1 | MODULE lmdz_wake |
---|
2 | |
---|
3 | ! $Id: lmdz_wake.F90 4744 2023-11-02 09:09:59Z idelkadi $ |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE wake(klon,klev,znatsurf, p, ph, pi, dtime, & |
---|
8 | tenv0, qe0, omgb, & |
---|
9 | dtdwn, dqdwn, amdwn, amup, dta, dqa, wgen, & |
---|
10 | sigd_con, Cin, & |
---|
11 | deltatw, deltaqw, sigmaw, asigmaw, wdens, awdens, & ! state variables |
---|
12 | dth, hw, wape, fip, gfl, & |
---|
13 | dtls, dqls, ktopw, omgbdth, dp_omgb, tu, qu, & |
---|
14 | dtke, dqke, omg, dp_deltomg, wkspread, cstar, & |
---|
15 | d_deltat_gw, & ! tendencies |
---|
16 | d_deltatw2, d_deltaqw2, d_sigmaw2, d_asigmaw2, d_wdens2, d_awdens2) ! tendencies |
---|
17 | |
---|
18 | |
---|
19 | ! ************************************************************** |
---|
20 | ! * |
---|
21 | ! WAKE * |
---|
22 | ! retour a un Pupper fixe * |
---|
23 | ! * |
---|
24 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
25 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
26 | ! ************************************************************** |
---|
27 | |
---|
28 | |
---|
29 | USE lmdz_wake_ini , ONLY : wake_ini |
---|
30 | USE lmdz_wake_ini , ONLY : prt_level,epsim1,RG,RD |
---|
31 | USE lmdz_wake_ini , ONLY : stark, wdens_ref, coefgw, alpk, wk_pupper |
---|
32 | USE lmdz_wake_ini , ONLY : crep_upper, crep_sol, tau_cv, rzero, aa0, flag_wk_check_trgl |
---|
33 | USE lmdz_wake_ini , ONLY : ok_bug_gfl |
---|
34 | USE lmdz_wake_ini , ONLY : iflag_wk_act, iflag_wk_check_trgl, iflag_wk_pop_dyn, wdensinit, wdensthreshold |
---|
35 | USE lmdz_wake_ini , ONLY : sigmad, hwmin, wapecut, cstart, sigmaw_max, dens_rate, epsilon_loc |
---|
36 | USE lmdz_wake_ini , ONLY : iflag_wk_profile |
---|
37 | USE lmdz_wake_ini , ONLY : smallestreal |
---|
38 | |
---|
39 | |
---|
40 | IMPLICIT NONE |
---|
41 | ! ============================================================================ |
---|
42 | |
---|
43 | |
---|
44 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
45 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
46 | ! le declenchement de nouvelles colonnes convectives. |
---|
47 | |
---|
48 | ! State variables : |
---|
49 | ! deltatw : temperature difference between wake and off-wake regions |
---|
50 | ! deltaqw : specific humidity difference between wake and off-wake regions |
---|
51 | ! sigmaw : fractional area covered by wakes. |
---|
52 | ! asigmaw : fractional area covered by active wakes. |
---|
53 | ! wdens : number of wakes per unit area |
---|
54 | ! awdens : number of active wakes per unit area |
---|
55 | |
---|
56 | ! Variable de sortie : |
---|
57 | |
---|
58 | ! wape : WAke Potential Energy |
---|
59 | ! fip : Front Incident Power (W/m2) - ALP |
---|
60 | ! gfl : Gust Front Length per unit area (m-1) |
---|
61 | ! dtls : large scale temperature tendency due to wake |
---|
62 | ! dqls : large scale humidity tendency due to wake |
---|
63 | ! hw : wake top hight (given by hw*deltatw(1)/2=wape) |
---|
64 | ! dp_omgb : vertical gradient of large scale omega |
---|
65 | ! awdens : densite de poches actives |
---|
66 | ! wdens : densite de poches |
---|
67 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
68 | ! dtKE : differential heating (wake - unpertubed) |
---|
69 | ! dqKE : differential moistening (wake - unpertubed) |
---|
70 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
71 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
72 | ! wkspread : spreading term in d_t_wake and d_q_wake |
---|
73 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
74 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
75 | ! sigmaw : updated wake fractional area. |
---|
76 | ! asigmaw : updated active wake fractional area. |
---|
77 | ! d_deltat_gw : delta T tendency due to GW |
---|
78 | |
---|
79 | ! Variables d'entree : |
---|
80 | |
---|
81 | ! aire : aire de la maille |
---|
82 | ! tenv0 : temperature dans l'environnement (K) |
---|
83 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
84 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
85 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
86 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
87 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
88 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
89 | ! wgen : number of wakes generated per unit area and per sec (/m^2/s) |
---|
90 | ! amdwn: flux de masse total des descentes, par unite de |
---|
91 | ! surface de la maille (kg/m2/s) |
---|
92 | ! amup : flux de masse total des ascendances, par unite de |
---|
93 | ! surface de la maille (kg/m2/s) |
---|
94 | ! sigd_con: |
---|
95 | ! Cin : convective inhibition |
---|
96 | ! p : pressions aux milieux des couches (Pa) |
---|
97 | ! ph : pressions aux interfaces (Pa) |
---|
98 | ! pi : (p/p_0)**kapa (adim) |
---|
99 | ! dtime: increment temporel (s) |
---|
100 | |
---|
101 | ! Variables internes : |
---|
102 | |
---|
103 | ! rhow : masse volumique de la poche froide |
---|
104 | ! rho : environment density at P levels |
---|
105 | ! rhoh : environment density at Ph levels |
---|
106 | ! tenv : environment temperature | may change within |
---|
107 | ! qe : environment humidity | sub-time-stepping |
---|
108 | ! the : environment potential temperature |
---|
109 | ! thu : potential temperature in undisturbed area |
---|
110 | ! tu : temperature in undisturbed area |
---|
111 | ! qu : humidity in undisturbed area |
---|
112 | ! dp_omgb: vertical gradient og LS omega |
---|
113 | ! omgbw : wake average vertical omega |
---|
114 | ! dp_omgbw: vertical gradient of omgbw |
---|
115 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
116 | ! dth : potential temperature diff. wake-undist. |
---|
117 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
118 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
119 | ! q1 : first humidity for vertical advection |
---|
120 | ! q2 : second humidity for vertical advection |
---|
121 | ! d_deltatw : terme de redistribution pour deltatw |
---|
122 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
123 | ! deltatw0 : deltatw initial |
---|
124 | ! deltaqw0 : deltaqw initial |
---|
125 | ! hw0 : wake top hight (defined as the altitude at which deltatw=0) |
---|
126 | ! amflux : horizontal mass flux through wake boundary |
---|
127 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
128 | ! unit length (2D), at the beginning of each time step |
---|
129 | ! Tgw : 1 sur la periode de onde de gravite |
---|
130 | ! Cgw : vitesse de propagation de onde de gravite |
---|
131 | ! LL : distance entre 2 poches |
---|
132 | |
---|
133 | ! ------------------------------------------------------------------------- |
---|
134 | ! Declaration de variables |
---|
135 | ! ------------------------------------------------------------------------- |
---|
136 | |
---|
137 | |
---|
138 | ! Arguments en entree |
---|
139 | ! -------------------- |
---|
140 | |
---|
141 | INTEGER, INTENT(IN) :: klon,klev |
---|
142 | INTEGER, DIMENSION (klon), INTENT(IN) :: znatsurf |
---|
143 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
---|
144 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph |
---|
145 | REAL, DIMENSION (klon, klev), INTENT(IN) :: omgb |
---|
146 | REAL, INTENT(IN) :: dtime |
---|
147 | REAL, DIMENSION (klon, klev), INTENT(IN) :: tenv0, qe0 |
---|
148 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
---|
149 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
---|
150 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
---|
151 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
---|
152 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
---|
153 | REAL, DIMENSION (klon), INTENT(IN) :: Cin |
---|
154 | |
---|
155 | ! |
---|
156 | ! Input/Output |
---|
157 | ! State variables |
---|
158 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
---|
159 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
---|
160 | REAL, DIMENSION (klon), INTENT(INOUT) :: asigmaw |
---|
161 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens |
---|
162 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens |
---|
163 | |
---|
164 | ! Sorties |
---|
165 | ! -------- |
---|
166 | |
---|
167 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
---|
168 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
---|
169 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
---|
170 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
---|
171 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: wkspread ! unused (jyg) |
---|
172 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: omgbdth, omg |
---|
173 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
---|
174 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
---|
175 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
---|
176 | ! Tendencies of state variables (2 is appended to the names of fields which are the cumul of fields |
---|
177 | ! computed at each sub-timestep; e.g. d_wdens2 is the cumul of d_wdens) |
---|
178 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
---|
179 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
---|
180 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw2, d_asigmaw2, d_wdens2, d_awdens2 |
---|
181 | |
---|
182 | ! Variables internes |
---|
183 | ! ------------------- |
---|
184 | |
---|
185 | ! Variables a fixer |
---|
186 | |
---|
187 | REAL :: delta_t_min |
---|
188 | INTEGER :: nsub |
---|
189 | REAL :: dtimesub |
---|
190 | REAL :: wdens0 |
---|
191 | ! IM 080208 |
---|
192 | LOGICAL, DIMENSION (klon) :: gwake |
---|
193 | |
---|
194 | ! Variables de sauvegarde |
---|
195 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
196 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
197 | REAL, DIMENSION (klon, klev) :: tenv, qe |
---|
198 | |
---|
199 | ! Variables liees a la dynamique de population 1 |
---|
200 | REAL, DIMENSION(klon) :: act |
---|
201 | REAL, DIMENSION(klon) :: rad_wk, tau_wk_inv |
---|
202 | REAL, DIMENSION(klon) :: f_shear |
---|
203 | REAL, DIMENSION(klon) :: drdt |
---|
204 | |
---|
205 | ! Variables liees a la dynamique de population 2 |
---|
206 | REAL, DIMENSION(klon) :: cont_fact |
---|
207 | |
---|
208 | ! Variables liees a la dynamique de population 3 |
---|
209 | REAL, DIMENSION(klon) :: arad_wk, irad_wk |
---|
210 | |
---|
211 | !! REAL, DIMENSION(klon) :: d_sig_gen, d_sig_death, d_sig_col |
---|
212 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
---|
213 | LOGICAL, DIMENSION (klon) :: kill_wake |
---|
214 | REAL :: drdt_pos |
---|
215 | REAL :: tau_wk_inv_min |
---|
216 | ! Some components of the tendencies of state variables |
---|
217 | REAL, DIMENSION (klon) :: d_sig_gen2, d_sig_death2, d_sig_col2, d_sig_spread2, d_sig_bnd2 |
---|
218 | REAL, DIMENSION (klon) :: d_asig_death2, d_asig_aicol2, d_asig_iicol2, d_asig_spread2, d_asig_bnd2 |
---|
219 | REAL, DIMENSION (klon) :: d_dens_gen2, d_dens_death2, d_dens_col2, d_dens_bnd2 |
---|
220 | REAL, DIMENSION (klon) :: d_adens_death2, d_adens_icol2, d_adens_acol2, d_adens_bnd2 |
---|
221 | |
---|
222 | ! Variables pour les GW |
---|
223 | REAL, DIMENSION (klon) :: ll |
---|
224 | REAL, DIMENSION (klon, klev) :: n2 |
---|
225 | REAL, DIMENSION (klon, klev) :: cgw |
---|
226 | REAL, DIMENSION (klon, klev) :: tgw |
---|
227 | |
---|
228 | ! Variables liees au calcul de hw |
---|
229 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
230 | REAL, DIMENSION (klon) :: sum_dth |
---|
231 | REAL, DIMENSION (klon) :: dthmin |
---|
232 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
233 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
234 | |
---|
235 | ! Variables liees au test de la forme triangulaire du profil de Delta_theta |
---|
236 | REAL, DIMENSION (klon) :: sum_half_dth |
---|
237 | REAL, DIMENSION (klon) :: dz_half |
---|
238 | |
---|
239 | ! Sub-timestep tendencies and related variables |
---|
240 | REAL, DIMENSION (klon, klev) :: d_deltatw, d_deltaqw |
---|
241 | REAL, DIMENSION (klon, klev) :: d_tenv, d_qe |
---|
242 | REAL, DIMENSION (klon) :: d_wdens, d_awdens, d_sigmaw, d_asigmaw |
---|
243 | REAL, DIMENSION (klon) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd |
---|
244 | REAL, DIMENSION (klon) :: d_asig_death, d_asig_aicol, d_asig_iicol, d_asig_spread, d_asig_bnd |
---|
245 | REAL, DIMENSION (klon) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
---|
246 | REAL, DIMENSION (klon) :: d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd |
---|
247 | REAL, DIMENSION (klon) :: agfl !! gust front length of active wakes |
---|
248 | !! per unit area |
---|
249 | REAL, DIMENSION (klon) :: alpha, alpha_tot |
---|
250 | REAL, DIMENSION (klon) :: q0_min, q1_min |
---|
251 | LOGICAL, DIMENSION (klon) :: wk_adv, ok_qx_qw |
---|
252 | |
---|
253 | ! Autres variables internes |
---|
254 | INTEGER ::isubstep, k, i, igout |
---|
255 | |
---|
256 | REAL :: wdensmin |
---|
257 | |
---|
258 | REAL :: sigmaw_targ |
---|
259 | REAL :: wdens_targ |
---|
260 | REAL :: d_sigmaw_targ |
---|
261 | REAL :: d_wdens_targ |
---|
262 | |
---|
263 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
264 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
265 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
266 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
267 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
268 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
269 | |
---|
270 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
271 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
272 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
273 | REAL, DIMENSION (klon, klev) :: zh |
---|
274 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
275 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
276 | |
---|
277 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
278 | |
---|
279 | REAL, DIMENSION (klon, klev) :: omgbw |
---|
280 | REAL, DIMENSION (klon) :: pupper |
---|
281 | REAL, DIMENSION (klon) :: omgtop |
---|
282 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
283 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
284 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
285 | |
---|
286 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
287 | REAL :: rrd1, rrd2 |
---|
288 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
289 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
290 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
291 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
292 | |
---|
293 | REAL, DIMENSION (klon) :: ff, gg |
---|
294 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
295 | |
---|
296 | REAL, DIMENSION (klon, klev) :: crep |
---|
297 | |
---|
298 | REAL, DIMENSION (klon, klev) :: ppi |
---|
299 | |
---|
300 | ! cc nrlmd |
---|
301 | REAL, DIMENSION (klon) :: death_rate |
---|
302 | !! REAL, DIMENSION (klon) :: nat_rate |
---|
303 | REAL, DIMENSION (klon, klev) :: entr |
---|
304 | REAL, DIMENSION (klon, klev) :: detr |
---|
305 | |
---|
306 | REAL, DIMENSION(klon) :: sigmaw_in, asigmaw_in ! pour les prints |
---|
307 | REAL, DIMENSION(klon) :: wdens_in, awdens_in ! pour les prints |
---|
308 | |
---|
309 | !!! LOGICAL :: phys_sub=.true. |
---|
310 | LOGICAL :: phys_sub=.false. |
---|
311 | |
---|
312 | LOGICAL :: first_call=.true. |
---|
313 | |
---|
314 | ! ------------------------------------------------------------------------- |
---|
315 | ! Initialisations |
---|
316 | ! ------------------------------------------------------------------------- |
---|
317 | ! ALON = 3.e5 |
---|
318 | ! alon = 1.E6 |
---|
319 | |
---|
320 | ! Provisionnal; to be suppressed when f_shear is parameterized |
---|
321 | f_shear(:) = 1. ! 0. for strong shear, 1. for weak shear |
---|
322 | |
---|
323 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
324 | |
---|
325 | ! coefgw : Coefficient pour les ondes de gravite |
---|
326 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
327 | ! wdens : Densite surfacique de poche froide |
---|
328 | ! ------------------------------------------------------------------------- |
---|
329 | |
---|
330 | ! cc nrlmd coefgw=10 |
---|
331 | ! coefgw=1 |
---|
332 | ! wdens0 = 1.0/(alon**2) |
---|
333 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
334 | ! cc nrlmd stark = 0.50 |
---|
335 | ! CRtest |
---|
336 | ! cc nrlmd alpk=0.1 |
---|
337 | ! alpk = 1.0 |
---|
338 | ! alpk = 0.5 |
---|
339 | ! alpk = 0.05 |
---|
340 | ! |
---|
341 | igout = klon/2+1/klon |
---|
342 | ! |
---|
343 | ! sub-time-stepping parameters |
---|
344 | nsub = 10 |
---|
345 | dtimesub = dtime/nsub |
---|
346 | ! |
---|
347 | IF (first_call) THEN |
---|
348 | !!#define IOPHYS_WK |
---|
349 | #undef IOPHYS_WK |
---|
350 | #ifdef IOPHYS_WK |
---|
351 | IF (phys_sub) THEN |
---|
352 | call iophys_ini(dtimesub) |
---|
353 | ELSE |
---|
354 | call iophys_ini(dtime) |
---|
355 | ENDIF |
---|
356 | #endif |
---|
357 | first_call = .false. |
---|
358 | ENDIF !(first_call) |
---|
359 | |
---|
360 | IF (iflag_wk_pop_dyn == 0) THEN |
---|
361 | ! Initialisation de toutes des densites a wdens_ref. |
---|
362 | ! Les densites peuvent evoluer si les poches debordent |
---|
363 | ! (voir au tout debut de la boucle sur les substeps) |
---|
