[3002] | 1 | !Completed |
---|
[781] | 2 | MODULE ocean_slab_mod |
---|
| 3 | ! |
---|
| 4 | ! This module is used for both surface ocean and sea-ice when using the slab ocean, |
---|
| 5 | ! "ocean=slab". |
---|
| 6 | ! |
---|
[2057] | 7 | |
---|
| 8 | USE dimphy |
---|
| 9 | USE indice_sol_mod |
---|
[2209] | 10 | USE surface_data |
---|
[2656] | 11 | USE mod_grid_phy_lmdz, ONLY: klon_glo |
---|
| 12 | USE mod_phys_lmdz_mpi_data, ONLY: is_mpi_root |
---|
[2057] | 13 | |
---|
[781] | 14 | IMPLICIT NONE |
---|
[996] | 15 | PRIVATE |
---|
[2209] | 16 | PUBLIC :: ocean_slab_init, ocean_slab_frac, ocean_slab_noice, ocean_slab_ice |
---|
[781] | 17 | |
---|
[2656] | 18 | !*********************************************************************************** |
---|
[2209] | 19 | ! Global saved variables |
---|
[2656] | 20 | !*********************************************************************************** |
---|
| 21 | ! number of slab vertical layers |
---|
| 22 | INTEGER, PUBLIC, SAVE :: nslay |
---|
| 23 | !$OMP THREADPRIVATE(nslay) |
---|
| 24 | ! timestep for coupling (update slab temperature) in timesteps |
---|
[2057] | 25 | INTEGER, PRIVATE, SAVE :: cpl_pas |
---|
| 26 | !$OMP THREADPRIVATE(cpl_pas) |
---|
[2656] | 27 | ! cyang = 1/heat capacity of top layer (rho.c.H) |
---|
[2057] | 28 | REAL, PRIVATE, SAVE :: cyang |
---|
| 29 | !$OMP THREADPRIVATE(cyang) |
---|
[2656] | 30 | ! depth of slab layers (1 or 2) |
---|
[2057] | 31 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: slabh |
---|
| 32 | !$OMP THREADPRIVATE(slabh) |
---|
[2656] | 33 | ! slab temperature |
---|
[2057] | 34 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: tslab |
---|
| 35 | !$OMP THREADPRIVATE(tslab) |
---|
[2656] | 36 | ! heat flux convergence due to Ekman |
---|
| 37 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_ekman |
---|
| 38 | !$OMP THREADPRIVATE(dt_ekman) |
---|
| 39 | ! heat flux convergence due to horiz diffusion |
---|
| 40 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_hdiff |
---|
| 41 | !$OMP THREADPRIVATE(dt_hdiff) |
---|
[3002] | 42 | ! heat flux convergence due to GM eddy advection |
---|
| 43 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_gm |
---|
| 44 | !$OMP THREADPRIVATE(dt_gm) |
---|
| 45 | ! Heat Flux correction |
---|
| 46 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_qflux |
---|
| 47 | !$OMP THREADPRIVATE(dt_qflux) |
---|
[2656] | 48 | ! fraction of ocean covered by sea ice (sic / (oce+sic)) |
---|
[2209] | 49 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: fsic |
---|
| 50 | !$OMP THREADPRIVATE(fsic) |
---|
[2656] | 51 | ! temperature of the sea ice |
---|
[2209] | 52 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: tice |
---|
| 53 | !$OMP THREADPRIVATE(tice) |
---|
[2656] | 54 | ! sea ice thickness, in kg/m2 |
---|
[2209] | 55 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: seaice |
---|
| 56 | !$OMP THREADPRIVATE(seaice) |
---|
[2656] | 57 | ! net surface heat flux, weighted by open ocean fraction |
---|
| 58 | ! slab_bils accumulated over cpl_pas timesteps |
---|
[2057] | 59 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: bils_cum |
---|
| 60 | !$OMP THREADPRIVATE(bils_cum) |
---|
[2656] | 61 | ! net heat flux into the ocean below the ice : conduction + solar radiation |
---|
[2209] | 62 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: slab_bilg |
---|
| 63 | !$OMP THREADPRIVATE(slab_bilg) |
---|
[2656] | 64 | ! slab_bilg over cpl_pas timesteps |
---|
[2209] | 65 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: bilg_cum |
---|
| 66 | !$OMP THREADPRIVATE(bilg_cum) |
---|
[2656] | 67 | ! wind stress saved over cpl_pas timesteps |
---|
| 68 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: taux_cum |
---|
| 69 | !$OMP THREADPRIVATE(taux_cum) |
---|
| 70 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: tauy_cum |
---|
| 71 | !$OMP THREADPRIVATE(tauy_cum) |
---|
[2057] | 72 | |
---|
[2656] | 73 | !*********************************************************************************** |
---|
[2209] | 74 | ! Parameters (could be read in def file: move to slab_init) |
---|
[2656] | 75 | !*********************************************************************************** |
---|
[2209] | 76 | ! snow and ice physical characteristics: |
---|
| 77 | REAL, PARAMETER :: t_freeze=271.35 ! freezing sea water temp |
---|
| 78 | REAL, PARAMETER :: t_melt=273.15 ! melting ice temp |
---|
| 79 | REAL, PARAMETER :: sno_den=300. !mean snow density, kg/m3 |
---|
[2656] | 80 | REAL, PARAMETER :: ice_den=917. ! ice density |
---|
| 81 | REAL, PARAMETER :: sea_den=1025. ! sea water density |
---|
| 82 | REAL, PARAMETER :: ice_cond=2.17*ice_den !conductivity of ice |
---|
| 83 | REAL, PARAMETER :: sno_cond=0.31*sno_den ! conductivity of snow |
---|
[2209] | 84 | REAL, PARAMETER :: ice_cap=2067. ! specific heat capacity, snow and ice |
---|
[2656] | 85 | REAL, PARAMETER :: sea_cap=3995. ! specific heat capacity, snow and ice |
---|
[2209] | 86 | REAL, PARAMETER :: ice_lat=334000. ! freeze /melt latent heat snow and ice |
---|
| 87 | |
---|
| 88 | ! control of snow and ice cover & freeze / melt (heights converted to kg/m2) |
---|
| 89 | REAL, PARAMETER :: snow_min=0.05*sno_den !critical snow height 5 cm |
---|
| 90 | REAL, PARAMETER :: snow_wfact=0.4 ! max fraction of falling snow blown into ocean |
---|
| 91 | REAL, PARAMETER :: ice_frac_min=0.001 |
---|
| 92 | REAL, PARAMETER :: ice_frac_max=1. ! less than 1. if min leads fraction |
---|
| 93 | REAL, PARAMETER :: h_ice_min=0.01*ice_den ! min ice thickness |
---|
| 94 | REAL, PARAMETER :: h_ice_thin=0.15*ice_den ! thin ice thickness |
---|
| 95 | ! below ice_thin, priority is melt lateral / grow height |
---|
| 96 | ! ice_thin is also height of new ice |
---|
| 97 | REAL, PARAMETER :: h_ice_thick=2.5*ice_den ! thin ice thickness |
---|
| 98 | ! above ice_thick, priority is melt height / grow lateral |
---|
| 99 | REAL, PARAMETER :: h_ice_new=1.*ice_den ! max height of new open ocean ice |
---|
| 100 | REAL, PARAMETER :: h_ice_max=10.*ice_den ! max ice height |
---|
| 101 | |
---|
| 102 | ! albedo and radiation parameters |
---|
| 103 | REAL, PARAMETER :: alb_sno_min=0.55 !min snow albedo |
---|
| 104 | REAL, PARAMETER :: alb_sno_del=0.3 !max snow albedo = min + del |
