[1992] | 1 | |
---|
[782] | 2 | ! $Header$ |
---|
| 3 | |
---|
[1992] | 4 | ! ====================================================================== |
---|
| 5 | SUBROUTINE nonlocal(knon, paprs, pplay, tsol, beta, u, v, t, q, cd_h, cd_m, & |
---|
| 6 | pcfh, pcfm, cgh, cgq) |
---|
| 7 | USE dimphy |
---|
[5285] | 8 | USE yomcst_mod_h |
---|
[5284] | 9 | USE yoethf_mod_h |
---|
[5274] | 10 | IMPLICIT NONE |
---|
[1992] | 11 | ! ====================================================================== |
---|
| 12 | ! Laurent Li (LMD/CNRS), le 30 septembre 1998 |
---|
| 13 | ! Couche limite non-locale. Adaptation du code du CCM3. |
---|
| 14 | ! Code non teste, donc a ne pas utiliser. |
---|
| 15 | ! ====================================================================== |
---|
| 16 | ! Nonlocal scheme that determines eddy diffusivities based on a |
---|
| 17 | ! diagnosed boundary layer height and a turbulent velocity scale. |
---|
| 18 | ! Also countergradient effects for heat and moisture are included. |
---|
[782] | 19 | |
---|
[1992] | 20 | ! For more information, see Holtslag, A.A.M., and B.A. Boville, 1993: |
---|
| 21 | ! Local versus nonlocal boundary-layer diffusion in a global climate |
---|
| 22 | ! model. J. of Climate, vol. 6, 1825-1842. |
---|
| 23 | ! ====================================================================== |
---|
[782] | 24 | |
---|
[5274] | 25 | |
---|
[1992] | 26 | ! Arguments: |
---|
| 27 | |
---|
| 28 | INTEGER knon ! nombre de points a calculer |
---|
| 29 | REAL tsol(klon) ! temperature du sol (K) |
---|
| 30 | REAL beta(klon) ! efficacite d'evaporation (entre 0 et 1) |
---|
| 31 | REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
---|
| 32 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 33 | REAL u(klon, klev) ! vitesse U (m/s) |
---|
| 34 | REAL v(klon, klev) ! vitesse V (m/s) |
---|
| 35 | REAL t(klon, klev) ! temperature (K) |
---|
| 36 | REAL q(klon, klev) ! vapeur d'eau (kg/kg) |
---|
| 37 | REAL cd_h(klon) ! coefficient de friction au sol pour chaleur |
---|
| 38 | REAL cd_m(klon) ! coefficient de friction au sol pour vitesse |
---|
| 39 | |
---|
| 40 | INTEGER isommet |
---|
| 41 | REAL vk |
---|
| 42 | PARAMETER (vk=0.40) |
---|
| 43 | REAL ricr |
---|
| 44 | PARAMETER (ricr=0.4) |
---|
| 45 | REAL fak |
---|
| 46 | PARAMETER (fak=8.5) |
---|
| 47 | REAL fakn |
---|
| 48 | PARAMETER (fakn=7.2) |
---|
| 49 | REAL onet |
---|
| 50 | PARAMETER (onet=1.0/3.0) |
---|
| 51 | REAL t_coup |
---|
| 52 | PARAMETER (t_coup=273.15) |
---|
| 53 | REAL zkmin |
---|
| 54 | PARAMETER (zkmin=0.01) |
---|
| 55 | REAL betam |
---|
| 56 | PARAMETER (betam=15.0) |
---|
| 57 | REAL betah |
---|
| 58 | PARAMETER (betah=15.0) |
---|
| 59 | REAL betas |
---|
| 60 | PARAMETER (betas=5.0) |
---|
| 61 | REAL sffrac |
---|
| 62 | PARAMETER (sffrac=0.1) |
---|
| 63 | REAL binm |