364 | !jyg< |
---|
365 | !! wdens(:) = wdens_ref |
---|
366 | DO i = 1,klon |
---|
367 | wdens(i) = wdens_ref(znatsurf(i)+1) |
---|
368 | ENDDO |
---|
369 | !>jyg |
---|
370 | ENDIF ! (iflag_wk_pop_dyn == 0) |
---|
371 | ! |
---|
372 | IF (iflag_wk_pop_dyn >=1) THEN |
---|
373 | IF (iflag_wk_pop_dyn == 3) THEN |
---|
374 | wdensmin = wdensthreshold |
---|
375 | ELSE |
---|
376 | wdensmin = wdensinit |
---|
377 | ENDIF |
---|
378 | ENDIF |
---|
379 | |
---|
380 | ! print*,'stark',stark |
---|
381 | ! print*,'alpk',alpk |
---|
382 | ! print*,'wdens',wdens |
---|
383 | ! print*,'coefgw',coefgw |
---|
384 | ! cc |
---|
385 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
386 | ! ------------------------------------------------------------------------- |
---|
387 | |
---|
388 | delta_t_min = 0.2 |
---|
389 | |
---|
390 | ! 1. - Save initial values, initialize tendencies, initialize output fields |
---|
391 | ! ------------------------------------------------------------------------ |
---|
392 | |
---|
393 | !jyg< |
---|
394 | !! DO k = 1, klev |
---|
395 | !! DO i = 1, klon |
---|
396 | !! ppi(i, k) = pi(i, k) |
---|
397 | !! deltatw0(i, k) = deltatw(i, k) |
---|
398 | !! deltaqw0(i, k) = deltaqw(i, k) |
---|
399 | !! tenv(i, k) = tenv0(i, k) |
---|
400 | !! qe(i, k) = qe0(i, k) |
---|
401 | !! dtls(i, k) = 0. |
---|
402 | !! dqls(i, k) = 0. |
---|
403 | !! d_deltat_gw(i, k) = 0. |
---|
404 | !! d_tenv(i, k) = 0. |
---|
405 | !! d_qe(i, k) = 0. |
---|
406 | !! d_deltatw(i, k) = 0. |
---|
407 | !! d_deltaqw(i, k) = 0. |
---|
408 | !! ! IM 060508 beg |
---|
409 | !! d_deltatw2(i, k) = 0. |
---|
410 | !! d_deltaqw2(i, k) = 0. |
---|
411 | !! ! IM 060508 end |
---|
412 | !! END DO |
---|
413 | !! END DO |
---|
414 | ppi(:,:) = pi(:,:) |
---|
415 | deltatw0(:,:) = deltatw(:,:) |
---|
416 | deltaqw0(:,:) = deltaqw(:,:) |
---|
417 | tenv(:,:) = tenv0(:,:) |
---|
418 | qe(:,:) = qe0(:,:) |
---|
419 | dtls(:,:) = 0. |
---|
420 | dqls(:,:) = 0. |
---|
421 | d_deltat_gw(:,:) = 0. |
---|
422 | d_tenv(:,:) = 0. |
---|
423 | d_qe(:,:) = 0. |
---|
424 | d_deltatw(:,:) = 0. |
---|
425 | d_deltaqw(:,:) = 0. |
---|
426 | d_deltatw2(:,:) = 0. |
---|
427 | d_deltaqw2(:,:) = 0. |
---|
428 | |
---|
429 | d_sig_gen2(:) = 0. |
---|
430 | d_sig_death2(:) = 0. |
---|
431 | d_sig_col2(:) = 0. |
---|
432 | d_sig_spread2(:)= 0. |
---|
433 | d_asig_death2(:) = 0. |
---|
434 | d_asig_iicol2(:) = 0. |
---|
435 | d_asig_aicol2(:) = 0. |
---|
436 | d_asig_spread2(:)= 0. |
---|
437 | d_asig_bnd2(:) = 0. |
---|
438 | d_asigmaw2(:) = 0. |
---|
439 | ! |
---|
440 | d_dens_gen2(:) = 0. |
---|
441 | d_dens_death2(:) = 0. |
---|
442 | d_dens_col2(:) = 0. |
---|
443 | d_dens_bnd2(:) = 0. |
---|
444 | d_wdens2(:) = 0. |
---|
445 | d_adens_bnd2(:) = 0. |
---|
446 | d_awdens2(:) = 0. |
---|
447 | d_adens_death2(:) = 0. |
---|
448 | d_adens_icol2(:) = 0. |
---|
449 | d_adens_acol2(:) = 0. |
---|
450 | |
---|
451 | IF (iflag_wk_act == 0) THEN |
---|
452 | act(:) = 0. |
---|
453 | ELSEIF (iflag_wk_act == 1) THEN |
---|
454 | act(:) = 1. |
---|
455 | ENDIF |
---|
456 | |
---|
457 | !! DO i = 1, klon |
---|
458 | !! sigmaw_in(i) = sigmaw(i) |
---|
459 | !! END DO |
---|
460 | sigmaw_in(:) = sigmaw(:) |
---|
461 | asigmaw_in(:) = asigmaw(:) |
---|
462 | !>jyg |
---|
463 | ! |
---|
464 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
465 | awdens_in(:) = awdens(:) |
---|
466 | wdens_in(:) = wdens(:) |
---|
467 | !! wdens(:) = wdens(:) + wgen(:)*dtime |
---|
468 | !! d_wdens2(:) = wgen(:)*dtime |
---|
469 | !! ELSE |
---|
470 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
471 | |
---|
472 | |
---|
473 | ! sigmaw1=sigmaw |
---|
474 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
475 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
476 | ! ENDIF |
---|
477 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
478 | DO i = 1, klon |
---|
479 | d_dens_gen2(i) = 0. |
---|
480 | d_dens_death2(i) = 0. |
---|
481 | d_dens_col2(i) = 0. |
---|
482 | d_awdens2(i) = 0. |
---|
483 | IF (wdens(i) < wdensthreshold) THEN |
---|
484 | !! wdens_targ = max(wdens(i),wdensmin) |
---|
485 | wdens_targ = max(wdens(i),wdensinit) |
---|
486 | d_dens_bnd2(i) = wdens_targ - wdens(i) |
---|
487 | d_wdens2(i) = wdens_targ - wdens(i) |
---|
488 | wdens(i) = wdens_targ |
---|
489 | ELSE |
---|
490 | d_dens_bnd2(i) = 0. |
---|
491 | d_wdens2(i) = 0. |
---|
492 | ENDIF !! (wdens(i) < wdensthreshold) |
---|
493 | END DO |
---|
494 | IF (iflag_wk_pop_dyn >= 2) THEN |
---|
495 | DO i = 1, klon |
---|
496 | IF (awdens(i) < wdensthreshold) THEN |
---|
497 | !! wdens_targ = min(max(awdens(i),wdensmin),wdens(i)) |
---|
498 | wdens_targ = min(max(awdens(i),wdensinit),wdens(i)) |
---|
499 | d_adens_bnd2(i) = wdens_targ - awdens(i) |
---|
500 | d_awdens2(i) = wdens_targ - awdens(i) |
---|
501 | awdens(i) = wdens_targ |
---|
502 | ELSE |
---|
503 | wdens_targ = min(awdens(i), wdens(i)) |
---|
504 | d_adens_bnd2(i) = wdens_targ - awdens(i) |
---|
505 | d_awdens2(i) = wdens_targ - awdens(i) |
---|
506 | awdens(i) = wdens_targ |
---|
507 | ENDIF |
---|
508 | END DO |
---|
509 | ENDIF ! (iflag_wk_pop_dyn >= 2) |
---|
510 | ELSE |
---|
511 | DO i = 1, klon |
---|
512 | d_awdens2(i) = 0. |
---|
513 | d_wdens2(i) = 0. |
---|
514 | END DO |
---|
515 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
516 | ! |
---|
517 | DO i = 1, klon |
---|
518 | sigmaw_targ = min(max(sigmaw(i), sigmad),0.99) |
---|
519 | d_sig_bnd2(i) = sigmaw_targ - sigmaw(i) |
---|
520 | d_sigmaw2(i) = sigmaw_targ - sigmaw(i) |
---|
521 | sigmaw(i) = sigmaw_targ |
---|
522 | END DO |
---|
523 | ! |
---|
524 | IF (iflag_wk_pop_dyn == 3) THEN |
---|
525 | DO i = 1, klon |
---|
526 | IF ((wdens(i)-awdens(i)) <= smallestreal) THEN |
---|
527 | sigmaw_targ = sigmaw(i) |
---|
528 | ELSE |
---|
529 | sigmaw_targ = min(max(asigmaw(i),sigmad),sigmaw(i)) |
---|
530 | ENDIF |
---|
531 | d_asig_bnd2(i) = sigmaw_targ - asigmaw(i) |
---|
532 | d_asigmaw2(i) = sigmaw_targ - asigmaw(i) |
---|
533 | asigmaw(i) = sigmaw_targ |
---|
534 | END DO |
---|
535 | ENDIF ! (iflag_wk_pop_dyn == 3) |
---|
536 | |
---|
537 | wape(:) = 0. |
---|
538 | wape2(:) = 0. |
---|
539 | d_sigmaw(:) = 0. |
---|
540 | d_asigmaw(:) = 0. |
---|
541 | ktopw(:) = 0 |
---|
542 | ! |
---|
543 | !<jyg |
---|
544 | dth(:,:) = 0. |
---|
545 | tu(:,:) = 0. |
---|
546 | qu(:,:) = 0. |
---|
547 | dtke(:,:) = 0. |
---|
548 | dqke(:,:) = 0. |
---|
549 | wkspread(:,:) = 0. |
---|
550 | omgbdth(:,:) = 0. |
---|
551 | omg(:,:) = 0. |
---|
552 | dp_omgb(:,:) = 0. |
---|
553 | dp_deltomg(:,:) = 0. |
---|
554 | hw(:) = 0. |
---|
555 | wape(:) = 0. |
---|
556 | fip(:) = 0. |
---|
557 | gfl(:) = 0. |
---|
558 | cstar(:) = 0. |
---|
559 | ktopw(:) = 0 |
---|
560 | ! |
---|
561 | ! Vertical advection local variables |
---|
562 | omgbw(:,:) = 0. |
---|
563 | omgtop(:) = 0 |
---|
564 | dp_omgbw(:,:) = 0. |
---|
565 | omgbdq(:,:) = 0. |
---|
566 | |
---|
567 | !>jyg |
---|
568 | ! |
---|
569 | IF (prt_level>=10) THEN |
---|
570 | PRINT *, 'wake-1, sigmaw(igout) ', sigmaw(igout) |
---|
571 | PRINT *, 'wake-1, deltatw(igout,k) ', (k,deltatw(igout,k), k=1,klev) |
---|
572 | PRINT *, 'wake-1, deltaqw(igout,k) ', (k,deltaqw(igout,k), k=1,klev) |
---|
573 | PRINT *, 'wake-1, dowwdraughts, amdwn(igout,k) ', (k,amdwn(igout,k), k=1,klev) |
---|
574 | PRINT *, 'wake-1, dowwdraughts, dtdwn(igout,k) ', (k,dtdwn(igout,k), k=1,klev) |
---|
575 | PRINT *, 'wake-1, dowwdraughts, dqdwn(igout,k) ', (k,dqdwn(igout,k), k=1,klev) |
---|
576 | PRINT *, 'wake-1, updraughts, amup(igout,k) ', (k,amup(igout,k), k=1,klev) |
---|
577 | PRINT *, 'wake-1, updraughts, dta(igout,k) ', (k,dta(igout,k), k=1,klev) |
---|
578 | PRINT *, 'wake-1, updraughts, dqa(igout,k) ', (k,dqa(igout,k), k=1,klev) |
---|
579 | ENDIF |
---|
580 | |
---|
581 | ! 2. - Prognostic part |
---|
582 | ! -------------------- |
---|
583 | |
---|
584 | |
---|
585 | ! 2.1 - Undisturbed area and Wake integrals |
---|
586 | ! --------------------------------------------------------- |
---|
587 | |
---|
588 | DO i = 1, klon |
---|
589 | z(i) = 0. |
---|
590 | ktop(i) = 0 |
---|
591 | kupper(i) = 0 |
---|
592 | sum_thu(i) = 0. |
---|
593 | sum_tu(i) = 0. |
---|
594 | sum_qu(i) = 0. |
---|
595 | sum_thvu(i) = 0. |
---|
596 | sum_dth(i) = 0. |
---|
597 | sum_dq(i) = 0. |
---|
598 | sum_rho(i) = 0. |
---|
599 | sum_dtdwn(i) = 0. |
---|
600 | sum_dqdwn(i) = 0. |
---|
601 | |
---|
602 | av_thu(i) = 0. |
---|
603 | av_tu(i) = 0. |
---|
604 | av_qu(i) = 0. |
---|
605 | av_thvu(i) = 0. |
---|
606 | av_dth(i) = 0. |
---|
607 | av_dq(i) = 0. |
---|
608 | av_rho(i) = 0. |
---|
609 | av_dtdwn(i) = 0. |
---|
610 | av_dqdwn(i) = 0. |
---|
611 | END DO |
---|
612 | |
---|
613 | ! Distance between wakes |
---|
614 | DO i = 1, klon |
---|
615 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
616 | END DO |
---|
617 | ! Potential temperatures and humidity |
---|
618 | ! ---------------------------------------------------------- |
---|
619 | DO k = 1, klev |
---|
620 | DO i = 1, klon |
---|
621 | ! write(*,*)'wake 1',i,k,RD,tenv(i,k) |
---|
622 | rho(i, k) = p(i, k)/(RD*tenv(i,k)) |
---|
623 | ! write(*,*)'wake 2',rho(i,k) |
---|
624 | IF (k==1) THEN |
---|
625 | ! write(*,*)'wake 3',i,k,rd,tenv(i,k) |
---|
626 | rhoh(i, k) = ph(i, k)/(RD*tenv(i,k)) |
---|
627 | ! write(*,*)'wake 4',i,k,rd,tenv(i,k) |
---|
628 | zhh(i, k) = 0 |
---|
629 | ELSE |
---|
630 | ! write(*,*)'wake 5',rd,(tenv(i,k)+tenv(i,k-1)) |
---|
631 | rhoh(i, k) = ph(i, k)*2./(RD*(tenv(i,k)+tenv(i,k-1))) |
---|
632 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
633 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG) + zhh(i, k-1) |
---|
634 | END IF |
---|
635 | ! write(*,*)'wake 7',ppi(i,k) |
---|
636 | the(i, k) = tenv(i, k)/ppi(i, k) |
---|
637 | thu(i, k) = (tenv(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
638 | tu(i, k) = tenv(i, k) - deltatw(i, k)*sigmaw(i) |
---|
639 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
640 | ! write(*,*)'wake 8',(RD*(tenv(i,k)+deltatw(i,k))) |
---|
641 | rhow(i, k) = p(i, k)/(RD*(tenv(i,k)+deltatw(i,k))) |
---|
642 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
643 | END DO |
---|
644 | END DO |
---|
645 | |
---|
646 | DO k = 1, klev - 1 |
---|
647 | DO i = 1, klon |
---|
648 | IF (k==1) THEN |
---|
649 | n2(i, k) = 0 |
---|
650 | ELSE |
---|
651 | n2(i, k) = amax1(0., -RG**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i,k-1))/ & |
---|
652 | (p(i,k+1)-p(i,k-1))) |
---|
653 | END IF |
---|
654 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
655 | |
---|
656 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
657 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
658 | END DO |
---|
659 | END DO |
---|
660 | |
---|
661 | DO i = 1, klon |
---|
662 | n2(i, klev) = 0 |
---|
663 | zh(i, klev) = 0 |
---|
664 | cgw(i, klev) = 0 |
---|
665 | tgw(i, klev) = 0 |
---|
666 | END DO |
---|
667 | |
---|
668 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
669 | ! ----------------------------------------------------------------- |
---|
670 | |
---|
671 | DO k = 1, klev |
---|
672 | DO i = 1, klon |
---|
673 | epaisseur1(i, k) = 0. |
---|
674 | epaisseur2(i, k) = 0. |
---|
675 | END DO |
---|
676 | END DO |
---|
677 | |
---|
678 | DO i = 1, klon |
---|
679 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*RG) + 1. |
---|
680 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*RG) + 1. |
---|
681 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
682 | END DO |
---|
683 | |
---|
684 | DO k = 2, klev |
---|
685 | DO i = 1, klon |
---|
686 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG) + 1. |
---|
687 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
688 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
689 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
690 | END DO |
---|
691 | END DO |
---|
692 | |
---|
693 | |
---|
694 | ! Choose an integration bound well above wake top |
---|
695 | ! ----------------------------------------------------------------- |
---|
696 | |
---|
697 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
698 | ! -------------------------------------------------------- |
---|
699 | |
---|
700 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
701 | |
---|
702 | DO i = 1, klon |
---|
703 | ptop_provis(i) = ph(i, 1) |
---|
704 | END DO |
---|
705 | DO k = 2, klev |
---|
706 | DO i = 1, klon |
---|
707 | |
---|
708 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
709 | |
---|
710 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
711 | ptop_provis(i)==ph(i,1)) THEN |
---|
712 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)- & |
---|
713 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
714 | END IF |
---|
715 | END DO |
---|
716 | END DO |
---|
717 | |
---|
718 | ! -2/ dth integral |
---|
719 | |
---|
720 | DO i = 1, klon |
---|
721 | sum_dth(i) = 0. |
---|
722 | dthmin(i) = -delta_t_min |
---|
723 | z(i) = 0. |
---|
724 | END DO |
---|
725 | |
---|
726 | DO k = 1, klev |
---|
727 | DO i = 1, klon |
---|
728 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*RG) |
---|
729 | IF (dz(i)>0) THEN |
---|
730 | z(i) = z(i) + dz(i) |
---|
731 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
732 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
733 | END IF |
---|
734 | END DO |
---|
735 | END DO |
---|
736 | |
---|
737 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
738 | |
---|
739 | DO i = 1, klon |
---|
740 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
741 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
742 | END DO |
---|
743 | |
---|
744 | ! -4/ now, get Ptop |
---|
745 | |
---|
746 | DO i = 1, klon |
---|
747 | z(i) = 0. |
---|
748 | ptop(i) = ph(i, 1) |
---|
749 | END DO |
---|
750 | |
---|
751 | DO k = 1, klev |
---|
752 | DO i = 1, klon |
---|
753 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG), hw0(i)-z(i)) |
---|
754 | IF (dz(i)>0) THEN |
---|
755 | z(i) = z(i) + dz(i) |
---|
756 | ptop(i) = ph(i, k) - rho(i, k)*RG*dz(i) |
---|
757 | END IF |
---|
758 | END DO |
---|
759 | END DO |
---|
760 | |
---|
761 | IF (prt_level>=10) THEN |
---|
762 | PRINT *, 'wake-2, ptop_provis(igout), ptop(igout) ', ptop_provis(igout), ptop(igout) |
---|
763 | ENDIF |
---|
764 | |
---|
765 | |
---|
766 | ! -5/ Determination de ktop et kupper |
---|
767 | |
---|
768 | CALL pkupper (klon, klev, ptop, ph, pupper, kupper) |
---|
769 | |
---|
770 | DO k = klev, 1, -1 |
---|
771 | DO i = 1, klon |
---|
772 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
773 | END DO |
---|
774 | END DO |
---|
775 | !print*, 'ptop, pupper, ktop, kupper', ptop, pupper, ktop, kupper |
---|
776 | |
---|
777 | |
---|
778 | |
---|
779 | ! -6/ Correct ktop and ptop |
---|
780 | |
---|
781 | DO i = 1, klon |
---|
782 | ptop_new(i) = ptop(i) |
---|
783 | END DO |
---|
784 | DO k = klev, 2, -1 |
---|
785 | DO i = 1, klon |
---|
786 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
787 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
788 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
789 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
790 | END IF |
---|
791 | END DO |
---|
792 | END DO |
---|
793 | |
---|
794 | DO i = 1, klon |
---|
795 | ptop(i) = ptop_new(i) |
---|
796 | END DO |
---|
797 | |
---|
798 | DO k = klev, 1, -1 |
---|
799 | DO i = 1, klon |
---|
800 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
801 | END DO |
---|
802 | END DO |
---|
803 | |
---|
804 | IF (prt_level>=10) THEN |
---|
805 | PRINT *, 'wake-3, ktop(igout), kupper(igout) ', ktop(igout), kupper(igout) |
---|
806 | ENDIF |
---|
807 | |
---|
808 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
809 | |
---|
810 | DO k = 1, klev |
---|
811 | DO i = 1, klon |
---|
812 | IF (k>=kupper(i)) THEN |
---|
813 | deltatw(i, k) = 0. |
---|
814 | deltaqw(i, k) = 0. |
---|
815 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
816 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
817 | END IF |
---|
818 | END DO |
---|
819 | END DO |
---|
820 | |
---|
821 | |
---|
822 | ! Vertical gradient of LS omega |
---|
823 | |
---|
824 | DO k = 1, klev |
---|
825 | DO i = 1, klon |
---|
826 | IF (k<=kupper(i)) THEN |
---|
827 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
828 | END IF |
---|
829 | END DO |
---|
830 | END DO |
---|
831 | |
---|
832 | ! Integrals (and wake top level number) |
---|
833 | ! -------------------------------------- |
---|
834 | |
---|
835 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
836 | |
---|
837 | DO i = 1, klon |
---|
838 | z(i) = 1. |
---|
839 | dz(i) = 1. |
---|
840 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
841 | sum_dth(i) = 0. |
---|
842 | END DO |
---|
843 | |
---|
844 | DO k = 1, klev |
---|
845 | DO i = 1, klon |
---|
846 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
---|
847 | IF (dz(i)>0) THEN |
---|
848 | z(i) = z(i) + dz(i) |
---|
849 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
850 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
851 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
852 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
853 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