---|
| 105 | REAL, PARAMETER :: alb_ice_dry=0.75 !dry thick ice |
---|
| 106 | REAL, PARAMETER :: alb_ice_wet=0.66 !melting thick ice |
---|
[2656] | 107 | REAL, PARAMETER :: pen_frac=0.3 !fraction of shortwave penetrating into the |
---|
| 108 | ! ice (no snow) |
---|
[2209] | 109 | REAL, PARAMETER :: pen_ext=1.5 !extinction of penetrating shortwave (m-1) |
---|
| 110 | |
---|
[2656] | 111 | ! horizontal transport |
---|
| 112 | LOGICAL, PUBLIC, SAVE :: slab_hdiff |
---|
| 113 | !$OMP THREADPRIVATE(slab_hdiff) |
---|
[3002] | 114 | LOGICAL, PUBLIC, SAVE :: slab_gm |
---|
| 115 | !$OMP THREADPRIVATE(slab_gm) |
---|
[2656] | 116 | REAL, PRIVATE, SAVE :: coef_hdiff ! coefficient for horizontal diffusion |
---|
| 117 | !$OMP THREADPRIVATE(coef_hdiff) |
---|
| 118 | INTEGER, PUBLIC, SAVE :: slab_ekman, slab_cadj ! Ekman, conv adjustment |
---|
| 119 | !$OMP THREADPRIVATE(slab_ekman) |
---|
| 120 | !$OMP THREADPRIVATE(slab_cadj) |
---|
[2209] | 121 | |
---|
[2656] | 122 | !*********************************************************************************** |
---|
| 123 | |
---|
[781] | 124 | CONTAINS |
---|
| 125 | ! |
---|
[2656] | 126 | !*********************************************************************************** |
---|
[781] | 127 | ! |
---|
[2057] | 128 | SUBROUTINE ocean_slab_init(dtime, pctsrf_rst) |
---|
| 129 | !, seaice_rst etc |
---|
[781] | 130 | |
---|
[2656] | 131 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 132 | USE mod_phys_lmdz_transfert_para, ONLY : gather |
---|
| 133 | USE slab_heat_transp_mod, ONLY : ini_slab_transp |
---|
[2057] | 134 | |
---|
| 135 | ! Input variables |
---|
[2656] | 136 | !*********************************************************************************** |
---|
[2057] | 137 | REAL, INTENT(IN) :: dtime |
---|
| 138 | ! Variables read from restart file |
---|
[2656] | 139 | REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: pctsrf_rst |
---|
| 140 | ! surface fractions from start file |
---|
[2057] | 141 | |
---|
| 142 | ! Local variables |
---|
[2656] | 143 | !************************************************************************************ |
---|
[2057] | 144 | INTEGER :: error |
---|
[2656] | 145 | REAL, DIMENSION(klon_glo) :: zmasq_glo |
---|
[2057] | 146 | CHARACTER (len = 80) :: abort_message |
---|
| 147 | CHARACTER (len = 20) :: modname = 'ocean_slab_intit' |
---|
| 148 | |
---|
[2656] | 149 | !*********************************************************************************** |
---|
| 150 | ! Define some parameters |
---|
| 151 | !*********************************************************************************** |
---|
| 152 | ! Number of slab layers |
---|
| 153 | nslay=2 |
---|
| 154 | CALL getin_p('slab_layers',nslay) |
---|
| 155 | print *,'number of slab layers : ',nslay |
---|
| 156 | ! Layer thickness |
---|
| 157 | ALLOCATE(slabh(nslay), stat = error) |
---|
| 158 | IF (error /= 0) THEN |
---|
| 159 | abort_message='Pb allocation slabh' |
---|
| 160 | CALL abort_physic(modname,abort_message,1) |
---|
| 161 | ENDIF |
---|
| 162 | slabh(1)=50. |
---|
[3002] | 163 | CALL getin_p('slab_depth',slabh(1)) |
---|
[2656] | 164 | IF (nslay.GT.1) THEN |
---|
| 165 | slabh(2)=150. |
---|
| 166 | END IF |
---|
| 167 | |
---|
| 168 | ! cyang = 1/heat capacity of top layer (rho.c.H) |
---|
| 169 | cyang=1/(slabh(1)*sea_den*sea_cap) |
---|
| 170 | |
---|
| 171 | ! cpl_pas coupling period (update of tslab and ice fraction) |
---|
| 172 | ! pour un calcul a chaque pas de temps, cpl_pas=1 |
---|
| 173 | cpl_pas = NINT(86400./dtime * 1.0) ! une fois par jour |
---|
| 174 | CALL getin_p('cpl_pas',cpl_pas) |
---|
| 175 | print *,'cpl_pas',cpl_pas |
---|
| 176 | |
---|
| 177 | ! Horizontal diffusion |
---|
| 178 | slab_hdiff=.FALSE. |
---|
| 179 | CALL getin_p('slab_hdiff',slab_hdiff) |
---|
| 180 | coef_hdiff=25000. |
---|
| 181 | CALL getin_p('coef_hdiff',coef_hdiff) |
---|
| 182 | ! Ekman transport |
---|
| 183 | slab_ekman=0 |
---|
| 184 | CALL getin_p('slab_ekman',slab_ekman) |
---|
[3002] | 185 | ! GM eddy advection (2-layers only) |
---|
| 186 | slab_gm=.FALSE. |
---|
| 187 | CALL getin_p('slab_gm',slab_gm) |
---|
| 188 | IF (slab_ekman.LT.2) THEN |
---|
| 189 | slab_gm=.FALSE. |
---|
| 190 | ENDIF |
---|
[2656] | 191 | ! Convective adjustment |
---|
| 192 | IF (nslay.EQ.1) THEN |
---|
| 193 | slab_cadj=0 |
---|
| 194 | ELSE |
---|
| 195 | slab_cadj=1 |
---|
| 196 | END IF |
---|
| 197 | CALL getin_p('slab_cadj',slab_cadj) |
---|
| 198 | |
---|
| 199 | !************************************************************************************ |
---|
[2057] | 200 | ! Allocate surface fraction read from restart file |
---|
[2656] | 201 | !************************************************************************************ |
---|
[2209] | 202 | ALLOCATE(fsic(klon), stat = error) |
---|
[2057] | 203 | IF (error /= 0) THEN |
---|
| 204 | abort_message='Pb allocation tmp_pctsrf_slab' |
---|
[2311] | 205 | CALL abort_physic(modname,abort_message,1) |
---|
[2057] | 206 | ENDIF |
---|
[2209] | 207 | fsic(:)=0. |
---|
[2656] | 208 | !zmasq = continent fraction |
---|
[2209] | 209 | WHERE (1.-zmasq(:)>EPSFRA) |
---|
| 210 | fsic(:) = pctsrf_rst(:,is_sic)/(1.-zmasq(:)) |
---|
| 211 | END WHERE |
---|
[2057] | 212 | |
---|
[2656] | 213 | !************************************************************************************ |
---|
| 214 | ! Allocate saved fields |
---|
| 215 | !************************************************************************************ |
---|
[2209] | 216 | ALLOCATE(tslab(klon,nslay), stat=error) |
---|
[2311] | 217 | IF (error /= 0) CALL abort_physic & |
---|
[2209] | 218 | (modname,'pb allocation tslab', 1) |
---|
| 219 | |
---|
[2057] | 220 | ALLOCATE(bils_cum(klon), stat = error) |
---|
| 221 | IF (error /= 0) THEN |
---|
| 222 | abort_message='Pb allocation slab_bils_cum' |
---|
[2311] | 223 | CALL abort_physic(modname,abort_message,1) |
---|
[2057] | 224 | ENDIF |
---|
| 225 | bils_cum(:) = 0.0 |
---|
| 226 | |
---|
[2656] | 227 | IF (version_ocean=='sicINT') THEN ! interactive sea ice |
---|
[2209] | 228 | ALLOCATE(slab_bilg(klon), stat = error) |
---|
| 229 | IF (error /= 0) THEN |
---|
| 230 | abort_message='Pb allocation slab_bilg' |
---|
[2311] | 231 | CALL abort_physic(modname,abort_message,1) |