---|
| 64 | PARAMETER (binm=betam*sffrac) |
---|
| 65 | REAL binh |
---|
| 66 | PARAMETER (binh=betah*sffrac) |
---|
| 67 | REAL ccon |
---|
| 68 | PARAMETER (ccon=fak*sffrac*vk) |
---|
| 69 | |
---|
| 70 | REAL z(klon, klev) |
---|
| 71 | REAL pcfm(klon, klev), pcfh(klon, klev) |
---|
| 72 | |
---|
| 73 | INTEGER i, k |
---|
| 74 | REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy |
---|
| 75 | REAL zx_alf1, zx_alf2 ! parametres pour extrapolation |
---|
| 76 | REAL khfs(klon) ! surface kinematic heat flux [mK/s] |
---|
| 77 | REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] |
---|
| 78 | REAL heatv(klon) ! surface virtual heat flux |
---|
| 79 | REAL ustar(klon) |
---|
| 80 | REAL rino(klon, klev) ! bulk Richardon no. from level to ref lev |
---|
| 81 | LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) |
---|
| 82 | LOGICAL stblev(klon) ! stable pbl with levels within pbl |
---|
| 83 | LOGICAL unslev(klon) ! unstbl pbl with levels within pbl |
---|
| 84 | LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr |
---|
| 85 | LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr |
---|
| 86 | LOGICAL check(klon) ! True=>chk if Richardson no.>critcal |
---|
| 87 | REAL pblh(klon) |
---|
| 88 | REAL cgh(klon, 2:klev) ! counter-gradient term for heat [K/m] |
---|
| 89 | REAL cgq(klon, 2:klev) ! counter-gradient term for constituents |
---|
| 90 | REAL cgs(klon, 2:klev) ! counter-gradient star (cg/flux) |
---|
| 91 | REAL obklen(klon) |
---|
| 92 | REAL ztvd, ztvu, zdu2 |
---|
| 93 | REAL therm(klon) ! thermal virtual temperature excess |
---|
| 94 | REAL phiminv(klon) ! inverse phi function for momentum |
---|
| 95 | REAL phihinv(klon) ! inverse phi function for heat |
---|
| 96 | REAL wm(klon) ! turbulent velocity scale for momentum |
---|
| 97 | REAL fak1(klon) ! k*ustar*pblh |
---|
| 98 | REAL fak2(klon) ! k*wm*pblh |
---|
| 99 | REAL fak3(klon) ! fakn*wstr/wm |
---|
| 100 | REAL pblk(klon) ! level eddy diffusivity for momentum |
---|
| 101 | REAL pr(klon) ! Prandtl number for eddy diffusivities |
---|
| 102 | REAL zl(klon) ! zmzp / Obukhov length |
---|
| 103 | REAL zh(klon) ! zmzp / pblh |
---|
| 104 | REAL zzh(klon) ! (1-(zmzp/pblh))**2 |
---|
| 105 | REAL wstr(klon) ! w*, convective velocity scale |
---|
| 106 | REAL zm(klon) ! current level height |
---|
| 107 | REAL zp(klon) ! current level height + one level up |
---|
| 108 | REAL zcor, zdelta, zcvm5, zxqs |
---|
| 109 | REAL fac, pblmin, zmzp, term |
---|
| 110 | |
---|
| 111 | include "FCTTRE.h" |
---|
| 112 | |
---|
| 113 | ! Initialisation |
---|
| 114 | |
---|
| 115 | isommet = klev |
---|
| 116 | |
---|
| 117 | DO i = 1, klon |
---|
| 118 | pcfh(i, 1) = cd_h(i) |
---|
| 119 | pcfm(i, 1) = cd_m(i) |
---|
| 120 | END DO |
---|
| 121 | DO k = 2, klev |
---|
| 122 | DO i = 1, klon |
---|
| 123 | pcfh(i, k) = zkmin |
