1 | MODULE LSCP_TOOLS_MOD |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
8 | SUBROUTINE FALLICE_VELOCITY(klon,iwc,temp,rho,pres,ptconv,velo) |
---|
9 | |
---|
10 | ! Ref: |
---|
11 | ! Stubenrauch, C. J., Bonazzola, M., |
---|
12 | ! Protopapadaki, S. E., & Musat, I. (2019). |
---|
13 | ! New cloud system metrics to assess bulk |
---|
14 | ! ice cloud schemes in a GCM. Journal of |
---|
15 | ! Advances in Modeling Earth Systems, 11, |
---|
16 | ! 3212–3234. https://doi.org/10.1029/2019MS001642 |
---|
17 | |
---|
18 | use lscp_ini_mod, only: iflag_vice, ffallv_con, ffallv_lsc |
---|
19 | |
---|
20 | IMPLICIT NONE |
---|
21 | |
---|
22 | INTEGER, INTENT(IN) :: klon |
---|
23 | REAL, INTENT(IN), DIMENSION(klon) :: iwc ! specific ice water content [kg/m3] |
---|
24 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature [K] |
---|
25 | REAL, INTENT(IN), DIMENSION(klon) :: rho ! dry air density [kg/m3] |
---|
26 | REAL, INTENT(IN), DIMENSION(klon) :: pres ! air pressure [Pa] |
---|
27 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv ! convective point [-] |
---|
28 | |
---|
29 | REAL, INTENT(OUT), DIMENSION(klon) :: velo ! fallspeed velocity of crystals [m/s] |
---|
30 | |
---|
31 | |
---|
32 | INTEGER i |
---|
33 | REAL logvm,iwcg,tempc,phpa,cvel,dvel,fallv_tun |
---|
34 | REAL m2ice, m2snow, vmice, vmsnow |
---|
35 | REAL aice, bice, asnow, bsnow |
---|
36 | |
---|
37 | |
---|
38 | DO i=1,klon |
---|
39 | |
---|
40 | IF (ptconv(i)) THEN |
---|
41 | fallv_tun=ffallv_con |
---|
42 | ELSE |
---|
43 | fallv_tun=ffallv_lsc |
---|
44 | ENDIF |
---|
45 | |
---|
46 | tempc=temp(i)-273.15 ! celcius temp |
---|
47 | iwcg=MAX(iwc(i)*1000.,1E-3) ! iwc in g/m3. We set a minimum value to prevent from division by 0 |
---|
48 | phpa=pres(i)/100. ! pressure in hPa |
---|
49 | |
---|
50 | IF (iflag_vice .EQ. 1) THEN |
---|
51 | ! so-called 'empirical parameterization' in Stubenrauch et al. 2019 |
---|
52 | if (tempc .GE. -60.0) then |
---|
53 | |
---|
54 | logvm= -0.0000414122*tempc*tempc*log(iwcg)-0.00538922*tempc*log(iwcg) & |
---|
55 | -0.0516344*log(iwcg)+0.00216078*tempc + 1.9714 |
---|
56 | velo(i)=exp(logvm) |
---|
57 | else |
---|
58 | velo(i)=65.0*(iwcg**0.2)*(150./phpa)**0.15 |
---|
59 | endif |
---|
60 | |
---|
61 | velo(i)=fallv_tun*velo(i)/100.0 ! from cm/s to m/s |
---|
62 | dvel=0.2 |
---|
63 | cvel=fallv_tun*65.0*(rho(i)**0.2)*(150./phpa)**0.15 |
---|
64 | |
---|
65 | ELSE IF (iflag_vice .EQ. 2) THEN |
---|
66 | ! so called PSDM empirical coherent bulk ice scheme in Stubenrauch et al. 2019 |
---|
67 | aice=0.587 |
---|
68 | bice=2.45 |
---|
69 | asnow=0.0444 |
---|
70 | bsnow=2.1 |
---|
71 | |
---|
72 | m2ice=((iwcg*0.001/aice)/(exp(13.6-bice*7.76+0.479*bice**2)* & |
---|
73 | exp((-0.0361+bice*0.0151+0.00149*bice**2)*tempc))) & |
---|
74 | **(1./(0.807+bice*0.00581+0.0457*bice**2)) |
---|
75 | |
---|
76 | vmice=100.*1042.4*exp(13.6-(bice+1)*7.76+0.479*(bice+1.)**2)*exp((-0.0361+ & |
---|
77 | (bice+1.)*0.0151+0.00149*(bice+1.)**2)*tempc) & |
---|
78 | *(m2ice**(0.807+(bice+1.)*0.00581+0.0457*(bice+1.)**2))/(iwcg*0.001/aice) |
---|
79 | |
---|
80 | |
---|
81 | vmice=vmice*((1000./phpa)**0.2) |
---|
82 | |
---|
83 | m2snow=((iwcg*0.001/asnow)/(exp(13.6-bsnow*7.76+0.479*bsnow**2)* & |
---|
