[3999] | 1 | MODULE LSCP_TOOLS_MOD |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 8 | SUBROUTINE FALLICE_VELOCITY(klon,iwc,temp,rho,pres,ptconv,velo) |
---|
| 9 | |
---|
| 10 | ! Ref: |
---|
| 11 | ! Stubenrauch, C. J., Bonazzola, M., |
---|
| 12 | ! Protopapadaki, S. E., & Musat, I. (2019). |
---|
| 13 | ! New cloud system metrics to assess bulk |
---|
| 14 | ! ice cloud schemes in a GCM. Journal of |
---|
| 15 | ! Advances in Modeling Earth Systems, 11, |
---|
| 16 | ! 3212–3234. https://doi.org/10.1029/2019MS001642 |
---|
| 17 | |
---|
| 18 | |
---|
| 19 | IMPLICIT NONE |
---|
| 20 | |
---|
| 21 | INCLUDE "nuage.h" |
---|
| 22 | INCLUDE "fisrtilp.h" |
---|
| 23 | |
---|
| 24 | INTEGER, INTENT(IN) :: klon |
---|
| 25 | REAL, INTENT(IN), DIMENSION(klon) :: iwc ! specific ice water content [kg/m3] |
---|
| 26 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature [K] |
---|
| 27 | REAL, INTENT(IN), DIMENSION(klon) :: rho ! dry air density [kg/m3] |
---|
| 28 | REAL, INTENT(IN), DIMENSION(klon) :: pres ! air pressure [Pa] |
---|
| 29 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv ! convective point [-] |
---|
| 30 | |
---|
| 31 | REAL, INTENT(OUT), DIMENSION(klon) :: velo ! fallspeed velocity of crystals [m/s] |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | INTEGER i |
---|
| 35 | REAL logvm,iwcg,tempc,phpa,cvel,dvel,fallv_tun |
---|
| 36 | REAL m2ice, m2snow, vmice, vmsnow |
---|
| 37 | REAL aice, bice, asnow, bsnow |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | DO i=1,klon |
---|
| 41 | |
---|
| 42 | IF (ptconv(i)) THEN |
---|
| 43 | fallv_tun=ffallv_con |
---|
| 44 | ELSE |
---|
| 45 | fallv_tun=ffallv_lsc |
---|
| 46 | ENDIF |
---|
| 47 | |
---|
| 48 | tempc=temp(i)-273.15 ! celcius temp |
---|
| 49 | iwcg=iwc(i)*1000. ! iwc in g/m3 |
---|
| 50 | phpa=pres(i)/100. ! pressure in hPa |
---|
| 51 | |
---|
| 52 | IF (iflag_vice .EQ. 1) THEN |
---|
| 53 | ! so-called 'empirical parameterization' in Stubenrauch et al. 2019 |
---|
| 54 | if (tempc .GE. -60.0) then |
---|
| 55 | |
---|
| 56 | logvm= -0.0000414122*tempc*tempc*log(iwcg)-0.00538922*tempc*log(iwcg) & |
---|
| 57 | -0.0516344*log(iwcg)+0.00216078*tempc + 1.9714 |
---|
| 58 | velo(i)=exp(logvm) |
---|
| 59 | else |
---|
| 60 | velo(i)=65.0*(iwcg**0.2)*(150./phpa)**0.15 |
---|
| 61 | endif |
---|
| 62 | |
---|
| 63 | velo(i)=fallv_tun*velo(i)/100.0 ! from cm/s to m/s |
---|
| 64 | dvel=0.2 |
---|
| 65 | cvel=fallv_tun*65.0*(rho(i)**0.2)*(150./phpa)**0.15 |
---|
| 66 | |
---|
| 67 | ELSE IF (iflag_vice .EQ. 2) THEN |
---|
| 68 | ! so called PSDM empirical coherent bulk ice scheme in Stubenrauch et al. 2019 |
---|
| 69 | aice=0.587 |
---|
| 70 | bice=2.45 |
---|
| 71 | asnow=0.0444 |
---|
| 72 | bsnow=2.1 |
---|
| 73 | |
---|
| 74 | m2ice=((iwcg*0.001/aice)/(exp(13.6-bice*7.76+0.479*bice**2)* & |
---|
| 75 | exp((-0.0361+bice*0.0151+0.00149*bice**2)*tempc))) & |
---|
| 76 | **(1./(0.807+bice*0.00581+0.0457*bice**2)) |
---|
| 77 | |
---|
| 78 | vmice=100.*1042.4*exp(13.6-(bice+1)*7.76+0.479*(bice+1.)**2)*exp((-0.0361+& |
---|
| 79 | (bice+1.)*0.0151+0.00149*(bice+1.)**2)*tempc)& |
---|
| 80 | *(m2ice**(0.807+(bice+1.)*0.00581+0.0457*(bice+1.)**2))/(iwcg*0.001/aice) |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | vmice=vmice*((1000./phpa)**0.2) |
---|
| 84 | |
---|
| 85 | m2snow=((iwcg*0.001/asnow)/(exp(13.6-bsnow*7.76+0.479*bsnow**2)* & |
