[4590] | 1 | MODULE lmdz_thermcell_old |
---|
| 2 | CONTAINS |
---|
| 3 | |
---|
[1992] | 4 | SUBROUTINE thermcell_2002(ngrid, nlay, ptimestep, iflag_thermals, pplay, & |
---|
| 5 | pplev, pphi, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, & |
---|
| 6 | fraca, wa_moy, r_aspect, l_mix, w2di, tho) |
---|
[878] | 7 | |
---|
[5285] | 8 | USE yomcst_mod_h |
---|
[1992] | 9 | USE dimphy |
---|
| 10 | USE write_field_phy |
---|
[4590] | 11 | USE lmdz_thermcell_dv2, ONLY : thermcell_dv2 |
---|
| 12 | USE lmdz_thermcell_dq, ONLY : thermcell_dq |
---|
[1992] | 13 | IMPLICIT NONE |
---|
[878] | 14 | |
---|
[1992] | 15 | ! ======================================================================= |
---|
[878] | 16 | |
---|
[1992] | 17 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 18 | ! de "thermiques" explicitement representes |
---|
[878] | 19 | |
---|
[5274] | 20 | ! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
---|
[878] | 21 | |
---|
[5274] | 22 | ! le thermique est suppos� homog�ne et dissip� par m�lange avec |
---|
| 23 | ! son environnement. la longueur l_mix contr�le l'efficacit� du |
---|
| 24 | ! m�lange |
---|
[878] | 25 | |
---|
[5274] | 26 | ! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
---|
[1992] | 27 | ! en compte: |
---|
| 28 | ! 1. un flux de masse montant |
---|
| 29 | ! 2. un flux de masse descendant |
---|
| 30 | ! 3. un entrainement |
---|
| 31 | ! 4. un detrainement |
---|
[878] | 32 | |
---|
[1992] | 33 | ! ======================================================================= |
---|
[878] | 34 | |
---|
[1992] | 35 | ! ----------------------------------------------------------------------- |
---|
| 36 | ! declarations: |
---|
| 37 | ! ------------- |
---|
[878] | 38 | |
---|
[1943] | 39 | |
---|
[1992] | 40 | ! arguments: |
---|
| 41 | ! ---------- |
---|
[878] | 42 | |
---|
[1992] | 43 | INTEGER ngrid, nlay, w2di, iflag_thermals |
---|
| 44 | REAL tho |
---|
| 45 | REAL ptimestep, l_mix, r_aspect |
---|
| 46 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 47 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 48 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 49 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 50 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 51 | REAL pphi(ngrid, nlay) |
---|
| 52 | REAL fraca(ngrid, nlay+1), zw2(ngrid, nlay+1) |
---|
[878] | 53 | |
---|
[5501] | 54 | INTEGER :: idetr, lev_out |
---|
[878] | 55 | |
---|
[1992] | 56 | ! local: |
---|
| 57 | ! ------ |
---|
[878] | 58 | |
---|
[5501] | 59 | INTEGER :: dvdq, flagdq, dqimpl |
---|
| 60 | LOGICAL :: debut |
---|
[878] | 61 | |
---|
[5501] | 62 | |
---|
[1992] | 63 | INTEGER ig, k, l, lmax(klon, klev+1), lmaxa(klon), lmix(klon) |
---|
| 64 | REAL zmax(klon), zw, zz, ztva(klon, klev), zzz |
---|
[878] | 65 | |
---|
[1992] | 66 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 67 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 68 | REAL ztv(klon, klev) |
---|
| 69 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 70 | REAL wh(klon, klev+1) |
---|
| 71 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 72 | REAL zla(klon, klev+1) |
---|
| 73 | REAL zwa(klon, klev+1) |
---|
| 74 | REAL zld(klon, klev+1) |
---|
| 75 | REAL zwd(klon, klev+1) |
---|
| 76 | REAL zsortie(klon, klev) |
---|
| 77 | REAL zva(klon, klev) |
---|
| 78 | REAL zua(klon, klev) |
---|
| 79 | REAL zoa(klon, klev) |
---|
[878] | 80 | |
---|
[1992] | 81 | REAL zha(klon, klev) |
---|
| 82 | REAL wa_moy(klon, klev+1) |
---|
| 83 | REAL fracc(klon, klev+1) |
---|
| 84 | REAL zf, zf2 |
---|
| 85 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 86 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 87 | |
---|
[1992] | 88 | REAL count_time |
---|
[1403] | 89 | |
---|
[1992] | 90 | LOGICAL sorties |
---|
| 91 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 92 | REAL zpspsk(klon, klev) |
---|
[878] | 93 | |
---|
[1992] | 94 | REAL wmax(klon, klev), wmaxa(klon) |
---|
[878] | 95 | |
---|
[1992] | 96 | REAL wa(klon, klev, klev+1) |
---|
| 97 | REAL wd(klon, klev+1) |
---|
| 98 | REAL larg_part(klon, klev, klev+1) |
---|
| 99 | REAL fracd(klon, klev+1) |
---|
| 100 | REAL xxx(klon, klev+1) |
---|
| 101 | REAL larg_cons(klon, klev+1) |
---|
| 102 | REAL larg_detr(klon, klev+1) |
---|
| 103 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 104 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 105 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 106 | REAL fmc(klon, klev+1) |
---|
[987] | 107 | |
---|
[1992] | 108 | CHARACTER (LEN=2) :: str2 |
---|
| 109 | CHARACTER (LEN=10) :: str10 |
---|
[878] | 110 | |
---|
[1992] | 111 | CHARACTER (LEN=20) :: modname = 'thermcell2002' |
---|
| 112 | CHARACTER (LEN=80) :: abort_message |
---|
[878] | 113 | |
---|
[1992] | 114 | LOGICAL vtest(klon), down |
---|
[878] | 115 | |
---|
[1992] | 116 | EXTERNAL scopy |
---|
[878] | 117 | |
---|
[5501] | 118 | INTEGER ll |
---|
[878] | 119 | |
---|
[1943] | 120 | |
---|
[1992] | 121 | ! ----------------------------------------------------------------------- |
---|
| 122 | ! initialisation: |
---|
| 123 | ! --------------- |
---|
[878] | 124 | |
---|
[5501] | 125 | idetr=3 |
---|
| 126 | lev_out=1 |
---|
| 127 | |
---|
[1992] | 128 | sorties = .TRUE. |
---|
| 129 | IF (ngrid/=klon) THEN |
---|
| 130 | PRINT * |
---|
| 131 | PRINT *, 'STOP dans convadj' |
---|
| 132 | PRINT *, 'ngrid =', ngrid |
---|
| 133 | PRINT *, 'klon =', klon |
---|
| 134 | END IF |
---|
[878] | 135 | |
---|
[1992] | 136 | ! ----------------------------------------------------------------------- |
---|
| 137 | ! incrementation eventuelle de tendances precedentes: |
---|
| 138 | ! --------------------------------------------------- |
---|
[878] | 139 | |
---|
[1992] | 140 | ! print*,'0 OK convect8' |
---|
[878] | 141 | |
---|
[1992] | 142 | DO l = 1, nlay |
---|
| 143 | DO ig = 1, ngrid |
---|
| 144 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 145 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 146 | zu(ig, l) = pu(ig, l) |
---|
| 147 | zv(ig, l) = pv(ig, l) |
---|
| 148 | zo(ig, l) = po(ig, l) |
---|
| 149 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 150 | END DO |
---|
| 151 | END DO |
---|
[878] | 152 | |
---|
[1992] | 153 | ! print*,'1 OK convect8' |
---|
| 154 | ! -------------------- |
---|
[878] | 155 | |
---|
| 156 | |
---|
[1992] | 157 | ! + + + + + + + + + + + |
---|
[878] | 158 | |
---|
| 159 | |
---|
[1992] | 160 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 161 | ! wh,wt,wo ... |
---|
[878] | 162 | |
---|
[1992] | 163 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[878] | 164 | |
---|
| 165 | |
---|
[1992] | 166 | ! -------------------- zlev(1) |
---|
| 167 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[878] | 168 | |
---|
| 169 | |
---|
[1943] | 170 | |