84 | exp((-0.0361+bsnow*0.0151+0.00149*bsnow**2)*tempc))) & |
---|
85 | **(1./(0.807+bsnow*0.00581+0.0457*bsnow**2)) |
---|
86 | |
---|
87 | |
---|
88 | vmsnow=100.*14.3*exp(13.6-(bsnow+.416)*7.76+0.479*(bsnow+.416)**2)& |
---|
89 | *exp((-0.0361+(bsnow+.416)*0.0151+0.00149*(bsnow+.416)**2)*tempc)& |
---|
90 | *(m2snow**(0.807+(bsnow+.416)*0.00581+0.0457*(bsnow+.416)**2))/(iwcg*0.001/asnow) |
---|
91 | |
---|
92 | vmsnow=vmsnow*((1000./phpa)**0.35) |
---|
93 | velo(i)=fallv_tun*min(vmsnow,vmice)/100. ! to m/s |
---|
94 | dvel=0.2 |
---|
95 | cvel=velo(i)/((iwcg/1000.*rho(i))**dvel) |
---|
96 | |
---|
97 | ELSE |
---|
98 | ! By default, fallspeed velocity of ice crystals according to Heymsfield & Donner 1990 |
---|
99 | velo(i) = fallv_tun*3.29/2.0*((iwcg/1000.)**0.16) |
---|
100 | dvel=0.16 |
---|
101 | cvel=fallv_tun*3.29/2.0*(rho(i)**0.16) |
---|
102 | ENDIF |
---|
103 | ENDDO |
---|
104 | |
---|
105 | END SUBROUTINE FALLICE_VELOCITY |
---|
106 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
107 | |
---|
108 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
109 | SUBROUTINE ICEFRAC_LSCP(klon, temp, iflag_ice_thermo, sig, icefrac, dicefracdT) |
---|
110 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
111 | |
---|
112 | ! Compute the ice fraction 1-xliq (see e.g. |
---|
113 | ! Doutriaux-Boucher & Quaas 2004, section 2.2.) |
---|
114 | ! as a function of temperature |
---|
115 | ! see also Fig 3 of Madeleine et al. 2020, JAMES |
---|
116 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
117 | |
---|
118 | |
---|
119 | USE print_control_mod, ONLY: lunout, prt_level |
---|
120 | USE lscp_ini_mod, ONLY: t_glace_min, t_glace_max, exposant_glace, iflag_t_glace |
---|
121 | USE lscp_ini_mod, ONLY : RTT |
---|
122 | |
---|
123 | IMPLICIT NONE |
---|
124 | |
---|
125 | |
---|
126 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
127 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature |
---|
128 | REAL, INTENT(IN), DIMENSION(klon) :: sig |
---|
129 | INTEGER, INTENT(IN) :: iflag_ice_thermo |
---|
130 | REAL, INTENT(OUT), DIMENSION(klon) :: icefrac |
---|
131 | REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT |
---|
132 | |
---|
133 | |
---|
134 | INTEGER i |
---|
135 | REAL sig0,www,tmin_tmp,liqfrac_tmp |
---|
136 | REAL Dv, denomdep,beta,qsi,dqsidt |
---|
137 | INTEGER exposant_glace_old |
---|
138 | REAL t_glace_min_old |
---|
139 | LOGICAL ice_thermo |
---|
140 | |
---|
141 | sig0=0.8 |
---|
142 | t_glace_min_old = RTT - 15.0 |
---|
143 | ice_thermo = (iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3) |
---|
144 | IF (ice_thermo) THEN |
---|
145 | exposant_glace_old = 2 |
---|
146 | ELSE |
---|
147 | exposant_glace_old = 6 |
---|
148 | ENDIF |
---|
149 | |
---|
150 | |
---|
151 | ! calculation of icefrac and dicefrac/dT |
---|
152 | |
---|
153 | DO i=1,klon |
---|
154 | |
---|
155 | IF (iflag_t_glace.EQ.1) THEN |
---|
156 | ! Transition to ice close to surface for T<Tmax |
---|
157 | ! w=1 at the surface and 0 for sig < sig0 |
---|
158 | www=(max(sig(i)-sig0,0.))/(1.-sig0) |
---|
159 | ELSEIF (iflag_t_glace.GE.2) THEN |
---|
160 | ! No convertion to ice close to surface |
---|
161 | www = 0. |
---|
162 | ENDIF |
---|
163 | |
---|
164 | tmin_tmp=www*t_glace_max+(1.-www)*t_glace_min |
---|