854 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
855 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
856 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
857 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
858 | END IF |
---|
859 | END DO |
---|
860 | END DO |
---|
861 | |
---|
862 | DO i = 1, klon |
---|
863 | hw0(i) = z(i) |
---|
864 | END DO |
---|
865 | |
---|
866 | |
---|
867 | ! 2.1 - WAPE and mean forcing computation |
---|
868 | ! --------------------------------------- |
---|
869 | |
---|
870 | ! --------------------------------------- |
---|
871 | |
---|
872 | ! Means |
---|
873 | |
---|
874 | DO i = 1, klon |
---|
875 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
876 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
877 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
878 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
879 | ! av_thve = sum_thve/hw0 |
---|
880 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
881 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
882 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
883 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
884 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
885 | |
---|
886 | wape(i) = -RG*hw0(i)*(av_dth(i)+ & |
---|
887 | epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
888 | |
---|
889 | END DO |
---|
890 | #ifdef IOPHYS_WK |
---|
891 | IF (.not.phys_sub) CALL iophys_ecrit('wape_a',1,'wape_a','J/kg',wape) |
---|
892 | #endif |
---|
893 | |
---|
894 | ! 2.2 Prognostic variable update |
---|
895 | ! ------------------------------ |
---|
896 | |
---|
897 | ! Filter out bad wakes |
---|
898 | |
---|
899 | DO k = 1, klev |
---|
900 | DO i = 1, klon |
---|
901 | IF (wape(i)<0.) THEN |
---|
902 | deltatw(i, k) = 0. |
---|
903 | deltaqw(i, k) = 0. |
---|
904 | dth(i, k) = 0. |
---|
905 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
906 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
907 | END IF |
---|
908 | END DO |
---|
909 | END DO |
---|
910 | |
---|
911 | DO i = 1, klon |
---|
912 | IF (wape(i)<0.) THEN |
---|
913 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
914 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
915 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
916 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
917 | sigmaw(i) = sigmaw_targ |
---|
918 | ENDIF !! (wape(i)<0.) |
---|
919 | ENDDO |
---|
920 | ! |
---|
921 | IF (iflag_wk_pop_dyn == 3) THEN |
---|
922 | DO i = 1, klon |
---|
923 | IF (wape(i)<0.) THEN |
---|
924 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
925 | d_asig_bnd2(i) = d_asig_bnd2(i) + sigmaw_targ - asigmaw(i) |
---|
926 | d_asigmaw2(i) = d_asigmaw2(i) + sigmaw_targ - asigmaw(i) |
---|
927 | asigmaw(i) = sigmaw_targ |
---|
928 | ENDIF !! (wape(i)<0.) |
---|
929 | ENDDO |
---|
930 | ENDIF !! (iflag_wk_pop_dyn == 3) |
---|
931 | |
---|
932 | DO i = 1, klon |
---|
933 | IF (wape(i)<0.) THEN |
---|
934 | wape(i) = 0. |
---|
935 | cstar(i) = 0. |
---|
936 | hw(i) = hwmin |
---|
937 | fip(i) = 0. |
---|
938 | gwake(i) = .FALSE. |
---|
939 | ELSE |
---|
940 | hw(i) = hw0(i) |
---|
941 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
942 | gwake(i) = .TRUE. |
---|
943 | END IF |
---|
944 | END DO |
---|
945 | ! |
---|
946 | |
---|
947 | ! Check qx and qw positivity |
---|
948 | ! -------------------------- |
---|
949 | DO i = 1, klon |
---|
950 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), & |
---|
951 | (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
952 | END DO |
---|
953 | DO k = 2, klev |
---|
954 | DO i = 1, klon |
---|
955 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), & |
---|
956 | (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
957 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
958 | q0_min(i) = q1_min(i) |
---|
959 | END IF |
---|
960 | END DO |
---|
961 | END DO |
---|
962 | |
---|
963 | DO i = 1, klon |
---|
964 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
965 | alpha(i) = 1. |
---|
966 | alpha_tot(i) = 1. |
---|
967 | END DO |
---|
968 | |
---|
969 | IF (prt_level>=10) THEN |
---|
970 | PRINT *, 'wake-4, sigmaw(igout), cstar(igout), wape(igout), ktop(igout) ', & |
---|
971 | sigmaw(igout), cstar(igout), wape(igout), ktop(igout) |
---|
972 | ENDIF |
---|
973 | |
---|
974 | |
---|
975 | ! C ----------------------------------------------------------------- |
---|
976 | ! Sub-time-stepping |
---|
977 | ! ----------------- |
---|
978 | |
---|
979 | ! nsub and dtimesub definitions moved to begining of routine. |
---|
980 | !! nsub = 10 |
---|
981 | !! dtimesub = dtime/nsub |
---|
982 | |
---|
983 | |
---|
984 | ! ------------------------------------------------------------------------ |
---|
985 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
986 | ! ------------------------------------------------------------------------ |
---|
987 | ! |
---|
988 | DO isubstep = 1, nsub |
---|
989 | ! |
---|
990 | ! ------------------------------------------------------------------------ |
---|
991 | ! |
---|
992 | CALL pkupper (klon, klev, ptop, ph, pupper, kupper) |
---|
993 | |
---|
994 | !print*, 'ptop, pupper, ktop, kupper', ptop, pupper, ktop, kupper |
---|
995 | |
---|
996 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
997 | ! loop |
---|
998 | DO i = 1, klon |
---|
999 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
1000 | END DO |
---|
1001 | IF (prt_level>=10) THEN |
---|
1002 | PRINT *, 'wake-4.1, isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) ', & |
---|
1003 | isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) |
---|
1004 | |
---|
1005 | ENDIF |
---|
1006 | |
---|
1007 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
1008 | ! negatif de ktop a kupper -------- |
---|
1009 | ! cc On calcule pour cela une densite wdens0 pour laquelle on |
---|
1010 | ! aurait un entrainement nul --- |
---|
1011 | !jyg< |
---|
1012 | ! Dans la configuration avec wdens prognostique, il s'agit d'un cas ou |
---|
1013 | ! les poches sont insuffisantes pour accueillir tout le flux de masse |
---|
1014 | ! des descentes unsaturees. Nous faisons alors l'hypothese que la |
---|
1015 | ! convection profonde cree directement de nouvelles poches, sans passer |
---|
1016 | ! par les thermiques. La nouvelle valeur de wdens est alors imposee. |
---|
1017 | |
---|
1018 | DO i = 1, klon |
---|
1019 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
1020 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
1021 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
1022 | IF ( iflag_wk_profile == 0 ) THEN |
---|
1023 | omg(i, kupper(i)+1)=-RG*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
1024 | RG*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
1025 | ELSE |
---|
1026 | omg(i, kupper(i)+1)=0. |
---|
1027 | ENDIF |
---|
1028 | wdens0 = (sigmaw(i)/(4.*3.14))* & |
---|
1029 | ((1.-sigmaw(i))*omg(i,kupper(i)+1)/((ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
1030 | IF (prt_level >= 10) THEN |
---|
1031 | print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i)', & |
---|
1032 | omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i) |
---|
1033 | ENDIF |
---|
1034 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
1035 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
1036 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens0 - wdens(i) |
---|
1037 | d_wdens2(i) = d_wdens2(i) + wdens0 - wdens(i) |
---|
1038 | ENDIF |
---|
1039 | wdens(i) = wdens0 |
---|
1040 | END IF |
---|
1041 | END IF |
---|
1042 | END DO |
---|
1043 | |
---|
1044 | IF (iflag_wk_pop_dyn == 0 .AND. ok_bug_gfl) THEN |
---|
1045 | !!-------------------------------------------------------- |
---|
1046 | !!Bug : computing gfl and rad_wk before changing sigmaw |
---|
1047 | !! This bug exists only for iflag_wk_pop_dyn=0. Otherwise, gfl and rad_wk |
---|
1048 | !! are computed within wake_popdyn |
---|
1049 | !!-------------------------------------------------------- |
---|
1050 | DO i = 1, klon |
---|
1051 | IF (wk_adv(i)) THEN |
---|
1052 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
1053 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
---|
1054 | END IF |
---|
1055 | END DO |
---|
1056 | ENDIF ! (iflag_wk_pop_dyn == 0 .AND. ok_bug_gfl) |
---|
1057 | !!-------------------------------------------------------- |
---|
1058 | |
---|
1059 | DO i = 1, klon |
---|
1060 | IF (wk_adv(i)) THEN |
---|
1061 | sigmaw_targ = min(sigmaw(i), sigmaw_max) |
---|
1062 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
1063 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
1064 | sigmaw(i) = sigmaw_targ |
---|
1065 | END IF |
---|
1066 | END DO |
---|
1067 | |
---|
1068 | IF (iflag_wk_pop_dyn == 0 .AND. .NOT.ok_bug_gfl) THEN |
---|
1069 | !!-------------------------------------------------------- |
---|
1070 | !!Fix : computing gfl and rad_wk after changing sigmaw |
---|
1071 | !!-------------------------------------------------------- |
---|
1072 | DO i = 1, klon |
---|
1073 | IF (wk_adv(i)) THEN |
---|
1074 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
1075 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
---|
1076 | END IF |
---|
1077 | END DO |
---|
1078 | ENDIF ! (iflag_wk_pop_dyn == 0 .AND. .NOT.ok_bug_gfl) |
---|
1079 | !!-------------------------------------------------------- |
---|
1080 | |
---|
1081 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
1082 | ! The variable "death_rate" is significant only when iflag_wk_pop_dyn = 0. |
---|
1083 | ! Here, it has to be set to zero. |
---|
1084 | death_rate(:) = 0. |
---|
1085 | ENDIF |
---|
1086 | |
---|
1087 | IF (iflag_wk_pop_dyn >= 3) THEN |
---|
1088 | DO i = 1, klon |
---|
1089 | IF (wk_adv(i)) THEN |
---|
1090 | sigmaw_targ = min(asigmaw(i), sigmaw_max) |
---|
1091 | d_asig_bnd2(i) = d_asig_bnd2(i) + sigmaw_targ - asigmaw(i) |
---|
1092 | d_asigmaw2(i) = d_asigmaw2(i) + sigmaw_targ - asigmaw(i) |
---|
1093 | asigmaw(i) = sigmaw_targ |
---|
1094 | ENDIF |
---|
1095 | ENDDO |
---|
1096 | ENDIF |
---|
1097 | |
---|
1098 | !!-------------------------------------------------------- |
---|
1099 | !!-------------------------------------------------------- |
---|
1100 | IF (iflag_wk_pop_dyn == 1) THEN |
---|
1101 | ! |
---|
1102 | CALL wake_popdyn_1 (klon, klev, dtime, cstar, tau_wk_inv, wgen, wdens, awdens, sigmaw, & |
---|
1103 | wdensmin, & |
---|
1104 | dtimesub, gfl, rad_wk, f_shear, drdt_pos, & |
---|
1105 | d_awdens, d_wdens, d_sigmaw, & |
---|
1106 | iflag_wk_act, wk_adv, cin, wape, & |
---|
1107 | drdt, & |
---|
1108 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
1109 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
1110 | d_wdens_targ, d_sigmaw_targ) |
---|
1111 | |
---|
1112 | |
---|
1113 | !!-------------------------------------------------------- |
---|
1114 | ELSEIF (iflag_wk_pop_dyn == 2) THEN |
---|
1115 | ! |
---|
1116 | CALL wake_popdyn_2 ( klon, klev, wk_adv, dtimesub, wgen, & |
---|
1117 | wdensmin, & |
---|
1118 | sigmaw, wdens, awdens, & !! state variables |
---|
1119 | gfl, cstar, cin, wape, rad_wk, & |
---|
1120 | d_sigmaw, d_wdens, d_awdens, & !! tendencies |
---|
1121 | cont_fact, & |
---|
1122 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
1123 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
1124 | d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd ) |
---|
1125 | sigmaw=sigmaw-d_sigmaw |
---|
1126 | wdens=wdens-d_wdens |
---|
1127 | awdens=awdens-d_awdens |
---|
1128 | |
---|
1129 | !!-------------------------------------------------------- |
---|
1130 | ELSEIF (iflag_wk_pop_dyn == 3) THEN |
---|
1131 | #ifdef IOPHYS_WK |
---|
1132 | IF (phys_sub) THEN |
---|
1133 | CALL iophys_ecrit('ptop',1,'ptop','Pa',ptop) |
---|
1134 | CALL iophys_ecrit('sigmaw',1,'sigmaw','',sigmaw) |
---|
1135 | CALL iophys_ecrit('asigmaw',1,'asigmaw','',asigmaw) |
---|
1136 | CALL iophys_ecrit('wdens',1,'wdens','1/m2',wdens) |
---|
1137 | CALL iophys_ecrit('awdens',1,'awdens','1/m2',awdens) |
---|
1138 | CALL iophys_ecrit('rad_wk',1,'rad_wk','m',rad_wk) |
---|
1139 | CALL iophys_ecrit('arad_wk',1,'arad_wk','m',arad_wk) |
---|
1140 | CALL iophys_ecrit('irad_wk',1,'irad_wk','m',irad_wk) |
---|
1141 | ENDIF |
---|
1142 | #endif |
---|
1143 | ! |
---|
1144 | CALL wake_popdyn_3 ( klon, klev, phys_sub, wk_adv, dtimesub, wgen, & |
---|
1145 | wdensmin, & |
---|
1146 | sigmaw, asigmaw, wdens, awdens, & !! state variables |
---|
1147 | gfl, agfl, cstar, cin, wape, & |
---|
1148 | rad_wk, arad_wk, irad_wk, & |
---|
1149 | d_sigmaw, d_asigmaw, d_wdens, d_awdens, & !! tendencies |
---|
1150 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
1151 | d_asig_death, d_asig_aicol, d_asig_iicol, d_asig_spread, d_asig_bnd, & |
---|
1152 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
1153 | d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd ) |
---|
1154 | sigmaw=sigmaw-d_sigmaw |
---|
1155 | asigmaw=asigmaw-d_asigmaw |
---|
1156 | wdens=wdens-d_wdens |
---|
1157 | awdens=awdens-d_awdens |
---|
1158 | |
---|
1159 | !!-------------------------------------------------------- |
---|
1160 | ELSEIF (iflag_wk_pop_dyn == 0) THEN |
---|
1161 | |
---|
1162 | ! cc nrlmd |
---|
1163 | |
---|
1164 | DO i = 1, klon |
---|
1165 | IF (wk_adv(i)) THEN |
---|
1166 | |
---|
1167 | ! cc nrlmd Introduction du taux de mortalite des poches et |
---|
1168 | ! test sur sigmaw_max=0.4 |
---|
1169 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
1170 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
1171 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
1172 | ELSE |
---|
1173 | death_rate(i) = 0. |
---|
1174 | END IF |
---|
1175 | |
---|
1176 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
1177 | dtimesub |
---|
1178 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
1179 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
1180 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
1181 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
1182 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
1183 | |
---|
1184 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
1185 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
1186 | ! wdens = wdens0/(10.*sigmaw) |
---|
1187 | ! sigmaw =max(sigmaw,sigd_con) |
---|
1188 | ! sigmaw =max(sigmaw,sigmad) |
---|
1189 | END IF |
---|
1190 | END DO |
---|
1191 | |
---|
1192 | ENDIF ! (iflag_wk_pop_dyn == 1) ... ELSEIF (iflag_wk_pop_dyn == 0) |
---|
1193 | !!-------------------------------------------------------- |
---|
1194 | !!-------------------------------------------------------- |
---|
1195 | |
---|
1196 | #ifdef IOPHYS_WK |
---|
1197 | IF (phys_sub) THEN |
---|
1198 | CALL iophys_ecrit('wdensa',1,'wdensa','m',wdens) |
---|
1199 | CALL iophys_ecrit('awdensa',1,'awdensa','m',awdens) |
---|
1200 | CALL iophys_ecrit('sigmawa',1,'sigmawa','m',sigmaw) |
---|
1201 | CALL iophys_ecrit('asigmawa',1,'asigmawa','m',asigmaw) |
---|
1202 | ENDIF |
---|
1203 | #endif |
---|
1204 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
1205 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
1206 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
---|
1207 | ! IM 060208 au niveau k=1... |
---|
1208 | !JYG 161013 Correction : maintenant omg est dimensionne a klev. |
---|
1209 | DO k = 1, klev |
---|
1210 | DO i = 1, klon |
---|
1211 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1212 | dp_deltomg(i, k) = 0. |
---|
1213 | END IF |
---|
1214 | END DO |
---|
1215 | END DO |
---|
1216 | DO k = 1, klev |
---|
1217 | DO i = 1, klon |
---|
1218 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1219 | omg(i, k) = 0. |
---|
1220 | END IF |
---|
1221 | END DO |
---|
1222 | END DO |
---|
1223 | |
---|
1224 | DO i = 1, klon |
---|
1225 | IF (wk_adv(i)) THEN |
---|
1226 | z(i) = 0. |
---|
1227 | omg(i, 1) = 0. |
---|
1228 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
1229 | END IF |
---|
1230 | END DO |
---|
1231 | |
---|
1232 | DO k = 2, klev |
---|
1233 | DO i = 1, klon |
---|
1234 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
1235 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*RG) |
---|
1236 | z(i) = z(i) + dz(i) |
---|
1237 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
1238 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
1239 | END IF |
---|
1240 | END DO |
---|
1241 | END DO |
---|
1242 | |
---|
1243 | DO i = 1, klon |
---|
1244 | IF (wk_adv(i)) THEN |
---|
1245 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*RG) |
---|
1246 | ztop(i) = z(i) + dztop(i) |
---|
1247 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
1248 | END IF |
---|
1249 | END DO |
---|
1250 | |
---|
1251 | IF (prt_level>=10) THEN |
---|
1252 | PRINT *, 'wake-4.2, omg(igout,k) ', (k,omg(igout,k), k=1,klev) |
---|
1253 | PRINT *, 'wake-4.2, omgtop(igout), ptop(igout), ktop(igout) ', & |
---|
1254 | omgtop(igout), ptop(igout), ktop(igout) |
---|
1255 | ENDIF |
---|
1256 | |
---|
1257 | ! ----------------- |
---|
1258 | ! From m/s to Pa/s |
---|
1259 | ! ----------------- |
---|
1260 | |
---|
1261 | DO i = 1, klon |
---|
1262 | IF (wk_adv(i)) THEN |
---|
1263 | omgtop(i) = -rho(i, ktop(i))*RG*omgtop(i) |
---|
1264 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