---|
[2209] | 232 | ENDIF |
---|
| 233 | slab_bilg(:) = 0.0 |
---|
| 234 | ALLOCATE(bilg_cum(klon), stat = error) |
---|
| 235 | IF (error /= 0) THEN |
---|
| 236 | abort_message='Pb allocation slab_bilg_cum' |
---|
[2311] | 237 | CALL abort_physic(modname,abort_message,1) |
---|
[2209] | 238 | ENDIF |
---|
| 239 | bilg_cum(:) = 0.0 |
---|
| 240 | ALLOCATE(tice(klon), stat = error) |
---|
| 241 | IF (error /= 0) THEN |
---|
| 242 | abort_message='Pb allocation slab_tice' |
---|
[2311] | 243 | CALL abort_physic(modname,abort_message,1) |
---|
[2209] | 244 | ENDIF |
---|
| 245 | ALLOCATE(seaice(klon), stat = error) |
---|
| 246 | IF (error /= 0) THEN |
---|
| 247 | abort_message='Pb allocation slab_seaice' |
---|
[2311] | 248 | CALL abort_physic(modname,abort_message,1) |
---|
[2209] | 249 | ENDIF |
---|
| 250 | END IF |
---|
| 251 | |
---|
[2656] | 252 | IF (slab_hdiff) THEN !horizontal diffusion |
---|
| 253 | ALLOCATE(dt_hdiff(klon,nslay), stat = error) |
---|
| 254 | IF (error /= 0) THEN |
---|
| 255 | abort_message='Pb allocation dt_hdiff' |
---|
| 256 | CALL abort_physic(modname,abort_message,1) |
---|
| 257 | ENDIF |
---|
| 258 | dt_hdiff(:,:) = 0.0 |
---|
[2057] | 259 | ENDIF |
---|
| 260 | |
---|
[3002] | 261 | ALLOCATE(dt_qflux(klon,nslay), stat = error) |
---|
| 262 | IF (error /= 0) THEN |
---|
| 263 | abort_message='Pb allocation dt_qflux' |
---|
| 264 | CALL abort_physic(modname,abort_message,1) |
---|
| 265 | ENDIF |
---|
| 266 | dt_qflux(:,:) = 0.0 |
---|
| 267 | |
---|
| 268 | IF (slab_gm) THEN !GM advection |
---|
| 269 | ALLOCATE(dt_gm(klon,nslay), stat = error) |
---|
| 270 | IF (error /= 0) THEN |
---|
| 271 | abort_message='Pb allocation dt_gm' |
---|
| 272 | CALL abort_physic(modname,abort_message,1) |
---|
| 273 | ENDIF |
---|
| 274 | dt_gm(:,:) = 0.0 |
---|
| 275 | ENDIF |
---|
| 276 | |
---|
[2656] | 277 | IF (slab_ekman.GT.0) THEN ! ekman transport |
---|
| 278 | ALLOCATE(dt_ekman(klon,nslay), stat = error) |
---|
| 279 | IF (error /= 0) THEN |
---|
| 280 | abort_message='Pb allocation dt_ekman' |
---|
| 281 | CALL abort_physic(modname,abort_message,1) |
---|
| 282 | ENDIF |
---|
| 283 | dt_ekman(:,:) = 0.0 |
---|
| 284 | ALLOCATE(taux_cum(klon), stat = error) |
---|
| 285 | IF (error /= 0) THEN |
---|
| 286 | abort_message='Pb allocation taux_cum' |
---|
| 287 | CALL abort_physic(modname,abort_message,1) |
---|
| 288 | ENDIF |
---|
| 289 | taux_cum(:) = 0.0 |
---|
| 290 | ALLOCATE(tauy_cum(klon), stat = error) |
---|
| 291 | IF (error /= 0) THEN |
---|
| 292 | abort_message='Pb allocation tauy_cum' |
---|
| 293 | CALL abort_physic(modname,abort_message,1) |
---|
| 294 | ENDIF |
---|
| 295 | tauy_cum(:) = 0.0 |
---|
| 296 | ENDIF |
---|
[2209] | 297 | |
---|
[2656] | 298 | ! Initialize transport |
---|
| 299 | IF (slab_hdiff.OR.(slab_ekman.GT.0)) THEN |
---|
| 300 | CALL gather(zmasq,zmasq_glo) |
---|
[3002] | 301 | ! Master thread/process only |
---|
| 302 | !$OMP MASTER |
---|
[2656] | 303 | IF (is_mpi_root) THEN |
---|
| 304 | CALL ini_slab_transp(zmasq_glo) |
---|
| 305 | END IF |
---|
| 306 | !$OMP END MASTER |
---|
| 307 | END IF |
---|
| 308 | |
---|
[2057] | 309 | END SUBROUTINE ocean_slab_init |
---|
| 310 | ! |
---|
[2656] | 311 | !*********************************************************************************** |
---|
[2057] | 312 | ! |
---|
| 313 | SUBROUTINE ocean_slab_frac(itime, dtime, jour, pctsrf_chg, is_modified) |
---|
| 314 | |
---|
[2656] | 315 | ! this routine sends back the sea ice and ocean fraction to the main physics |
---|
| 316 | ! routine. Called only with interactive sea ice |
---|
[1785] | 317 | |
---|
[996] | 318 | ! Arguments |
---|
[2656] | 319 | !************************************************************************************ |
---|
| 320 | INTEGER, INTENT(IN) :: itime ! current timestep |
---|
| 321 | INTEGER, INTENT(IN) :: jour ! day in year (not |
---|
| 322 | REAL , INTENT(IN) :: dtime ! physics timestep (s) |
---|
[2057] | 323 | REAL, DIMENSION(klon,nbsrf), INTENT(INOUT) :: pctsrf_chg ! sub-surface fraction |
---|
[2656] | 324 | LOGICAL, INTENT(OUT) :: is_modified ! true if pctsrf is |
---|
| 325 | ! modified at this time step |
---|
[781] | 326 | |
---|
[2209] | 327 | pctsrf_chg(:,is_oce)=(1.-fsic(:))*(1.-zmasq(:)) |
---|
| 328 | pctsrf_chg(:,is_sic)=fsic(:)*(1.-zmasq(:)) |
---|
[2057] | 329 | is_modified=.TRUE. |
---|
[781] | 330 | |
---|
[996] | 331 | END SUBROUTINE ocean_slab_frac |
---|
[781] | 332 | ! |
---|
[2656] | 333 | !************************************************************************************ |
---|
[781] | 334 | ! |
---|
| 335 | SUBROUTINE ocean_slab_noice( & |
---|
[996] | 336 | itime, dtime, jour, knon, knindex, & |
---|
[2254] | 337 | p1lay, cdragh, cdragq, cdragm, precip_rain, precip_snow, temp_air, spechum, & |
---|
[1067] | 338 | AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 339 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
[2240] | 340 | ps, u1, v1, gustiness, tsurf_in, & |
---|
[2209] | 341 | radsol, snow, & |
---|
[1067] | 342 | qsurf, evap, fluxsens, fluxlat, flux_u1, flux_v1, & |
---|
[3002] | 343 | tsurf_new, dflux_s, dflux_l, slab_bils) |
---|
[1067] | 344 | |
---|
[5282] | 345 | USE clesphys_mod_h |
---|
[1067] | 346 | USE calcul_fluxs_mod |
---|
[3002] | 347 | USE slab_heat_transp_mod, ONLY: divgrad_phy,slab_ekman1,slab_ekman2,slab_gmdiff |
---|
[2656] | 348 | USE mod_phys_lmdz_para |
---|
[1785] | 349 | |
---|
[781] | 350 | |
---|
[2656] | 351 | ! This routine |
---|
| 352 | ! (1) computes surface turbulent fluxes over points with some open ocean |
---|
| 353 | ! (2) reads additional Q-flux (everywhere) |
---|
| 354 | ! (3) computes horizontal transport (diffusion & Ekman) |
---|
| 355 | ! (4) updates slab temperature every cpl_pas ; creates new ice if needed. |
---|
| 356 | |
---|
| 357 | ! Note : |
---|
| 358 | ! klon total number of points |
---|
| 359 | ! knon number of points with open ocean (varies with time) |
---|
| 360 | ! knindex gives position of the knon points within klon. |
---|
| 361 | ! In general, local saved variables have klon values |
---|
| 362 | ! variables exchanged with PBL module have knon. |
---|
| 363 | |
---|
[781] | 364 | ! Input arguments |
---|
[2656] | 365 | !*********************************************************************************** |