---|
| 124 | pcfm(i, k) = zkmin |
---|
| 125 | cgs(i, k) = 0.0 |
---|
| 126 | cgh(i, k) = 0.0 |
---|
| 127 | cgq(i, k) = 0.0 |
---|
| 128 | END DO |
---|
| 129 | END DO |
---|
| 130 | |
---|
| 131 | ! Calculer les hauteurs de chaque couche |
---|
| 132 | |
---|
| 133 | DO i = 1, knon |
---|
| 134 | z(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i,1)))*(paprs(i,1)-pplay(i,1) & |
---|
| 135 | )/rg |
---|
| 136 | END DO |
---|
| 137 | DO k = 2, klev |
---|
| 138 | DO i = 1, knon |
---|
| 139 | z(i, k) = z(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1 & |
---|
| 140 | )-pplay(i,k))/rg |
---|
| 141 | END DO |
---|
| 142 | END DO |
---|
| 143 | |
---|
| 144 | DO i = 1, knon |
---|
| 145 | IF (thermcep) THEN |
---|
| 146 | zdelta = max(0., sign(1.,rtt-tsol(i))) |
---|
| 147 | zcvm5 = r5les*rlvtt*(1.-zdelta) + r5ies*rlstt*zdelta |
---|
| 148 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,1)) |
---|
| 149 | zxqs = r2es*foeew(tsol(i), zdelta)/paprs(i, 1) |
---|
| 150 | zxqs = min(0.5, zxqs) |
---|
| 151 | zcor = 1./(1.-retv*zxqs) |
---|
| 152 | zxqs = zxqs*zcor |
---|
| 153 | ELSE |
---|
| 154 | IF (tsol(i)<t_coup) THEN |
---|
| 155 | zxqs = qsats(tsol(i))/paprs(i, 1) |
---|
[782] | 156 | ELSE |
---|
[1992] | 157 | zxqs = qsatl(tsol(i))/paprs(i, 1) |
---|
| 158 | END IF |
---|
| 159 | END IF |
---|
| 160 | zx_alf1 = 1.0 |
---|
| 161 | zx_alf2 = 1.0 - zx_alf1 |
---|
| 162 | zxt = (t(i,1)+z(i,1)*rg/rcpd/(1.+rvtmp2*q(i,1)))*(1.+retv*q(i,1))*zx_alf1 & |
---|
| 163 | + (t(i,2)+z(i,2)*rg/rcpd/(1.+rvtmp2*q(i,2)))*(1.+retv*q(i,2))*zx_alf2 |
---|
| 164 | zxu = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2 |
---|
| 165 | zxv = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2 |
---|
| 166 | zxq = q(i, 1)*zx_alf1 + q(i, 2)*zx_alf2 |
---|
| 167 | zxmod = 1.0 + sqrt(zxu**2+zxv**2) |
---|
| 168 | khfs(i) = (tsol(i)*(1.+retv*q(i,1))-zxt)*zxmod*cd_h(i) |
---|
| 169 | kqfs(i) = (zxqs-zxq)*zxmod*cd_h(i)*beta(i) |
---|
| 170 | heatv(i) = khfs(i) + 0.61*zxt*kqfs(i) |
---|
| 171 | taux = zxu*zxmod*cd_m(i) |
---|
| 172 | tauy = zxv*zxmod*cd_m(i) |
---|
| 173 | ustar(i) = sqrt(taux**2+tauy**2) |
---|
| 174 | ustar(i) = max(sqrt(ustar(i)), 0.01) |
---|
| 175 | END DO |
---|
| 176 | |
---|
| 177 | DO i = 1, knon |
---|
| 178 | rino(i, 1) = 0.0 |
---|
| 179 | check(i) = .TRUE. |
---|
| 180 | pblh(i) = z(i, 1) |
---|
| 181 | obklen(i) = -t(i, 1)*ustar(i)**3/(rg*vk*heatv(i)) |
---|
| 182 | END DO |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | ! PBL height calculation: |
---|
| 186 | ! Search for level of pbl. Scan upward until the Richardson number between |
---|
| 187 | ! the first level and the current level exceeds the "critical" value. |
---|
| 188 | |
---|
| 189 | fac = 100.0 |
---|
| 190 | DO k = 1, isommet |
---|
| 191 | DO i = 1, knon |
---|
[782] | 192 | IF (check(i)) THEN |
---|