---|
[1992] | 171 | ! ----------------------------------------------------------------------- |
---|
| 172 | ! Calcul des altitudes des couches |
---|
| 173 | ! ----------------------------------------------------------------------- |
---|
[878] | 174 | |
---|
[5501] | 175 | flagdq = (iflag_thermals-1000)/100 |
---|
| 176 | dvdq = (iflag_thermals-(1000+flagdq*100))/10 |
---|
| 177 | IF (flagdq==2) dqimpl = -1 |
---|
| 178 | IF (flagdq==3) dqimpl = 1 |
---|
| 179 | !PRINT *, 'TH flag th ', iflag_thermals, flagdq, dvdq, dqimpl |
---|
[878] | 180 | |
---|
[1992] | 181 | DO l = 2, nlay |
---|
| 182 | DO ig = 1, ngrid |
---|
| 183 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 184 | END DO |
---|
| 185 | END DO |
---|
| 186 | DO ig = 1, ngrid |
---|
| 187 | zlev(ig, 1) = 0. |
---|
| 188 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 189 | END DO |
---|
| 190 | DO l = 1, nlay |
---|
| 191 | DO ig = 1, ngrid |
---|
| 192 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 193 | END DO |
---|
| 194 | END DO |
---|
[878] | 195 | |
---|
[1992] | 196 | ! print*,'2 OK convect8' |
---|
| 197 | ! ----------------------------------------------------------------------- |
---|
| 198 | ! Calcul des densites |
---|
| 199 | ! ----------------------------------------------------------------------- |
---|
[878] | 200 | |
---|
[1992] | 201 | DO l = 1, nlay |
---|
| 202 | DO ig = 1, ngrid |
---|
| 203 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 204 | END DO |
---|
| 205 | END DO |
---|
[878] | 206 | |
---|
[1992] | 207 | DO l = 2, nlay |
---|
| 208 | DO ig = 1, ngrid |
---|
| 209 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 210 | END DO |
---|
| 211 | END DO |
---|
[878] | 212 | |
---|
[1992] | 213 | DO k = 1, nlay |
---|
| 214 | DO l = 1, nlay + 1 |
---|
| 215 | DO ig = 1, ngrid |
---|
| 216 | wa(ig, k, l) = 0. |
---|
| 217 | END DO |
---|
| 218 | END DO |
---|
| 219 | END DO |
---|
[878] | 220 | |
---|
[1992] | 221 | ! print*,'3 OK convect8' |
---|
| 222 | ! ------------------------------------------------------------------ |
---|
| 223 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 224 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
[878] | 225 | |
---|
[1992] | 226 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 227 | ! w2 est stoke dans wa |
---|
[878] | 228 | |
---|
[1992] | 229 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 230 | ! independants par couches que pour calculer l'entrainement |
---|
| 231 | ! a la base et la hauteur max de l'ascendance. |
---|
[878] | 232 | |
---|
[1992] | 233 | ! Indicages: |
---|
| 234 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 235 | ! une vitesse wa(k,l). |
---|
[878] | 236 | |
---|
[1992] | 237 | ! -------------------- |
---|
[878] | 238 | |
---|
[1992] | 239 | ! + + + + + + + + + + |
---|
[878] | 240 | |
---|
[1992] | 241 | ! wa(k,l) ---- -------------------- l |
---|
| 242 | ! /\ |
---|
| 243 | ! /||\ + + + + + + + + + + |
---|
| 244 | ! || |
---|
| 245 | ! || -------------------- |
---|
| 246 | ! || |
---|
| 247 | ! || + + + + + + + + + + |
---|
| 248 | ! || |
---|
| 249 | ! || -------------------- |
---|
| 250 | ! ||__ |
---|
| 251 | ! |___ + + + + + + + + + + k |
---|
[878] | 252 | |
---|
[1992] | 253 | ! -------------------- |
---|
[878] | 254 | |
---|
| 255 | |
---|
| 256 | |
---|
[1992] | 257 | ! ------------------------------------------------------------------ |
---|
[878] | 258 | |
---|
| 259 | |
---|
[1992] | 260 | DO k = 1, nlay - 1 |
---|
| 261 | DO ig = 1, ngrid |
---|
| 262 | wa(ig, k, k) = 0. |
---|
| 263 | wa(ig, k, k+1) = 2.*rg*(ztv(ig,k)-ztv(ig,k+1))/ztv(ig, k+1)* & |
---|
| 264 | (zlev(ig,k+1)-zlev(ig,k)) |
---|
| 265 | END DO |
---|
| 266 | DO l = k + 1, nlay - 1 |
---|
| 267 | DO ig = 1, ngrid |
---|
| 268 | wa(ig, k, l+1) = wa(ig, k, l) + 2.*rg*(ztv(ig,k)-ztv(ig,l))/ztv(ig, l & |
---|
| 269 | )*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 270 | END DO |
---|
| 271 | END DO |
---|
| 272 | DO ig = 1, ngrid |
---|
| 273 | wa(ig, k, nlay+1) = 0. |
---|
| 274 | END DO |
---|
| 275 | END DO |
---|
[878] | 276 | |
---|
[1992] | 277 | ! print*,'4 OK convect8' |
---|
| 278 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 279 | DO k = 1, nlay - 1 |
---|
| 280 | DO ig = 1, ngrid |
---|
| 281 | lmax(ig, k) = k |
---|
| 282 | END DO |
---|
| 283 | DO l = nlay, k + 1, -1 |
---|
| 284 | DO ig = 1, ngrid |
---|
| 285 | IF (wa(ig,k,l)<=1.E-10) lmax(ig, k) = l - 1 |
---|
| 286 | END DO |
---|
| 287 | END DO |
---|
| 288 | END DO |
---|
[878] | 289 | |
---|
[1992] | 290 | ! print*,'5 OK convect8' |
---|
| 291 | ! Calcule du w max du thermique |
---|
| 292 | DO k = 1, nlay |
---|
| 293 | DO ig = 1, ngrid |
---|
| 294 | wmax(ig, k) = 0. |
---|
| 295 | END DO |
---|
| 296 | END DO |
---|
[878] | 297 | |
---|
[1992] | 298 | DO k = 1, nlay - 1 |
---|
| 299 | DO l = k, nlay |
---|
| 300 | DO ig = 1, ngrid |
---|
| 301 | IF (l<=lmax(ig,k)) THEN |
---|
| 302 | wa(ig, k, l) = sqrt(wa(ig,k,l)) |
---|
| 303 | wmax(ig, k) = max(wmax(ig,k), wa(ig,k,l)) |
---|
| 304 | ELSE |
---|
| 305 | wa(ig, k, l) = 0. |
---|
| 306 | END IF |
---|
| 307 | END DO |
---|
| 308 | END DO |
---|
| 309 | END DO |
---|
[878] | 310 | |
---|
[1992] | 311 | DO k = 1, nlay - 1 |
---|
| 312 | DO ig = 1, ngrid |
---|
| 313 | pu_therm(ig, k) = sqrt(wmax(ig,k)) |
---|
| 314 | pv_therm(ig, k) = sqrt(wmax(ig,k)) |
---|
| 315 | END DO |
---|
| 316 | END DO |
---|
[878] | 317 | |
---|
[1992] | 318 | ! print*,'6 OK convect8' |
---|
| 319 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 320 | DO ig = 1, ngrid |
---|
| 321 | zmax(ig) = 500. |
---|
| 322 | END DO |
---|
| 323 | ! print*,'LMAX LMAX LMAX ' |
---|
| 324 | DO k = 1, nlay - 1 |
---|
| 325 | DO ig = 1, ngrid |
---|
| 326 | zmax(ig) = max(zmax(ig), zlev(ig,lmax(ig,k))-zlev(ig,k)) |
---|
| 327 | END DO |
---|
| 328 | ! print*,k,lmax(1,k) |
---|
| 329 | END DO |
---|
| 330 | ! print*,'ZMAX ZMAX ZMAX ',zmax |
---|
| 331 | ! call dump2d(iim,jjm-1,zmax(2:ngrid-1),'ZMAX ') |
---|
[1943] | 332 | |
---|
[1992] | 333 | ! print*,'OKl336' |
---|
| 334 | ! Calcul de l'entrainement. |
---|
| 335 | ! Le rapport d'aspect relie la largeur de l'ascendance a l'epaisseur |
---|
| 336 | ! de la couche d'alimentation en partant du principe que la vitesse |
---|
| 337 | ! maximum dans l'ascendance est la vitesse d'entrainement horizontale. |
---|
| 338 | DO k = 1, nlay |
---|
| 339 | DO ig = 1, ngrid |
---|
| 340 | zzz = rho(ig, k)*wmax(ig, k)*(zlev(ig,k+1)-zlev(ig,k))/ & |
---|
| 341 | (zmax(ig)*r_aspect) |
---|
| 342 | IF (w2di==2) THEN |
---|
| 343 | entr(ig, k) = entr(ig, k) + ptimestep*(zzz-entr(ig,k))/tho |
---|
| 344 | ELSE |
---|
| 345 | entr(ig, k) = zzz |
---|
| 346 | END IF |
---|
| 347 | ztva(ig, k) = ztv(ig, k) |
---|
| 348 | END DO |
---|
| 349 | END DO |
---|
[878] | 350 | |
---|
| 351 | |