---|
| 366 | INTEGER, INTENT(IN) :: itime ! current timestep INTEGER, |
---|
| 367 | INTEGER, INTENT(IN) :: jour ! day in year (for Q-Flux) |
---|
| 368 | INTEGER, INTENT(IN) :: knon ! number of points |
---|
| 369 | INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
---|
| 370 | REAL, INTENT(IN) :: dtime ! timestep (s) |
---|
| 371 | REAL, DIMENSION(klon), INTENT(IN) :: p1lay |
---|
| 372 | REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragq, cdragm |
---|
| 373 | ! drag coefficients |
---|
| 374 | REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow |
---|
| 375 | REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum ! near surface T, q |
---|
| 376 | REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ, BcoefH, BcoefQ |
---|
| 377 | REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV |
---|
| 378 | ! exchange coefficients for boundary layer scheme |
---|
| 379 | REAL, DIMENSION(klon), INTENT(IN) :: ps ! surface pressure |
---|
| 380 | REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness ! surface wind |
---|
| 381 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in ! surface temperature |
---|
| 382 | REAL, DIMENSION(klon), INTENT(INOUT) :: radsol ! net surface radiative flux |
---|
[781] | 383 | |
---|
| 384 | ! In/Output arguments |
---|
[2656] | 385 | !************************************************************************************ |
---|
| 386 | REAL, DIMENSION(klon), INTENT(INOUT) :: snow ! in kg/m2 |
---|
[781] | 387 | |
---|
| 388 | ! Output arguments |
---|
[2656] | 389 | !************************************************************************************ |
---|
[781] | 390 | REAL, DIMENSION(klon), INTENT(OUT) :: qsurf |
---|
| 391 | REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat |
---|
[1067] | 392 | REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 |
---|
[2656] | 393 | REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new ! new surface tempearture |
---|
[781] | 394 | REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l |
---|
[3002] | 395 | REAL, DIMENSION(klon), INTENT(OUT) :: slab_bils |
---|
[781] | 396 | |
---|
| 397 | ! Local variables |
---|
[2656] | 398 | !************************************************************************************ |
---|
| 399 | INTEGER :: i,ki,k |
---|
| 400 | REAL :: t_cadj |
---|
| 401 | ! for surface heat fluxes |
---|
[996] | 402 | REAL, DIMENSION(klon) :: cal, beta, dif_grnd |
---|
[2656] | 403 | ! for Q-Flux computation: d/dt SST, d/dt ice volume (kg/m2), surf fluxes |
---|
[3002] | 404 | REAL, DIMENSION(klon) :: diff_sst, diff_siv |
---|
| 405 | REAL, DIMENSION(klon,nslay) :: lmt_bils |
---|
[2656] | 406 | ! for surface wind stress |
---|
[1067] | 407 | REAL, DIMENSION(klon) :: u0, v0 |
---|
| 408 | REAL, DIMENSION(klon) :: u1_lay, v1_lay |
---|
[2656] | 409 | ! for new ice creation |
---|
[2209] | 410 | REAL :: e_freeze, h_new, dfsic |
---|
[2656] | 411 | ! horizontal diffusion and Ekman local vars |
---|
| 412 | ! dimension = global domain (klon_glo) instead of // subdomains |
---|
[3002] | 413 | REAL, DIMENSION(klon_glo,nslay) :: dt_hdiff_glo,dt_ekman_glo,dt_gm_glo |
---|
[2656] | 414 | ! dt_ekman_glo saved for diagnostic, dt_ekman_tmp used for time loop |
---|
| 415 | REAL, DIMENSION(klon_glo,nslay) :: dt_hdiff_tmp, dt_ekman_tmp |
---|
| 416 | REAL, DIMENSION(klon_glo,nslay) :: tslab_glo |
---|
| 417 | REAL, DIMENSION(klon_glo) :: taux_glo,tauy_glo |
---|
[781] | 418 | |
---|
| 419 | !**************************************************************************************** |
---|
[2656] | 420 | ! 1) Surface fluxes calculation |
---|
| 421 | ! |
---|
[996] | 422 | !**************************************************************************************** |
---|
[3780] | 423 | !cal(:) = 0. ! infinite thermal inertia |
---|
| 424 | !beta(:) = 1. ! wet surface |
---|
| 425 | !dif_grnd(:) = 0. ! no diffusion into ground |
---|
| 426 | ! EV: use calbeta |
---|
| 427 | CALL calbeta(dtime, is_oce, knon, snow,qsurf, beta, cal, dif_grnd) |
---|
| 428 | |
---|
| 429 | |
---|
[781] | 430 | |
---|
[1067] | 431 | ! Suppose zero surface speed |
---|
| 432 | u0(:)=0.0 |
---|
| 433 | v0(:)=0.0 |
---|
| 434 | u1_lay(:) = u1(:) - u0(:) |
---|
| 435 | v1_lay(:) = v1(:) - v0(:) |
---|
| 436 | |
---|
[2656] | 437 | ! Compute latent & sensible fluxes |
---|
[781] | 438 | CALL calcul_fluxs(knon, is_oce, dtime, & |
---|
[2254] | 439 | tsurf_in, p1lay, cal, beta, cdragh, cdragq, ps, & |
---|
[781] | 440 | precip_rain, precip_snow, snow, qsurf, & |
---|
[2240] | 441 | radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
[2254] | 442 | f_qsat_oce,AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
[781] | 443 | tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
| 444 | |
---|
[2656] | 445 | ! save total cumulated heat fluxes locally |
---|
| 446 | ! radiative + turbulent + melt of falling snow |
---|
[2057] | 447 | slab_bils(:)=0. |
---|
| 448 | DO i=1,knon |
---|
| 449 | ki=knindex(i) |
---|
[2209] | 450 | slab_bils(ki)=(1.-fsic(ki))*(fluxlat(i)+fluxsens(i)+radsol(i) & |
---|
| 451 | -precip_snow(i)*ice_lat*(1.+snow_wfact*fsic(ki))) |
---|
[2057] | 452 | bils_cum(ki)=bils_cum(ki)+slab_bils(ki) |
---|
| 453 | END DO |
---|
| 454 | |
---|
[2656] | 455 | ! Compute surface wind stress |
---|
| 456 | CALL calcul_flux_wind(knon, dtime, & |
---|
| 457 | u0, v0, u1, v1, gustiness, cdragm, & |
---|
| 458 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
| 459 | p1lay, temp_air, & |
---|
| 460 | flux_u1, flux_v1) |
---|
| 461 | |
---|
| 462 | ! save cumulated wind stress |
---|
| 463 | IF (slab_ekman.GT.0) THEN |
---|
| 464 | DO i=1,knon |
---|
| 465 | ki=knindex(i) |
---|
| 466 | taux_cum(ki)=taux_cum(ki)+flux_u1(i)*(1.-fsic(ki))/cpl_pas |
---|
| 467 | tauy_cum(ki)=tauy_cum(ki)+flux_v1(i)*(1.-fsic(ki))/cpl_pas |
---|
| 468 | END DO |
---|
| 469 | ENDIF |
---|
| 470 | |
---|
[781] | 471 | !**************************************************************************************** |
---|
[2656] | 472 | ! 2) Q-Flux : get global variables lmt_bils, diff_sst and diff_siv from file limit_slab.nc |
---|
[781] | 473 | ! |
---|
| 474 | !**************************************************************************************** |
---|