[1992] | 193 | zdu2 = (u(i,k)-u(i,1))**2 + (v(i,k)-v(i,1))**2 + fac*ustar(i)**2 |
---|
| 194 | zdu2 = max(zdu2, 1.0E-20) |
---|
| 195 | ztvd = (t(i,k)+z(i,k)*0.5*rg/rcpd/(1.+rvtmp2*q(i, & |
---|
| 196 | k)))*(1.+retv*q(i,k)) |
---|
| 197 | ztvu = (t(i,1)-z(i,k)*0.5*rg/rcpd/(1.+rvtmp2*q(i, & |
---|
| 198 | 1)))*(1.+retv*q(i,1)) |
---|
| 199 | rino(i, k) = (z(i,k)-z(i,1))*rg*(ztvd-ztvu)/(zdu2*0.5*(ztvd+ztvu)) |
---|
| 200 | IF (rino(i,k)>=ricr) THEN |
---|
| 201 | pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rino(i,k-1))/(rino(i, & |
---|
| 202 | k-1)-rino(i,k)) |
---|
| 203 | check(i) = .FALSE. |
---|
| 204 | END IF |
---|
| 205 | END IF |
---|
| 206 | END DO |
---|
| 207 | END DO |
---|
| 208 | |
---|
| 209 | |
---|
| 210 | ! Set pbl height to maximum value where computation exceeds number of |
---|
| 211 | ! layers allowed |
---|
| 212 | |
---|
| 213 | DO i = 1, knon |
---|
| 214 | IF (check(i)) pblh(i) = z(i, isommet) |
---|
| 215 | END DO |
---|
| 216 | |
---|
| 217 | ! Improve estimate of pbl height for the unstable points. |
---|
| 218 | ! Find unstable points (sensible heat flux is upward): |
---|
| 219 | |
---|
| 220 | DO i = 1, knon |
---|
| 221 | IF (heatv(i)>0.) THEN |
---|
| 222 | unstbl(i) = .TRUE. |
---|
| 223 | check(i) = .TRUE. |
---|
| 224 | ELSE |
---|
| 225 | unstbl(i) = .FALSE. |
---|
| 226 | check(i) = .FALSE. |
---|
| 227 | END IF |
---|
| 228 | END DO |
---|
| 229 | |
---|
| 230 | ! For the unstable case, compute velocity scale and the |
---|
| 231 | ! convective temperature excess: |
---|
| 232 | |
---|
| 233 | DO i = 1, knon |
---|
| 234 | IF (check(i)) THEN |
---|
| 235 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
---|
| 236 | wm(i) = ustar(i)*phiminv(i) |
---|
| 237 | therm(i) = heatv(i)*fak/wm(i) |
---|
| 238 | rino(i, 1) = 0.0 |
---|
| 239 | END IF |
---|
| 240 | END DO |
---|
| 241 | |
---|
| 242 | ! Improve pblh estimate for unstable conditions using the |
---|
| 243 | ! convective temperature excess: |
---|
| 244 | |
---|
| 245 | DO k = 1, isommet |
---|
| 246 | DO i = 1, knon |
---|
[782] | 247 | IF (check(i)) THEN |
---|
[1992] | 248 | zdu2 = (u(i,k)-u(i,1))**2 + (v(i,k)-v(i,1))**2 + fac*ustar(i)**2 |
---|
| 249 | zdu2 = max(zdu2, 1.0E-20) |
---|
| 250 | ztvd = (t(i,k)+z(i,k)*0.5*rg/rcpd/(1.+rvtmp2*q(i, & |
---|
| 251 | k)))*(1.+retv*q(i,k)) |
---|
| 252 | ztvu = (t(i,1)+therm(i)-z(i,k)*0.5*rg/rcpd/(1.+rvtmp2*q(i, & |
---|
| 253 | 1)))*(1.+retv*q(i,1)) |
---|
| 254 | rino(i, k) = (z(i,k)-z(i,1))*rg*(ztvd-ztvu)/(zdu2*0.5*(ztvd+ztvu)) |
---|
| 255 | IF (rino(i,k)>=ricr) THEN |
---|
| 256 | pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rino(i,k-1))/(rino(i, & |
---|
| 257 | k-1)-rino(i,k)) |
---|
| 258 | check(i) = .FALSE. |
---|
| 259 | END IF |
---|
| 260 | END IF |
---|
| 261 | END DO |
---|
| 262 | END DO |
---|
| 263 | |
---|