---|
[1992] | 352 | ! print*,'7 OK convect8' |
---|
| 353 | DO k = 1, klev + 1 |
---|
| 354 | DO ig = 1, ngrid |
---|
| 355 | zw2(ig, k) = 0. |
---|
| 356 | fmc(ig, k) = 0. |
---|
| 357 | larg_cons(ig, k) = 0. |
---|
| 358 | larg_detr(ig, k) = 0. |
---|
| 359 | wa_moy(ig, k) = 0. |
---|
| 360 | END DO |
---|
| 361 | END DO |
---|
[878] | 362 | |
---|
[1992] | 363 | ! print*,'8 OK convect8' |
---|
| 364 | DO ig = 1, ngrid |
---|
| 365 | lmaxa(ig) = 1 |
---|
| 366 | lmix(ig) = 1 |
---|
| 367 | wmaxa(ig) = 0. |
---|
| 368 | END DO |
---|
[878] | 369 | |
---|
| 370 | |
---|
[1992] | 371 | ! print*,'OKl372' |
---|
| 372 | DO l = 1, nlay - 2 |
---|
| 373 | DO ig = 1, ngrid |
---|
| 374 | ! if (zw2(ig,l).lt.1.e-10.and.ztv(ig,l).gt.ztv(ig,l+1)) then |
---|
| 375 | ! print*,'COUCOU ',l,zw2(ig,l),ztv(ig,l),ztv(ig,l+1) |
---|
| 376 | IF (zw2(ig,l)<1.E-10 .AND. ztv(ig,l)>ztv(ig,l+1) .AND. & |
---|
| 377 | entr(ig,l)>1.E-10) THEN |
---|
| 378 | ! print*,'COUCOU cas 1' |
---|
| 379 | ! Initialisation de l'ascendance |
---|
| 380 | ! lmix(ig)=1 |
---|
| 381 | ztva(ig, l) = ztv(ig, l) |
---|
| 382 | fmc(ig, l) = 0. |
---|
| 383 | fmc(ig, l+1) = entr(ig, l) |
---|
| 384 | zw2(ig, l) = 0. |
---|
| 385 | ! if (.not.ztv(ig,l+1).gt.150.) then |
---|
| 386 | ! print*,'ig,l+1,ztv(ig,l+1)' |
---|
| 387 | ! print*, ig,l+1,ztv(ig,l+1) |
---|
| 388 | ! endif |
---|
| 389 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 390 | (zlev(ig,l+1)-zlev(ig,l)) |
---|
| 391 | larg_detr(ig, l) = 0. |
---|
| 392 | ELSE IF (zw2(ig,l)>=1.E-10 .AND. fmc(ig,l)+entr(ig,l)>1.E-10) THEN |
---|
| 393 | ! Incrementation... |
---|
| 394 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 395 | ! if (.not.fmc(ig,l+1).gt.1.e-15) then |
---|
| 396 | ! print*,'ig,l+1,fmc(ig,l+1)' |
---|
| 397 | ! print*, ig,l+1,fmc(ig,l+1) |
---|
| 398 | ! print*,'Fmc ',(fmc(ig,ll),ll=1,klev+1) |
---|
| 399 | ! print*,'W2 ',(zw2(ig,ll),ll=1,klev+1) |
---|
| 400 | ! print*,'Tv ',(ztv(ig,ll),ll=1,klev) |
---|
| 401 | ! print*,'Entr ',(entr(ig,ll),ll=1,klev) |
---|
| 402 | ! endif |
---|
| 403 | ztva(ig, l) = (fmc(ig,l)*ztva(ig,l-1)+entr(ig,l)*ztv(ig,l))/ & |
---|
| 404 | fmc(ig, l+1) |
---|
| 405 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
| 406 | ! consideree commence avec une vitesse nulle). |
---|
| 407 | zw2(ig, l+1) = zw2(ig, l)*(fmc(ig,l)/fmc(ig,l+1))**2 + & |
---|
| 408 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 409 | END IF |
---|
| 410 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 411 | zw2(ig, l+1) = 0. |
---|
| 412 | lmaxa(ig) = l |
---|
| 413 | ELSE |
---|
| 414 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 415 | END IF |
---|
| 416 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 417 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 418 | lmix(ig) = l + 1 |
---|
| 419 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 420 | END IF |
---|
| 421 | ! print*,'COUCOU cas 2 LMIX=',lmix(ig),wa_moy(ig,l+1),wmaxa(ig) |
---|
| 422 | END DO |
---|
| 423 | END DO |
---|
[878] | 424 | |
---|
[1992] | 425 | ! print*,'9 OK convect8' |
---|
| 426 | ! print*,'WA1 ',wa_moy |
---|
[878] | 427 | |
---|
[1992] | 428 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
[878] | 429 | |
---|
[1992] | 430 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 431 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
[5274] | 432 | ! d'une couche est �gale � la hauteur de la couche alimentante. |
---|
[1992] | 433 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 434 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
[878] | 435 | |
---|
[1992] | 436 | ! print*,'OKl439' |
---|
| 437 | DO l = 2, nlay |
---|
| 438 | DO ig = 1, ngrid |
---|
| 439 | IF (l<=lmaxa(ig)) THEN |
---|
| 440 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 441 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 442 | END IF |
---|
| 443 | END DO |
---|
| 444 | END DO |
---|
[878] | 445 | |
---|
[1992] | 446 | DO l = 2, nlay |
---|
| 447 | DO ig = 1, ngrid |
---|
| 448 | IF (l<=lmaxa(ig)) THEN |
---|
| 449 | ! if (idetr.eq.0) then |
---|
| 450 | ! cette option est finalement en dur. |
---|
| 451 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 452 | ! else if (idetr.eq.1) then |
---|
| 453 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 454 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 455 | ! else if (idetr.eq.2) then |
---|
| 456 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 457 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 458 | ! else if (idetr.eq.4) then |
---|
| 459 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 460 | ! s *wa_moy(ig,l) |
---|
| 461 | ! endif |
---|
| 462 | END IF |
---|
| 463 | END DO |
---|
| 464 | END DO |
---|
[878] | 465 | |
---|
[1992] | 466 | ! print*,'10 OK convect8' |
---|
| 467 | ! print*,'WA2 ',wa_moy |
---|
[5274] | 468 | ! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
---|
[1992] | 469 | ! compte de l'epluchage du thermique. |
---|
[878] | 470 | |
---|
[1992] | 471 | DO l = 2, nlay |
---|
| 472 | DO ig = 1, ngrid |
---|
| 473 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 474 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 475 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 476 | IF (l>lmix(ig)) THEN |
---|
| 477 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 478 | IF (idetr==0) THEN |
---|
| 479 | fraca(ig, l) = fraca(ig, lmix(ig)) |
---|
| 480 | ELSE IF (idetr==1) THEN |
---|
| 481 | fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l) |
---|
| 482 | ELSE IF (idetr==2) THEN |
---|
| 483 | fraca(ig, l) = fraca(ig, lmix(ig))*(1.-(1.-xxx(ig,l))**2) |
---|
| 484 | ELSE |
---|
| 485 | fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l)**2 |
---|
| 486 | END IF |
---|
| 487 | END IF |
---|
| 488 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 489 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 490 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 491 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 492 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 493 | ELSE |
---|
| 494 | ! wa_moy(ig,l)=0. |
---|
| 495 | fraca(ig, l) = 0. |
---|
| 496 | fracc(ig, l) = 0. |
---|
| 497 | fracd(ig, l) = 1. |
---|
| 498 | END IF |
---|
| 499 | END DO |
---|
| 500 | END DO |
---|
[878] | 501 | |
---|
[1992] | 502 | ! print*,'11 OK convect8' |
---|
| 503 | ! print*,'Ea3 ',wa_moy |
---|
| 504 | ! ------------------------------------------------------------------ |
---|
| 505 | ! Calcul de fracd, wd |
---|
| 506 | ! somme wa - wd = 0 |
---|
| 507 | ! ------------------------------------------------------------------ |
---|
[878] | 508 | |
---|
| 509 | |
---|
[1992] | 510 | DO ig = 1, ngrid |
---|
| 511 | fm(ig, 1) = 0. |
---|
| 512 | fm(ig, nlay+1) = 0. |
---|
| 513 | END DO |
---|
[878] | 514 | |
---|
[1992] | 515 | DO l = 2, nlay |