1265 | END IF |
---|
1266 | END DO |
---|
1267 | |
---|
1268 | DO k = 1, klev |
---|
1269 | DO i = 1, klon |
---|
1270 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
1271 | omg(i, k) = -rho(i, k)*RG*omg(i, k) |
---|
1272 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
1273 | END IF |
---|
1274 | END DO |
---|
1275 | END DO |
---|
1276 | |
---|
1277 | ! raccordement lineaire de omg de ptop a pupper |
---|
1278 | |
---|
1279 | DO i = 1, klon |
---|
1280 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
1281 | IF ( iflag_wk_profile == 0 ) THEN |
---|
1282 | omg(i, kupper(i)+1) =-RG*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
1283 | RG*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
1284 | ELSE |
---|
1285 | omg(i, kupper(i)+1) = 0. |
---|
1286 | ENDIF |
---|
1287 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
1288 | (ptop(i)-pupper(i)) |
---|
1289 | END IF |
---|
1290 | END DO |
---|
1291 | |
---|
1292 | ! c DO i=1,klon |
---|
1293 | ! c print*,'Pente entre 0 et kupper (reference)' |
---|
1294 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
1295 | ! c print*,'Pente entre ktop et kupper' |
---|
1296 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
1297 | ! c ENDDO |
---|
1298 | ! c |
---|
1299 | DO k = 1, klev |
---|
1300 | DO i = 1, klon |
---|
1301 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
1302 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
1303 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
1304 | END IF |
---|
1305 | END DO |
---|
1306 | END DO |
---|
1307 | !! print *,'omg(igout,k) ', (k,omg(igout,k),k=1,klev) |
---|
1308 | ! cc nrlmd |
---|
1309 | ! c DO i=1,klon |
---|
1310 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
1311 | ! c END DO |
---|
1312 | ! cc |
---|
1313 | |
---|
1314 | |
---|
1315 | ! -- Compute wake average vertical velocity omgbw |
---|
1316 | |
---|
1317 | |
---|
1318 | DO k = 1, klev |
---|
1319 | DO i = 1, klon |
---|
1320 | IF (wk_adv(i)) THEN |
---|
1321 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
1322 | END IF |
---|
1323 | END DO |
---|
1324 | END DO |
---|
1325 | ! -- and its vertical gradient dp_omgbw |
---|
1326 | |
---|
1327 | DO k = 1, klev-1 |
---|
1328 | DO i = 1, klon |
---|
1329 | IF (wk_adv(i)) THEN |
---|
1330 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
1331 | END IF |
---|
1332 | END DO |
---|
1333 | END DO |
---|
1334 | DO i = 1, klon |
---|
1335 | IF (wk_adv(i)) THEN |
---|
1336 | dp_omgbw(i, klev) = 0. |
---|
1337 | END IF |
---|
1338 | END DO |
---|
1339 | |
---|
1340 | ! -- Upstream coefficients for omgb velocity |
---|
1341 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
1342 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
1343 | DO k = 1, klev |
---|
1344 | DO i = 1, klon |
---|
1345 | IF (wk_adv(i)) THEN |
---|
1346 | alpha_up(i, k) = 0. |
---|
1347 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
1348 | END IF |
---|
1349 | END DO |
---|
1350 | END DO |
---|
1351 | |
---|
1352 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
1353 | |
---|
1354 | DO i = 1, klon |
---|
1355 | IF (wk_adv(i)) THEN |
---|
1356 | rre1(i) = 1. - sigmaw(i) |
---|
1357 | rre2(i) = sigmaw(i) |
---|
1358 | END IF |
---|
1359 | END DO |
---|
1360 | rrd1 = -1. |
---|
1361 | rrd2 = 1. |
---|
1362 | |
---|
1363 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
1364 | |
---|
1365 | DO k = 1, klev |
---|
1366 | DO i = 1, klon |
---|
1367 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
1368 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1369 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
1370 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
1371 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
1372 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
1373 | END IF |
---|
1374 | END DO |
---|
1375 | END DO |
---|
1376 | |
---|
1377 | DO i = 1, klon |
---|
1378 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1379 | d_th1(i, 1) = 0. |
---|
1380 | d_th2(i, 1) = 0. |
---|
1381 | d_dth(i, 1) = 0. |
---|
1382 | d_q1(i, 1) = 0. |
---|
1383 | d_q2(i, 1) = 0. |
---|
1384 | d_dq(i, 1) = 0. |
---|
1385 | END IF |
---|
1386 | END DO |
---|
1387 | |
---|
1388 | DO k = 2, klev |
---|
1389 | DO i = 1, klon |
---|
1390 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
1391 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
1392 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
1393 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
1394 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
1395 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
1396 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
1397 | END IF |
---|
1398 | END DO |
---|
1399 | END DO |
---|
1400 | |
---|
1401 | DO i = 1, klon |
---|
1402 | IF (wk_adv(i)) THEN |
---|
1403 | omgbdth(i, 1) = 0. |
---|
1404 | omgbdq(i, 1) = 0. |
---|
1405 | END IF |
---|
1406 | END DO |
---|
1407 | |
---|
1408 | DO k = 2, klev |
---|
1409 | DO i = 1, klon |
---|
1410 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
1411 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
1412 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
1413 | END IF |
---|
1414 | END DO |
---|
1415 | END DO |
---|
1416 | |
---|
1417 | !! IF (prt_level>=10) THEN |
---|
1418 | IF (prt_level>=10 .and. wk_adv(igout)) THEN |
---|
1419 | PRINT *, 'wake-4.3, th1(igout,k) ', (k,th1(igout,k), k=1,kupper(igout)) |
---|
1420 | PRINT *, 'wake-4.3, th2(igout,k) ', (k,th2(igout,k), k=1,kupper(igout)) |
---|
1421 | PRINT *, 'wake-4.3, dth(igout,k) ', (k,dth(igout,k), k=1,kupper(igout)) |
---|
1422 | PRINT *, 'wake-4.3, omgbdth(igout,k) ', (k,omgbdth(igout,k), k=1,kupper(igout)) |
---|
1423 | ENDIF |
---|
1424 | |
---|
1425 | ! ----------------------------------------------------------------- |
---|
1426 | DO k = 1, klev-1 |
---|
1427 | DO i = 1, klon |
---|
1428 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
1429 | ! ----------------------------------------------------------------- |
---|
1430 | |
---|
1431 | ! Compute redistribution (advective) term |
---|
1432 | |
---|
1433 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
1434 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k) - & |
---|
1435 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1)- & |
---|
1436 | (1.-alpha_up(i,k))*omgbdth(i,k)- & |
---|
1437 | alpha_up(i,k+1)*omgbdth(i,k+1))*ppi(i, k) |
---|
1438 | ! print*,'d_deltatw=', k, d_deltatw(i,k) |
---|
1439 | |
---|
1440 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
1441 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
1442 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1)- & |
---|
1443 | (1.-alpha_up(i,k))*omgbdq(i,k)- & |
---|
1444 | alpha_up(i,k+1)*omgbdq(i,k+1)) |
---|
1445 | ! print*,'d_deltaqw=', k, d_deltaqw(i,k) |
---|
1446 | |
---|
1447 | ! and increment large scale tendencies |
---|
1448 | |
---|
1449 | |
---|
1450 | |
---|
1451 | |
---|
1452 | ! C |
---|
1453 | ! ----------------------------------------------------------------- |
---|
1454 | d_tenv(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)- & |
---|
1455 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/ & |
---|
1456 | (ph(i,k)-ph(i,k+1)) & |
---|
1457 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
1458 | (ph(i,k)-ph(i,k+1)) )*ppi(i, k) |
---|
1459 | |
---|
1460 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
1461 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/ & |
---|
1462 | (ph(i,k)-ph(i,k+1)) & |
---|
1463 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
1464 | (ph(i,k)-ph(i,k+1)) ) |
---|
1465 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
1466 | d_tenv(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)/(ph(i,k)-ph(i,k+1)))*ppi(i, k) |
---|
1467 | |
---|
1468 | d_qe(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)/(ph(i,k)-ph(i,k+1))) |
---|
1469 | |
---|
1470 | END IF |
---|
1471 | ! cc |
---|
1472 | END DO |
---|
1473 | END DO |
---|
1474 | ! ------------------------------------------------------------------ |
---|
1475 | |
---|
1476 | IF (prt_level>=10) THEN |
---|
1477 | PRINT *, 'wake-4.3, d_deltatw(igout,k) ', (k,d_deltatw(igout,k), k=1,klev) |
---|
1478 | PRINT *, 'wake-4.3, d_deltaqw(igout,k) ', (k,d_deltaqw(igout,k), k=1,klev) |
---|
1479 | ENDIF |
---|
1480 | |
---|
1481 | ! Increment state variables |
---|
1482 | !jyg< |
---|
1483 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
1484 | DO k = 1, klev |
---|
1485 | DO i = 1, klon |
---|
1486 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1487 | detr(i,k) = - d_sig_death(i) - d_sig_col(i) |
---|
1488 | entr(i,k) = d_sig_gen(i) |
---|
1489 | ENDIF |
---|
1490 | ENDDO |
---|
1491 | ENDDO |
---|
1492 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
1493 | DO k = 1, klev |
---|
1494 | DO i = 1, klon |
---|
1495 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1496 | detr(i, k) = 0. |
---|
1497 | |
---|
1498 | entr(i, k) = 0. |
---|
1499 | ENDIF |
---|
1500 | ENDDO |
---|
1501 | ENDDO |
---|
1502 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
1503 | |
---|
1504 | |
---|
1505 | |
---|
1506 | DO k = 1, klev |
---|
1507 | DO i = 1, klon |
---|
1508 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
1509 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1510 | ! cc |
---|
1511 | |
---|
1512 | |
---|
1513 | |
---|
1514 | ! Coefficient de repartition |
---|
1515 | |
---|
1516 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
1517 | (ph(i,kupper(i))-ph(i,1)) |
---|
1518 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/ & |
---|
1519 | (ph(i,1)-ph(i,kupper(i))) |
---|
1520 | |
---|
1521 | |
---|
1522 | ! Reintroduce compensating subsidence term. |
---|
1523 | |
---|
1524 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
1525 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
1526 | ! . /(1-sigmaw) |
---|
1527 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
1528 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
1529 | ! . /(1-sigmaw) |
---|
1530 | |
---|
1531 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
1532 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
1533 | ! . /(1-sigmaw) |
---|
1534 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
1535 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
1536 | ! . /(1-sigmaw) |
---|
1537 | |
---|
1538 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
1539 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
1540 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
1541 | |
---|
1542 | ! |
---|
1543 | |
---|
1544 | ! cc nrlmd Prise en compte du taux de mortalite |
---|
1545 | ! cc Definitions de entr, detr |
---|
1546 | !jyg< |
---|
1547 | !! detr(i, k) = 0. |
---|
1548 | !! |
---|
1549 | !! entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
1550 | !! sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
1551 | !! |
---|
1552 | entr(i, k) = entr(i,k) + gfl(i)*cstar(i) + & |
---|
1553 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
1554 | !>jyg |
---|
1555 | wkspread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
1556 | |
---|
1557 | ! cc wkspread(i,k) = |
---|
1558 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
1559 | ! cc $ sigmaw(i) |
---|
1560 | |
---|
1561 | |
---|
1562 | ! ajout d'un effet onde de gravite -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
1563 | ! Jingmei |
---|
1564 | |
---|
1565 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
1566 | ! & Tgw(i,k),deltatw(i,k) |
---|
1567 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
1568 | dtimesub |
---|
1569 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
1570 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
1571 | |
---|
1572 | ! Sans GW |
---|
1573 | |
---|
1574 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-wkspread(k)*deltatw(k)) |
---|
1575 | |
---|
1576 | ! GW formule 1 |
---|
1577 | |
---|
1578 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
1579 | ! $ (ff+dtKE(k) - wkspread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
1580 | |
---|
1581 | ! GW formule 2 |
---|
1582 | |
---|
1583 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
1584 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k) - & |
---|
1585 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
1586 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & ! cc |
---|
1587 | tgw(i,k)*deltatw(i,k) ) |
---|
1588 | ELSE |
---|
1589 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i,k)))* & |
---|
1590 | (ff(i)+dtke(i,k) - & |
---|
1591 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
1592 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & |
---|
1593 | tgw(i,k)*deltatw(i,k) ) |
---|
1594 | END IF |
---|
1595 | |
---|
1596 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1597 | |
---|
1598 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
1599 | |
---|
1600 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k) - & |
---|
1601 | entr(i,k)*deltaqw(i,k)/sigmaw(i) - & |
---|
1602 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
1603 | ! cc |
---|
1604 | |
---|
1605 | ! cc nrlmd |
---|
1606 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
1607 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
1608 | ! cc |
---|
1609 | END IF |
---|
1610 | END DO |
---|
1611 | END DO |
---|
1612 | |
---|
1613 | |
---|
1614 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
1615 | |
---|
1616 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon_loc, qe, d_qe, deltaqw, & |
---|
1617 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
1618 | ! |
---|
1619 | ! Alpha_tot = Product of all the alpha's |
---|
1620 | DO i = 1, klon |
---|
1621 | IF (wk_adv(i)) THEN |
---|
1622 | alpha_tot(i) = alpha_tot(i)*alpha(i) |
---|
1623 | END IF |
---|
1624 | END DO |
---|
1625 | |
---|
1626 | ! cc nrlmd |
---|
1627 | ! c print*,'alpha' |
---|
1628 | ! c do i=1,klon |
---|
1629 | ! c print*,alpha(i) |
---|
1630 | ! c end do |
---|
1631 | ! cc |
---|
1632 | DO k = 1, klev |
---|
1633 | DO i = 1, klon |
---|
1634 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1635 | d_tenv(i, k) = alpha(i)*d_tenv(i, k) |
---|
1636 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
1637 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
1638 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
1639 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
1640 | END IF |
---|
1641 | END DO |
---|
1642 | END DO |
---|
1643 | DO i = 1, klon |
---|
1644 | IF (wk_adv(i)) THEN |
---|
1645 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
1646 | END IF |
---|
1647 | END DO |
---|
1648 | |
---|
1649 | ! Update large scale variables and wake variables |
---|
1650 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
1651 | ! IM 060208 DO k = 1,kupper(i) |
---|
1652 | DO k = 1, klev |
---|
1653 | DO i = 1, klon |
---|
1654 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1655 | dtls(i, k) = dtls(i, k) + d_tenv(i, k) |
---|
1656 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
1657 | ! cc nrlmd |
---|
1658 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
1659 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
1660 | ! cc |
---|
1661 | END IF |
---|
1662 | END DO |
---|
1663 | END DO |
---|
1664 | DO k = 1, klev |
---|
1665 | DO i = 1, klon |
---|
1666 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1667 | tenv(i, k) = tenv0(i, k) + dtls(i, k) |
---|
1668 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
1669 | the(i, k) = tenv(i, k)/ppi(i, k) |
---|
1670 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
1671 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
1672 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1673 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
1674 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
1675 | END IF |
---|
1676 | END DO |
---|
1677 | END DO |
---|
1678 | ! |
---|
1679 | DO i = 1, klon |
---|
1680 | IF (wk_adv(i)) THEN |
---|
1681 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
1682 | d_sigmaw2(i) = d_sigmaw2(i) + d_sigmaw(i) |
---|
1683 | END IF |
---|
1684 | END DO |
---|
1685 | !jyg< |
---|
1686 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
1687 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! sigmaw !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1688 | ! Cumulatives |
---|
1689 | DO i = 1, klon |
---|
1690 | IF (wk_adv(i)) THEN |
---|
1691 | d_sig_gen2(i) = d_sig_gen2(i) + d_sig_gen(i) |
---|
1692 | d_sig_death2(i) = d_sig_death2(i) + d_sig_death(i) |
---|
1693 | d_sig_col2(i) = d_sig_col2(i) + d_sig_col(i) |
---|
1694 | d_sig_spread2(i)= d_sig_spread2(i)+ d_sig_spread(i) |
---|
1695 | d_sig_bnd2(i) = d_sig_bnd2(i) + d_sig_bnd(i) |
---|
1696 | END IF |
---|
1697 | END DO |
---|
1698 | ! Bounds |
---|
1699 | DO i = 1, klon |
---|
1700 | IF (wk_adv(i)) THEN |
---|
1701 | sigmaw_targ = max(sigmaw(i),sigmad) |
---|
1702 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
1703 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
1704 | sigmaw(i) = sigmaw_targ |
---|
1705 | END IF |
---|
1706 | END DO |
---|
1707 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! wdens !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1708 | ! Cumulatives |