---|
| 86 | exp((-0.0361+bsnow*0.0151+0.00149*bsnow**2)*tempc))) & |
---|
| 87 | **(1./(0.807+bsnow*0.00581+0.0457*bsnow**2)) |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | vmsnow=100.*14.3*exp(13.6-(bsnow+.416)*7.76+0.479*(bsnow+.416)**2)& |
---|
| 91 | *exp((-0.0361+(bsnow+.416)*0.0151+0.00149*(bsnow+.416)**2)*tempc)& |
---|
| 92 | *(m2snow**(0.807+(bsnow+.416)*0.00581+0.0457*(bsnow+.416)**2))/(iwcg*0.001/asnow) |
---|
| 93 | |
---|
| 94 | vmsnow=vmsnow*((1000./phpa)**0.35) |
---|
| 95 | |
---|
| 96 | velo(i)=fallv_tun*min(vmsnow,vmice)/100. ! to m/s |
---|
| 97 | dvel=0.2 |
---|
| 98 | cvel=velo(i)/((iwc(i)*rho(i))**dvel) |
---|
| 99 | |
---|
| 100 | ELSE |
---|
| 101 | ! By default, fallspeed velocity of ice crystals according to Heymsfield & Donner 1990 |
---|
| 102 | velo(i) = fallv_tun*3.29/2.0 * ((iwc(i))**0.16) |
---|
| 103 | dvel=0.16 |
---|
| 104 | cvel=fallv_tun*3.29/2.0*(rho(i)**0.16) |
---|
| 105 | ENDIF |
---|
| 106 | |
---|
| 107 | ENDDO |
---|
| 108 | |
---|
| 109 | END SUBROUTINE FALLICE_VELOCITY |
---|
| 110 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 111 | |
---|
| 112 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 113 | SUBROUTINE ICEFRAC_LSCP(klon, temp, sig, icefrac, dicefracdT) |
---|
| 114 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 115 | |
---|
| 116 | ! Compute the ice fraction 1-xliq (see e.g. |
---|
| 117 | ! Doutriaux-Boucher & Quaas 2004, section 2.2.) |
---|
| 118 | ! as a function of temperature |
---|
| 119 | ! see also Fig 3 of Madeleine et al. 2020, JAMES |
---|
| 120 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 121 | |
---|
| 122 | |
---|
| 123 | USE print_control_mod, ONLY: lunout, prt_level |
---|
| 124 | |
---|
| 125 | IMPLICIT none |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | INCLUDE "YOMCST.h" |
---|
| 129 | INCLUDE "nuage.h" |
---|
| 130 | INCLUDE "clesphys.h" |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | ! nuage.h contains: |
---|
| 134 | ! t_glace_min: if T < Tmin, the cloud is only made of water ice |
---|
| 135 | ! t_glace_max: if T > Tmax, the cloud is only made of liquid water |
---|
| 136 | ! exposant_glace: controls the sharpness of the transition |
---|
| 137 | |
---|
| 138 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 139 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature |
---|
| 140 | REAL, INTENT(IN), DIMENSION(klon) :: sig |
---|
| 141 | REAL, INTENT(OUT), DIMENSION(klon) :: icefrac |
---|
| 142 | REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT |
---|
| 143 | |
---|
| 144 | |
---|
| 145 | INTEGER i |
---|
| 146 | REAL sig0,www,tmin_tmp,liqfrac_tmp |
---|
| 147 | REAL Dv, denomdep,beta,qsi,dqsidt |
---|
| 148 | INTEGER exposant_glace_old |
---|
| 149 | REAL t_glace_min_old |
---|
| 150 | LOGICAL ice_thermo |
---|
| 151 | |
---|
| 152 | sig0=0.8 |
---|
| 153 | t_glace_min_old = RTT - 15.0 |
---|
| 154 | ice_thermo = (iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3) |
---|
| 155 | IF (ice_thermo) THEN |
---|
| 156 | exposant_glace_old = 2 |
---|
| 157 | ELSE |
---|
| 158 | exposant_glace_old = 6 |
---|
| 159 | ENDIF |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | ! calculation of icefrac and dicefrac/dT |
---|
| 163 | |
---|
| 164 | DO i=1,klon |
---|
| 165 | |
---|
| 166 | IF (iflag_t_glace.EQ.1) THEN |
---|
| 167 | ! Transition to ice close to surface for T<Tmax |