---|
| 516 | DO ig = 1, ngrid |
---|
| 517 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 518 | END DO |
---|
| 519 | DO ig = 1, ngrid |
---|
| 520 | IF (fracd(ig,l)<0.1) THEN |
---|
| 521 | abort_message = 'fracd trop petit' |
---|
[2311] | 522 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 523 | ELSE |
---|
| 524 | ! vitesse descendante "diagnostique" |
---|
| 525 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 526 | END IF |
---|
| 527 | END DO |
---|
| 528 | END DO |
---|
[878] | 529 | |
---|
[1992] | 530 | DO l = 1, nlay |
---|
| 531 | DO ig = 1, ngrid |
---|
| 532 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 533 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 534 | END DO |
---|
| 535 | END DO |
---|
[878] | 536 | |
---|
[1992] | 537 | ! print*,'12 OK convect8' |
---|
| 538 | ! print*,'WA4 ',wa_moy |
---|
| 539 | ! c------------------------------------------------------------------ |
---|
| 540 | ! calcul du transport vertical |
---|
| 541 | ! ------------------------------------------------------------------ |
---|
[878] | 542 | |
---|
[1992] | 543 | GO TO 4444 |
---|
| 544 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 545 | DO l = 2, nlay - 1 |
---|
| 546 | DO ig = 1, ngrid |
---|
| 547 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 548 | ig,l+1)) THEN |
---|
| 549 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 550 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 551 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 552 | END IF |
---|
| 553 | END DO |
---|
| 554 | END DO |
---|
[878] | 555 | |
---|
[1992] | 556 | DO l = 1, nlay |
---|
| 557 | DO ig = 1, ngrid |
---|
| 558 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 559 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 560 | ! s ,entr(ig,l)*ptimestep |
---|
| 561 | ! s ,' M=',masse(ig,l) |
---|
| 562 | END IF |
---|
| 563 | END DO |
---|
| 564 | END DO |
---|
[878] | 565 | |
---|
[1992] | 566 | DO l = 1, nlay |
---|
| 567 | DO ig = 1, ngrid |
---|
| 568 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 569 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 570 | ! s ,' FM=',fm(ig,l) |
---|
| 571 | END IF |
---|
| 572 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 573 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 574 | ! s ,' M=',masse(ig,l) |
---|
| 575 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 576 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 577 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 578 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 579 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 580 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 581 | END IF |
---|
| 582 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 583 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 584 | ! s ,' E=',entr(ig,l) |
---|
| 585 | END IF |
---|
| 586 | END DO |
---|
| 587 | END DO |
---|
[878] | 588 | |
---|
[1992] | 589 | 4444 CONTINUE |
---|
| 590 | ! print*,'OK 444 ' |
---|
[987] | 591 | |
---|
[1992] | 592 | IF (w2di==1) THEN |
---|
| 593 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 594 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 595 | ELSE |
---|
| 596 | fm0 = fm |
---|
| 597 | entr0 = entr |
---|
| 598 | END IF |
---|
[878] | 599 | |
---|
[1992] | 600 | IF (flagdq==0) THEN |
---|
| 601 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 602 | zha) |
---|
| 603 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 604 | zoa) |
---|
| 605 | PRINT *, 'THERMALS OPT 1' |
---|
| 606 | ELSE IF (flagdq==1) THEN |
---|
| 607 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 608 | zdhadj, zha) |
---|
| 609 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 610 | pdoadj, zoa) |
---|
| 611 | PRINT *, 'THERMALS OPT 2' |
---|
| 612 | ELSE |
---|
| 613 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zh, & |
---|
| 614 | zdhadj, zha, lev_out) |
---|
| 615 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zo, & |
---|
| 616 | pdoadj, zoa, lev_out) |
---|
| 617 | PRINT *, 'THERMALS OPT 3', dqimpl |
---|
| 618 | END IF |
---|
[878] | 619 | |
---|
[1992] | 620 | PRINT *, 'TH VENT ', dvdq |
---|
| 621 | IF (dvdq==0) THEN |
---|
| 622 | ! print*,'TH VENT OK ',dvdq |
---|
| 623 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 624 | zua) |
---|
| 625 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 626 | zva) |
---|
| 627 | ELSE IF (dvdq==1) THEN |
---|
| 628 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 629 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 630 | ELSE IF (dvdq==2) THEN |
---|
| 631 | CALL thermcell_dv2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, & |
---|
| 632 | zmax, zu, zv, pduadj, pdvadj, zua, zva, lev_out) |
---|
| 633 | ELSE IF (dvdq==3) THEN |
---|
| 634 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zu, & |
---|
| 635 | pduadj, zua, lev_out) |
---|
| 636 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zv, & |
---|
| 637 | pdvadj, zva, lev_out) |
---|
| 638 | END IF |
---|
[878] | 639 | |
---|
[1992] | 640 | ! CALL writefield_phy('duadj',pduadj,klev) |
---|
[878] | 641 | |
---|
[1992] | 642 | DO l = 1, nlay |
---|
| 643 | DO ig = 1, ngrid |
---|
| 644 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 645 | zf2 = zf/(1.-zf) |
---|
| 646 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 647 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 648 | END DO |
---|
| 649 | END DO |
---|
[878] | 650 | |
---|
| 651 | |
---|
| 652 | |
---|
[1992] | 653 | ! print*,'13 OK convect8' |
---|
| 654 | ! print*,'WA5 ',wa_moy |
---|
| 655 | DO l = 1, nlay |
---|
| 656 | DO ig = 1, ngrid |
---|
| 657 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 658 | END DO |
---|
| 659 | END DO |
---|
[940] | 660 | |
---|
[878] | 661 | |
---|
[1992] | 662 | ! do l=1,nlay |
---|
| 663 | ! do ig=1,ngrid |
---|
| 664 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 665 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 666 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 667 | ! endif |
---|
| 668 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 669 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 670 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 671 | ! endif |
---|
| 672 | ! enddo |
---|
| 673 | ! enddo |
---|
[878] | 674 | |
---|
[1992] | 675 | ! print*,'14 OK convect8' |
---|
| 676 | ! ------------------------------------------------------------------ |
---|
| 677 | ! Calculs pour les sorties |
---|
| 678 | ! ------------------------------------------------------------------ |
---|
[1403] | 679 | |
---|
[1992] | 680 | IF (sorties) THEN |
---|
| 681 | DO l = 1, nlay |
---|
| 682 | DO ig = 1, ngrid |
---|