---|
1709 | DO i = 1, klon |
---|
1710 | IF (wk_adv(i)) THEN |
---|
1711 | wdens(i) = wdens(i) + d_wdens(i) |
---|
1712 | d_wdens2(i) = d_wdens2(i) + d_wdens(i) |
---|
1713 | d_dens_gen2(i) = d_dens_gen2(i) + d_dens_gen(i) |
---|
1714 | d_dens_death2(i) = d_dens_death2(i) + d_dens_death(i) |
---|
1715 | d_dens_col2(i) = d_dens_col2(i) + d_dens_col(i) |
---|
1716 | d_dens_bnd2(i) = d_dens_bnd2(i) + d_dens_bnd(i) |
---|
1717 | END IF |
---|
1718 | END DO |
---|
1719 | ! Bounds |
---|
1720 | DO i = 1, klon |
---|
1721 | IF (wk_adv(i)) THEN |
---|
1722 | wdens_targ = max(wdens(i),wdensmin) |
---|
1723 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens_targ - wdens(i) |
---|
1724 | d_wdens2(i) = d_wdens2(i) + wdens_targ - wdens(i) |
---|
1725 | wdens(i) = wdens_targ |
---|
1726 | END IF |
---|
1727 | END DO |
---|
1728 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! awdens !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1729 | ! Cumulatives |
---|
1730 | DO i = 1, klon |
---|
1731 | IF (wk_adv(i)) THEN |
---|
1732 | awdens(i) = awdens(i) + d_awdens(i) |
---|
1733 | d_awdens2(i) = d_awdens2(i) + d_awdens(i) |
---|
1734 | END IF |
---|
1735 | END DO |
---|
1736 | ! Bounds |
---|
1737 | DO i = 1, klon |
---|
1738 | IF (wk_adv(i)) THEN |
---|
1739 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
---|
1740 | d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
---|
1741 | d_awdens2(i) = d_awdens2(i) + wdens_targ - awdens(i) |
---|
1742 | awdens(i) = wdens_targ |
---|
1743 | END IF |
---|
1744 | END DO |
---|
1745 | ! |
---|
1746 | IF (iflag_wk_pop_dyn >= 2) THEN |
---|
1747 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! awdens again for iflag_wk_pop_dyn >= 2!!!!!! |
---|
1748 | ! Cumulatives |
---|
1749 | DO i = 1, klon |
---|
1750 | IF (wk_adv(i)) THEN |
---|
1751 | d_adens_death2(i) = d_adens_death2(i) + d_adens_death(i) |
---|
1752 | d_adens_icol2(i) = d_adens_icol2(i) + d_adens_icol(i) |
---|
1753 | d_adens_acol2(i) = d_adens_acol2(i) + d_adens_acol(i) |
---|
1754 | d_adens_bnd2(i) = d_adens_bnd2(i) + d_adens_bnd(i) |
---|
1755 | END IF |
---|
1756 | END DO |
---|
1757 | ! Bounds |
---|
1758 | DO i = 1, klon |
---|
1759 | IF (wk_adv(i)) THEN |
---|
1760 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
---|
1761 | d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
---|
1762 | awdens(i) = wdens_targ |
---|
1763 | END IF |
---|
1764 | END DO |
---|
1765 | ! |
---|
1766 | IF (iflag_wk_pop_dyn == 3) THEN |
---|
1767 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! asigmaw for iflag_wk_pop_dyn = 3!!!!!! |
---|
1768 | ! Cumulatives |
---|
1769 | DO i = 1, klon |
---|
1770 | IF (wk_adv(i)) THEN |
---|
1771 | asigmaw(i) = asigmaw(i) + d_asigmaw(i) |
---|
1772 | d_asigmaw2(i) = d_asigmaw2(i) + d_asigmaw(i) |
---|
1773 | d_asig_death2(i) = d_asig_death2(i) + d_asig_death(i) |
---|
1774 | d_asig_spread2(i) = d_asig_spread2(i) + d_asig_spread(i) |
---|
1775 | d_asig_iicol2(i) = d_asig_iicol2(i) + d_asig_iicol(i) |
---|
1776 | d_asig_aicol2(i) = d_asig_aicol2(i) + d_asig_aicol(i) |
---|
1777 | d_asig_bnd2(i) = d_asig_bnd2(i) + d_asig_bnd(i) |
---|
1778 | END IF |
---|
1779 | END DO |
---|
1780 | ! Bounds |
---|
1781 | DO i = 1, klon |
---|
1782 | IF (wk_adv(i)) THEN |
---|
1783 | ! asigmaw lower bound set to sigmad/2 in order to allow asigmaw values lower than sigmad. |
---|
1784 | !! sigmaw_targ = min(max(asigmaw(i),sigmad),sigmaw(i)) |
---|
1785 | sigmaw_targ = min(max(asigmaw(i),sigmad/2.),sigmaw(i)) |
---|
1786 | d_asig_bnd2(i) = d_asig_bnd2(i) + sigmaw_targ - asigmaw(i) |
---|
1787 | d_asigmaw2(i) = d_asigmaw2(i) + sigmaw_targ - asigmaw(i) |
---|
1788 | asigmaw(i) = sigmaw_targ |
---|
1789 | END IF |
---|
1790 | END DO |
---|
1791 | |
---|
1792 | #ifdef IOPHYS_WK |
---|
1793 | IF (phys_sub) THEN |
---|
1794 | CALL iophys_ecrit('wdensb',1,'wdensb','m',wdens) |
---|
1795 | CALL iophys_ecrit('awdensb',1,'awdensb','m',awdens) |
---|
1796 | CALL iophys_ecrit('sigmawb',1,'sigmawb','m',sigmaw) |
---|
1797 | CALL iophys_ecrit('asigmawb',1,'asigmawb','m',asigmaw) |
---|
1798 | ! |
---|
1799 | call iophys_ecrit('d_wdens2',1,'d_wdens2','',d_wdens2) |
---|
1800 | call iophys_ecrit('d_dens_gen2',1,'d_dens_gen2','',d_dens_gen2) |
---|
1801 | call iophys_ecrit('d_dens_death2',1,'d_dens_death2','',d_dens_death2) |
---|
1802 | call iophys_ecrit('d_dens_col2',1,'d_dens_col2','',d_dens_col2) |
---|
1803 | call iophys_ecrit('d_dens_bnd2',1,'d_dens_bnd2','',d_dens_bnd2) |
---|
1804 | ! |
---|
1805 | call iophys_ecrit('d_awdens2',1,'d_awdens2','',d_awdens2) |
---|
1806 | call iophys_ecrit('d_adens_death2',1,'d_adens_death2','',d_adens_death2) |
---|
1807 | call iophys_ecrit('d_adens_icol2',1,'d_adens_icol2','',d_adens_icol2) |
---|
1808 | call iophys_ecrit('d_adens_acol2',1,'d_adens_acol2','',d_adens_acol2) |
---|
1809 | call iophys_ecrit('d_adens_bnd2',1,'d_adens_bnd2','',d_adens_bnd2) |
---|
1810 | ! |
---|
1811 | CALL iophys_ecrit('d_sigmaw2',1,'d_sigmaw2','',d_sigmaw2) |
---|
1812 | CALL iophys_ecrit('d_sig_gen2',1,'d_sig_gen2','m',d_sig_gen2) |
---|
1813 | CALL iophys_ecrit('d_sig_spread2',1,'d_sig_spread2','',d_sig_spread2) |
---|
1814 | CALL iophys_ecrit('d_sig_col2',1,'d_sig_col2','',d_sig_col2) |
---|
1815 | CALL iophys_ecrit('d_sig_death2',1,'d_sig_death2','',d_sig_death2) |
---|
1816 | CALL iophys_ecrit('d_sig_bnd2',1,'d_sig_bnd2','',d_sig_bnd2) |
---|
1817 | ! |
---|
1818 | CALL iophys_ecrit('d_asigmaw2',1,'d_asigmaw2','',d_asigmaw2) |
---|
1819 | CALL iophys_ecrit('d_asig_spread2',1,'d_asig_spread2','m',d_asig_spread2) |
---|
1820 | CALL iophys_ecrit('d_asig_aicol2',1,'d_asig_aicol2','m',d_asig_aicol2) |
---|
1821 | CALL iophys_ecrit('d_asig_iicol2',1,'d_asig_iicol2','m',d_asig_iicol2) |
---|
1822 | CALL iophys_ecrit('d_asig_death2',1,'d_asig_death2','m',d_asig_death2) |
---|
1823 | CALL iophys_ecrit('d_asig_bnd2',1,'d_asig_bnd2','m',d_asig_bnd2) |
---|
1824 | ENDIF |
---|
1825 | #endif |
---|
1826 | ENDIF ! (iflag_wk_pop_dyn == 3) |
---|
1827 | ENDIF ! (iflag_wk_pop_dyn >= 2) |
---|
1828 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
1829 | |
---|
1830 | |
---|
1831 | ! Determine Ptop from buoyancy integral |
---|
1832 | ! --------------------------------------- |
---|
1833 | |
---|
1834 | ! - 1/ Pressure of the level where dth changes sign. |
---|
1835 | |
---|
1836 | DO i = 1, klon |
---|
1837 | IF (wk_adv(i)) THEN |
---|
1838 | ptop_provis(i) = ph(i, 1) |
---|
1839 | END IF |
---|
1840 | END DO |
---|
1841 | |
---|
1842 | DO k = 2, klev |
---|
1843 | DO i = 1, klon |
---|
1844 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
1845 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
1846 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
1847 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
1848 | END IF |
---|
1849 | END DO |
---|
1850 | END DO |
---|
1851 | |
---|
1852 | ! - 2/ dth integral |
---|
1853 | |
---|
1854 | DO i = 1, klon |
---|
1855 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1856 | sum_dth(i) = 0. |
---|
1857 | dthmin(i) = -delta_t_min |
---|
1858 | z(i) = 0. |
---|
1859 | END IF |
---|
1860 | END DO |
---|
1861 | |
---|
1862 | DO k = 1, klev |
---|
1863 | DO i = 1, klon |
---|
1864 | IF (wk_adv(i)) THEN |
---|
1865 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*RG) |
---|
1866 | IF (dz(i)>0) THEN |
---|
1867 | z(i) = z(i) + dz(i) |
---|
1868 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1869 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
1870 | END IF |
---|
1871 | END IF |
---|
1872 | END DO |
---|
1873 | END DO |
---|
1874 | |
---|
1875 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
1876 | |
---|
1877 | DO i = 1, klon |
---|
1878 | IF (wk_adv(i)) THEN |
---|
1879 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
1880 | hw(i) = amax1(hwmin, hw(i)) |
---|
1881 | END IF |
---|
1882 | END DO |
---|
1883 | |
---|
1884 | ! - 4/ now, get Ptop |
---|
1885 | |
---|
1886 | DO i = 1, klon |
---|
1887 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1888 | ktop(i) = 0 |
---|
1889 | z(i) = 0. |
---|
1890 | END IF |
---|
1891 | END DO |
---|
1892 | |
---|
1893 | DO k = 1, klev |
---|
1894 | DO i = 1, klon |
---|
1895 | IF (wk_adv(i)) THEN |
---|
1896 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*RG), hw(i)-z(i)) |
---|
1897 | IF (dz(i)>0) THEN |
---|
1898 | z(i) = z(i) + dz(i) |
---|
1899 | ptop(i) = ph(i, k) - rho(i, k)*RG*dz(i) |
---|
1900 | ktop(i) = k |
---|
1901 | END IF |
---|
1902 | END IF |
---|
1903 | END DO |
---|
1904 | END DO |
---|
1905 | |
---|
1906 | ! 4.5/Correct ktop and ptop |
---|
1907 | |
---|
1908 | DO i = 1, klon |
---|
1909 | IF (wk_adv(i)) THEN |
---|
1910 | ptop_new(i) = ptop(i) |
---|
1911 | END IF |
---|
1912 | END DO |
---|
1913 | |
---|
1914 | DO k = klev, 2, -1 |
---|
1915 | DO i = 1, klon |
---|
1916 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
1917 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
1918 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
1919 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
1920 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
1921 | END IF |
---|
1922 | END DO |
---|
1923 | END DO |
---|
1924 | |
---|
1925 | |
---|
1926 | DO i = 1, klon |
---|
1927 | IF (wk_adv(i)) THEN |
---|
1928 | ptop(i) = ptop_new(i) |
---|
1929 | END IF |
---|
1930 | END DO |
---|
1931 | |
---|
1932 | DO k = klev, 1, -1 |
---|
1933 | DO i = 1, klon |
---|
1934 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1935 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
1936 | END IF |
---|
1937 | END DO |
---|
1938 | END DO |
---|
1939 | |
---|
1940 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
1941 | |
---|
1942 | DO k = 1, klev |
---|
1943 | DO i = 1, klon |
---|
1944 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
1945 | deltatw(i, k) = 0. |
---|
1946 | deltaqw(i, k) = 0. |
---|
1947 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
1948 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
1949 | END IF |
---|
1950 | END DO |
---|
1951 | END DO |
---|
1952 | |
---|
1953 | |
---|
1954 | ! -------------Cstar computation--------------------------------- |
---|
1955 | DO i = 1, klon |
---|
1956 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1957 | sum_thu(i) = 0. |
---|
1958 | sum_tu(i) = 0. |
---|
1959 | sum_qu(i) = 0. |
---|
1960 | sum_thvu(i) = 0. |
---|
1961 | sum_dth(i) = 0. |
---|
1962 | sum_dq(i) = 0. |
---|
1963 | sum_rho(i) = 0. |
---|
1964 | sum_dtdwn(i) = 0. |
---|
1965 | sum_dqdwn(i) = 0. |
---|
1966 | |
---|
1967 | av_thu(i) = 0. |
---|
1968 | av_tu(i) = 0. |
---|
1969 | av_qu(i) = 0. |
---|
1970 | av_thvu(i) = 0. |
---|
1971 | av_dth(i) = 0. |
---|
1972 | av_dq(i) = 0. |
---|
1973 | av_rho(i) = 0. |
---|
1974 | av_dtdwn(i) = 0. |
---|
1975 | av_dqdwn(i) = 0. |
---|
1976 | END IF |
---|
1977 | END DO |
---|
1978 | |
---|
1979 | ! Integrals (and wake top level number) |
---|
1980 | ! -------------------------------------- |
---|
1981 | |
---|
1982 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1983 | |
---|
1984 | DO i = 1, klon |
---|
1985 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1986 | z(i) = 1. |
---|
1987 | dz(i) = 1. |
---|
1988 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
1989 | sum_dth(i) = 0. |
---|
1990 | END IF |
---|
1991 | END DO |
---|
1992 | |
---|
1993 | DO k = 1, klev |
---|
1994 | DO i = 1, klon |
---|
1995 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1996 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
---|
1997 | IF (dz(i)>0) THEN |
---|
1998 | z(i) = z(i) + dz(i) |
---|
1999 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
2000 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
2001 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
2002 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
2003 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
2004 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
2005 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
2006 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
2007 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
2008 | END IF |
---|
2009 | END IF |
---|
2010 | END DO |
---|
2011 | END DO |
---|
2012 | |
---|
2013 | DO i = 1, klon |
---|
2014 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
2015 | hw0(i) = z(i) |
---|
2016 | END IF |
---|
2017 | END DO |
---|
2018 | |
---|
2019 | |
---|
2020 | ! - WAPE and mean forcing computation |
---|
2021 | ! --------------------------------------- |
---|
2022 | |
---|
2023 | ! --------------------------------------- |
---|
2024 | |
---|
2025 | ! Means |
---|
2026 | |
---|
2027 | DO i = 1, klon |
---|
2028 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
2029 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
2030 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
2031 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
2032 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
2033 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
2034 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
2035 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
2036 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
2037 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
2038 | |
---|
2039 | wape(i) = -RG*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
2040 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
2041 | END IF |
---|
2042 | END DO |
---|
2043 | |
---|
2044 | |
---|
2045 | ! Filter out bad wakes |
---|
2046 | |
---|
2047 | DO k = 1, klev |
---|
2048 | DO i = 1, klon |
---|
2049 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
2050 | IF (wape(i)<0.) THEN |
---|
2051 | deltatw(i, k) = 0. |
---|
2052 | deltaqw(i, k) = 0. |
---|
2053 | dth(i, k) = 0. |
---|
2054 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
2055 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
2056 | END IF |
---|
2057 | END IF |
---|
2058 | END DO |
---|
2059 | END DO |
---|
2060 | |
---|
2061 | DO i = 1, klon |
---|
2062 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
2063 | IF (wape(i)<0.) THEN |
---|
2064 | wape(i) = 0. |
---|
2065 | cstar(i) = 0. |
---|
2066 | hw(i) = hwmin |
---|
2067 | !jyg< |
---|
2068 | !! sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
2069 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
2070 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
2071 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
2072 | sigmaw(i) = sigmaw_targ |
---|
2073 | ! |
---|
2074 | d_asig_bnd2(i) = d_asig_bnd2(i) + sigmaw_targ - asigmaw(i) |
---|
2075 | d_asigmaw2(i) = d_asigmaw2(i) + sigmaw_targ - asigmaw(i) |
---|
2076 | asigmaw(i) = sigmaw_targ |
---|
2077 | !>jyg |
---|
2078 | fip(i) = 0. |
---|
2079 | gwake(i) = .FALSE. |
---|
2080 | ELSE |
---|
2081 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
2082 | gwake(i) = .TRUE. |
---|
2083 | END IF |
---|
2084 | END IF |
---|
2085 | END DO |
---|
2086 | ! |
---|
2087 | ! ------------------------------------------------------------------------ |
---|
2088 | ! |
---|
2089 | END DO ! end sub-timestep loop |
---|
2090 | ! |
---|
2091 | ! ------------------------------------------------------------------------ |
---|
2092 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
2093 | ! ------------------------------------------------------------------------ |
---|
2094 | ! |
---|
2095 | |
---|
2096 | #ifdef IOPHYS_WK |
---|
2097 | IF (.not.phys_sub) CALL iophys_ecrit('wape_b',1,'wape_b','J/kg',wape) |
---|
2098 | #endif |
---|
2099 | IF (prt_level>=10) THEN |
---|
2100 | PRINT *, 'wake-5, sigmaw(igout), cstar(igout), wape(igout), ptop(igout) ', & |
---|
2101 | sigmaw(igout), cstar(igout), wape(igout), ptop(igout) |
---|
2102 | ENDIF |
---|
2103 | |
---|
2104 | |
---|
2105 | ! ---------------------------------------------------------- |
---|
2106 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
2107 | ! filter out bad wakes. |
---|
2108 | ! ---------------------------------------------------------- |
---|
2109 | |
---|
2110 | ! 2.1 - Undisturbed area and Wake integrals |
---|
2111 | ! --------------------------------------------------------- |
---|
2112 | |
---|
2113 | DO i = 1, klon |
---|
2114 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
2115 | IF (ok_qx_qw(i)) THEN |
---|
2116 | ! cc |
---|
2117 | z(i) = 0. |
---|
2118 | sum_thu(i) = 0. |
---|
2119 | sum_tu(i) = 0. |
---|
2120 | sum_qu(i) = 0. |
---|
2121 | sum_thvu(i) = 0. |
---|
2122 | sum_dth(i) = 0. |
---|
2123 | sum_half_dth(i) = 0. |
---|
2124 | sum_dq(i) = 0. |
---|
2125 | sum_rho(i) = 0. |
---|
2126 | sum_dtdwn(i) = 0. |
---|
2127 | sum_dqdwn(i) = 0. |
---|
2128 | |
---|
2129 | av_thu(i) = 0. |
---|
2130 | av_tu(i) = 0. |
---|
2131 | av_qu(i) = 0. |
---|
2132 | av_thvu(i) = 0. |
---|
2133 | av_dth(i) = 0. |
---|
2134 | av_dq(i) = 0. |
---|
2135 | av_rho(i) = 0. |
---|
2136 | av_dtdwn(i) = 0. |
---|
2137 | av_dqdwn(i) = 0. |
---|
2138 | |
---|
2139 | dthmin(i) = -delta_t_min |
---|
2140 | END IF |
---|
2141 | END DO |
---|
2142 | ! Potential temperatures and humidity |
---|
2143 | ! ---------------------------------------------------------- |
---|
2144 | |
---|
2145 | DO k = 1, klev |