[2656] | 475 | CALL limit_slab(itime, dtime, jour, lmt_bils, diff_sst, diff_siv) |
---|
[2209] | 476 | ! lmt_bils and diff_sst,siv saved by limit_slab |
---|
[2057] | 477 | ! qflux = total QFlux correction (in W/m2) |
---|
[3002] | 478 | dt_qflux(:,1)=lmt_bils(:,1)+diff_sst(:)/cyang/86400.-diff_siv(:)*ice_den*ice_lat/86400. |
---|
| 479 | IF (nslay.GT.1) THEN |
---|
| 480 | dt_qflux(:,2:nslay)=lmt_bils(:,2:nslay) |
---|
| 481 | END IF |
---|
[781] | 482 | |
---|
| 483 | !**************************************************************************************** |
---|
[2656] | 484 | ! 3) Recalculate new temperature (add Surf fluxes, Q-Flux, Ocean transport) |
---|
| 485 | ! Bring to freezing temp and make sea ice if necessary |
---|
| 486 | ! |
---|
[2057] | 487 | !***********************************************o***************************************** |
---|
| 488 | tsurf_new=tsurf_in |
---|
| 489 | IF (MOD(itime,cpl_pas).EQ.0) THEN ! time to update tslab & fraction |
---|
[2656] | 490 | ! *********************************** |
---|
| 491 | ! Horizontal transport |
---|
| 492 | ! *********************************** |
---|
| 493 | IF (slab_ekman.GT.0) THEN |
---|
| 494 | ! copy wind stress to global var |
---|
| 495 | CALL gather(taux_cum,taux_glo) |
---|
| 496 | CALL gather(tauy_cum,tauy_glo) |
---|
| 497 | END IF |
---|
| 498 | |
---|
| 499 | IF (slab_hdiff.OR.(slab_ekman.GT.0)) THEN |
---|
| 500 | CALL gather(tslab,tslab_glo) |
---|
| 501 | ! Compute horiz transport on one process only |
---|
[3002] | 502 | IF (is_mpi_root .AND. is_omp_root) THEN ! Only master processus |
---|
[2656] | 503 | IF (slab_hdiff) THEN |
---|
| 504 | dt_hdiff_glo(:,:)=0. |
---|
| 505 | END IF |
---|
| 506 | IF (slab_ekman.GT.0) THEN |
---|
| 507 | dt_ekman_glo(:,:)=0. |
---|
| 508 | END IF |
---|
[3002] | 509 | IF (slab_gm) THEN |
---|
| 510 | dt_gm_glo(:,:)=0. |
---|
| 511 | END IF |
---|
[2656] | 512 | DO i=1,cpl_pas ! time splitting for numerical stability |
---|
| 513 | IF (slab_ekman.GT.0) THEN |
---|
| 514 | SELECT CASE (slab_ekman) |
---|
| 515 | CASE (1) |
---|
| 516 | CALL slab_ekman1(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp) |
---|
| 517 | CASE (2) |
---|
[3002] | 518 | CALL slab_ekman2(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp,dt_hdiff_tmp,slab_gm) |
---|
[2656] | 519 | CASE DEFAULT |
---|
| 520 | dt_ekman_tmp(:,:)=0. |
---|
| 521 | END SELECT |
---|
| 522 | dt_ekman_glo(:,:)=dt_ekman_glo(:,:)+dt_ekman_tmp(:,:) |
---|
| 523 | ! convert dt_ekman from K.s-1.(kg.m-2) to K.s-1 |
---|
| 524 | DO k=1,nslay |
---|
| 525 | dt_ekman_tmp(:,k)=dt_ekman_tmp(:,k)/(slabh(k)*sea_den) |
---|
| 526 | ENDDO |
---|
| 527 | tslab_glo=tslab_glo+dt_ekman_tmp*dtime |
---|
[3002] | 528 | IF (slab_gm) THEN ! Gent-McWilliams eddy advection |
---|
| 529 | dt_gm_glo(:,:)=dt_gm_glo(:,:)+ dt_hdiff_tmp(:,:) |
---|
| 530 | ! convert dt from K.s-1.(kg.m-2) to K.s-1 |
---|
| 531 | DO k=1,nslay |
---|
| 532 | dt_hdiff_tmp(:,k)=dt_hdiff_tmp(:,k)/(slabh(k)*sea_den) |
---|
| 533 | END DO |
---|
| 534 | tslab_glo=tslab_glo+dt_hdiff_tmp*dtime |
---|
| 535 | END IF |
---|
[2656] | 536 | ENDIF |
---|
[3002] | 537 | ! GM included in Ekman_2 |
---|
| 538 | ! IF (slab_gm) THEN ! Gent-McWilliams eddy advection |
---|
| 539 | ! CALL slab_gmdiff(tslab_glo,dt_hdiff_tmp) |
---|
| 540 | ! ! convert dt_gm from K.m.s-1 to K.s-1 |
---|
| 541 | ! DO k=1,nslay |
---|
| 542 | ! dt_hdiff_tmp(:,k)=dt_hdiff_tmp(:,k)/slabh(k) |
---|
| 543 | ! END DO |
---|
| 544 | ! tslab_glo=tslab_glo+dt_hdiff_tmp*dtime |
---|
| 545 | ! dt_gm_glo(:,:)=dt_gm_glo(:,:)+ dt_hdiff_tmp(:,:) |
---|
| 546 | ! END IF |
---|
[2656] | 547 | IF (slab_hdiff) THEN ! horizontal diffusion |
---|
| 548 | ! laplacian of slab T |
---|
| 549 | CALL divgrad_phy(nslay,tslab_glo,dt_hdiff_tmp) |
---|
| 550 | ! multiply by diff coef and normalize to 50m slab equivalent |
---|
| 551 | dt_hdiff_tmp=dt_hdiff_tmp*coef_hdiff*50./SUM(slabh) |
---|
| 552 | dt_hdiff_glo(:,:)=dt_hdiff_glo(:,:)+ dt_hdiff_tmp(:,:) |
---|
| 553 | tslab_glo=tslab_glo+dt_hdiff_tmp*dtime |
---|
| 554 | END IF |
---|
| 555 | END DO ! time splitting |
---|
| 556 | IF (slab_hdiff) THEN |
---|
| 557 | !dt_hdiff_glo saved in W/m2 |
---|
| 558 | DO k=1,nslay |
---|
| 559 | dt_hdiff_glo(:,k)=dt_hdiff_glo(:,k)*slabh(k)*sea_den*sea_cap/cpl_pas |
---|
[2057] | 560 | END DO |
---|
[2656] | 561 | END IF |
---|
[3002] | 562 | IF (slab_gm) THEN |
---|
| 563 | !dt_hdiff_glo saved in W/m2 |
---|
| 564 | dt_gm_glo(:,:)=dt_gm_glo(:,:)*sea_cap/cpl_pas |
---|
| 565 | END IF |
---|
[2656] | 566 | IF (slab_ekman.GT.0) THEN |
---|
| 567 | ! dt_ekman_glo saved in W/m2 |
---|
| 568 | dt_ekman_glo(:,:)=dt_ekman_glo(:,:)*sea_cap/cpl_pas |
---|
| 569 | END IF |
---|
[3002] | 570 | END IF ! master process |
---|
[2656] | 571 | !$OMP BARRIER |
---|
| 572 | ! Send new fields back to all processes |
---|
| 573 | CALL Scatter(tslab_glo,tslab) |
---|
| 574 | IF (slab_hdiff) THEN |
---|
| 575 | CALL Scatter(dt_hdiff_glo,dt_hdiff) |
---|
| 576 | END IF |
---|
[3002] | 577 | IF (slab_gm) THEN |
---|
| 578 | CALL Scatter(dt_gm_glo,dt_gm) |
---|
| 579 | END IF |
---|
[2656] | 580 | IF (slab_ekman.GT.0) THEN |
---|
| 581 | CALL Scatter(dt_ekman_glo,dt_ekman) |
---|
| 582 | ! clear wind stress |
---|
| 583 | taux_cum(:)=0. |
---|
| 584 | tauy_cum(:)=0. |
---|
| 585 | END IF |
---|
| 586 | ENDIF ! transport |
---|
| 587 | |
---|
| 588 | ! *********************************** |
---|
| 589 | ! Other heat fluxes |
---|
| 590 | ! *********************************** |
---|
| 591 | ! Add read QFlux |
---|
[3002] | 592 | DO k=1,nslay |
---|
| 593 | tslab(:,k)=tslab(:,k)+dt_qflux(:,k)*cyang*dtime*cpl_pas & |
---|
| 594 | *slabh(1)/slabh(k) |
---|
| 595 | END DO |
---|
[2656] | 596 | ! Add cumulated surface fluxes |
---|
| 597 | tslab(:,1)=tslab(:,1)+bils_cum(:)*cyang*dtime |
---|
| 598 | ! Convective adjustment if 2 layers |
---|
| 599 | IF ((nslay.GT.1).AND.(slab_cadj.GT.0)) THEN |
---|
| 600 | DO i=1,klon |
---|
| 601 | IF (tslab(i,2).GT.tslab(i,1)) THEN |
---|
| 602 | ! mean (mass-weighted) temperature |
---|
| 603 | t_cadj=SUM(tslab(i,:)*slabh(:))/SUM(slabh(:)) |
---|
| 604 | tslab(i,1)=t_cadj |
---|
| 605 | tslab(i,2)=t_cadj |
---|
| 606 | END IF |
---|
| 607 | END DO |
---|
| 608 | END IF |
---|
| 609 | ! *********************************** |
