766] | 1508 | |
---|
[1992] | 1509 | ! PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
[766] | 1510 | |
---|
[1992] | 1511 | DO jk = 1, klev |
---|
| 1512 | DO jl = kidia, kfdia |
---|
| 1513 | IF (ktest(jl)==1) THEN |
---|
[766] | 1514 | |
---|
[1992] | 1515 | zslow = sqrt(pulow(jl)**2+pvlow(jl)**2) |
---|
| 1516 | zsqua = amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2), gvsec) |
---|
| 1517 | zscav = -zdudt(jl)*pvm1(jl, jk) + zdvdt(jl)*pum1(jl, jk) |
---|
| 1518 | IF (zsqua>gvsec) THEN |
---|
| 1519 | pvom(jl, jk) = -zscav*pvm1(jl, jk)/zsqua**2 |
---|
| 1520 | pvol(jl, jk) = zscav*pum1(jl, jk)/zsqua**2 |
---|
| 1521 | ELSE |
---|
| 1522 | pvom(jl, jk) = 0.0 |
---|
| 1523 | pvol(jl, jk) = 0.0 |
---|
| 1524 | END IF |
---|
| 1525 | zsqua = sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
---|
| 1526 | IF (zsqua<zslow) THEN |
---|
| 1527 | pvom(jl, jk) = zsqua/zslow*pvom(jl, jk) |
---|
| 1528 | pvol(jl, jk) = zsqua/zslow*pvol(jl, jk) |
---|
| 1529 | END IF |
---|
[766] | 1530 | |
---|
[1992] | 1531 | END IF |
---|
| 1532 | END DO |
---|
| 1533 | END DO |
---|
| 1534 | |
---|
| 1535 | ! 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
| 1536 | ! ---------------------------------- |
---|
| 1537 | |
---|
| 1538 | ELSE |
---|
| 1539 | |
---|
| 1540 | DO jl = kidia, kfdia |
---|
| 1541 | IF (ktest(jl)==1) THEN |
---|
| 1542 | DO jk = klev, iknub(jl), -1 |
---|
| 1543 | zbet = gklift*2.*romega*sin(zpi/180.*plat(jl))*ztmst* & |
---|
| 1544 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,jk))/ & |
---|
| 1545 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
---|
| 1546 | zdudt(jl) = -pum1(jl, jk)/ztmst/(1+zbet**2) |
---|
| 1547 | zdvdt(jl) = -pvm1(jl, jk)/ztmst/(1+zbet**2) |
---|
| 1548 | pvom(jl, jk) = zbet**2*zdudt(jl) - zbet*zdvdt(jl) |
---|
| 1549 | pvol(jl, jk) = zbet*zdudt(jl) + zbet**2*zdvdt(jl) |
---|
| 1550 | END DO |
---|
| 1551 | END IF |
---|
| 1552 | END DO |
---|
| 1553 | |
---|
| 1554 | END IF |
---|
| 1555 | |
---|
| 1556 | RETURN |
---|
| 1557 | END SUBROUTINE orolift |
---|
| 1558 | |
---|
| 1559 | |
---|
| 1560 | SUBROUTINE sugwd(nlon, nlev, paprs, pplay) |
---|
[5309] | 1561 | USE yoegwd_mod_h |
---|
| 1562 | USE dimphy |
---|
[1992] | 1563 | USE mod_phys_lmdz_para |
---|
| 1564 | USE mod_grid_phy_lmdz |
---|
| 1565 | ! USE parallel |
---|
| 1566 | |
---|
| 1567 | ! **** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
| 1568 | |
---|
| 1569 | ! PURPOSE. |
---|
| 1570 | ! -------- |
---|
| 1571 | ! INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
| 1572 | ! GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
| 1573 | |
---|
| 1574 | ! ** INTERFACE. |
---|
| 1575 | ! ---------- |
---|
| 1576 | ! CALL *SUGWD* FROM *SUPHEC* |
---|
| 1577 | ! ----- ------ |
---|
| 1578 | |
---|
| 1579 | ! EXPLICIT ARGUMENTS : |
---|
| 1580 | ! -------------------- |
---|
| 1581 | ! PSIG : VERTICAL COORDINATE TABLE |
---|
| 1582 | ! NLEV : NUMBER OF MODEL LEVELS |
---|
| 1583 | |
---|
| 1584 | ! IMPLICIT ARGUMENTS : |
---|
| 1585 | ! -------------------- |
---|
| 1586 | ! COMMON YOEGWD |
---|
| 1587 | |
---|
| 1588 | ! METHOD. |
---|
| 1589 | ! ------- |
---|
| 1590 | ! SEE DOCUMENTATION |
---|
| 1591 | |
---|
| 1592 | ! EXTERNALS. |
---|
