[1379] | 1 | ! $Id$ |
---|
| 2 | module o3_chem_m |
---|
| 3 | |
---|
| 4 | IMPLICIT none |
---|
| 5 | |
---|
| 6 | private o3_prod |
---|
| 7 | |
---|
| 8 | contains |
---|
| 9 | |
---|
| 10 | subroutine o3_chem(julien, gmtime, t_seri, zmasse, pdtphys, rlat, rlon, q) |
---|
| 11 | |
---|
| 12 | ! This procedure evolves the ozone mass fraction through a time |
---|
| 13 | ! step taking only chemistry into account. |
---|
| 14 | |
---|
| 15 | ! All the 2-dimensional arrays are on the partial "physics" grid. |
---|
[2346] | 16 | ! Their shape is "(/klon, nbp_lev/)". |
---|
[1379] | 17 | ! Index "(i, :)" is for longitude "rlon(i)", latitude "rlat(i)". |
---|
| 18 | |
---|
| 19 | use assert_m, only: assert |
---|
| 20 | use dimphy, only: klon |
---|
| 21 | use regr_pr_comb_coefoz_m, only: c_Mob, a4_mass, a2, r_het_interm |
---|
[2346] | 22 | use mod_grid_phy_lmdz, only: nbp_lev |
---|
| 23 | use nrtype, only: pi |
---|
[1379] | 24 | |
---|
| 25 | integer, intent(in):: julien ! jour julien, 1 <= julien <= 360 |
---|
[5390] | 26 | real, intent(in):: gmtime ! heure de la journee en fraction de jour |
---|
[2346] | 27 | real, intent(in):: t_seri(:, :) ! (klon, nbp_lev) temperature, in K |
---|
[1379] | 28 | |
---|
[2346] | 29 | real, intent(in):: zmasse(:, :) ! (klon, nbp_lev) |
---|
[1379] | 30 | ! (column-density of mass of air in a cell, in kg m-2) |
---|
| 31 | ! "zmasse(:, k)" is for layer "k".) |
---|
| 32 | |
---|
| 33 | real, intent(in):: pdtphys ! time step for physics, in s |
---|
| 34 | |
---|
| 35 | REAL, intent(in):: rlat(:), rlon(:) |
---|
| 36 | ! (longitude and latitude of each horizontal position, in degrees) |
---|
| 37 | |
---|
[2346] | 38 | real, intent(inout):: q(:, :) ! (klon, nbp_lev) mass fraction of ozone |
---|
[1379] | 39 | ! "q(:, k)" is at middle of layer "k".) |
---|
| 40 | |
---|
| 41 | ! Variables local to the procedure: |
---|
| 42 | ! (for "pi") |
---|
| 43 | integer k |
---|
| 44 | |
---|
[2346] | 45 | real c(klon, nbp_lev) |
---|
[1379] | 46 | ! (constant term during a time step in the net mass production |
---|
| 47 | ! rate of ozone by chemistry, per unit mass of air, in s-1) |
---|
| 48 | ! "c(:, k)" is at middle of layer "k".) |
---|
| 49 | |
---|
[2346] | 50 | real b(klon, nbp_lev) |
---|
[1379] | 51 | ! (coefficient of "q" in the net mass production |
---|
| 52 | ! rate of ozone by chemistry, per unit mass of air, in s-1) |
---|
| 53 | ! "b(:, k)" is at middle of layer "k".) |
---|
| 54 | |
---|
[2346] | 55 | real dq_o3_chem(klon, nbp_lev) |
---|
[1379] | 56 | ! (variation of ozone mass fraction due to chemistry during a time step) |
---|
| 57 | ! "dq_o3_chem(:, k)" is at middle of layer "k".) |
---|
| 58 | |
---|
| 59 | real earth_long |
---|
| 60 | ! (longitude vraie de la Terre dans son orbite solaire, par |
---|
[5390] | 61 | ! rapport au point vernal (21 mars), en degres) |
---|
[1379] | 62 | |
---|
| 63 | real pmu0(klon) ! mean of cosine of solar zenith angle during "pdtphys" |
---|
| 64 | real trash1 |
---|
| 65 | real trash2(klon) |
---|
| 66 | |
---|
| 67 | !------------------------------------------------------------- |
---|
| 68 | |
---|
| 69 | call assert(klon == (/size(q, 1), size(t_seri, 1), size(zmasse, 1), & |
---|
| 70 | size(rlat), size(rlon)/), "o3_chem klon") |
---|
[2346] | 71 | call assert(nbp_lev == (/size(q, 2), size(t_seri, 2), size(zmasse, 2)/), & |
---|
| 72 | "o3_chem nbp_lev") |
---|
[1379] | 73 | |
---|
| 74 | c = c_Mob + a4_mass * t_seri |
---|
| 75 | |
---|
| 76 | ! Compute coefficient "b": |
---|
| 77 | |
---|
| 78 | ! Heterogeneous chemistry is only at low temperature: |
---|
| 79 | where (t_seri < 195.) |
---|
| 80 | b = r_het_interm |
---|
| 81 | elsewhere |
---|
| 82 | b = 0. |
---|
| 83 | end where |
---|
| 84 | |
---|
| 85 | ! Heterogeneous chemistry is only during daytime: |
---|
| 86 | call orbite(real(julien), earth_long, trash1) |