| 264 | ! Set pbl height to maximum value where computation exceeds number of |
---|
| 265 | ! layers allowed |
---|
| 266 | |
---|
| 267 | DO i = 1, knon |
---|
| 268 | IF (check(i)) pblh(i) = z(i, isommet) |
---|
| 269 | END DO |
---|
| 270 | |
---|
| 271 | ! Points for which pblh exceeds number of pbl layers allowed; |
---|
| 272 | ! set to maximum |
---|
| 273 | |
---|
| 274 | DO i = 1, knon |
---|
| 275 | IF (check(i)) pblh(i) = z(i, isommet) |
---|
| 276 | END DO |
---|
| 277 | |
---|
| 278 | ! PBL height must be greater than some minimum mechanical mixing depth |
---|
| 279 | ! Several investigators have proposed minimum mechanical mixing depth |
---|
| 280 | ! relationships as a function of the local friction velocity, u*. We |
---|
| 281 | ! make use of a linear relationship of the form h = c u* where c=700. |
---|
| 282 | ! The scaling arguments that give rise to this relationship most often |
---|
| 283 | ! represent the coefficient c as some constant over the local coriolis |
---|
| 284 | ! parameter. Here we make use of the experimental results of Koracin |
---|
| 285 | ! and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f |
---|
| 286 | ! where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid |
---|
| 287 | ! latitude value for f so that c = 0.07/f = 700. |
---|
| 288 | |
---|
| 289 | DO i = 1, knon |
---|
| 290 | pblmin = 700.0*ustar(i) |
---|
| 291 | pblh(i) = max(pblh(i), pblmin) |
---|
| 292 | END DO |
---|
| 293 | |
---|
| 294 | ! pblh is now available; do preparation for diffusivity calculation: |
---|
| 295 | |
---|
| 296 | DO i = 1, knon |
---|
| 297 | pblk(i) = 0.0 |
---|
| 298 | fak1(i) = ustar(i)*pblh(i)*vk |
---|
| 299 | |
---|
| 300 | ! Do additional preparation for unstable cases only, set temperature |
---|
| 301 | ! and moisture perturbations depending on stability. |
---|
| 302 | |
---|
| 303 | IF (unstbl(i)) THEN |
---|
| 304 | zxt = (t(i,1)-z(i,1)*0.5*rg/rcpd/(1.+rvtmp2*q(i,1)))*(1.+retv*q(i,1)) |
---|
| 305 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
---|
| 306 | phihinv(i) = sqrt(1.-binh*pblh(i)/obklen(i)) |
---|
| 307 | wm(i) = ustar(i)*phiminv(i) |
---|
| 308 | fak2(i) = wm(i)*pblh(i)*vk |
---|
| 309 | wstr(i) = (heatv(i)*rg*pblh(i)/zxt)**onet |
---|
| 310 | fak3(i) = fakn*wstr(i)/wm(i) |
---|
| 311 | END IF |
---|
| 312 | END DO |
---|
| 313 | |
---|
| 314 | ! Main level loop to compute the diffusivities and |
---|
| 315 | ! counter-gradient terms: |
---|
| 316 | |
---|
| 317 | DO k = 2, isommet |
---|
| 318 | |
---|
| 319 | ! Find levels within boundary layer: |
---|
| 320 | |
---|
| 321 | DO i = 1, knon |
---|
| 322 | unslev(i) = .FALSE. |
---|
| 323 | stblev(i) = .FALSE. |
---|
| 324 | zm(i) = z(i, k-1) |
---|
| 325 | zp(i) = z(i, k) |
---|
| 326 | IF (zkmin==0.0 .AND. zp(i)>pblh(i)) zp(i) = pblh(i) |
---|
| 327 | IF (zm(i)<pblh(i)) THEN |
---|