---|
| 610 | ! Update surface temperature and ice |
---|
| 611 | ! *********************************** |
---|
| 612 | SELECT CASE(version_ocean) |
---|
| 613 | CASE('sicNO') ! no sea ice even below freezing ! |
---|
| 614 | DO i=1,knon |
---|
| 615 | ki=knindex(i) |
---|
| 616 | tsurf_new(i)=tslab(ki,1) |
---|
| 617 | END DO |
---|
| 618 | CASE('sicOBS') ! "realistic" case, for prescribed sea ice |
---|
| 619 | ! tslab cannot be below freezing, or above it if there is sea ice |
---|
| 620 | DO i=1,knon |
---|
| 621 | ki=knindex(i) |
---|
| 622 | IF ((tslab(ki,1).LT.t_freeze).OR.(fsic(ki).GT.epsfra)) THEN |
---|
| 623 | tslab(ki,1)=t_freeze |
---|
| 624 | END IF |
---|
| 625 | tsurf_new(i)=tslab(ki,1) |
---|
| 626 | END DO |
---|
| 627 | CASE('sicINT') ! interactive sea ice |
---|
| 628 | DO i=1,knon |
---|
| 629 | ki=knindex(i) |
---|
| 630 | IF (fsic(ki).LT.epsfra) THEN ! Free of ice |
---|
| 631 | IF (tslab(ki,1).LT.t_freeze) THEN ! create new ice |
---|
| 632 | ! quantity of new ice formed |
---|
| 633 | e_freeze=(t_freeze-tslab(ki,1))/cyang/ice_lat |
---|
| 634 | ! new ice |
---|
| 635 | tice(ki)=t_freeze |
---|
| 636 | fsic(ki)=MIN(ice_frac_max,e_freeze/h_ice_thin) |
---|
| 637 | IF (fsic(ki).GT.ice_frac_min) THEN |
---|
| 638 | seaice(ki)=MIN(e_freeze/fsic(ki),h_ice_max) |
---|
| 639 | tslab(ki,1)=t_freeze |
---|
| 640 | ELSE |
---|
| 641 | fsic(ki)=0. |
---|
| 642 | END IF |
---|
| 643 | tsurf_new(i)=t_freeze |
---|
| 644 | ELSE |
---|
| 645 | tsurf_new(i)=tslab(ki,1) |
---|
| 646 | END IF |
---|
| 647 | ELSE ! ice present |
---|
| 648 | tsurf_new(i)=t_freeze |
---|
| 649 | IF (tslab(ki,1).LT.t_freeze) THEN ! create new ice |
---|
| 650 | ! quantity of new ice formed over open ocean |
---|
| 651 | e_freeze=(t_freeze-tslab(ki,1))/cyang*(1.-fsic(ki)) & |
---|
| 652 | /(ice_lat+ice_cap/2.*(t_freeze-tice(ki))) |
---|
| 653 | ! new ice height and fraction |
---|
| 654 | h_new=MIN(h_ice_new,seaice(ki)) ! max new height ice_new |
---|
| 655 | dfsic=MIN(ice_frac_max-fsic(ki),e_freeze/h_new) |
---|
| 656 | h_new=MIN(e_freeze/dfsic,h_ice_max) |
---|
| 657 | ! update tslab to freezing over open ocean only |
---|
| 658 | tslab(ki,1)=tslab(ki,1)*fsic(ki)+t_freeze*(1.-fsic(ki)) |
---|
| 659 | ! update sea ice |
---|
| 660 | seaice(ki)=(h_new*dfsic+seaice(ki)*fsic(ki)) & |
---|
| 661 | /(dfsic+fsic(ki)) |
---|
| 662 | fsic(ki)=fsic(ki)+dfsic |
---|
| 663 | ! update snow? |
---|
| 664 | END IF ! tslab below freezing |
---|
| 665 | END IF ! sea ice present |
---|
| 666 | END DO |
---|
| 667 | END SELECT |
---|
| 668 | bils_cum(:)=0.0! clear cumulated fluxes |
---|
[2057] | 669 | END IF ! coupling time |
---|
| 670 | END SUBROUTINE ocean_slab_noice |
---|
| 671 | ! |
---|
[781] | 672 | !**************************************************************************************** |
---|
[2209] | 673 | |
---|
| 674 | SUBROUTINE ocean_slab_ice( & |
---|
| 675 | itime, dtime, jour, knon, knindex, & |
---|
| 676 | tsurf_in, p1lay, cdragh, cdragm, precip_rain, precip_snow, temp_air, spechum, & |
---|
| 677 | AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 678 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
[2240] | 679 | ps, u1, v1, gustiness, & |
---|
[2209] | 680 | radsol, snow, qsurf, qsol, agesno, & |
---|
| 681 | alb1_new, alb2_new, evap, fluxsens, fluxlat, flux_u1, flux_v1, & |
---|
| 682 | tsurf_new, dflux_s, dflux_l, swnet) |
---|
| 683 | |
---|
[5282] | 684 | USE clesphys_mod_h |
---|
[5285] | 685 | USE yomcst_mod_h |
---|
[5274] | 686 | USE calcul_fluxs_mod |
---|
[2209] | 687 | |
---|
[5274] | 688 | |
---|
[2209] | 689 | |
---|
| 690 | ! Input arguments |
---|
[2057] | 691 | !**************************************************************************************** |
---|
[2209] | 692 | INTEGER, INTENT(IN) :: itime, jour, knon |
---|
| 693 | INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
---|
| 694 | REAL, INTENT(IN) :: dtime |
---|
| 695 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in |
---|
| 696 | REAL, DIMENSION(klon), INTENT(IN) :: p1lay |
---|
| 697 | REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragm |
---|
| 698 | REAL, DIMENSION(klon), INTENT(IN) :: precip_rain, precip_snow |
---|
| 699 | REAL, DIMENSION(klon), INTENT(IN) :: temp_air, spechum |
---|
| 700 | REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ, BcoefH, BcoefQ |
---|
| 701 | REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV |
---|
| 702 | REAL, DIMENSION(klon), INTENT(IN) :: ps |
---|
[2240] | 703 | REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness |
---|
[2209] | 704 | REAL, DIMENSION(klon), INTENT(IN) :: swnet |
---|
| 705 | |
---|
| 706 | ! In/Output arguments |
---|
| 707 | !**************************************************************************************** |
---|
| 708 | REAL, DIMENSION(klon), INTENT(INOUT) :: snow, qsol |
---|
| 709 | REAL, DIMENSION(klon), INTENT(INOUT) :: agesno |
---|
| 710 | REAL, DIMENSION(klon), INTENT(INOUT) :: radsol |
---|
| 711 | |
---|
| 712 | ! Output arguments |
---|
| 713 | !**************************************************************************************** |
---|
| 714 | REAL, DIMENSION(klon), INTENT(OUT) :: qsurf |
---|
| 715 | REAL, DIMENSION(klon), INTENT(OUT) :: alb1_new ! new albedo in visible SW interval |
---|
| 716 | REAL, DIMENSION(klon), INTENT(OUT) :: alb2_new ! new albedo in near IR interval |
---|
| 717 | REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens, fluxlat |
---|
| 718 | REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 |
---|
| 719 | REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new |
---|
| 720 | REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l |
---|
| 721 | |
---|
| 722 | ! Local variables |
---|
| 723 | !**************************************************************************************** |
---|
| 724 | INTEGER :: i,ki |
---|
| 725 | REAL, DIMENSION(klon) :: cal, beta, dif_grnd |
---|
| 726 | REAL, DIMENSION(klon) :: u0, v0 |
---|
| 727 | REAL, DIMENSION(klon) :: u1_lay, v1_lay |
---|
| 728 | ! intermediate heat fluxes: |
---|
| 729 | REAL :: f_cond, f_swpen |
---|
| 730 | ! for snow/ice albedo: |
---|
| 731 | REAL :: alb_snow, alb_ice, alb_pond |
---|
| 732 | REAL :: frac_snow, frac_ice, frac_pond |
---|
| 733 | ! for ice melt / freeze |