---|
[4103] | 87 | call zenang(earth_long, gmtime, 0., pdtphys, rlat, rlon, pmu0, trash2) |
---|
[2346] | 88 | forall (k = 1: nbp_lev) |
---|
[1379] | 89 | where (pmu0 <= cos(87. / 180. * pi)) b(:, k) = 0. |
---|
| 90 | end forall |
---|
| 91 | |
---|
| 92 | b = b + a2 |
---|
| 93 | |
---|
| 94 | ! Midpoint method: |
---|
| 95 | |
---|
| 96 | ! Trial step to the midpoint: |
---|
| 97 | dq_o3_chem = o3_prod(q, zmasse, c, b) * pdtphys / 2 |
---|
| 98 | ! "Real" step across the whole interval: |
---|
| 99 | dq_o3_chem = o3_prod(q + dq_o3_chem, zmasse, c, b) * pdtphys |
---|
| 100 | q = q + dq_o3_chem |
---|
| 101 | |
---|
| 102 | ! Confine the mass fraction: |
---|
| 103 | q = min(max(q, 0.), .01) |
---|
| 104 | |
---|
| 105 | end subroutine o3_chem |
---|
| 106 | |
---|
| 107 | !************************************************* |
---|
| 108 | |
---|
| 109 | function o3_prod(q, zmasse, c, b) |
---|
| 110 | |
---|
| 111 | ! This function computes the production rate of ozone by chemistry. |
---|
| 112 | |
---|
| 113 | ! All the 2-dimensional arrays are on the partial "physics" grid. |
---|
[2346] | 114 | ! Their shape is "(/klon, nbp_lev/)". |
---|
[1379] | 115 | ! Index "(i, :)" is for longitude "rlon(i)", latitude "rlat(i)". |
---|
| 116 | |
---|
| 117 | use regr_pr_comb_coefoz_m, only: a6_mass |
---|
| 118 | use assert_m, only: assert |
---|
| 119 | use dimphy, only: klon |
---|
[2346] | 120 | use mod_grid_phy_lmdz, only: nbp_lev |
---|
[1379] | 121 | |
---|
| 122 | real, intent(in):: q(:, :) ! mass fraction of ozone |
---|
| 123 | ! "q(:, k)" is at middle of layer "k".) |
---|
| 124 | |
---|
| 125 | real, intent(in):: zmasse(:, :) |
---|
| 126 | ! (column-density of mass of air in a layer, in kg m-2) |
---|
| 127 | ! ("zmasse(:, k)" is for layer "k".) |
---|
| 128 | |
---|
| 129 | real, intent(in):: c(:, :) |
---|
| 130 | ! (constant term during a time step in the net mass production |
---|
| 131 | ! rate of ozone by chemistry, per unit mass of air, in s-1) |
---|
| 132 | ! "c(:, k)" is at middle of layer "k".) |
---|
| 133 | |
---|
| 134 | real, intent(in):: b(:, :) |
---|
| 135 | ! (coefficient of "q" in the net mass production rate of ozone by |
---|
| 136 | ! chemistry, per unit mass of air, in s-1) |
---|
| 137 | ! ("b(:, k)" is at middle of layer "k".) |
---|
| 138 | |
---|
[2346] | 139 | real o3_prod(klon, nbp_lev) |
---|
[1379] | 140 | ! (net mass production rate of ozone by chemistry, per unit mass |
---|
| 141 | ! of air, in s-1) |
---|
| 142 | ! ("o3_prod(:, k)" is at middle of layer "k".) |
---|
| 143 | |
---|
| 144 | ! Variables local to the procedure: |
---|
| 145 | |
---|
[2346] | 146 | real sigma_mass(klon, nbp_lev) |
---|
[1379] | 147 | ! (mass column-density of ozone above point, in kg m-2) |
---|
| 148 | ! ("sigma_mass(:, k)" is at middle of layer "k".) |
---|
| 149 | |
---|
| 150 | integer k |
---|
| 151 | |
---|
| 152 | !------------------------------------------------------------------- |
---|
| 153 | |
---|
| 154 | call assert(klon == (/size(q, 1), size(zmasse, 1), size(c, 1), & |
---|
| 155 | size(b, 1)/), "o3_prod 1") |
---|
[2346] | 156 | call assert(nbp_lev == (/size(q, 2), size(zmasse, 2), size(c, 2), & |
---|
[1379] | 157 | size(b, 2)/), "o3_prod 2") |
---|
| 158 | |
---|
| 159 | ! Compute the column-density above the base of layer |
---|
| 160 | ! "k", and, as a first approximation, take it as column-density |
---|
| 161 | ! above the middle of layer "k": |
---|
[2346] | 162 | sigma_mass(:, nbp_lev) = zmasse(:, nbp_lev) * q(:, nbp_lev) ! top layer |
---|
| 163 | do k = nbp_lev - 1, 1, -1 |
---|
[1379] | 164 | sigma_mass(:, k) = sigma_mass(:, k+1) + zmasse(:, k) * q(:, k) |
---|
| 165 | end do |
---|
| 166 | |
---|
| 167 | o3_prod = c + b * q + a6_mass * sigma_mass |
---|
| 168 | |
---|
| 169 | end function o3_prod |
---|
| 170 | |
---|
| 171 | end module o3_chem_m |
---|