---|
2146 | DO i = 1, klon |
---|
2147 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2148 | IF (ok_qx_qw(i)) THEN |
---|
2149 | ! cc |
---|
2150 | rho(i, k) = p(i, k)/(RD*tenv(i,k)) |
---|
2151 | IF (k==1) THEN |
---|
2152 | rhoh(i, k) = ph(i, k)/(RD*tenv(i,k)) |
---|
2153 | zhh(i, k) = 0 |
---|
2154 | ELSE |
---|
2155 | rhoh(i, k) = ph(i, k)*2./(RD*(tenv(i,k)+tenv(i,k-1))) |
---|
2156 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG) + zhh(i, k-1) |
---|
2157 | END IF |
---|
2158 | the(i, k) = tenv(i, k)/ppi(i, k) |
---|
2159 | thu(i, k) = (tenv(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
2160 | tu(i, k) = tenv(i, k) - deltatw(i, k)*sigmaw(i) |
---|
2161 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
2162 | rhow(i, k) = p(i, k)/(RD*(tenv(i,k)+deltatw(i,k))) |
---|
2163 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
2164 | END IF |
---|
2165 | END DO |
---|
2166 | END DO |
---|
2167 | |
---|
2168 | ! Integrals (and wake top level number) |
---|
2169 | ! ----------------------------------------------------------- |
---|
2170 | |
---|
2171 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
2172 | |
---|
2173 | DO i = 1, klon |
---|
2174 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2175 | IF (ok_qx_qw(i)) THEN |
---|
2176 | ! cc |
---|
2177 | z(i) = 1. |
---|
2178 | dz(i) = 1. |
---|
2179 | dz_half(i) = 1. |
---|
2180 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
2181 | sum_dth(i) = 0. |
---|
2182 | END IF |
---|
2183 | END DO |
---|
2184 | |
---|
2185 | DO k = 1, klev |
---|
2186 | DO i = 1, klon |
---|
2187 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2188 | IF (ok_qx_qw(i)) THEN |
---|
2189 | ! cc |
---|
2190 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*RG) |
---|
2191 | dz_half(i) = -(amax1(ph(i,k+1),0.5*(ptop(i)+ph(i,1)))-ph(i,k))/(rho(i,k)*RG) |
---|
2192 | IF (dz(i)>0) THEN |
---|
2193 | z(i) = z(i) + dz(i) |
---|
2194 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
2195 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
2196 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
2197 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
2198 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
2199 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
2200 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
2201 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
2202 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
2203 | ! |
---|
2204 | dthmin(i) = min(dthmin(i), dth(i,k)) |
---|
2205 | END IF |
---|
2206 | IF (dz_half(i)>0) THEN |
---|
2207 | sum_half_dth(i) = sum_half_dth(i) + dth(i, k)*dz_half(i) |
---|
2208 | END IF |
---|
2209 | END IF |
---|
2210 | END DO |
---|
2211 | END DO |
---|
2212 | |
---|
2213 | DO i = 1, klon |
---|
2214 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2215 | IF (ok_qx_qw(i)) THEN |
---|
2216 | ! cc |
---|
2217 | hw0(i) = z(i) |
---|
2218 | END IF |
---|
2219 | END DO |
---|
2220 | |
---|
2221 | ! - WAPE and mean forcing computation |
---|
2222 | ! ------------------------------------------------------------- |
---|
2223 | |
---|
2224 | ! Means |
---|
2225 | |
---|
2226 | DO i = 1, klon |
---|
2227 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2228 | IF (ok_qx_qw(i)) THEN |
---|
2229 | ! cc |
---|
2230 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
2231 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
2232 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
2233 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
2234 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
2235 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
2236 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
2237 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
2238 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
2239 | |
---|
2240 | wape2(i) = -RG*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
2241 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
2242 | END IF |
---|
2243 | END DO |
---|
2244 | #ifdef IOPHYS_WK |
---|
2245 | IF (.not.phys_sub) CALL iophys_ecrit('wape2_a',1,'wape2_a','J/kg',wape2) |
---|
2246 | #endif |
---|
2247 | |
---|
2248 | |
---|
2249 | ! Prognostic variable update |
---|
2250 | ! ------------------------------------------------------------ |
---|
2251 | |
---|
2252 | ! Filter out bad wakes |
---|
2253 | |
---|
2254 | IF (iflag_wk_check_trgl>=1) THEN |
---|
2255 | ! Check triangular shape of dth profile |
---|
2256 | DO i = 1, klon |
---|
2257 | IF (ok_qx_qw(i)) THEN |
---|
2258 | !! print *,'wake, hw0(i), dthmin(i) ', hw0(i), dthmin(i) |
---|
2259 | !! print *,'wake, 2.*sum_dth(i)/(hw0(i)*dthmin(i)) ', & |
---|
2260 | !! 2.*sum_dth(i)/(hw0(i)*dthmin(i)) |
---|
2261 | !! print *,'wake, sum_half_dth(i), sum_dth(i) ', & |
---|
2262 | !! sum_half_dth(i), sum_dth(i) |
---|
2263 | IF ((hw0(i) < 1.) .or. (dthmin(i) >= -delta_t_min) ) THEN |
---|
2264 | wape2(i) = -1. |
---|
2265 | !! print *,'wake, rej 1' |
---|
2266 | ELSE IF (iflag_wk_check_trgl==1.AND.abs(2.*sum_dth(i)/(hw0(i)*dthmin(i)) - 1.) > 0.5) THEN |
---|
2267 | wape2(i) = -1. |
---|
2268 | !! print *,'wake, rej 2' |
---|
2269 | ELSE IF (abs(sum_half_dth(i)) < 0.5*abs(sum_dth(i)) ) THEN |
---|
2270 | wape2(i) = -1. |
---|
2271 | !! print *,'wake, rej 3' |
---|
2272 | END IF |
---|
2273 | END IF |
---|
2274 | END DO |
---|
2275 | END IF |
---|
2276 | #ifdef IOPHYS_WK |
---|
2277 | IF (.not.phys_sub) CALL iophys_ecrit('wape2_b',1,'wape2_b','J/kg',wape2) |
---|
2278 | #endif |
---|
2279 | |
---|
2280 | |
---|
2281 | DO k = 1, klev |
---|
2282 | DO i = 1, klon |
---|
2283 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
2284 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
2285 | ! cc |
---|
2286 | deltatw(i, k) = 0. |
---|
2287 | deltaqw(i, k) = 0. |
---|
2288 | dth(i, k) = 0. |
---|
2289 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
2290 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
2291 | END IF |
---|
2292 | END DO |
---|
2293 | END DO |
---|
2294 | |
---|
2295 | |
---|
2296 | DO i = 1, klon |
---|
2297 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2298 | IF (ok_qx_qw(i)) THEN |
---|
2299 | ! cc |
---|
2300 | IF (wape2(i)<0.) THEN |
---|
2301 | wape2(i) = 0. |
---|
2302 | cstar2(i) = 0. |
---|
2303 | hw(i) = hwmin |
---|
2304 | !jyg< |
---|
2305 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
2306 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
2307 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
2308 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
2309 | sigmaw(i) = sigmaw_targ |
---|
2310 | ! |
---|
2311 | d_asig_bnd2(i) = d_asig_bnd2(i) + sigmaw_targ - asigmaw(i) |
---|
2312 | d_asigmaw2(i) = d_asigmaw2(i) + sigmaw_targ - asigmaw(i) |
---|
2313 | asigmaw(i) = sigmaw_targ |
---|
2314 | !>jyg |
---|
2315 | fip(i) = 0. |
---|
2316 | gwake(i) = .FALSE. |
---|
2317 | ELSE |
---|
2318 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
2319 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
2320 | gwake(i) = .TRUE. |
---|
2321 | END IF |
---|
2322 | #ifdef IOPHYS_WK |
---|
2323 | IF (.not.phys_sub) CALL iophys_ecrit('cstar2',1,'cstar2','J/kg',cstar2) |
---|
2324 | #endif |
---|
2325 | END IF ! (ok_qx_qw(i)) |
---|
2326 | END DO |
---|
2327 | |
---|
2328 | DO i = 1, klon |
---|
2329 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2330 | IF (ok_qx_qw(i)) THEN |
---|
2331 | ! cc |
---|
2332 | ktopw(i) = ktop(i) |
---|
2333 | END IF |
---|
2334 | END DO |
---|
2335 | |
---|
2336 | DO i = 1, klon |
---|
2337 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
2338 | IF (ok_qx_qw(i)) THEN |
---|
2339 | ! cc |
---|
2340 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
2341 | |
---|
2342 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
2343 | ! cc heff = 600. |
---|
2344 | ! Utilisation de la hauteur hw |
---|
2345 | ! c heff = 0.7*hw |
---|
2346 | heff(i) = hw(i) |
---|
2347 | |
---|
2348 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
2349 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
2350 | fip(i) = alpk*fip(i) |
---|
2351 | ! jyg2 |
---|
2352 | ELSE |
---|
2353 | fip(i) = 0. |
---|
2354 | END IF |
---|
2355 | END IF |
---|
2356 | END DO |
---|
2357 | IF (iflag_wk_pop_dyn >= 3) THEN |
---|
2358 | #ifdef IOPHYS_WK |
---|
2359 | IF (.not.phys_sub) THEN |
---|
2360 | CALL iophys_ecrit('fip',1,'fip','J/kg',fip) |
---|
2361 | CALL iophys_ecrit('hw',1,'hw','J/kg',hw) |
---|
2362 | CALL iophys_ecrit('ptop',1,'ptop','J/kg',ptop) |
---|
2363 | CALL iophys_ecrit('wdens',1,'wdens','J/kg',wdens) |
---|
2364 | CALL iophys_ecrit('awdens',1,'awdens','m',awdens) |
---|
2365 | CALL iophys_ecrit('sigmaw',1,'sigmaw','m',sigmaw) |
---|
2366 | CALL iophys_ecrit('asigmaw',1,'asigmaw','m',asigmaw) |
---|
2367 | ! |
---|
2368 | CALL iophys_ecrit('rad_wk',1,'rad_wk','J/kg',rad_wk) |
---|
2369 | CALL iophys_ecrit('arad_wk',1,'arad_wk','J/kg',arad_wk) |
---|
2370 | CALL iophys_ecrit('irad_wk',1,'irad_wk','J/kg',irad_wk) |
---|
2371 | ! |
---|
2372 | call iophys_ecrit('d_wdens2',1,'d_wdens2','',d_wdens2) |
---|
2373 | call iophys_ecrit('d_dens_gen2',1,'d_dens_gen2','',d_dens_gen2) |
---|
2374 | call iophys_ecrit('d_dens_death2',1,'d_dens_death2','',d_dens_death2) |
---|
2375 | call iophys_ecrit('d_dens_col2',1,'d_dens_col2','',d_dens_col2) |
---|
2376 | call iophys_ecrit('d_dens_bnd2',1,'d_dens_bnd2','',d_dens_bnd2) |
---|
2377 | ! |
---|
2378 | call iophys_ecrit('d_awdens2',1,'d_awdens2','',d_awdens2) |
---|
2379 | call iophys_ecrit('d_adens_death2',1,'d_adens_death2','',d_adens_death2) |
---|
2380 | call iophys_ecrit('d_adens_icol2',1,'d_adens_icol2','',d_adens_icol2) |
---|
2381 | call iophys_ecrit('d_adens_acol2',1,'d_adens_acol2','',d_adens_acol2) |
---|
2382 | call iophys_ecrit('d_adens_bnd2',1,'d_adens_bnd2','',d_adens_bnd2) |
---|
2383 | ! |
---|
2384 | CALL iophys_ecrit('d_sigmaw2',1,'d_sigmaw2','',d_sigmaw2) |
---|
2385 | CALL iophys_ecrit('d_sig_gen2',1,'d_sig_gen2','m',d_sig_gen2) |
---|
2386 | CALL iophys_ecrit('d_sig_spread2',1,'d_sig_spread2','',d_sig_spread2) |
---|
2387 | CALL iophys_ecrit('d_sig_col2',1,'d_sig_col2','',d_sig_col2) |
---|
2388 | CALL iophys_ecrit('d_sig_death2',1,'d_sig_death2','',d_sig_death2) |
---|
2389 | CALL iophys_ecrit('d_sig_bnd2',1,'d_sig_bnd2','',d_sig_bnd2) |
---|
2390 | ! |
---|
2391 | CALL iophys_ecrit('d_asigmaw2',1,'d_asigmaw2','',d_asigmaw2) |
---|
2392 | CALL iophys_ecrit('d_asig_spread2',1,'d_asig_spread2','m',d_asig_spread2) |
---|
2393 | CALL iophys_ecrit('d_asig_aicol2',1,'d_asig_aicol2','m',d_asig_aicol2) |
---|
2394 | CALL iophys_ecrit('d_asig_iicol2',1,'d_asig_iicol2','m',d_asig_iicol2) |
---|
2395 | CALL iophys_ecrit('d_asig_death2',1,'d_asig_death2','m',d_asig_death2) |
---|
2396 | CALL iophys_ecrit('d_asig_bnd2',1,'d_asig_bnd2','m',d_asig_bnd2) |
---|
2397 | ENDIF ! (.not.phys_sub) |
---|
2398 | #endif |
---|
2399 | ENDIF ! (iflag_wk_pop_dyn >= 3) |
---|
2400 | ! Limitation de sigmaw |
---|
2401 | |
---|
2402 | ! cc nrlmd |
---|
2403 | ! DO i=1,klon |
---|
2404 | ! IF (OK_qx_qw(i)) THEN |
---|
2405 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
2406 | ! ENDIF |
---|
2407 | ! ENDDO |
---|
2408 | ! cc |
---|
2409 | |
---|
2410 | !jyg< |
---|
2411 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
2412 | DO i = 1, klon |
---|
2413 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
2414 | .NOT. ok_qx_qw(i) .OR. (wdens(i) < wdensthreshold) |
---|
2415 | !! .NOT. ok_qx_qw(i) .OR. (wdens(i) < 2.*wdensmin) |
---|
2416 | ENDDO |
---|
2417 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
2418 | DO i = 1, klon |
---|
2419 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
2420 | .NOT. ok_qx_qw(i) |
---|
2421 | ENDDO |
---|
2422 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
2423 | !>jyg |
---|
2424 | |
---|
2425 | DO k = 1, klev |
---|
2426 | DO i = 1, klon |
---|
2427 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
2428 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
2429 | IF (kill_wake(i)) THEN |
---|
2430 | ! cc |
---|
2431 | dtls(i, k) = 0. |
---|
2432 | dqls(i, k) = 0. |
---|
2433 | deltatw(i, k) = 0. |
---|
2434 | deltaqw(i, k) = 0. |
---|
2435 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
2436 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
2437 | END IF ! (kill_wake(i)) |
---|
2438 | END DO |
---|
2439 | END DO |
---|
2440 | |
---|
2441 | DO i = 1, klon |
---|
2442 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
2443 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
2444 | IF (kill_wake(i)) THEN |
---|
2445 | ktopw(i) = 0 |
---|
2446 | wape(i) = 0. |
---|
2447 | cstar(i) = 0. |
---|
2448 | !!jyg Outside subroutine "Wake" hw, wdens sigmaw and asigmaw are zero when there are no wakes |
---|
2449 | !! hw(i) = hwmin !jyg |
---|
2450 | !! sigmaw(i) = sigmad !jyg |
---|
2451 | hw(i) = 0. !jyg |
---|
2452 | fip(i) = 0. |
---|
2453 | ! |
---|
2454 | !! sigmaw(i) = 0. !jyg |
---|
2455 | sigmaw_targ = 0. |
---|
2456 | d_sig_bnd2(i) = d_sig_bnd2(i) + sigmaw_targ - sigmaw(i) |
---|
2457 | !! d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
2458 | d_sigmaw2(i) = sigmaw_targ - sigmaw_in(i) ! _in = correction jyg 20220124 |
---|
2459 | sigmaw(i) = sigmaw_targ |
---|
2460 | ! |
---|
2461 | IF (iflag_wk_pop_dyn >= 3) THEN |
---|
2462 | sigmaw_targ = 0. |
---|
2463 | d_asig_bnd2(i) = d_asig_bnd2(i) + sigmaw_targ - asigmaw(i) |
---|
2464 | !! d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
2465 | d_asigmaw2(i) = sigmaw_targ - asigmaw_in(i) ! _in = correction jyg 20220124 |
---|
2466 | asigmaw(i) = sigmaw_targ |
---|
2467 | ELSE |
---|
2468 | asigmaw(i) = 0. |
---|
2469 | ENDIF ! (iflag_wk_pop_dyn >= 3) |
---|
2470 | ! |
---|
2471 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
2472 | !! awdens(i) = 0. |
---|
2473 | !! wdens(i) = 0. |
---|
2474 | wdens_targ = 0. |
---|
2475 | d_dens_bnd2(i) = d_dens_bnd2(i) + wdens_targ - wdens(i) |
---|
2476 | !! d_wdens2(i) = wdens_targ - wdens(i) |
---|
2477 | d_wdens2(i) = wdens_targ - wdens_in(i) ! jyg 20220916 |
---|
2478 | wdens(i) = wdens_targ |
---|
2479 | wdens_targ = 0. |
---|
2480 | !!jyg: bug fix : the d_adens_bnd2 computation must be before the update of awdens. |
---|
2481 | IF (iflag_wk_pop_dyn >= 2) THEN |
---|
2482 | d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
---|
2483 | ENDIF ! (iflag_wk_pop_dyn >= 2) |
---|
2484 | !! d_awdens2(i) = wdens_targ - awdens(i) |
---|
2485 | d_awdens2(i) = wdens_targ - awdens_in(i) ! jyg 20220916 |
---|
2486 | awdens(i) = wdens_targ |
---|
2487 | !! IF (iflag_wk_pop_dyn == 2) THEN |
---|
2488 | !! d_adens_bnd2(i) = d_adens_bnd2(i) + wdens_targ - awdens(i) |
---|
2489 | !! ENDIF ! (iflag_wk_pop_dyn == 2) |
---|
2490 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
2491 | ELSE ! (kill_wake(i)) |
---|
2492 | wape(i) = wape2(i) |
---|
2493 | cstar(i) = cstar2(i) |
---|
2494 | END IF ! (kill_wake(i)) |
---|
2495 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
2496 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
2497 | END DO |
---|
2498 | |
---|
2499 | IF (prt_level>=10) THEN |
---|
2500 | PRINT *, 'wake-6, wape wape2 ktopw OK_qx_qw =', & |
---|
2501 | wape(igout),wape2(igout),ktopw(igout),OK_qx_qw(igout) |
---|
2502 | ENDIF |
---|
2503 | #ifdef IOPHYS_WK |
---|
2504 | IF (.not.phys_sub) CALL iophys_ecrit('wape_c',1,'wape_c','J/kg',wape) |
---|
2505 | #endif |
---|
2506 | |
---|
2507 | |
---|
2508 | ! ----------------------------------------------------------------- |
---|
2509 | ! Get back to tendencies per second |
---|
2510 | |
---|
2511 | DO k = 1, klev |
---|
2512 | DO i = 1, klon |
---|
2513 | |
---|
2514 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
2515 | !jyg< |
---|
2516 | !! IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
2517 | IF (ok_qx_qw(i)) THEN |
---|
2518 | !>jyg |
---|
2519 | ! cc |
---|
2520 | dtls(i, k) = dtls(i, k)/dtime |
---|
2521 | dqls(i, k) = dqls(i, k)/dtime |
---|
2522 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
2523 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
2524 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
2525 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
2526 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
2527 | END IF |
---|
2528 | END DO |
---|
2529 | END DO |
---|
2530 | !jyg< |
---|
2531 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
2532 | DO i = 1, klon |
---|
2533 | IF (ok_qx_qw(i)) THEN |
---|
2534 | d_sig_gen2(i) = d_sig_gen2(i)/dtime |
---|
2535 | d_sig_death2(i) = d_sig_death2(i)/dtime |
---|
2536 | d_sig_col2(i) = d_sig_col2(i)/dtime |
---|
2537 | d_sig_spread2(i) = d_sig_spread2(i)/dtime |
---|
2538 | d_sig_bnd2(i) = d_sig_bnd2(i)/dtime |
---|
2539 | d_sigmaw2(i) = d_sigmaw2(i)/dtime |
---|
2540 | ! |
---|
2541 | d_dens_gen2(i) = d_dens_gen2(i)/dtime |
---|
2542 | d_dens_death2(i) = d_dens_death2(i)/dtime |
---|
2543 | d_dens_col2(i) = d_dens_col2(i)/dtime |
---|
2544 | d_dens_bnd2(i) = d_dens_bnd2(i)/dtime |
---|
2545 | d_awdens2(i) = d_awdens2(i)/dtime |
---|
2546 | d_wdens2(i) = d_wdens2(i)/dtime |
---|
2547 | ENDIF |
---|
2548 | ENDDO |
---|
2549 | IF (iflag_wk_pop_dyn >= 2) THEN |
---|
2550 | DO i = 1, klon |
---|