165 | liqfrac_tmp= (temp(i)-tmin_tmp) / (t_glace_max-tmin_tmp) |
---|
166 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
167 | |
---|
168 | IF (iflag_t_glace.GE.3) THEN |
---|
169 | icefrac(i) = 1.0-liqfrac_tmp**exposant_glace |
---|
170 | IF ((icefrac(i) .GT.0.) .AND. (liqfrac_tmp .GT. 0)) THEN |
---|
171 | dicefracdT(i)= exposant_glace * ((liqfrac_tmp)**(exposant_glace-1.)) & |
---|
172 | / (t_glace_min - t_glace_max) |
---|
173 | ELSE |
---|
174 | |
---|
175 | dicefracdT(i)=0. |
---|
176 | ENDIF |
---|
177 | |
---|
178 | ELSE |
---|
179 | icefrac(i) = (1.0-liqfrac_tmp)**exposant_glace |
---|
180 | IF (icefrac(i) .GT.0.) THEN |
---|
181 | dicefracdT(i)= exposant_glace * (icefrac(i)**(exposant_glace-1.)) & |
---|
182 | / (t_glace_min - t_glace_max) |
---|
183 | ENDIF |
---|
184 | |
---|
185 | IF ((icefrac(i).EQ.0).OR.(icefrac(i).EQ.1)) THEN |
---|
186 | dicefracdT(i)=0. |
---|
187 | ENDIF |
---|
188 | |
---|
189 | ENDIF |
---|
190 | |
---|
191 | ENDDO |
---|
192 | |
---|
193 | |
---|
194 | RETURN |
---|
195 | |
---|
196 | END SUBROUTINE ICEFRAC_LSCP |
---|
197 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
198 | |
---|
199 | |
---|
200 | |
---|
201 | SUBROUTINE CALC_QSAT_ECMWF(klon,temp,qtot,pressure,tref,phase,flagth,qs,dqs) |
---|
202 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
203 | ! Calculate qsat following ECMWF method |
---|
204 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
205 | |
---|
206 | |
---|
207 | IMPLICIT NONE |
---|
208 | |
---|
209 | include "YOMCST.h" |
---|
210 | include "YOETHF.h" |
---|
211 | include "FCTTRE.h" |
---|
212 | |
---|
213 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
214 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature in K |
---|
215 | REAL, INTENT(IN), DIMENSION(klon) :: qtot ! total specific water in kg/kg |
---|
216 | REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa |
---|
217 | REAL, INTENT(IN) :: tref ! reference temperature in K |
---|
218 | LOGICAL, INTENT(IN) :: flagth ! flag for qsat calculation for thermals |
---|
219 | INTEGER, INTENT(IN) :: phase |
---|
220 | ! phase: 0=depend on temperature sign (temp>tref -> liquid, temp<tref, solid) |
---|
221 | ! 1=liquid |
---|
222 | ! 2=solid |
---|
223 | |
---|
224 | REAL, INTENT(OUT), DIMENSION(klon) :: qs ! saturation specific humidity [kg/kg] |
---|
225 | REAL, INTENT(OUT), DIMENSION(klon) :: dqs ! derivation of saturation specific humidity wrt T |
---|
226 | |
---|
227 | REAL delta, cor, cvm5 |
---|
228 | INTEGER i |
---|
229 | |
---|
230 | DO i=1,klon |
---|
231 | |
---|
232 | IF (phase .EQ. 1) THEN |
---|
233 | delta=0. |
---|
234 | ELSEIF (phase .EQ. 2) THEN |
---|
235 | delta=1. |
---|
236 | ELSE |
---|
237 | delta=MAX(0.,SIGN(1.,tref-temp(i))) |
---|
238 | ENDIF |
---|
239 | |
---|
240 | IF (flagth) THEN |
---|
241 | cvm5=R5LES*(1.-delta) + R5IES*delta |
---|
242 | ELSE |
---|
243 | cvm5 = R5LES*RLVTT*(1.-delta) + R5IES*RLSTT*delta |
---|
244 | cvm5 = cvm5 /RCPD/(1.0+RVTMP2*(qtot(i))) |
---|
245 | ENDIF |
---|
246 | |
---|
247 | qs(i)= R2ES*FOEEW(temp(i),delta)/pressure(i) |
---|
248 | qs(i)=MIN(0.5,qs(i)) |
---|
249 | cor=1./(1.-RETV*qs(i)) |
---|
250 | qs(i)=qs(i)*cor |
---|
251 | dqs(i)= FOEDE(temp(i),delta,cvm5,qs(i),cor) |
---|
252 | |
---|
253 | END DO |
---|
254 | |
---|