| 683 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 684 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 685 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 686 | (1.-fracd(ig,l)) |
---|
| 687 | END DO |
---|
| 688 | END DO |
---|
[878] | 689 | |
---|
[1992] | 690 | DO l = 1, nlay |
---|
| 691 | DO ig = 1, ngrid |
---|
| 692 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 693 | IF (detr(ig,l)<0.) THEN |
---|
| 694 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
| 695 | detr(ig, l) = 0. |
---|
| 696 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 697 | END IF |
---|
| 698 | END DO |
---|
| 699 | END DO |
---|
| 700 | END IF |
---|
[878] | 701 | |
---|
[1992] | 702 | ! print*,'15 OK convect8' |
---|
[987] | 703 | |
---|
[878] | 704 | |
---|
[1992] | 705 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
[940] | 706 | |
---|
[1992] | 707 | ! print*,'19 OK convect8' |
---|
| 708 | RETURN |
---|
| 709 | END SUBROUTINE thermcell_2002 |
---|
[878] | 710 | |
---|
[1992] | 711 | SUBROUTINE thermcell_cld(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
| 712 | debut, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, zqla, & |
---|
| 713 | lmax, zmax_sec, wmax_sec, zw_sec, lmix_sec, ratqscth, ratqsdiff & ! s |
---|
| 714 | ! ,pu_therm,pv_therm |
---|
| 715 | , r_aspect, l_mix, w2di, tho) |
---|
[878] | 716 | |
---|
[5284] | 717 | USE yoethf_mod_h |
---|
[5285] | 718 | USE yomcst_mod_h |
---|
[1992] | 719 | USE dimphy |
---|
| 720 | IMPLICIT NONE |
---|
[878] | 721 | |
---|
[1992] | 722 | ! ======================================================================= |
---|
[878] | 723 | |
---|
[1992] | 724 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 725 | ! de "thermiques" explicitement representes |
---|
[878] | 726 | |
---|
[5274] | 727 | ! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
---|
[878] | 728 | |
---|
[5274] | 729 | ! le thermique est suppos� homog�ne et dissip� par m�lange avec |
---|
| 730 | ! son environnement. la longueur l_mix contr�le l'efficacit� du |
---|
| 731 | ! m�lange |
---|
[878] | 732 | |
---|
[5274] | 733 | ! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
---|
[1992] | 734 | ! en compte: |
---|
| 735 | ! 1. un flux de masse montant |
---|
| 736 | ! 2. un flux de masse descendant |
---|
| 737 | ! 3. un entrainement |
---|
| 738 | ! 4. un detrainement |
---|
[878] | 739 | |
---|
[1992] | 740 | ! ======================================================================= |
---|
[878] | 741 | |
---|
[1992] | 742 | ! ----------------------------------------------------------------------- |
---|
| 743 | ! declarations: |
---|
| 744 | ! ------------- |
---|
[878] | 745 | |
---|
[1992] | 746 | include "FCTTRE.h" |
---|
[878] | 747 | |
---|
[1992] | 748 | ! arguments: |
---|
| 749 | ! ---------- |
---|
[878] | 750 | |
---|
[1992] | 751 | INTEGER ngrid, nlay, w2di |
---|
| 752 | REAL tho |
---|
| 753 | REAL ptimestep, l_mix, r_aspect |
---|
| 754 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 755 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 756 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 757 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 758 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 759 | REAL pphi(ngrid, nlay) |
---|
[878] | 760 | |
---|
[1992] | 761 | INTEGER idetr |
---|
[878] | 762 | |
---|
[1992] | 763 | ! local: |
---|
| 764 | ! ------ |
---|
[878] | 765 | |
---|
[1992] | 766 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 767 | REAL zsortie1d(klon) |
---|
| 768 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 769 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 770 | REAL linter(klon) |
---|
| 771 | REAL zmix(klon), fracazmix(klon) |
---|
| 772 | REAL alpha |
---|
[878] | 773 | |
---|
[1992] | 774 | ! RC |
---|
| 775 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
| 776 | REAL zmax_sec(klon) |
---|
| 777 | REAL zmax_sec2(klon) |
---|
| 778 | REAL zw_sec(klon, klev+1) |
---|
| 779 | INTEGER lmix_sec(klon) |
---|
| 780 | REAL w_est(klon, klev+1) |
---|
| 781 | ! on garde le zmax du pas de temps precedent |
---|
| 782 | ! real zmax0(klon) |
---|
| 783 | ! save zmax0 |
---|
| 784 | ! real zmix0(klon) |
---|
| 785 | ! save zmix0 |
---|
| 786 | REAL, SAVE, ALLOCATABLE :: zmax0(:), zmix0(:) |
---|
| 787 | !$OMP THREADPRIVATE(zmax0, zmix0) |
---|
[878] | 788 | |
---|
[1992] | 789 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 790 | REAL deltaz(klon, klev) |
---|
| 791 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 792 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
| 793 | REAL ztv(klon, klev) |
---|
| 794 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 795 | REAL zl(klon, klev) |
---|
| 796 | REAL wh(klon, klev+1) |
---|
| 797 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 798 | REAL zla(klon, klev+1) |
---|
| 799 | REAL zwa(klon, klev+1) |
---|
| 800 | REAL zld(klon, klev+1) |
---|
| 801 | REAL zwd(klon, klev+1) |
---|
| 802 | REAL zsortie(klon, klev) |
---|
| 803 | REAL zva(klon, klev) |
---|
| 804 | REAL zua(klon, klev) |
---|
| 805 | REAL zoa(klon, klev) |
---|
[878] | 806 | |
---|
[1992] | 807 | REAL zta(klon, klev) |
---|
| 808 | REAL zha(klon, klev) |
---|
| 809 | REAL wa_moy(klon, klev+1) |
---|
| 810 | REAL fraca(klon, klev+1) |
---|
| 811 | REAL fracc(klon, klev+1) |
---|
| 812 | REAL zf, zf2 |
---|
| 813 | REAL thetath2(klon, klev), wth2(klon, klev), wth3(klon, klev) |
---|
| 814 | REAL q2(klon, klev) |
---|
| 815 | REAL dtheta(klon, klev) |
---|
| 816 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 817 | |
---|
[1992] | 818 | REAL ratqscth(klon, klev) |
---|
| 819 | REAL sum |
---|
| 820 | REAL sumdiff |
---|
| 821 | REAL ratqsdiff(klon, klev) |
---|
| 822 | REAL count_time |
---|
| 823 | INTEGER ialt |
---|
[878] | 824 | |
---|
[1992] | 825 | LOGICAL sorties |
---|
| 826 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 827 | REAL zpspsk(klon, klev) |
---|
[878] | 828 | |
---|
[1992] | 829 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 830 | REAL wmax(klon), wmaxa(klon) |
---|
| 831 | REAL wmax_sec(klon) |
---|
| 832 | REAL wmax_sec2(klon) |
---|
| 833 | REAL wa(klon, klev, klev+1) |
---|
| 834 | REAL wd(klon, klev+1) |
---|
| 835 | REAL larg_part(klon, klev, klev+1) |
---|
| 836 | REAL fracd(klon, klev+1) |
---|
| 837 | REAL xxx(klon, klev+1) |
---|
| 838 | REAL larg_cons(klon, klev+1) |
---|
| 839 | REAL larg_detr(klon, klev+1) |
---|
| 840 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 841 | REAL massetot(klon, klev) |
---|
| 842 | REAL detr0(klon, klev) |
---|
| 843 | REAL alim0(klon, klev) |
---|
| 844 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 845 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 846 | REAL fmc(klon, klev+1) |
---|
[878] | 847 | |
---|
[1992] | 848 | REAL zcor, zdelta, zcvm5, qlbef |
---|
| 849 | REAL tbef(klon), qsatbef(klon) |
---|
| 850 | REAL dqsat_dt, dt, num, denom |