2551 | IF (ok_qx_qw(i)) THEN |
---|
2552 | d_adens_death2(i) = d_adens_death2(i)/dtime |
---|
2553 | d_adens_icol2(i) = d_adens_icol2(i)/dtime |
---|
2554 | d_adens_acol2(i) = d_adens_acol2(i)/dtime |
---|
2555 | d_adens_bnd2(i) = d_adens_bnd2(i)/dtime |
---|
2556 | ENDIF |
---|
2557 | ENDDO |
---|
2558 | IF (iflag_wk_pop_dyn == 3) THEN |
---|
2559 | DO i = 1, klon |
---|
2560 | IF (ok_qx_qw(i)) THEN |
---|
2561 | d_asig_death2(i) = d_asig_death2(i)/dtime |
---|
2562 | d_asig_iicol2(i) = d_asig_iicol2(i)/dtime |
---|
2563 | d_asig_aicol2(i) = d_asig_aicol2(i)/dtime |
---|
2564 | d_asig_spread2(i) = d_asig_spread2(i)/dtime |
---|
2565 | d_asig_bnd2(i) = d_asig_bnd2(i)/dtime |
---|
2566 | ENDIF |
---|
2567 | ENDDO |
---|
2568 | ENDIF ! (iflag_wk_pop_dyn == 3) |
---|
2569 | ENDIF ! (iflag_wk_pop_dyn >= 2) |
---|
2570 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
2571 | |
---|
2572 | !>jyg |
---|
2573 | |
---|
2574 | RETURN |
---|
2575 | END SUBROUTINE wake |
---|
2576 | |
---|
2577 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon_loc, qe, d_qe, deltaqw, & |
---|
2578 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
2579 | ! ------------------------------------------------------ |
---|
2580 | ! Dtermination du coefficient alpha tel que les tendances |
---|
2581 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
2582 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
2583 | ! ------------------------------------------------------ |
---|
2584 | IMPLICIT NONE |
---|
2585 | |
---|
2586 | ! Input |
---|
2587 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
2588 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
2589 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
2590 | LOGICAL wk_adv(nlon) |
---|
2591 | INTEGER nl, nlon |
---|
2592 | ! Output |
---|
2593 | REAL alpha(nlon) |
---|
2594 | ! Internal variables |
---|
2595 | REAL zeta(nlon, nl) |
---|
2596 | REAL alpha1(nlon) |
---|
2597 | REAL x, a, b, c, discrim |
---|
2598 | REAL epsilon_loc |
---|
2599 | INTEGER i,k |
---|
2600 | |
---|
2601 | DO k = 1, nl |
---|
2602 | DO i = 1, nlon |
---|
2603 | IF (wk_adv(i)) THEN |
---|
2604 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
2605 | zeta(i, k) = 0. |
---|
2606 | ELSE |
---|
2607 | zeta(i, k) = 1. |
---|
2608 | END IF |
---|
2609 | END IF |
---|
2610 | END DO |
---|
2611 | DO i = 1, nlon |
---|
2612 | IF (wk_adv(i)) THEN |
---|
2613 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
2614 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i) * & |
---|
2615 | (deltaqw(i,k)+d_deltaqw(i,k)) |
---|
2616 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
2617 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
2618 | deltaqw(i, k)*d_sigmaw(i) |
---|
2619 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon_loc |
---|
2620 | discrim = b*b - 4.*a*c |
---|
2621 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
2622 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivite de ovap |
---|
2623 | alpha1(i) = 1. |
---|
2624 | ELSE |
---|
2625 | IF (x>=0.) THEN |
---|
2626 | alpha1(i) = 1. |
---|
2627 | ELSE |
---|
2628 | IF (a>0.) THEN |
---|
2629 | alpha1(i) = 0.9*min( (2.*c)/(-b+sqrt(discrim)), & |
---|
2630 | (-b+sqrt(discrim))/(2.*a) ) |
---|
2631 | ELSE IF (a==0.) THEN |
---|
2632 | alpha1(i) = 0.9*(-c/b) |
---|
2633 | ELSE |
---|
2634 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
2635 | alpha1(i) = 0.9*max( (2.*c)/(-b+sqrt(discrim)), & |
---|
2636 | (-b+sqrt(discrim))/(2.*a)) |
---|
2637 | END IF |
---|
2638 | END IF |
---|
2639 | END IF |
---|
2640 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
2641 | END IF |
---|
2642 | END DO |
---|
2643 | END DO |
---|
2644 | |
---|
2645 | RETURN |
---|
2646 | END SUBROUTINE wake_vec_modulation |
---|
2647 | |
---|
2648 | |
---|
2649 | |
---|
2650 | SUBROUTINE pkupper (klon, klev, ptop, ph, pupper, kupper) |
---|
2651 | |
---|
2652 | USE lmdz_wake_ini , ONLY : wk_pupper |
---|
2653 | IMPLICIT NONE |
---|
2654 | |
---|
2655 | INTEGER, INTENT(IN) :: klon,klev |
---|
2656 | REAL, INTENT(IN), DIMENSION (klon,klev+1) :: ph |
---|
2657 | REAL, INTENT(IN), DIMENSION (klon) :: ptop |
---|
2658 | REAL, INTENT(OUT), DIMENSION (klon) :: pupper |
---|
2659 | INTEGER, INTENT(OUT), DIMENSION (klon) :: kupper |
---|
2660 | INTEGER :: i,k |
---|
2661 | |
---|
2662 | |
---|
2663 | kupper = 0 |
---|
2664 | |
---|
2665 | IF (wk_pupper<1.) THEN |
---|
2666 | ! Choose an integration bound well above wake top |
---|
2667 | ! ----------------------------------------------------------------- |
---|
2668 | |
---|
2669 | ! Pupper = 50000. ! melting level |
---|
2670 | ! Pupper = 60000. |
---|
2671 | ! Pupper = 80000. ! essais pour case_e |
---|
2672 | DO i = 1, klon |
---|
2673 | ! pupper(i) = 0.6*ph(i, 1) |
---|
2674 | pupper(i) = wk_pupper*ph(i, 1) |
---|
2675 | pupper(i) = max(pupper(i), 45000.) |
---|
2676 | ! cc Pupper(i) = 60000. |
---|
2677 | END DO |
---|
2678 | |
---|
2679 | ELSE |
---|
2680 | |
---|
2681 | DO i=1, klon |
---|
2682 | ! pupper(i) = wk_pupper*ptop(i)+(1.-wk_pupper)*ph(i, 1) |
---|
2683 | pupper(i) = min( wk_pupper*ptop(i)+(1.-wk_pupper)*ph(i, 1) , ptop(i)-5000.) |
---|
2684 | END DO |
---|
2685 | END IF |
---|
2686 | |
---|
2687 | ! -5/ Determination de kupper |
---|
2688 | |
---|
2689 | DO k = klev, 1, -1 |
---|
2690 | DO i = 1, klon |
---|
2691 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
2692 | END DO |
---|
2693 | END DO |
---|
2694 | |
---|
2695 | ! On evite kupper = 1 et kupper = klev |
---|
2696 | DO i = 1, klon |
---|
2697 | kupper(i) = max(kupper(i), 2) |
---|
2698 | kupper(i) = min(kupper(i), klev-1) |
---|
2699 | END DO |
---|
2700 | RETURN |
---|
2701 | END SUBROUTINE pkupper |
---|
2702 | |
---|
2703 | |
---|
2704 | SUBROUTINE wake_popdyn_1(klon, klev, dtime, cstar, tau_wk_inv, wgen, wdens, awdens, sigmaw, & |
---|
2705 | wdensmin, & |
---|
2706 | dtimesub, gfl, rad_wk, f_shear, drdt_pos, & |
---|
2707 | d_awdens, d_wdens, d_sigmaw, & |
---|
2708 | iflag_wk_act, wk_adv, cin, wape, & |
---|
2709 | drdt, & |
---|
2710 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
2711 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
2712 | d_wdens_targ, d_sigmaw_targ) |
---|
2713 | |
---|
2714 | |
---|
2715 | USE lmdz_wake_ini , ONLY : wake_ini |
---|
2716 | USE lmdz_wake_ini , ONLY : prt_level,RG |
---|
2717 | USE lmdz_wake_ini , ONLY : stark, wdens_ref |
---|
2718 | USE lmdz_wake_ini , ONLY : tau_cv, rzero, aa0 |
---|
2719 | !! USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn, wdensmin |
---|
2720 | USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn |
---|
2721 | USE lmdz_wake_ini , ONLY : sigmad, cstart, sigmaw_max |
---|
2722 | |
---|
2723 | IMPLICIT NONE |
---|
2724 | |
---|
2725 | INTEGER, INTENT(IN) :: klon,klev |
---|
2726 | LOGICAL, DIMENSION (klon), INTENT(IN) :: wk_adv |
---|
2727 | REAL, INTENT(IN) :: dtime |
---|
2728 | REAL, INTENT(IN) :: dtimesub |
---|
2729 | REAL, INTENT(IN) :: wdensmin |
---|
2730 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
---|
2731 | REAL, DIMENSION (klon), INTENT(IN) :: wdens |
---|
2732 | REAL, DIMENSION (klon), INTENT(IN) :: awdens |
---|
2733 | REAL, DIMENSION (klon), INTENT(IN) :: sigmaw |
---|
2734 | REAL, DIMENSION (klon), INTENT(IN) :: cstar |
---|
2735 | REAL, DIMENSION (klon), INTENT(IN) :: cin, wape |
---|
2736 | REAL, DIMENSION (klon), INTENT(IN) :: f_shear |
---|
2737 | INTEGER, INTENT(IN) :: iflag_wk_act |
---|
2738 | |
---|
2739 | |
---|
2740 | ! |
---|
2741 | |
---|
2742 | ! Tendencies of state variables (2 is appended to the names of fields which are the cumul of fields |
---|
2743 | ! computed at each sub-timestep; e.g. d_wdens2 is the cumul of d_wdens) |
---|
2744 | REAL, DIMENSION (klon), INTENT(OUT) :: rad_wk |
---|
2745 | REAL, DIMENSION (klon), INTENT(OUT) :: gfl |
---|
2746 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw, d_awdens, d_wdens |
---|
2747 | REAL, DIMENSION (klon), INTENT(OUT) :: drdt |
---|
2748 | ! Some components of the tendencies of state variables |
---|
2749 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_bnd |
---|
2750 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_spread |
---|
2751 | REAL, DIMENSION (klon), INTENT(OUT) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
---|
2752 | REAL, INTENT(OUT) :: d_wdens_targ, d_sigmaw_targ |
---|
2753 | |
---|
2754 | |
---|
2755 | REAL :: delta_t_min |
---|
2756 | INTEGER :: nsub |
---|
2757 | INTEGER :: i, k |
---|
2758 | REAL :: wdens0 |
---|
2759 | ! IM 080208 |
---|
2760 | LOGICAL, DIMENSION (klon) :: gwake |
---|
2761 | |
---|
2762 | ! Variables liees a la dynamique de population |
---|
2763 | REAL, DIMENSION(klon) :: act |
---|
2764 | REAL, DIMENSION(klon) :: tau_wk_inv |
---|
2765 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
---|
2766 | LOGICAL, DIMENSION (klon) :: kill_wake |
---|
2767 | REAL :: drdt_pos |
---|
2768 | REAL :: tau_wk_inv_min |
---|
2769 | |
---|
2770 | |
---|
2771 | |
---|
2772 | IF (iflag_wk_act == 0) THEN |
---|
2773 | act(:) = 0. |
---|
2774 | ELSEIF (iflag_wk_act == 1) THEN |
---|
2775 | act(:) = 1. |
---|
2776 | ELSEIF (iflag_wk_act ==2) THEN |
---|
2777 | DO i = 1, klon |
---|
2778 | IF (wk_adv(i)) THEN |
---|
2779 | wape1_act(i) = abs(cin(i)) |
---|
2780 | wape2_act(i) = 2.*wape1_act(i) + 1. |
---|
2781 | act(i) = min(1., max(0., (wape(i)-wape1_act(i)) / (wape2_act(i)-wape1_act(i)) )) |
---|
2782 | ENDIF ! (wk_adv(i)) |
---|
2783 | ENDDO |
---|
2784 | ENDIF ! (iflag_wk_act ==2) |
---|
2785 | |
---|
2786 | DO i = 1, klon |
---|
2787 | IF (wk_adv(i)) THEN |
---|
2788 | rad_wk(i) = max( sqrt(sigmaw(i)/(3.14*wdens(i))) , rzero) |
---|
2789 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
2790 | END IF |
---|
2791 | END DO |
---|
2792 | |
---|
2793 | DO i = 1, klon |
---|
2794 | IF (wk_adv(i)) THEN |
---|
2795 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
---|
2796 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
---|
2797 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
---|
2798 | drdt(i) = (cstar(i) - wgen(i)*(sigmaw(i)/wdens(i)-aa0)/gfl(i)) / & |
---|
2799 | (1 + 2*f_shear(i)*(2.*sigmaw(i)-aa0*wdens(i)) - 2.*sigmaw(i)) |
---|
2800 | !! (1 - 2*sigmaw(i)*(1.-f_shear(i))) |
---|
2801 | drdt_pos=max(drdt(i),0.) |
---|
2802 | |
---|
2803 | !! d_wdens(i) = ( wgen(i)*(1.+2.*(sigmaw(i)-sigmad)) & |
---|
2804 | !! - wdens(i)*tau_wk_inv_min & |
---|
2805 | !! - 2.*gfl(i)*wdens(i)*Cstar(i) )*dtimesub |
---|
2806 | !jyg+mlt< |
---|
2807 | d_awdens(i) = ( wgen(i) - (1./tau_cv)*(awdens(i) - act(i)*wdens(i)) )*dtimesub |
---|
2808 | d_dens_gen(i) = wgen(i) |
---|
2809 | d_dens_death(i) = - (wdens(i)-awdens(i))*tau_wk_inv_min |
---|
2810 | d_dens_col(i) = -2.*wdens(i)*gfl(i)*drdt_pos |
---|
2811 | d_dens_gen(i) = d_dens_gen(i)*dtimesub |
---|
2812 | d_dens_death(i) = d_dens_death(i)*dtimesub |
---|
2813 | d_dens_col(i) = d_dens_col(i)*dtimesub |
---|
2814 | |
---|
2815 | d_wdens(i) = d_dens_gen(i)+d_dens_death(i)+d_dens_col(i) |
---|
2816 | !! d_wdens(i) = ( wgen(i) - (wdens(i)-awdens(i))*tau_wk_inv_min - & |
---|
2817 | !! 2.*wdens(i)*gfl(i)*drdt_pos )*dtimesub |
---|
2818 | !>jyg+mlt |
---|
2819 | ! |
---|
2820 | !jyg< |
---|
2821 | d_wdens_targ = max(d_wdens(i), wdensmin-wdens(i)) |
---|
2822 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
---|
2823 | d_dens_bnd(i) = d_wdens_targ - d_wdens(i) |
---|
2824 | d_wdens(i) = d_wdens_targ |
---|
2825 | !! d_wdens(i) = max(d_wdens(i), wdensmin-wdens(i)) |
---|
2826 | !>jyg |
---|
2827 | |
---|
2828 | !jyg+mlt< |
---|
2829 | !! d_sigmaw(i) = ( (1.-2*f_shear(i)*sigmaw(i))*(gfl(i)*Cstar(i)+wgen(i)*sigmad/wdens(i)) & |
---|
2830 | !! + 2.*f_shear(i)*wgen(i)*sigmaw(i)**2/wdens(i) & |
---|
2831 | !! - sigmaw(i)*tau_wk_inv_min )*dtimesub |
---|
2832 | d_sig_gen(i) = wgen(i)*aa0 |
---|
2833 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
---|
2834 | !! |
---|
2835 | |
---|
2836 | d_sig_col(i) = - 2*f_shear(i)*sigmaw(i)*gfl(i)*drdt_pos |
---|
2837 | d_sig_col(i) = - 2*f_shear(i)*(2.*sigmaw(i)-wdens(i)*aa0)*gfl(i)*drdt_pos |
---|
2838 | d_sig_spread(i) = gfl(i)*cstar(i) |
---|
2839 | d_sig_gen(i) = d_sig_gen(i)*dtimesub |
---|
2840 | d_sig_death(i) = d_sig_death(i)*dtimesub |
---|
2841 | d_sig_col(i) = d_sig_col(i)*dtimesub |
---|
2842 | d_sig_spread(i) = d_sig_spread(i)*dtimesub |
---|
2843 | d_sigmaw(i) = d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + d_sig_spread(i) |
---|
2844 | !>jyg+mlt |
---|
2845 | ! |
---|
2846 | !jyg< |
---|
2847 | d_sigmaw_targ = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
2848 | !! d_sig_bnd(i) = d_sig_bnd(i) + d_sigmaw_targ - d_sigmaw(i) |
---|
2849 | !! d_sig_bnd_provis(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
2850 | d_sig_bnd(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
2851 | d_sigmaw(i) = d_sigmaw_targ |
---|
2852 | !! d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
2853 | !>jyg |
---|
2854 | ENDIF |
---|
2855 | ENDDO |
---|
2856 | |
---|
2857 | IF (prt_level >= 10) THEN |
---|
2858 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) ', & |
---|
2859 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) |
---|
2860 | print *,'wake, wdens(1), awdens(1), act(1), d_awdens(1) ', & |
---|
2861 | wdens(1), awdens(1), act(1), d_awdens(1) |
---|
2862 | print *,'wake, wgen, -(wdens-awdens)*tau_wk_inv, -2.*wdens*gfl*drdt_pos, d_wdens ', & |
---|
2863 | wgen(1), -(wdens(1)-awdens(1))*tau_wk_inv(1), -2.*wdens(1)*gfl(1)*drdt_pos, d_wdens(1) |
---|
2864 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
---|
2865 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
---|
2866 | ENDIF |
---|
2867 | |
---|
2868 | RETURN |
---|
2869 | END SUBROUTINE wake_popdyn_1 |
---|
2870 | |
---|
2871 | SUBROUTINE wake_popdyn_2 ( klon, klev, wk_adv, dtimesub, wgen, & |
---|
2872 | wdensmin, & |
---|
2873 | sigmaw, wdens, awdens, & !! states variables |
---|
2874 | gfl, cstar, cin, wape, rad_wk, & |
---|
2875 | d_sigmaw, d_wdens, d_awdens, & !! tendences |
---|
2876 | cont_fact, & |
---|
2877 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
2878 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
2879 | d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd ) |
---|
2880 | |
---|
2881 | |
---|
2882 | |
---|
2883 | USE lmdz_wake_ini , ONLY : wake_ini |
---|
2884 | USE lmdz_wake_ini , ONLY : prt_level,RG |
---|
2885 | USE lmdz_wake_ini , ONLY : stark, wdens_ref |
---|
2886 | USE lmdz_wake_ini , ONLY : tau_cv, rzero, aa0 |
---|
2887 | !! USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn, wdensmin |
---|
2888 | USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn |
---|
2889 | USE lmdz_wake_ini , ONLY : sigmad, cstart, sigmaw_max |
---|
2890 | |
---|
2891 | IMPLICIT NONE |
---|
2892 | |
---|
2893 | INTEGER, INTENT(IN) :: klon,klev |
---|
2894 | LOGICAL, DIMENSION (klon), INTENT(IN) :: wk_adv |
---|
2895 | REAL, INTENT(IN) :: dtimesub |
---|
2896 | REAL, INTENT(IN) :: wdensmin |
---|
2897 | REAL, DIMENSION (klon), INTENT(IN) :: wgen !! B = birth rate of wakes |
---|
2898 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw !! sigma = fractional area of wakes |
---|
2899 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens !! D = number of wakes per unit area |
---|
2900 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens !! A = number of active wakes per unit area |
---|
2901 | REAL, DIMENSION (klon), INTENT(IN) :: cstar !! C* = spreading velocity of wakes |
---|
2902 | REAL, DIMENSION (klon), INTENT(IN) :: cin, wape ! RM : A Faire disparaitre |
---|
2903 | |
---|
2904 | ! |
---|
2905 | REAL, DIMENSION (klon), INTENT(OUT) :: rad_wk !! r = wake radius |
---|
2906 | REAL, DIMENSION (klon), INTENT(OUT) :: gfl !! Lg = gust front lenght per unit area |
---|
2907 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw, d_wdens, d_awdens |
---|
2908 | REAL, DIMENSION (klon), INTENT(OUT) :: cont_fact !! RM facteur de contact = 2 pi * rad * C* |
---|
2909 | ! Some components of the tendencies of state variables |
---|
2910 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd |
---|
2911 | REAL, DIMENSION (klon), INTENT(OUT) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
---|
2912 | REAL, DIMENSION (klon), INTENT(OUT) :: d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd |
---|
2913 | |
---|
2914 | |
---|
2915 | !! internal variables |
---|
2916 | |
---|
2917 | INTEGER :: i, k |
---|
2918 | REAL, DIMENSION (klon) :: tau_wk_inv !! tau = life time of wakes |
---|
2919 | REAL :: tau_wk_inv_min |
---|
2920 | REAL, DIMENSION (klon) :: tau_prime !! tau_prime = life time of actives wakes |
---|
2921 | REAL :: d_wdens_targ, d_sigmaw_targ |
---|
2922 | |
---|
2923 | |
---|
2924 | !! Equations |
---|
2925 | !! dD/dt = B - (D-A)/tau - f D^2 |
---|
2926 | !! dA/dt = B - A/tau_prime + f (D-A)^2 - f A^2 |
---|
2927 | !! dsigma/dt = B a0 - sigma/D (D-A)/tau + Lg C* - f (D-A)^2 (sigma/D-a0) |
---|
2928 | !! |
---|
2929 | !! f = 2 (B (a0-sigma/D) + Lg C*) / (2 (D-A)^2 (2 sigma/D-a0) + D (1-2 sigma)) |
---|
2930 | |
---|
2931 | |
---|
2932 | DO i = 1, klon |
---|
2933 | IF (wk_adv(i)) THEN |
---|
2934 | rad_wk(i) = max( sqrt(sigmaw(i)/(3.14*wdens(i))) , rzero) |
---|
2935 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