| 328 | zmzp = 0.5*(zm(i)+zp(i)) |
---|
| 329 | zh(i) = zmzp/pblh(i) |
---|
| 330 | zl(i) = zmzp/obklen(i) |
---|
| 331 | zzh(i) = 0. |
---|
| 332 | IF (zh(i)<=1.0) zzh(i) = (1.-zh(i))**2 |
---|
| 333 | |
---|
| 334 | ! stblev for points zm < plbh and stable and neutral |
---|
| 335 | ! unslev for points zm < plbh and unstable |
---|
| 336 | |
---|
[782] | 337 | IF (unstbl(i)) THEN |
---|
[1992] | 338 | unslev(i) = .TRUE. |
---|
| 339 | ELSE |
---|
| 340 | stblev(i) = .TRUE. |
---|
| 341 | END IF |
---|
| 342 | END IF |
---|
| 343 | END DO |
---|
[782] | 344 | |
---|
[1992] | 345 | ! Stable and neutral points; set diffusivities; counter-gradient |
---|
| 346 | ! terms zero for stable case: |
---|
[782] | 347 | |
---|
[1992] | 348 | DO i = 1, knon |
---|
| 349 | IF (stblev(i)) THEN |
---|
| 350 | IF (zl(i)<=1.) THEN |
---|
| 351 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(1.+betas*zl(i)) |
---|
| 352 | ELSE |
---|
| 353 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas+zl(i)) |
---|
| 354 | END IF |
---|
| 355 | pcfm(i, k) = pblk(i) |
---|
| 356 | pcfh(i, k) = pcfm(i, k) |
---|
| 357 | END IF |
---|
| 358 | END DO |
---|
| 359 | |
---|
| 360 | ! unssrf, unstable within surface layer of pbl |
---|
| 361 | ! unsout, unstable within outer layer of pbl |
---|
| 362 | |
---|
| 363 | DO i = 1, knon |
---|
| 364 | unssrf(i) = .FALSE. |
---|
| 365 | unsout(i) = .FALSE. |
---|
| 366 | IF (unslev(i)) THEN |
---|
| 367 | IF (zh(i)<sffrac) THEN |
---|
| 368 | unssrf(i) = .TRUE. |
---|
| 369 | ELSE |
---|
| 370 | unsout(i) = .TRUE. |
---|
| 371 | END IF |
---|
| 372 | END IF |
---|
| 373 | END DO |
---|
| 374 | |
---|
| 375 | ! Unstable for surface layer; counter-gradient terms zero |
---|
| 376 | |
---|
| 377 | DO i = 1, knon |
---|
| 378 | IF (unssrf(i)) THEN |
---|
| 379 | term = (1.-betam*zl(i))**onet |
---|
| 380 | pblk(i) = fak1(i)*zh(i)*zzh(i)*term |
---|
| 381 | pr(i) = term/sqrt(1.-betah*zl(i)) |
---|
| 382 | END IF |
---|
| 383 | END DO |
---|
| 384 | |
---|
| 385 | ! Unstable for outer layer; counter-gradient terms non-zero: |
---|
| 386 | |
---|
| 387 | DO i = 1, knon |
---|
| 388 | IF (unsout(i)) THEN |
---|
| 389 | pblk(i) = fak2(i)*zh(i)*zzh(i) |
---|
| 390 | cgs(i, k) = fak3(i)/(pblh(i)*wm(i)) |
---|
| 391 | cgh(i, k) = khfs(i)*cgs(i, k) |
---|
| 392 | pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak |
---|
| 393 | cgq(i, k) = kqfs(i)*cgs(i, k) |
---|
| 394 | END IF |
---|
| 395 | END DO |
---|
| 396 | |
---|
| 397 | ! For all unstable layers, set diffusivities |
---|
| 398 | |
---|
| 399 | DO i = 1, knon |
---|
| 400 | IF (unslev(i)) THEN |
---|
| 401 | pcfm(i, k) = pblk(i) |
---|
| 402 | pcfh(i, k) = pblk(i)/pr(i) |
---|
| 403 | END IF |
---|
| 404 | END DO |
---|
| 405 | END DO ! end of level loop |
---|
| 406 | |
---|
| 407 | RETURN |
---|
| 408 | END SUBROUTINE nonlocal |
---|