---|
| 851 | REAL reps, rlvcp, ddt0 |
---|
| 852 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
| 853 | ! CR niveau de condensation |
---|
| 854 | REAL nivcon(klon) |
---|
| 855 | REAL zcon(klon) |
---|
| 856 | REAL zqsat(klon, klev) |
---|
| 857 | REAL zqsatth(klon, klev) |
---|
| 858 | PARAMETER (ddt0=.01) |
---|
[878] | 859 | |
---|
| 860 | |
---|
[1992] | 861 | ! CR:nouvelles variables |
---|
| 862 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 863 | REAL detr_star(klon, klev) |
---|
| 864 | REAL alim_star_tot(klon), alim_star2(klon) |
---|
| 865 | REAL entr_star_tot(klon) |
---|
| 866 | REAL detr_star_tot(klon) |
---|
| 867 | REAL alim_star(klon, klev) |
---|
| 868 | REAL alim(klon, klev) |
---|
| 869 | REAL nu(klon, klev) |
---|
| 870 | REAL nu_e(klon, klev) |
---|
| 871 | REAL nu_min |
---|
| 872 | REAL nu_max |
---|
| 873 | REAL nu_r |
---|
| 874 | REAL f(klon) |
---|
| 875 | ! real f(klon), f0(klon) |
---|
| 876 | ! save f0 |
---|
| 877 | REAL, SAVE, ALLOCATABLE :: f0(:) |
---|
| 878 | !$OMP THREADPRIVATE(f0) |
---|
[878] | 879 | |
---|
[1992] | 880 | REAL f_old |
---|
| 881 | REAL zlevinter(klon) |
---|
[5501] | 882 | LOGICAL,SAVE :: first = .TRUE. |
---|
[1992] | 883 | !$OMP THREADPRIVATE(first) |
---|
| 884 | ! data first /.false./ |
---|
| 885 | ! save first |
---|
| 886 | LOGICAL nuage |
---|
| 887 | ! save nuage |
---|
| 888 | LOGICAL boucle |
---|
| 889 | LOGICAL therm |
---|
| 890 | LOGICAL debut |
---|
| 891 | LOGICAL rale |
---|
| 892 | INTEGER test(klon) |
---|
| 893 | INTEGER signe_zw2 |
---|
| 894 | ! RC |
---|
[878] | 895 | |
---|
[1992] | 896 | CHARACTER *2 str2 |
---|
| 897 | CHARACTER *10 str10 |
---|
[878] | 898 | |
---|
[1992] | 899 | CHARACTER (LEN=20) :: modname = 'thermcell_cld' |
---|
| 900 | CHARACTER (LEN=80) :: abort_message |
---|
[878] | 901 | |
---|
[1992] | 902 | LOGICAL vtest(klon), down |
---|
| 903 | LOGICAL zsat(klon) |
---|
[878] | 904 | |
---|
[1992] | 905 | EXTERNAL scopy |
---|
[878] | 906 | |
---|
[5501] | 907 | INTEGER ll |
---|
[878] | 908 | |
---|
| 909 | |
---|
[5501] | 910 | idetr=3 |
---|
| 911 | alpha=1. |
---|
[878] | 912 | |
---|
[1992] | 913 | ! ----------------------------------------------------------------------- |
---|
| 914 | ! initialisation: |
---|
| 915 | ! --------------- |
---|
[878] | 916 | |
---|
[1992] | 917 | IF (first) THEN |
---|
| 918 | ALLOCATE (zmix0(klon)) |
---|
| 919 | ALLOCATE (zmax0(klon)) |
---|
| 920 | ALLOCATE (f0(klon)) |
---|
| 921 | first = .FALSE. |
---|
| 922 | END IF |
---|
[878] | 923 | |
---|
[1992] | 924 | sorties = .FALSE. |
---|
| 925 | ! print*,'NOUVEAU DETR PLUIE ' |
---|
| 926 | IF (ngrid/=klon) THEN |
---|
| 927 | PRINT * |
---|
| 928 | PRINT *, 'STOP dans convadj' |
---|
| 929 | PRINT *, 'ngrid =', ngrid |
---|
| 930 | PRINT *, 'klon =', klon |
---|
| 931 | END IF |
---|
[878] | 932 | |
---|
[1992] | 933 | ! Initialisation |
---|
| 934 | rlvcp = rlvtt/rcpd |
---|
| 935 | reps = rd/rv |
---|
| 936 | ! initialisations de zqsat |
---|
| 937 | DO ll = 1, nlay |
---|
| 938 | DO ig = 1, ngrid |
---|
| 939 | zqsat(ig, ll) = 0. |
---|
| 940 | zqsatth(ig, ll) = 0. |
---|
| 941 | END DO |
---|
| 942 | END DO |
---|
[878] | 943 | |
---|
[5274] | 944 | ! on met le first a true pour le premier passage de la journ�e |
---|
[1992] | 945 | DO ig = 1, klon |
---|
| 946 | test(ig) = 0 |
---|
| 947 | END DO |
---|
| 948 | IF (debut) THEN |
---|
| 949 | DO ig = 1, klon |
---|
| 950 | test(ig) = 1 |
---|
| 951 | f0(ig) = 0. |
---|
| 952 | zmax0(ig) = 0. |
---|
| 953 | END DO |
---|
| 954 | END IF |
---|
| 955 | DO ig = 1, klon |
---|
| 956 | IF ((.NOT. debut) .AND. (f0(ig)<1.E-10)) THEN |
---|
| 957 | test(ig) = 1 |
---|
| 958 | END IF |
---|
| 959 | END DO |
---|
| 960 | ! do ig=1,klon |
---|
| 961 | ! print*,'test(ig)',test(ig),zmax0(ig) |
---|
| 962 | ! enddo |
---|
| 963 | nuage = .FALSE. |
---|
| 964 | ! ----------------------------------------------------------------------- |
---|
| 965 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
| 966 | ! --------------------------------------------------- |
---|
[878] | 967 | |
---|
[1992] | 968 | ! Pr Tprec=Tl calcul de qsat |
---|
| 969 | ! Si qsat>qT T=Tl, q=qT |
---|
| 970 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
| 971 | ! On cherche DDT < DDT0 |
---|
[878] | 972 | |
---|
[1992] | 973 | ! defaut |
---|
| 974 | DO ll = 1, nlay |
---|
| 975 | DO ig = 1, ngrid |
---|
| 976 | zo(ig, ll) = po(ig, ll) |
---|
| 977 | zl(ig, ll) = 0. |
---|
| 978 | zh(ig, ll) = pt(ig, ll) |
---|
| 979 | END DO |
---|
| 980 | END DO |
---|
| 981 | DO ig = 1, ngrid |
---|
| 982 | zsat(ig) = .FALSE. |
---|
| 983 | END DO |
---|
[878] | 984 | |
---|
| 985 | |
---|
[1992] | 986 | DO ll = 1, nlay |
---|
| 987 | ! les points insatures sont definitifs |
---|
| 988 | DO ig = 1, ngrid |
---|
| 989 | tbef(ig) = pt(ig, ll) |
---|
| 990 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 991 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
| 992 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 993 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 994 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 995 | zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>1.E-10) |
---|
| 996 | END DO |
---|
[878] | 997 | |
---|
[1992] | 998 | DO ig = 1, ngrid |
---|
| 999 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
| 1000 | qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
---|
| 1001 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
| 1002 | dt = 0.5*rlvcp*qlbef |
---|
| 1003 | ! write(18,*),'DT0=',DT |
---|
| 1004 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
| 1005 | DO WHILE (abs(dt)>ddt0) |
---|
| 1006 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
| 1007 | tbef(ig) = tbef(ig) + dt |
---|
| 1008 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1009 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
| 1010 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 1011 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1012 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 1013 | ! on veut le signe de qlbef |
---|
| 1014 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
| 1015 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1016 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 1017 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1018 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
| 1019 | num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
---|
| 1020 | denom = 1. + rlvcp*dqsat_dt |
---|
| 1021 | IF (denom<1.E-10) THEN |
---|
| 1022 | PRINT *, 'pb denom' |
---|
| 1023 | END IF |
---|
| 1024 | dt = num/denom |
---|
| 1025 | END DO |
---|
| 1026 | ! on ecrit de maniere conservative (sat ou non) |
---|
| 1027 | zl(ig, ll) = max(0., qlbef) |
---|
| 1028 | ! T = Tl +Lv/Cp ql |
---|