---|
| 734 | REAL :: e_melt, snow_evap, h_test |
---|
| 735 | ! dhsic, dfsic change in ice mass, fraction. |
---|
| 736 | REAL :: dhsic, dfsic, frac_mf |
---|
| 737 | |
---|
| 738 | !**************************************************************************************** |
---|
[2057] | 739 | ! 1) Flux calculation |
---|
| 740 | !**************************************************************************************** |
---|
[2209] | 741 | ! Suppose zero surface speed |
---|
| 742 | u0(:)=0.0 |
---|
| 743 | v0(:)=0.0 |
---|
| 744 | u1_lay(:) = u1(:) - u0(:) |
---|
| 745 | v1_lay(:) = v1(:) - v0(:) |
---|
| 746 | |
---|
| 747 | ! set beta, cal, compute conduction fluxes inside ice/snow |
---|
| 748 | slab_bilg(:)=0. |
---|
[3780] | 749 | !dif_grnd(:)=0. |
---|
| 750 | !beta(:) = 1. |
---|
| 751 | ! EV: use calbeta to calculate beta and then recalculate properly cal |
---|
| 752 | CALL calbeta(dtime, is_sic, knon, snow, qsol, beta, cal, dif_grnd) |
---|
| 753 | |
---|
| 754 | |
---|
[2209] | 755 | DO i=1,knon |
---|
| 756 | ki=knindex(i) |
---|
| 757 | IF (snow(i).GT.snow_min) THEN |
---|
| 758 | ! snow-layer heat capacity |
---|
| 759 | cal(i)=2.*RCPD/(snow(i)*ice_cap) |
---|
| 760 | ! snow conductive flux |
---|
| 761 | f_cond=sno_cond*(tice(ki)-tsurf_in(i))/snow(i) |
---|
| 762 | ! all shortwave flux absorbed |
---|
| 763 | f_swpen=0. |
---|
| 764 | ! bottom flux (ice conduction) |
---|
| 765 | slab_bilg(ki)=ice_cond*(tice(ki)-t_freeze)/seaice(ki) |
---|
| 766 | ! update ice temperature |
---|
| 767 | tice(ki)=tice(ki)-2./ice_cap/(snow(i)+seaice(ki)) & |
---|
| 768 | *(slab_bilg(ki)+f_cond)*dtime |
---|
| 769 | ELSE ! bare ice |
---|
| 770 | ! ice-layer heat capacity |
---|
| 771 | cal(i)=2.*RCPD/(seaice(ki)*ice_cap) |
---|
| 772 | ! conductive flux |
---|
| 773 | f_cond=ice_cond*(t_freeze-tice(ki))/seaice(ki) |
---|
| 774 | ! penetrative shortwave flux... |
---|
| 775 | f_swpen=swnet(i)*pen_frac*exp(-pen_ext*seaice(ki)/ice_den) |
---|
| 776 | slab_bilg(ki)=f_swpen-f_cond |
---|
| 777 | END IF |
---|
| 778 | radsol(i)=radsol(i)+f_cond-f_swpen |
---|
| 779 | END DO |
---|
| 780 | ! weight fluxes to ocean by sea ice fraction |
---|
| 781 | slab_bilg(:)=slab_bilg(:)*fsic(:) |
---|
| 782 | |
---|
[2057] | 783 | ! calcul_fluxs (sens, lat etc) |
---|
[2209] | 784 | CALL calcul_fluxs(knon, is_sic, dtime, & |
---|
[2254] | 785 | tsurf_in, p1lay, cal, beta, cdragh, cdragh, ps, & |
---|
[2209] | 786 | precip_rain, precip_snow, snow, qsurf, & |
---|
[2240] | 787 | radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
[2254] | 788 | f_qsat_oce,AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
[2209] | 789 | tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
| 790 | DO i=1,knon |
---|
| 791 | IF (snow(i).LT.snow_min) tice(knindex(i))=tsurf_new(i) |
---|
| 792 | END DO |
---|
| 793 | |
---|
[2057] | 794 | ! calcul_flux_wind |
---|
[2209] | 795 | CALL calcul_flux_wind(knon, dtime, & |
---|
[2240] | 796 | u0, v0, u1, v1, gustiness, cdragm, & |
---|
[2209] | 797 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
| 798 | p1lay, temp_air, & |
---|
| 799 | flux_u1, flux_v1) |
---|
[781] | 800 | |
---|
[2057] | 801 | !**************************************************************************************** |
---|
[2209] | 802 | ! 2) Update snow and ice surface |
---|
[2057] | 803 | !**************************************************************************************** |
---|
[2209] | 804 | ! snow precip |
---|
| 805 | DO i=1,knon |
---|
| 806 | ki=knindex(i) |
---|
| 807 | IF (precip_snow(i) > 0.) THEN |
---|
| 808 | snow(i) = snow(i)+precip_snow(i)*dtime*(1.-snow_wfact*(1.-fsic(ki))) |
---|
| 809 | END IF |
---|
| 810 | ! snow and ice sublimation |
---|
| 811 | IF (evap(i) > 0.) THEN |
---|
| 812 | snow_evap = MIN (snow(i) / dtime, evap(i)) |
---|
| 813 | snow(i) = snow(i) - snow_evap * dtime |
---|
| 814 | snow(i) = MAX(0.0, snow(i)) |
---|
| 815 | seaice(ki) = MAX(0.0,seaice(ki)-(evap(i)-snow_evap)*dtime) |
---|
| 816 | ENDIF |
---|
[2656] | 817 | ! Melt / Freeze snow from above if Tsurf>0 |
---|
[2209] | 818 | IF (tsurf_new(i).GT.t_melt) THEN |
---|
[2656] | 819 | ! energy available for melting snow (in kg of melted snow /m2) |
---|
[2209] | 820 | e_melt = MIN(MAX(snow(i)*(tsurf_new(i)-t_melt)*ice_cap/2. & |
---|
| 821 | /(ice_lat+ice_cap/2.*(t_melt-tice(ki))),0.0),snow(i)) |
---|
| 822 | ! remove snow |
---|
| 823 | IF (snow(i).GT.e_melt) THEN |
---|
| 824 | snow(i)=snow(i)-e_melt |
---|
| 825 | tsurf_new(i)=t_melt |
---|
| 826 | ELSE ! all snow is melted |
---|
| 827 | ! add remaining heat flux to ice |
---|
| 828 | e_melt=e_melt-snow(i) |
---|
| 829 | tice(ki)=tice(ki)+e_melt*ice_lat*2./(ice_cap*seaice(ki)) |
---|
| 830 | tsurf_new(i)=tice(ki) |
---|
| 831 | END IF |
---|
| 832 | END IF |
---|
| 833 | ! melt ice from above if Tice>0 |
---|
| 834 | IF (tice(ki).GT.t_melt) THEN |
---|
| 835 | ! quantity of ice melted (kg/m2) |
---|
| 836 | e_melt=MAX(seaice(ki)*(tice(ki)-t_melt)*ice_cap/2. & |
---|
| 837 | /(ice_lat+ice_cap/2.*(t_melt-t_freeze)),0.0) |
---|
| 838 | ! melt from above, height only |
---|
| 839 | dhsic=MIN(seaice(ki)-h_ice_min,e_melt) |
---|
| 840 | e_melt=e_melt-dhsic |
---|
| 841 | IF (e_melt.GT.0) THEN |
---|
| 842 | ! lateral melt if ice too thin |
---|
| 843 | dfsic=MAX(fsic(ki)-ice_frac_min,e_melt/h_ice_min*fsic(ki)) |
---|
| 844 | ! if all melted add remaining heat to ocean |
---|
| 845 | e_melt=MAX(0.,e_melt*fsic(ki)-dfsic*h_ice_min) |
---|
| 846 | slab_bilg(ki)=slab_bilg(ki)+ e_melt*ice_lat/dtime |
---|
| 847 | ! update height and fraction |
---|
| 848 | fsic(ki)=fsic(ki)-dfsic |
---|
| 849 | END IF |
---|
| 850 | seaice(ki)=seaice(ki)-dhsic |
---|
| 851 | ! surface temperature at melting point |
---|
| 852 | tice(ki)=t_melt |
---|
| 853 | tsurf_new(i)=t_melt |
---|
| 854 | END IF |
---|
| 855 | ! convert snow to ice if below floating line |
---|
| 856 | h_test=(seaice(ki)+snow(i))*ice_den-seaice(ki)*sea_den |
---|
| 857 | IF (h_test.GT.0.) THEN !snow under water |
---|
| 858 | ! extra snow converted to ice (with added frozen sea water) |
---|
| 859 | dhsic=h_test/(sea_den-ice_den+sno_den) |
---|
| 860 | seaice(ki)=seaice(ki)+dhsic |
---|
| 861 | snow(i)=snow(i)-dhsic*sno_den/ice_den |
---|
| 862 | ! available energy (freeze sea water + bring to tice) |