---|
| 168 | ! w=1 at the surface and 0 for sig < sig0 |
---|
| 169 | www=(max(sig(i)-sig0,0.))/(1.-sig0) |
---|
| 170 | ELSEIF (iflag_t_glace.GE.2) THEN |
---|
| 171 | ! No convertion to ice close to surface |
---|
| 172 | www = 0. |
---|
| 173 | ENDIF |
---|
| 174 | |
---|
| 175 | tmin_tmp=www*t_glace_max+(1.-www)*t_glace_min |
---|
| 176 | liqfrac_tmp= (temp(i)-tmin_tmp) / (t_glace_max-tmin_tmp) |
---|
| 177 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
| 178 | |
---|
| 179 | IF (iflag_t_glace.GE.3) THEN |
---|
| 180 | icefrac(i) = 1.0-liqfrac_tmp**exposant_glace |
---|
| 181 | IF ((icefrac(i) .GT.0.) .AND. (liqfrac_tmp .GT. 0)) THEN |
---|
| 182 | dicefracdT(i)= exposant_glace * ((liqfrac_tmp)**(exposant_glace-1.)) & |
---|
| 183 | / (t_glace_min - t_glace_max) |
---|
| 184 | ELSE |
---|
| 185 | |
---|
| 186 | dicefracdT(i)=0. |
---|
| 187 | ENDIF |
---|
| 188 | |
---|
| 189 | ELSE |
---|
| 190 | icefrac(i) = (1.0-liqfrac_tmp)**exposant_glace |
---|
| 191 | IF (icefrac(i) .GT.0.) THEN |
---|
| 192 | dicefracdT(i)= exposant_glace * (icefrac(i)**(exposant_glace-1.)) & |
---|
| 193 | / (t_glace_min - t_glace_max) |
---|
| 194 | ENDIF |
---|
| 195 | |
---|
| 196 | IF ((icefrac(i).EQ.0).OR.(icefrac(i).EQ.1)) THEN |
---|
| 197 | dicefracdT(i)=0. |
---|
| 198 | ENDIF |
---|
| 199 | |
---|
| 200 | ENDIF |
---|
| 201 | |
---|
| 202 | ENDDO |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | RETURN |
---|
| 206 | |
---|
| 207 | END SUBROUTINE ICEFRAC_LSCP |
---|
| 208 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 209 | |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | SUBROUTINE CALC_QSAT_ECMWF(temp,qtot,pressure,tref,phase,flagth,qs,dqs) |
---|
| 213 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 214 | ! Calculate qsat following ECMWF method |
---|
| 215 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 216 | |
---|
| 217 | |
---|
| 218 | IMPLICIT none |
---|
| 219 | |
---|
| 220 | include "YOMCST.h" |
---|
| 221 | include "YOETHF.h" |
---|
| 222 | include "FCTTRE.h" |
---|
| 223 | |
---|
| 224 | REAL, INTENT(IN) :: temp ! temperature in K |
---|
| 225 | REAL, INTENT(IN) :: qtot ! total specific water in kg/kg |
---|
| 226 | REAL, INTENT(IN) :: pressure ! pressure in Pa |
---|
| 227 | REAL, INTENT(IN) :: tref ! reference temperature in K |
---|
| 228 | LOGICAL, INTENT(IN) :: flagth ! flag for qsat calculation for thermals |
---|
| 229 | |
---|
| 230 | INTEGER, INTENT(IN) :: phase |
---|
| 231 | ! phase: 0=depend on temperature sign (temp>tref -> liquid, temp<tref, solid) |
---|
| 232 | ! 1=liquid |
---|
| 233 | ! 2=solid |
---|
| 234 | |
---|
| 235 | REAL, INTENT(OUT) :: qs ! saturation specific humidity [kg/kg] |
---|
| 236 | REAL, INTENT(OUT) :: dqs ! derivation of saturation specific humidity wrt T |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | REAL delta, cor, cvm5 |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | IF (phase .EQ. 1) THEN |
---|
| 243 | delta=0. |
---|
| 244 | ELSEIF (phase .EQ. 2) THEN |
---|
| 245 | delta=1. |
---|
| 246 | ELSE |
---|
| 247 | delta=MAX(0.,SIGN(1.,tref-temp)) |
---|
| 248 | ENDIF |
---|
| 249 | |
---|
| 250 | IF (flagth) THEN |
---|
| 251 | cvm5=R5LES*(1.-delta) + R5IES*delta |
---|
| 252 | ELSE |
---|
| 253 | cvm5 = R5LES*RLVTT*(1.-delta) + R5IES*RLSTT*delta |
---|
| 254 | cvm5 = cvm5 /RCPD/(1.0+RVTMP2*(qtot)) |
---|
| 255 | ENDIF |
---|
| 256 | |