| 1029 | zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
---|
| 1030 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
| 1031 | END IF |
---|
| 1032 | ! on ecrit zqsat |
---|
| 1033 | zqsat(ig, ll) = qsatbef(ig) |
---|
| 1034 | END DO |
---|
| 1035 | END DO |
---|
| 1036 | ! AM fin |
---|
[878] | 1037 | |
---|
[1992] | 1038 | ! ----------------------------------------------------------------------- |
---|
| 1039 | ! incrementation eventuelle de tendances precedentes: |
---|
| 1040 | ! --------------------------------------------------- |
---|
[878] | 1041 | |
---|
[1992] | 1042 | ! print*,'0 OK convect8' |
---|
[878] | 1043 | |
---|
[1992] | 1044 | DO l = 1, nlay |
---|
| 1045 | DO ig = 1, ngrid |
---|
| 1046 | zpspsk(ig, l) = (pplay(ig,l)/100000.)**rkappa |
---|
| 1047 | ! zpspsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**RKAPPA |
---|
| 1048 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
| 1049 | zu(ig, l) = pu(ig, l) |
---|
| 1050 | zv(ig, l) = pv(ig, l) |
---|
| 1051 | ! zo(ig,l)=po(ig,l) |
---|
| 1052 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
| 1053 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
| 1054 | ! theta ! |
---|
[878] | 1055 | |
---|
[1992] | 1056 | ! T-> Theta |
---|
| 1057 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
| 1058 | ! AM Theta_v |
---|
| 1059 | ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
---|
| 1060 | ! AM Thetal |
---|
| 1061 | zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
[878] | 1062 | |
---|
[1992] | 1063 | END DO |
---|
| 1064 | END DO |
---|
[878] | 1065 | |
---|
[1992] | 1066 | ! print*,'1 OK convect8' |
---|
| 1067 | ! -------------------- |
---|
[878] | 1068 | |
---|
| 1069 | |
---|
[1992] | 1070 | ! + + + + + + + + + + + |
---|
[878] | 1071 | |
---|
| 1072 | |
---|
[1992] | 1073 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 1074 | ! wh,wt,wo ... |
---|
[878] | 1075 | |
---|
[1992] | 1076 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[878] | 1077 | |
---|
| 1078 | |
---|
[1992] | 1079 | ! -------------------- zlev(1) |
---|
| 1080 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[878] | 1081 | |
---|
| 1082 | |
---|
| 1083 | |
---|
[1992] | 1084 | ! ----------------------------------------------------------------------- |
---|
| 1085 | ! Calcul des altitudes des couches |
---|
| 1086 | ! ----------------------------------------------------------------------- |
---|
[878] | 1087 | |
---|
[1992] | 1088 | DO l = 2, nlay |
---|
| 1089 | DO ig = 1, ngrid |
---|
| 1090 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 1091 | END DO |
---|
| 1092 | END DO |
---|
| 1093 | DO ig = 1, ngrid |
---|
| 1094 | zlev(ig, 1) = 0. |
---|
| 1095 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 1096 | END DO |
---|
| 1097 | DO l = 1, nlay |
---|
| 1098 | DO ig = 1, ngrid |
---|
| 1099 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 1100 | END DO |
---|
| 1101 | END DO |
---|
| 1102 | ! calcul de deltaz |
---|
| 1103 | DO l = 1, nlay |
---|
| 1104 | DO ig = 1, ngrid |
---|
| 1105 | deltaz(ig, l) = zlev(ig, l+1) - zlev(ig, l) |
---|
| 1106 | END DO |
---|
| 1107 | END DO |
---|
[878] | 1108 | |
---|
[1992] | 1109 | ! print*,'2 OK convect8' |
---|
| 1110 | ! ----------------------------------------------------------------------- |
---|
| 1111 | ! Calcul des densites |
---|
| 1112 | ! ----------------------------------------------------------------------- |
---|
[1943] | 1113 | |
---|
[1992] | 1114 | DO l = 1, nlay |
---|
| 1115 | DO ig = 1, ngrid |
---|
| 1116 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
| 1117 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
---|
| 1118 | END DO |
---|
| 1119 | END DO |
---|
[878] | 1120 | |
---|
[1992] | 1121 | DO l = 2, nlay |
---|
| 1122 | DO ig = 1, ngrid |
---|
| 1123 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 1124 | END DO |
---|
| 1125 | END DO |
---|
[878] | 1126 | |
---|
[1992] | 1127 | DO k = 1, nlay |
---|
| 1128 | DO l = 1, nlay + 1 |
---|
| 1129 | DO ig = 1, ngrid |
---|
| 1130 | wa(ig, k, l) = 0. |
---|
| 1131 | END DO |
---|
| 1132 | END DO |
---|
| 1133 | END DO |
---|
| 1134 | ! Cr:ajout:calcul de la masse |
---|
| 1135 | DO l = 1, nlay |
---|
| 1136 | DO ig = 1, ngrid |
---|
| 1137 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1138 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 1139 | END DO |
---|
| 1140 | END DO |
---|
| 1141 | ! print*,'3 OK convect8' |
---|
| 1142 | ! ------------------------------------------------------------------ |
---|
| 1143 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 1144 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
[878] | 1145 | |
---|
[1992] | 1146 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 1147 | ! w2 est stoke dans wa |
---|
[878] | 1148 | |
---|
[1992] | 1149 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 1150 | ! independants par couches que pour calculer l'entrainement |
---|
| 1151 | ! a la base et la hauteur max de l'ascendance. |
---|
[878] | 1152 | |
---|
[1992] | 1153 | ! Indicages: |
---|
| 1154 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 1155 | ! une vitesse wa(k,l). |
---|
[878] | 1156 | |
---|
[1992] | 1157 | ! -------------------- |
---|
[878] | 1158 | |
---|
[1992] | 1159 | ! + + + + + + + + + + |
---|
[878] | 1160 | |
---|
[1992] | 1161 | ! wa(k,l) ---- -------------------- l |
---|
| 1162 | ! /\ |
---|
| 1163 | ! /||\ + + + + + + + + + + |
---|
| 1164 | ! || |
---|
| 1165 | ! || -------------------- |
---|
| 1166 | ! || |
---|
| 1167 | ! || + + + + + + + + + + |
---|
| 1168 | ! || |
---|
| 1169 | ! || -------------------- |
---|
| 1170 | ! ||__ |
---|
| 1171 | ! |___ + + + + + + + + + + k |
---|
[878] | 1172 | |
---|
[1992] | 1173 | ! -------------------- |
---|
[878] | 1174 | |
---|
| 1175 | |
---|
| 1176 | |
---|
[1992] | 1177 | ! ------------------------------------------------------------------ |
---|
[878] | 1178 | |
---|
[1992] | 1179 | ! CR: ponderation entrainement des couches instables |
---|
| 1180 | ! def des alim_star tels que alim=f*alim_star |
---|
| 1181 | DO l = 1, klev |
---|
| 1182 | DO ig = 1, ngrid |
---|
| 1183 | alim_star(ig, l) = 0. |
---|
| 1184 | alim(ig, l) = 0. |
---|
| 1185 | END DO |
---|
| 1186 | END DO |
---|
| 1187 | ! determination de la longueur de la couche d entrainement |
---|
| 1188 | DO ig = 1, ngrid |
---|
| 1189 | lentr(ig) = 1 |
---|
| 1190 | END DO |
---|
[878] | 1191 | |
---|
[1992] | 1192 | ! on ne considere que les premieres couches instables |
---|
| 1193 | therm = .FALSE. |
---|
| 1194 | DO k = nlay - 2, 1, -1 |
---|
| 1195 | DO ig = 1, ngrid |
---|
| 1196 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 1197 | lentr(ig) = k + 1 |
---|
| 1198 | therm = .TRUE. |
---|
| 1199 | END IF |
---|
| 1200 | END DO |
---|
| 1201 | END DO |
---|
[878] | 1202 | |
---|