255 | END SUBROUTINE CALC_QSAT_ECMWF |
---|
256 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
257 | |
---|
258 | |
---|
259 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
260 | SUBROUTINE CALC_GAMMASAT(klon,temp,qtot,pressure,gammasat,dgammasatdt) |
---|
261 | |
---|
262 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
263 | ! programme that calculates the gammasat parameter that determines the |
---|
264 | ! homogeneous condensation thresholds for cold (<0oC) clouds |
---|
265 | ! condensation at q>gammasat*qsat |
---|
266 | ! Etienne Vignon, March 2021 |
---|
267 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
268 | |
---|
269 | use lscp_ini_mod, only: iflag_gammasat, t_glace_min, RTT |
---|
270 | |
---|
271 | IMPLICIT NONE |
---|
272 | |
---|
273 | |
---|
274 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
275 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature in K |
---|
276 | REAL, INTENT(IN), DIMENSION(klon) :: qtot ! total specific water in kg/kg |
---|
277 | |
---|
278 | REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa |
---|
279 | |
---|
280 | REAL, INTENT(OUT), DIMENSION(klon) :: gammasat ! coefficient to multiply qsat with to calculate saturation |
---|
281 | REAL, INTENT(OUT), DIMENSION(klon) :: dgammasatdt ! derivative of gammasat wrt temperature |
---|
282 | |
---|
283 | REAL, DIMENSION(klon) :: qsi,qsl,dqsl,dqsi |
---|
284 | REAL fcirrus, fac |
---|
285 | REAL, PARAMETER :: acirrus=2.349 |
---|
286 | REAL, PARAMETER :: bcirrus=259.0 |
---|
287 | |
---|
288 | INTEGER i |
---|
289 | |
---|
290 | CALL CALC_QSAT_ECMWF(klon,temp,qtot,pressure,RTT,1,.false.,qsl,dqsl) |
---|
291 | CALL CALC_QSAT_ECMWF(klon,temp,qtot,pressure,RTT,2,.false.,qsi,dqsi) |
---|
292 | |
---|
293 | DO i=1,klon |
---|
294 | |
---|
295 | IF (temp(i) .GE. RTT) THEN |
---|
296 | ! warm clouds: condensation at saturation wrt liquid |
---|
297 | gammasat(i)=1. |
---|
298 | dgammasatdt(i)=0. |
---|
299 | |
---|
300 | ELSEIF ((temp(i) .LT. RTT) .AND. (temp(i) .GT. t_glace_min)) THEN |
---|
301 | |
---|
302 | IF (iflag_gammasat .GE. 2) THEN |
---|
303 | gammasat(i)=qsl(i)/qsi(i) |
---|
304 | dgammasatdt(i)=(dqsl(i)*qsi(i)-dqsi(i)*qsl(i))/qsi(i)/qsi(i) |
---|
305 | ELSE |
---|
306 | gammasat(i)=1. |
---|
307 | dgammasatdt(i)=0. |
---|
308 | ENDIF |
---|
309 | |
---|
310 | ELSE |
---|
311 | |
---|
312 | IF (iflag_gammasat .GE.1) THEN |
---|
313 | ! homogeneous freezing of aerosols, according to |
---|
314 | ! Koop, 2000 and Karcher 2008, QJRMS |
---|
315 | ! 'Cirrus regime' |
---|
316 | fcirrus=acirrus-temp(i)/bcirrus |
---|
317 | IF (fcirrus .LT. qsl(i)/qsi(i)) THEN |
---|
318 | gammasat(i)=qsl(i)/qsi(i) |
---|
319 | dgammasatdt(i)=(dqsl(i)*qsi(i)-dqsi(i)*qsl(i))/qsi(i)/qsi(i) |
---|
320 | ELSE |
---|
321 | gammasat(i)=fcirrus |
---|
322 | dgammasatdt(i)=-1.0/bcirrus |
---|
323 | ENDIF |
---|
324 | |
---|
325 | ELSE |
---|
326 | |
---|
327 | gammasat(i)=1. |
---|
328 | dgammasatdt(i)=0. |
---|
329 | |
---|
330 | ENDIF |
---|
331 | |
---|
332 | ENDIF |
---|
333 | |
---|
334 | END DO |
---|
335 | |
---|
336 | |
---|
337 | END SUBROUTINE CALC_GAMMASAT |
---|
338 | |
---|
339 | |
---|
340 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
341 | |
---|
342 | END MODULE LSCP_TOOLS_MOD |
---|
343 | |
---|
344 | |
---|