---|
| 257 | qs= R2ES*FOEEW(temp,delta)/pressure |
---|
| 258 | qs=MIN(0.5,qs) |
---|
| 259 | cor=1./(1.-RETV*qs) |
---|
| 260 | qs=qs*cor |
---|
| 261 | dqs= FOEDE(temp,delta,cvm5,qs,cor) |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | |
---|
| 265 | END SUBROUTINE CALC_QSAT_ECMWF |
---|
| 266 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 267 | |
---|
| 268 | |
---|
| 269 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 270 | SUBROUTINE CALC_GAMMASAT(temp,qtot,pressure,gammasat,dgammasatdt) |
---|
| 271 | |
---|
| 272 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 273 | ! programme that calculates the gammasat parameter that determines the |
---|
| 274 | ! homogeneous condensation thresholds for cold (<0oC) clouds |
---|
| 275 | ! condensation at q>gammasat*qsat |
---|
| 276 | ! Etienne Vignon, March 2021 |
---|
| 277 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | IMPLICIT none |
---|
| 281 | |
---|
| 282 | include "YOMCST.h" |
---|
| 283 | include "YOETHF.h" |
---|
| 284 | include "FCTTRE.h" |
---|
| 285 | include "nuage.h" |
---|
| 286 | |
---|
| 287 | |
---|
| 288 | REAL, INTENT(IN) :: temp ! temperature in K |
---|
| 289 | REAL, INTENT(IN) :: qtot ! total specific water in kg/kg |
---|
| 290 | |
---|
| 291 | REAL, INTENT(IN) :: pressure ! pressure in Pa |
---|
| 292 | |
---|
| 293 | REAL, INTENT(OUT) :: gammasat ! coefficient to multiply qsat with to calculate saturation |
---|
| 294 | REAL, INTENT(OUT) :: dgammasatdt ! derivative of gammasat wrt temperature |
---|
| 295 | |
---|
| 296 | REAL qsi,qsl,fac,dqsl,dqsi,fcirrus |
---|
| 297 | REAL, PARAMETER :: acirrus=2.349 |
---|
| 298 | REAL, PARAMETER :: bcirrus=259.0 |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | CALL CALC_QSAT_ECMWF(temp,qtot,pressure,RTT,1,.false.,qsl,dqsl) |
---|
| 302 | CALL CALC_QSAT_ECMWF(temp,qtot,pressure,RTT,2,.false.,qsi,dqsi) |
---|
| 303 | |
---|
| 304 | IF (temp .GE. RTT) THEN |
---|
| 305 | ! warm clouds: condensation at saturation wrt liquid |
---|
| 306 | gammasat=1. |
---|
| 307 | dgammasatdt=0. |
---|
| 308 | |
---|
| 309 | ELSEIF ((temp .LT. RTT) .AND. (temp .GT. t_glace_min)) THEN |
---|
| 310 | |
---|
| 311 | IF (iflag_gammasat .GE. 2) THEN |
---|
| 312 | gammasat=qsl/qsi |
---|
| 313 | dgammasatdt=(dqsl*qsi-dqsi*qsl)/qsi/qsi |
---|
| 314 | ELSE |
---|
| 315 | gammasat=1. |
---|
| 316 | dgammasatdt=0. |
---|
| 317 | ENDIF |
---|
| 318 | |
---|
| 319 | ELSE |
---|
| 320 | |
---|
| 321 | IF (iflag_gammasat .GE.1) THEN |
---|
| 322 | ! homogeneous freezing of aerosols, according to |
---|
| 323 | ! Koop, 2000 and Karcher 2008, QJRMS |
---|
| 324 | ! 'Cirrus regime' |
---|
| 325 | fcirrus=acirrus-temp/bcirrus |
---|
| 326 | IF (fcirrus .LT. qsl/qsi) THEN |
---|
| 327 | gammasat=qsl/qsi |
---|
| 328 | dgammasatdt=(dqsl*qsi-dqsi*qsl)/qsi/qsi |
---|
| 329 | ELSE |
---|
| 330 | gammasat=fcirrus |
---|
| 331 | dgammasatdt=-1.0/bcirrus |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
| 334 | ELSE |
---|
| 335 | |
---|
| 336 | gammasat=1. |
---|
| 337 | dgammasatdt=0. |
---|
| 338 | |
---|
| 339 | ENDIF |
---|
| 340 | |
---|
| 341 | ENDIF |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | END SUBROUTINE CALC_GAMMASAT |
---|
| 347 | |
---|
| 348 | |
---|
| 349 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 350 | |
---|
| 351 | END MODULE LSCP_TOOLS_MOD |
---|
| 352 | |
---|
| 353 | |
---|