---|
| 863 | e_melt=dhsic*(1.-sno_den/ice_den)*(ice_lat+ & |
---|
| 864 | ice_cap/2.*(t_freeze-tice(ki))) |
---|
| 865 | ! update ice temperature |
---|
| 866 | tice(ki)=tice(ki)+2.*e_melt/ice_cap/(snow(i)+seaice(ki)) |
---|
| 867 | END IF |
---|
| 868 | END DO |
---|
| 869 | |
---|
[2057] | 870 | ! New albedo |
---|
[2209] | 871 | DO i=1,knon |
---|
| 872 | ki=knindex(i) |
---|
| 873 | ! snow albedo: update snow age |
---|
| 874 | IF (snow(i).GT.0.0001) THEN |
---|
| 875 | agesno(i)=(agesno(i) + (1.-agesno(i)/50.)*dtime/86400.)& |
---|
| 876 | * EXP(-1.*MAX(0.0,precip_snow(i))*dtime/5.) |
---|
| 877 | ELSE |
---|
| 878 | agesno(i)=0.0 |
---|
| 879 | END IF |
---|
| 880 | ! snow albedo |
---|
| 881 | alb_snow=alb_sno_min+alb_sno_del*EXP(-agesno(i)/50.) |
---|
| 882 | ! ice albedo (varies with ice tkickness and temp) |
---|
| 883 | alb_ice=MAX(0.0,0.13*LOG(100.*seaice(ki)/ice_den)+0.1) |
---|
| 884 | IF (tice(ki).GT.t_freeze-0.01) THEN |
---|
| 885 | alb_ice=MIN(alb_ice,alb_ice_wet) |
---|
| 886 | ELSE |
---|
| 887 | alb_ice=MIN(alb_ice,alb_ice_dry) |
---|
| 888 | END IF |
---|
| 889 | ! pond albedo |
---|
| 890 | alb_pond=0.36-0.1*(2.0+MIN(0.0,MAX(tice(ki)-t_melt,-2.0))) |
---|
| 891 | ! pond fraction |
---|
| 892 | frac_pond=0.2*(2.0+MIN(0.0,MAX(tice(ki)-t_melt,-2.0))) |
---|
| 893 | ! snow fraction |
---|
| 894 | frac_snow=MAX(0.0,MIN(1.0-frac_pond,snow(i)/snow_min)) |
---|
| 895 | ! ice fraction |
---|
| 896 | frac_ice=MAX(0.0,1.-frac_pond-frac_snow) |
---|
| 897 | ! total albedo |
---|
| 898 | alb1_new(i)=alb_snow*frac_snow+alb_ice*frac_ice+alb_pond*frac_pond |
---|
| 899 | END DO |
---|
| 900 | alb2_new(:) = alb1_new(:) |
---|
[2057] | 901 | |
---|
| 902 | !**************************************************************************************** |
---|
[2209] | 903 | ! 3) Recalculate new ocean temperature (add fluxes below ice) |
---|
[2057] | 904 | ! Melt / freeze from below |
---|
| 905 | !***********************************************o***************************************** |
---|
[2209] | 906 | !cumul fluxes |
---|
| 907 | bilg_cum(:)=bilg_cum(:)+slab_bilg(:) |
---|
| 908 | IF (MOD(itime,cpl_pas).EQ.0) THEN ! time to update tslab & fraction |
---|
| 909 | ! Add cumulated surface fluxes |
---|
| 910 | tslab(:,1)=tslab(:,1)+bilg_cum(:)*cyang*dtime |
---|
| 911 | DO i=1,knon |
---|
| 912 | ki=knindex(i) |
---|
| 913 | ! split lateral/top melt-freeze |
---|
| 914 | frac_mf=MIN(1.,MAX(0.,(seaice(ki)-h_ice_thin)/(h_ice_thick-h_ice_thin))) |
---|
| 915 | IF (tslab(ki,1).LE.t_freeze) THEN |
---|
| 916 | ! ****** Form new ice from below ******* |
---|
| 917 | ! quantity of new ice |
---|
| 918 | e_melt=(t_freeze-tslab(ki,1))/cyang & |
---|
| 919 | /(ice_lat+ice_cap/2.*(t_freeze-tice(ki))) |
---|
| 920 | ! first increase height to h_thin |
---|
| 921 | dhsic=MAX(0.,MIN(h_ice_thin-seaice(ki),e_melt/fsic(ki))) |
---|
| 922 | seaice(ki)=dhsic+seaice(ki) |
---|
| 923 | e_melt=e_melt-fsic(ki)*dhsic |
---|
| 924 | IF (e_melt.GT.0.) THEN |
---|
| 925 | ! frac_mf fraction used for lateral increase |
---|
| 926 | dfsic=MIN(ice_frac_max-fsic(ki),e_melt*frac_mf/seaice(ki)) |
---|
| 927 | fsic(ki)=fsic(ki)+dfsic |
---|
| 928 | e_melt=e_melt-dfsic*seaice(ki) |
---|
| 929 | ! rest used to increase height |
---|
| 930 | seaice(ki)=MIN(h_ice_max,seaice(ki)+e_melt/fsic(ki)) |
---|
| 931 | END IF |
---|
| 932 | tslab(ki,1)=t_freeze |
---|
| 933 | ELSE ! slab temperature above freezing |
---|
| 934 | ! ****** melt ice from below ******* |
---|
| 935 | ! quantity of melted ice |
---|
| 936 | e_melt=(tslab(ki,1)-t_freeze)/cyang & |
---|
| 937 | /(ice_lat+ice_cap/2.*(tice(ki)-t_freeze)) |
---|
| 938 | ! first decrease height to h_thick |
---|
| 939 | dhsic=MAX(0.,MIN(seaice(ki)-h_ice_thick,e_melt/fsic(ki))) |
---|
| 940 | seaice(ki)=seaice(ki)-dhsic |
---|
| 941 | e_melt=e_melt-fsic(ki)*dhsic |
---|
| 942 | IF (e_melt.GT.0) THEN |
---|
| 943 | ! frac_mf fraction used for height decrease |
---|
| 944 | dhsic=MAX(0.,MIN(seaice(ki)-h_ice_min,e_melt*frac_mf/fsic(ki))) |
---|
| 945 | seaice(ki)=seaice(ki)-dhsic |
---|
| 946 | e_melt=e_melt-fsic(ki)*dhsic |
---|
| 947 | ! rest used to decrease fraction (up to 0!) |
---|
| 948 | dfsic=MIN(fsic(ki),e_melt/seaice(ki)) |
---|
| 949 | ! keep remaining in ocean |
---|
| 950 | e_melt=e_melt-dfsic*seaice(ki) |
---|
| 951 | END IF |
---|
| 952 | tslab(ki,1)=t_freeze+e_melt*ice_lat*cyang |
---|
| 953 | fsic(ki)=fsic(ki)-dfsic |
---|
| 954 | END IF |
---|
| 955 | END DO |
---|
| 956 | bilg_cum(:)=0. |
---|
| 957 | END IF ! coupling time |
---|
| 958 | |
---|
[2656] | 959 | !tests ice fraction |
---|
[2209] | 960 | WHERE (fsic.LT.ice_frac_min) |
---|
| 961 | tslab(:,1)=tslab(:,1)-fsic*seaice*ice_lat*cyang |
---|
| 962 | tice=t_melt |
---|
| 963 | fsic=0. |
---|
| 964 | seaice=0. |
---|
| 965 | END WHERE |
---|
[2057] | 966 | |
---|
[2209] | 967 | END SUBROUTINE ocean_slab_ice |
---|
[781] | 968 | ! |
---|
| 969 | !**************************************************************************************** |
---|
| 970 | ! |
---|
[2057] | 971 | SUBROUTINE ocean_slab_final |
---|
| 972 | |
---|
| 973 | !**************************************************************************************** |
---|
| 974 | ! Deallocate module variables |
---|
| 975 | !**************************************************************************************** |
---|
| 976 | IF (ALLOCATED(tslab)) DEALLOCATE(tslab) |
---|
[2209] | 977 | IF (ALLOCATED(fsic)) DEALLOCATE(fsic) |
---|
[2656] | 978 | IF (ALLOCATED(tice)) DEALLOCATE(tice) |
---|
| 979 | IF (ALLOCATED(seaice)) DEALLOCATE(seaice) |
---|
[2209] | 980 | IF (ALLOCATED(slab_bilg)) DEALLOCATE(slab_bilg) |
---|
| 981 | IF (ALLOCATED(bilg_cum)) DEALLOCATE(bilg_cum) |
---|
| 982 | IF (ALLOCATED(bils_cum)) DEALLOCATE(bils_cum) |
---|
[2656] | 983 | IF (ALLOCATED(taux_cum)) DEALLOCATE(taux_cum) |
---|
| 984 | IF (ALLOCATED(tauy_cum)) DEALLOCATE(tauy_cum) |
---|
| 985 | IF (ALLOCATED(dt_ekman)) DEALLOCATE(dt_ekman) |
---|
| 986 | IF (ALLOCATED(dt_hdiff)) DEALLOCATE(dt_hdiff) |
---|
[3002] | 987 | IF (ALLOCATED(dt_gm)) DEALLOCATE(dt_gm) |
---|
| 988 | IF (ALLOCATED(dt_qflux)) DEALLOCATE(dt_qflux) |
---|
[2057] | 989 | |
---|
| 990 | END SUBROUTINE ocean_slab_final |
---|
| 991 | |
---|
[781] | 992 | END MODULE ocean_slab_mod |
---|