| 1593 | ! ---------- |
---|
| 1594 | ! NONE |
---|
| 1595 | |
---|
| 1596 | ! REFERENCE. |
---|
| 1597 | ! ---------- |
---|
| 1598 | ! ECMWF Research Department documentation of the IFS |
---|
| 1599 | |
---|
| 1600 | ! AUTHOR. |
---|
| 1601 | ! ------- |
---|
| 1602 | ! MARTIN MILLER *ECMWF* |
---|
| 1603 | |
---|
| 1604 | ! MODIFICATIONS. |
---|
| 1605 | ! -------------- |
---|
| 1606 | ! ORIGINAL : 90-01-01 |
---|
| 1607 | ! ------------------------------------------------------------------ |
---|
| 1608 | IMPLICIT NONE |
---|
| 1609 | |
---|
| 1610 | ! ----------------------------------------------------------------- |
---|
| 1611 | ! ---------------------------------------------------------------- |
---|
| 1612 | |
---|
| 1613 | INTEGER nlon, nlev, jk |
---|
| 1614 | REAL paprs(nlon, nlev+1) |
---|
| 1615 | REAL pplay(nlon, nlev) |
---|
| 1616 | REAL zpr, zstra, zsigt, zpm1r |
---|
| 1617 | REAL :: pplay_glo(klon_glo, nlev) |
---|
| 1618 | REAL :: paprs_glo(klon_glo, nlev+1) |
---|
| 1619 | |
---|
| 1620 | ! * 1. SET THE VALUES OF THE PARAMETERS |
---|
| 1621 | ! -------------------------------- |
---|
| 1622 | |
---|
| 1623 | |
---|
| 1624 | PRINT *, ' DANS SUGWD NLEV=', nlev |
---|
| 1625 | ghmax = 10000. |
---|
| 1626 | |
---|
| 1627 | zpr = 100000. |
---|
| 1628 | zstra = 0.1 |
---|
| 1629 | zsigt = 0.94 |
---|
| 1630 | ! old ZPR=80000. |
---|
| 1631 | ! old ZSIGT=0.85 |
---|
| 1632 | |
---|
| 1633 | |
---|
| 1634 | CALL gather(pplay, pplay_glo) |
---|
| 1635 | CALL bcast(pplay_glo) |
---|
| 1636 | CALL gather(paprs, paprs_glo) |
---|
| 1637 | CALL bcast(paprs_glo) |
---|
| 1638 | |
---|
| 1639 | |
---|
| 1640 | DO jk = 1, nlev |
---|
| 1641 | zpm1r = pplay_glo((klon_glo/2)+1, jk)/paprs_glo((klon_glo/2)+1, 1) |
---|
| 1642 | IF (zpm1r>=zsigt) THEN |
---|
| 1643 | nktopg = jk |
---|
| 1644 | END IF |
---|
| 1645 | zpm1r = pplay_glo((klon_glo/2)+1, jk)/paprs_glo((klon_glo/2)+1, 1) |
---|
| 1646 | IF (zpm1r>=zstra) THEN |
---|
| 1647 | nstra = jk |
---|
| 1648 | END IF |
---|
| 1649 | END DO |
---|
| 1650 | |
---|
| 1651 | |
---|
| 1652 | |
---|
| 1653 | ! inversion car dans orodrag on compte les niveaux a l'envers |
---|
| 1654 | nktopg = nlev - nktopg + 1 |
---|
| 1655 | nstra = nlev - nstra |
---|
| 1656 | PRINT *, ' DANS SUGWD nktopg=', nktopg |
---|
| 1657 | PRINT *, ' DANS SUGWD nstra=', nstra |
---|
| 1658 | |
---|
| 1659 | gsigcr = 0.80 |
---|
| 1660 | |
---|
[2357] | 1661 | ! Values now specified in run.def, or conf_phys_m.F90 |
---|
| 1662 | ! gkdrag = 0.2 |
---|
| 1663 | ! grahilo = 1. |
---|
| 1664 | ! grcrit = 0.01 |
---|
| 1665 | ! gfrcrit = 1.0 |
---|
| 1666 | ! gkwake = 0.50 |
---|
| 1667 | ! gklift = 0.50 |
---|
[1992] | 1668 | gvcrit = 0.0 |
---|
| 1669 | |
---|
| 1670 | ! ---------------------------------------------------------------- |
---|
| 1671 | |
---|
| 1672 | ! * 2. SET VALUES OF SECURITY PARAMETERS |
---|
| 1673 | ! --------------------------------- |
---|
| 1674 | |
---|
| 1675 | |
---|
| 1676 | gvsec = 0.10 |
---|
| 1677 | gssec = 1.E-12 |
---|
| 1678 | |
---|
| 1679 | gtsec = 1.E-07 |
---|
| 1680 | |
---|
| 1681 | ! ---------------------------------------------------------------- |
---|
| 1682 | |
---|
| 1683 | RETURN |
---|
| 1684 | END SUBROUTINE sugwd |
---|