2936 | END IF |
---|
2937 | END DO |
---|
2938 | |
---|
2939 | |
---|
2940 | DO i = 1, klon |
---|
2941 | IF (wk_adv(i)) THEN |
---|
2942 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
---|
2943 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
---|
2944 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
---|
2945 | tau_prime(i) = tau_cv |
---|
2946 | !! cont_fact(i) = 2.*(wgen(i)*(aa0-sigmaw(i)/wdens(i)) + gfl(i)*cstar(i)) / & |
---|
2947 | !! (2.*(wdens(i)-awdens(i))**2*(2.*sigmaw(i)/wdens(i) - aa0) + wdens(i)*(1.-2.*sigmaw(i))) |
---|
2948 | !! cont_fact(i) = 2.*3.14*rad_wk(i)*cstar(i) ! bug |
---|
2949 | !! cont_fact(i) = 4.*3.14*rad_wk(i)*cstar(i) |
---|
2950 | cont_fact(i) = 2.*gfl(i)*cstar(i)/wdens(i) |
---|
2951 | |
---|
2952 | d_sig_gen(i) = wgen(i)*aa0 |
---|
2953 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
---|
2954 | d_sig_col(i) = - cont_fact(i)*(wdens(i)-awdens(i))**2*(2.*sigmaw(i)/wdens(i)-aa0) |
---|
2955 | d_sig_spread(i) = gfl(i)*cstar(i) |
---|
2956 | ! |
---|
2957 | d_sig_gen(i) = d_sig_gen(i)*dtimesub |
---|
2958 | d_sig_death(i) = d_sig_death(i)*dtimesub |
---|
2959 | d_sig_col(i) = d_sig_col(i)*dtimesub |
---|
2960 | d_sig_spread(i) = d_sig_spread(i)*dtimesub |
---|
2961 | d_sigmaw(i) = d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + d_sig_spread(i) |
---|
2962 | |
---|
2963 | |
---|
2964 | d_sigmaw_targ = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
2965 | !! d_sig_bnd(i) = d_sig_bnd(i) + d_sigmaw_targ - d_sigmaw(i) |
---|
2966 | !! d_sig_bnd_provis(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
2967 | d_sig_bnd(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
2968 | d_sigmaw(i) = d_sigmaw_targ |
---|
2969 | !! d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
2970 | |
---|
2971 | |
---|
2972 | d_dens_gen(i) = wgen(i) |
---|
2973 | d_dens_death(i) = - (wdens(i)-awdens(i))*tau_wk_inv_min |
---|
2974 | d_dens_col(i) = - cont_fact(i)*wdens(i)**2 |
---|
2975 | ! |
---|
2976 | d_dens_gen(i) = d_dens_gen(i)*dtimesub |
---|
2977 | d_dens_death(i) = d_dens_death(i)*dtimesub |
---|
2978 | d_dens_col(i) = d_dens_col(i)*dtimesub |
---|
2979 | d_wdens(i) = d_dens_gen(i) + d_dens_death(i) + d_dens_col(i) |
---|
2980 | |
---|
2981 | |
---|
2982 | d_adens_death(i) = -awdens(i)/tau_prime(i) |
---|
2983 | d_adens_icol(i) = cont_fact(i)*(wdens(i)-awdens(i))**2 |
---|
2984 | d_adens_acol(i) = - cont_fact(i)*awdens(i)**2 |
---|
2985 | ! |
---|
2986 | d_adens_death(i) = d_adens_death(i)*dtimesub |
---|
2987 | d_adens_icol(i) = d_adens_icol(i)*dtimesub |
---|
2988 | d_adens_acol(i) = d_adens_acol(i)*dtimesub |
---|
2989 | d_awdens(i) = d_dens_gen(i) + d_adens_death(i) + d_adens_icol(i) + d_adens_acol(i) |
---|
2990 | |
---|
2991 | !! |
---|
2992 | d_wdens_targ = max(d_wdens(i), wdensmin-wdens(i)) |
---|
2993 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
---|
2994 | d_dens_bnd(i) = d_wdens_targ - d_wdens(i) |
---|
2995 | d_wdens(i) = d_wdens_targ |
---|
2996 | |
---|
2997 | d_wdens_targ = min(max(d_awdens(i),-awdens(i)), wdens(i)-awdens(i)) |
---|
2998 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
---|
2999 | d_adens_bnd(i) = d_wdens_targ - d_awdens(i) |
---|
3000 | d_awdens(i) = d_wdens_targ |
---|
3001 | |
---|
3002 | |
---|
3003 | |
---|
3004 | ENDIF |
---|
3005 | ENDDO |
---|
3006 | |
---|
3007 | IF (prt_level >= 10) THEN |
---|
3008 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), cont_fact(1) ', & |
---|
3009 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), cont_fact(1) |
---|
3010 | print *,'wake, wdens(1), awdens(1), d_awdens(1) ', & |
---|
3011 | wdens(1), awdens(1), d_awdens(1) |
---|
3012 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
---|
3013 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
---|
3014 | ENDIF |
---|
3015 | sigmaw=sigmaw+d_sigmaw |
---|
3016 | wdens=wdens+d_wdens |
---|
3017 | awdens=awdens+d_awdens |
---|
3018 | |
---|
3019 | RETURN |
---|
3020 | END SUBROUTINE wake_popdyn_2 |
---|
3021 | |
---|
3022 | SUBROUTINE wake_popdyn_3 ( klon, klev, phys_sub, wk_adv, dtimesub, wgen, & |
---|
3023 | wdensmin, & |
---|
3024 | sigmaw, asigmaw, wdens, awdens, & !! state variables |
---|
3025 | gfl, agfl, cstar, cin, wape, & |
---|
3026 | rad_wk, arad_wk, irad_wk, & |
---|
3027 | d_sigmaw, d_asigmaw, d_wdens, d_awdens, & !! tendencies |
---|
3028 | d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd, & |
---|
3029 | d_asig_death, d_asig_aicol, d_asig_iicol, d_asig_spread, d_asig_bnd, & |
---|
3030 | d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd, & |
---|
3031 | d_adens_death, d_adens_icol, d_adens_acol, d_adens_bnd ) |
---|
3032 | |
---|
3033 | |
---|
3034 | |
---|
3035 | USE lmdz_wake_ini , ONLY : wake_ini |
---|
3036 | USE lmdz_wake_ini , ONLY : prt_level,RG |
---|
3037 | USE lmdz_wake_ini , ONLY : stark, wdens_ref |
---|
3038 | USE lmdz_wake_ini , ONLY : tau_cv, rzero, aa0 |
---|
3039 | !! USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn, wdensmin |
---|
3040 | USE lmdz_wake_ini , ONLY : iflag_wk_pop_dyn |
---|
3041 | USE lmdz_wake_ini , ONLY : sigmad, cstart, sigmaw_max |
---|
3042 | USE lmdz_wake_ini , ONLY : smallestreal |
---|
3043 | |
---|
3044 | IMPLICIT NONE |
---|
3045 | |
---|
3046 | INTEGER, INTENT(IN) :: klon,klev |
---|
3047 | LOGICAL, INTENT(IN) :: phys_sub |
---|
3048 | LOGICAL, DIMENSION (klon), INTENT(IN) :: wk_adv |
---|
3049 | REAL, INTENT(IN) :: dtimesub |
---|
3050 | REAL, INTENT(IN) :: wdensmin |
---|
3051 | REAL, DIMENSION (klon), INTENT(IN) :: wgen !! B = birth rate of wakes |
---|
3052 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw !! sigma = fractional area of wakes |
---|
3053 | REAL, DIMENSION (klon), INTENT(INOUT) :: asigmaw !! sigma = fractional area of active wakes |
---|
3054 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens !! D = number of wakes per unit area |
---|
3055 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens !! A = number of active wakes per unit area |
---|
3056 | REAL, DIMENSION (klon), INTENT(IN) :: cstar !! C* = spreading velocity of wakes |
---|
3057 | REAL, DIMENSION (klon), INTENT(IN) :: cin, wape ! RM : A Faire disparaitre |
---|
3058 | |
---|
3059 | ! |
---|
3060 | REAL, DIMENSION (klon), INTENT(OUT) :: rad_wk !! r = mean wake radius |
---|
3061 | REAL, DIMENSION (klon), INTENT(OUT) :: arad_wk !! r_A = wake radius of active wakes |
---|
3062 | REAL, DIMENSION (klon), INTENT(OUT) :: irad_wk !! r_I = wake radius of inactive wakes |
---|
3063 | REAL, DIMENSION (klon), INTENT(OUT) :: gfl !! Lg = gust front length per unit area |
---|
3064 | REAL, DIMENSION (klon), INTENT(OUT) :: agfl !! LgA = gust front length of active wakes |
---|
3065 | !! per unit area |
---|
3066 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw, d_asigmaw, d_wdens, d_awdens |
---|
3067 | ! Some components of the tendencies of state variables |
---|
3068 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sig_gen, d_sig_death, d_sig_col, d_sig_spread, d_sig_bnd |
---|
3069 | REAL, DIMENSION (klon), INTENT(OUT) :: d_asig_death, d_asig_aicol, d_asig_iicol, d_asig_spread, d_asig_bnd |
---|
3070 | REAL, DIMENSION (klon), INTENT(OUT) :: d_dens_gen, d_dens_death, d_dens_col, d_dens_bnd |
---|
3071 | REAL, DIMENSION (klon), INTENT(OUT) :: d_adens_death, d_adens_acol, d_adens_icol, d_adens_bnd |
---|
3072 | |
---|
3073 | |
---|
3074 | !! internal variables |
---|
3075 | |
---|
3076 | INTEGER :: i, k |
---|
3077 | REAL, DIMENSION (klon) :: iwdens, isigmaw !! inactive wake density and fractional area |
---|
3078 | !! REAL, DIMENSION (klon) :: d_arad, d_irad |
---|
3079 | REAL, DIMENSION (klon) :: igfl !! LgI = gust front length of inactive wakes |
---|
3080 | !! per unit area |
---|
3081 | REAL, DIMENSION (klon) :: s_wk !! mean area of individual wakes |
---|
3082 | REAL, DIMENSION (klon) :: as_wk !! mean area of individual active wakes |
---|
3083 | REAL, DIMENSION (klon) :: is_wk !! mean area of individual inactive wakes |
---|
3084 | REAL, DIMENSION (klon) :: tau_wk_inv !! tau = life time of wakes |
---|
3085 | REAL :: tau_wk_inv_min |
---|
3086 | REAL, DIMENSION (klon) :: tau_prime !! tau_prime = life time of actives wakes |
---|
3087 | REAL :: d_wdens_targ, d_sigmaw_targ |
---|
3088 | |
---|
3089 | |
---|
3090 | !! Equations |
---|
3091 | !! --------- |
---|
3092 | !! Gust fronts: |
---|
3093 | !! Lg_A = 2 pi r_A A |
---|
3094 | !! Lg_I = 2 pi r_I I |
---|
3095 | !! Lg = 2 pi r D |
---|
3096 | !! |
---|
3097 | !! Areas: |
---|
3098 | !! s = pi r^2 |
---|
3099 | !! s_A = pi r_A^2 |
---|
3100 | !! s_I = pi r_I^2 |
---|
3101 | !! |
---|
3102 | !! Life expectancy: |
---|
3103 | !! tau_I = 3 C* ((C*/C*t)^3/2 - 1) / r_I |
---|
3104 | !! |
---|
3105 | !! Time deratives: |
---|
3106 | !! dD/dt = B - (D-A)/tau_I - 2 Lg C* D |
---|
3107 | !! dA/dt = B - A/tau_A + 2 Lg_I C* (D-A) - 2 Lg_A C* A |
---|
3108 | !! dsigma/dt = B a0 - sigma_I/tau_I + Lg C* - 2 Lg_I C* (D-A) (2 s_I - a0) |
---|
3109 | !! dsigma_A/dt = B a0 - sigma_A/tau_A + Lg_A C* + (Lg_A I + Lg_I A) C* s_I + 2 Lg_I C* I a0 |
---|
3110 | !! |
---|
3111 | |
---|
3112 | DO i = 1, klon |
---|
3113 | IF (wk_adv(i)) THEN |
---|
3114 | iwdens(i) = wdens(i) - awdens(i) |
---|
3115 | isigmaw(i) = sigmaw(i) - asigmaw(i) |
---|
3116 | ! |
---|
3117 | arad_wk(i) = max( sqrt(asigmaw(i)/(3.14*awdens(i))) , rzero) |
---|
3118 | irad_wk(i) = max( sqrt((sigmaw(i)-asigmaw(i))/ & |
---|
3119 | (3.14*max(smallestreal,(wdens(i)-awdens(i))))), rzero) |
---|
3120 | rad_wk(i) = (awdens(i)*arad_wk(i)+(wdens(i)-awdens(i))*irad_wk(i))/wdens(i) |
---|
3121 | ! |
---|
3122 | s_wk(i) = 3.14*rad_wk(i)**2 |
---|
3123 | as_wk(i) = 3.14*arad_wk(i)**2 |
---|
3124 | is_wk(i) = 3.14*irad_wk(i)**2 |
---|
3125 | ! |
---|
3126 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
3127 | agfl(i) = 2.*sqrt(3.14*awdens(i)*asigmaw(i)) |
---|
3128 | igfl(i) = gfl(i) - agfl(i) |
---|
3129 | ENDIF |
---|
3130 | ENDDO |
---|
3131 | |
---|
3132 | |
---|
3133 | DO i = 1, klon |
---|
3134 | IF (wk_adv(i)) THEN |
---|
3135 | tau_wk_inv(i) = max( (3.*cstar(i))/(irad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
---|
3136 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
---|
3137 | tau_prime(i) = tau_cv |
---|
3138 | |
---|
3139 | d_sig_gen(i) = wgen(i)*aa0 |
---|
3140 | d_sig_death(i) = - isigmaw(i)*tau_wk_inv_min |
---|
3141 | d_sig_col(i) = - 2.*igfl(i)*cstar(i)*iwdens(i)*(2.*is_wk(i)-aa0) |
---|
3142 | d_sig_spread(i) = gfl(i)*cstar(i) |
---|
3143 | ! |
---|
3144 | d_sig_gen(i) = d_sig_gen(i)*dtimesub |
---|
3145 | d_sig_death(i) = d_sig_death(i)*dtimesub |
---|
3146 | d_sig_col(i) = d_sig_col(i)*dtimesub |
---|
3147 | d_sig_spread(i) = d_sig_spread(i)*dtimesub |
---|
3148 | d_sigmaw(i) = d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + d_sig_spread(i) |
---|
3149 | #ifdef IOPHYS_WK |
---|
3150 | IF (phys_sub) call iophys_ecrit('d_sigmaw0',1,'d_sigmaw0','',d_sigmaw) |
---|
3151 | #endif |
---|
3152 | |
---|
3153 | |
---|
3154 | d_sigmaw_targ = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
3155 | !! d_sig_bnd(i) = d_sig_bnd(i) + d_sigmaw_targ - d_sigmaw(i) |
---|
3156 | !! d_sig_bnd_provis(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
3157 | d_sig_bnd(i) = d_sigmaw_targ - d_sigmaw(i) |
---|
3158 | d_sigmaw(i) = d_sigmaw_targ |
---|
3159 | !! d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
3160 | #ifdef IOPHYS_WK |
---|
3161 | IF (phys_sub) THEN |
---|
3162 | call iophys_ecrit('tauwk_inv',1,'tau_wk_inv_min','',tau_wk_inv_min) |
---|
3163 | call iophys_ecrit('d_sigmaw',1,'d_sigmaw','',d_sigmaw) |
---|
3164 | call iophys_ecrit('d_sig_gen',1,'d_sig_gen','',d_sig_gen) |
---|
3165 | call iophys_ecrit('d_sig_death',1,'d_sig_death','',d_sig_death) |
---|
3166 | call iophys_ecrit('d_sig_col',1,'d_sig_col','',d_sig_col) |
---|
3167 | call iophys_ecrit('d_sig_spread',1,'d_sig_spread','',d_sig_spread) |
---|
3168 | call iophys_ecrit('d_sig_bnd',1,'d_sig_bnd','',d_sig_bnd) |
---|
3169 | ENDIF |
---|
3170 | #endif |
---|
3171 | d_asig_death(i) = - asigmaw(i)/tau_prime(i) |
---|
3172 | d_asig_aicol(i) = (agfl(i)*iwdens(i) + igfl(i)*awdens(i))*cstar(i)*is_wk(i) |
---|
3173 | d_asig_iicol(i) = 2.*igfl(i)*cstar(i)*iwdens(i)*aa0 |
---|
3174 | d_asig_spread(i) = agfl(i)*cstar(i) |
---|
3175 | ! |
---|
3176 | d_asig_death(i) = d_asig_death(i)*dtimesub |
---|
3177 | d_asig_aicol(i) = d_asig_aicol(i)*dtimesub |
---|
3178 | d_asig_iicol(i) = d_asig_iicol(i)*dtimesub |
---|
3179 | d_asig_spread(i) = d_asig_spread(i)*dtimesub |
---|
3180 | d_asigmaw(i) = d_sig_gen(i) + d_asig_death(i) + d_asig_aicol(i) + d_asig_iicol(i) + d_asig_spread(i) |
---|
3181 | #ifdef IOPHYS_WK |
---|
3182 | IF (phys_sub) call iophys_ecrit('d_asigmaw0',1,'d_asigmaw0','',d_asigmaw) |
---|
3183 | #endif |
---|
3184 | |
---|
3185 | d_sigmaw_targ = min(max(d_asigmaw(i),-asigmaw(i)), sigmaw(i)-asigmaw(i)) |
---|
3186 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_sigmaw_targ - d_sigmaw(i) |
---|
3187 | d_asig_bnd(i) = d_sigmaw_targ - d_asigmaw(i) |
---|
3188 | d_asigmaw(i) = d_sigmaw_targ |
---|
3189 | #ifdef IOPHYS_WK |
---|
3190 | IF (phys_sub) THEN |
---|
3191 | call iophys_ecrit('d_asigmaw',1,'d_asigmaw','',d_asigmaw) |
---|
3192 | call iophys_ecrit('d_asig_death',1,'d_asig_death','',d_asig_death) |
---|
3193 | call iophys_ecrit('d_asig_aicol',1,'d_asig_aicol','',d_asig_aicol) |
---|
3194 | call iophys_ecrit('d_asig_iicol',1,'d_asig_iicol','',d_asig_iicol) |
---|
3195 | call iophys_ecrit('d_asig_spread',1,'d_asig_spread','',d_asig_spread) |
---|
3196 | call iophys_ecrit('d_asig_bnd',1,'d_asig_bnd','',d_asig_bnd) |
---|
3197 | ENDIF |
---|
3198 | #endif |
---|
3199 | d_dens_gen(i) = wgen(i) |
---|
3200 | d_dens_death(i) = - iwdens(i)*tau_wk_inv_min |
---|
3201 | d_dens_col(i) = - 2.*gfl(i)*cstar(i)*wdens(i) |
---|
3202 | ! |
---|
3203 | d_dens_gen(i) = d_dens_gen(i)*dtimesub |
---|
3204 | d_dens_death(i) = d_dens_death(i)*dtimesub |
---|
3205 | d_dens_col(i) = d_dens_col(i)*dtimesub |
---|
3206 | d_wdens(i) = d_dens_gen(i) + d_dens_death(i) + d_dens_col(i) |
---|
3207 | !! |
---|
3208 | d_wdens_targ = max(d_wdens(i), wdensmin-wdens(i)) |
---|
3209 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
---|
3210 | d_dens_bnd(i) = d_wdens_targ - d_wdens(i) |
---|
3211 | d_wdens(i) = d_wdens_targ |
---|
3212 | #ifdef IOPHYS_WK |
---|
3213 | IF (phys_sub) THEN |
---|
3214 | call iophys_ecrit('d_wdens',1,'d_wdens','',d_wdens) |
---|
3215 | call iophys_ecrit('d_dens_gen',1,'d_dens_gen','',d_dens_gen) |
---|
3216 | call iophys_ecrit('d_dens_death',1,'d_dens_death','',d_dens_death) |
---|
3217 | call iophys_ecrit('d_dens_col',1,'d_dens_col','',d_dens_col) |
---|
3218 | ENDIF |
---|
3219 | #endif |
---|
3220 | |
---|
3221 | d_adens_death(i) = -awdens(i)/tau_prime(i) |
---|
3222 | d_adens_icol(i) = 2.*igfl(i)*cstar(i)*iwdens(i) |
---|
3223 | d_adens_acol(i) = - 2.*agfl(i)*cstar(i)*awdens(i) |
---|
3224 | ! |
---|
3225 | d_adens_death(i) = d_adens_death(i)*dtimesub |
---|
3226 | d_adens_icol(i) = d_adens_icol(i)*dtimesub |
---|
3227 | d_adens_acol(i) = d_adens_acol(i)*dtimesub |
---|
3228 | d_awdens(i) = d_dens_gen(i) + d_adens_death(i) + d_adens_icol(i) + d_adens_acol(i) |
---|
3229 | #ifdef IOPHYS_WK |
---|
3230 | IF (phys_sub) THEN |
---|
3231 | call iophys_ecrit('d_awdens',1,'d_awdens','',d_awdens) |
---|
3232 | call iophys_ecrit('d_adens_death',1,'d_adens_death','',d_adens_death) |
---|
3233 | call iophys_ecrit('d_adens_icol',1,'d_adens_icol','',d_adens_icol) |
---|
3234 | call iophys_ecrit('d_adens_acol',1,'d_adens_acol','',d_adens_acol) |
---|
3235 | ENDIF |
---|
3236 | #endif |
---|
3237 | d_wdens_targ = min(max(d_awdens(i),-awdens(i)), wdens(i)-awdens(i)) |
---|
3238 | !! d_dens_bnd(i) = d_dens_bnd(i) + d_wdens_targ - d_wdens(i) |
---|
3239 | d_adens_bnd(i) = d_wdens_targ - d_awdens(i) |
---|
3240 | d_awdens(i) = d_wdens_targ |
---|
3241 | |
---|
3242 | !! d_irad(i) = (d_sigmaw(i)-d_asigmaw(i)-isigmaw(i)*(d_wdens(i)-awdens(i))/iwdens(i)) / & |
---|
3243 | !! max(smallestreal,(2.*3.14*iwdens(i)*irad_wk(i))) |
---|
3244 | !! d_arad(i) = (d_asigmaw(i)-asigmaw(i)*d_awdens(i)/awdens(i)) / & |
---|
3245 | !! max(smallestreal,(2.*3.14*awdens(i)*arad_wk(i))) |
---|
3246 | !! d_irad(i) = d_irad(i)*dtimesub |
---|
3247 | !! d_arad(i) = d_arad(i)*dtimesub |
---|
3248 | !! call iophys_ecrit('d_irad',1,'d_irad','m',d_irad) |
---|
3249 | !! call iophys_ecrit('d_airad',1,'d_arad','m',d_arad) |
---|
3250 | !! |
---|
3251 | ENDIF |
---|
3252 | ENDDO |
---|
3253 | |
---|
3254 | IF (prt_level >= 10) THEN |
---|
3255 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), gfl(1) ', & |
---|
3256 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), gfl(1) |
---|
3257 | print *,'wake, wdens(1), awdens(1), d_awdens(1) ', & |
---|
3258 | wdens(1), awdens(1), d_awdens(1) |
---|
3259 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
---|
3260 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
---|
3261 | ENDIF |
---|
3262 | sigmaw=sigmaw+d_sigmaw |
---|
3263 | asigmaw=asigmaw+d_asigmaw |
---|
3264 | wdens=wdens+d_wdens |
---|
3265 | awdens=awdens+d_awdens |
---|
3266 | |
---|
3267 | RETURN |
---|
3268 | END SUBROUTINE wake_popdyn_3 |
---|
3269 | |
---|
3270 | END MODULE lmdz_wake |
---|