[1992] | 1203 | ! determination du lmin: couche d ou provient le thermique |
---|
| 1204 | DO ig = 1, ngrid |
---|
| 1205 | lmin(ig) = 1 |
---|
| 1206 | END DO |
---|
| 1207 | DO ig = 1, ngrid |
---|
| 1208 | DO l = nlay, 2, -1 |
---|
| 1209 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 1210 | lmin(ig) = l - 1 |
---|
| 1211 | END IF |
---|
| 1212 | END DO |
---|
| 1213 | END DO |
---|
[878] | 1214 | |
---|
[1992] | 1215 | ! definition de l'entrainement des couches |
---|
| 1216 | DO l = 1, klev - 1 |
---|
| 1217 | DO ig = 1, ngrid |
---|
| 1218 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
| 1219 | ! def possibles pour alim_star: zdthetadz, dthetadz, zdtheta |
---|
| 1220 | alim_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
---|
| 1221 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1222 | *sqrt(zlev(ig,l+1)) |
---|
| 1223 | ! alim_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
| 1224 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
| 1225 | END IF |
---|
| 1226 | END DO |
---|
| 1227 | END DO |
---|
[987] | 1228 | |
---|
[1992] | 1229 | ! pas de thermique si couche 1 stable |
---|
| 1230 | DO ig = 1, ngrid |
---|
| 1231 | ! if (lmin(ig).gt.1) then |
---|
| 1232 | ! CRnouveau test |
---|
| 1233 | IF (alim_star(ig,1)<1.E-10) THEN |
---|
| 1234 | DO l = 1, klev |
---|
| 1235 | alim_star(ig, l) = 0. |
---|
| 1236 | END DO |
---|
| 1237 | END IF |
---|
| 1238 | END DO |
---|
| 1239 | ! calcul de l entrainement total |
---|
| 1240 | DO ig = 1, ngrid |
---|
| 1241 | alim_star_tot(ig) = 0. |
---|
| 1242 | entr_star_tot(ig) = 0. |
---|
| 1243 | detr_star_tot(ig) = 0. |
---|
| 1244 | END DO |
---|
| 1245 | DO ig = 1, ngrid |
---|
| 1246 | DO k = 1, klev |
---|
| 1247 | alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig, k) |
---|
| 1248 | END DO |
---|
| 1249 | END DO |
---|
[878] | 1250 | |
---|
[1992] | 1251 | ! Calcul entrainement normalise |
---|
| 1252 | DO ig = 1, ngrid |
---|
| 1253 | IF (alim_star_tot(ig)>1.E-10) THEN |
---|
| 1254 | ! do l=1,lentr(ig) |
---|
| 1255 | DO l = 1, klev |
---|
| 1256 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
| 1257 | alim_star(ig, l) = alim_star(ig, l)/alim_star_tot(ig) |
---|
| 1258 | END DO |
---|
| 1259 | END IF |
---|
| 1260 | END DO |
---|
[878] | 1261 | |
---|
[1992] | 1262 | ! print*,'fin calcul alim_star' |
---|
[1403] | 1263 | |
---|
[1992] | 1264 | ! AM:initialisations |
---|
| 1265 | DO k = 1, nlay |
---|
| 1266 | DO ig = 1, ngrid |
---|
| 1267 | ztva(ig, k) = ztv(ig, k) |
---|
| 1268 | ztla(ig, k) = zthl(ig, k) |
---|
| 1269 | zqla(ig, k) = 0. |
---|
| 1270 | zqta(ig, k) = po(ig, k) |
---|
| 1271 | zsat(ig) = .FALSE. |
---|
| 1272 | END DO |
---|
| 1273 | END DO |
---|
| 1274 | DO k = 1, klev |
---|
| 1275 | DO ig = 1, ngrid |
---|
| 1276 | detr_star(ig, k) = 0. |
---|
| 1277 | entr_star(ig, k) = 0. |
---|
| 1278 | detr(ig, k) = 0. |
---|
| 1279 | entr(ig, k) = 0. |
---|
| 1280 | END DO |
---|
| 1281 | END DO |
---|
| 1282 | ! print*,'7 OK convect8' |
---|
| 1283 | DO k = 1, klev + 1 |
---|
| 1284 | DO ig = 1, ngrid |
---|
| 1285 | zw2(ig, k) = 0. |
---|
| 1286 | fmc(ig, k) = 0. |
---|
| 1287 | ! CR |
---|
| 1288 | f_star(ig, k) = 0. |
---|
| 1289 | ! RC |
---|
| 1290 | larg_cons(ig, k) = 0. |
---|
| 1291 | larg_detr(ig, k) = 0. |
---|
| 1292 | wa_moy(ig, k) = 0. |
---|
| 1293 | END DO |
---|
| 1294 | END DO |
---|
[878] | 1295 | |
---|
[1992] | 1296 | ! n print*,'8 OK convect8' |
---|
| 1297 | DO ig = 1, ngrid |
---|
| 1298 | linter(ig) = 1. |
---|
| 1299 | lmaxa(ig) = 1 |
---|
| 1300 | lmix(ig) = 1 |
---|
| 1301 | wmaxa(ig) = 0. |
---|
| 1302 | END DO |
---|
[878] | 1303 | |
---|
[1992] | 1304 | nu_min = l_mix |
---|
| 1305 | nu_max = 1000. |
---|
| 1306 | ! do ig=1,ngrid |
---|
| 1307 | ! nu_max=wmax_sec(ig) |
---|
| 1308 | ! enddo |
---|
| 1309 | DO ig = 1, ngrid |
---|
| 1310 | DO k = 1, klev |
---|
| 1311 | nu(ig, k) = 0. |
---|
| 1312 | nu_e(ig, k) = 0. |
---|
| 1313 | END DO |
---|
| 1314 | END DO |
---|
[5274] | 1315 | ! Calcul de l'exc�s de temp�rature du � la diffusion turbulente |
---|
[1992] | 1316 | DO ig = 1, ngrid |
---|
| 1317 | DO l = 1, klev |
---|
| 1318 | dtheta(ig, l) = 0. |
---|
| 1319 | END DO |
---|
| 1320 | END DO |
---|
| 1321 | DO ig = 1, ngrid |
---|
| 1322 | DO l = 1, lentr(ig) - 1 |
---|
| 1323 | dtheta(ig, l) = sqrt(10.*0.4*zlev(ig,l+1)**2*1.*((ztv(ig,l+1)- & |
---|
| 1324 | ztv(ig,l))/(zlev(ig,l+1)-zlev(ig,l)))**2) |
---|
| 1325 | END DO |
---|
| 1326 | END DO |
---|
| 1327 | ! do l=1,nlay-2 |
---|
| 1328 | DO l = 1, klev - 1 |
---|
| 1329 | DO ig = 1, ngrid |
---|
| 1330 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
---|
| 1331 | zw2(ig,l)<1E-10) THEN |
---|
| 1332 | ! AM |
---|
[5274] | 1333 | ! test:on rajoute un exc�s de T dans couche alim |
---|
[1992] | 1334 | ! ztla(ig,l)=zthl(ig,l)+dtheta(ig,l) |
---|
| 1335 | ztla(ig, l) = zthl(ig, l) |
---|
[5274] | 1336 | ! test: on rajoute un exc�s de q dans la couche alim |
---|
[1992] | 1337 | ! zqta(ig,l)=po(ig,l)+0.001 |
---|
| 1338 | zqta(ig, l) = po(ig, l) |
---|
| 1339 | zqla(ig, l) = zl(ig, l) |
---|
| 1340 | ! AM |
---|
| 1341 | f_star(ig, l+1) = alim_star(ig, l) |
---|
| 1342 | ! test:calcul de dteta |
---|
| 1343 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 1344 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 1345 | w_est(ig, l+1) = zw2(ig, l+1) |
---|
| 1346 | larg_detr(ig, l) = 0. |
---|
| 1347 | ! print*,'coucou boucle 1' |
---|
| 1348 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
---|
| 1349 | l))>1.E-10) THEN |
---|
| 1350 | ! print*,'coucou boucle 2' |
---|
| 1351 | ! estimation du detrainement a partir de la geometrie du pas |
---|
| 1352 | ! precedent |
---|
| 1353 | IF ((test(ig)==1) .OR. ((.NOT. debut) .AND. (f0(ig)<1.E-10))) THEN |
---|
| 1354 | detr_star(ig, l) = 0. |
---|
| 1355 | entr_star(ig, l) = 0. |
---|
| 1356 | ! print*,'coucou test(ig)',test(ig),f0(ig),zmax0(ig) |
---|
| 1357 | ELSE |
---|
| 1358 | ! print*,'coucou debut detr' |
---|
| 1359 | ! tests sur la definition du detr |
---|
| 1360 | IF (zqla(ig,l-1)>1.E-10) THEN |
---|
| 1361 | nuage = .TRUE. |
---|
| 1362 | END IF |
---|
[987] | 1363 | |
---|
[1992] | 1364 | w_est(ig, l+1) = zw2(ig, l)*((f_star(ig,l))**2)/(f_star(ig,l)+ & |
---|
| 1365 | alim_star(ig,l))**2 + 2.*rg*(ztva(ig,l-1)-ztv(ig,l))/ztv(ig, l)*( & |
---|
| 1366 | zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1367 | IF (w_est(ig,l+1)<0.) THEN |
---|
| 1368 | w_est(ig, l+1) = zw2(ig, l) |
---|
| 1369 | END IF |
---|
| 1370 | IF (l>2) THEN |
---|
| 1371 | IF ((w_est(ig,l+1)>w_est(ig,l)) .AND. (zlev(ig, & |
---|
| 1372 | l+1)<zmax_sec(ig)) .AND. (zqla(ig,l-1)<1.E-10)) THEN |
---|
| 1373 | detr_star(ig, l) = max(0., (rhobarz(ig, & |
---|
| 1374 | l+1)*sqrt(w_est(ig,l+1))*sqrt(nu(ig,l)* & |
---|
| 1375 | zlev(ig,l+1))-rhobarz(ig,l)*sqrt(w_est(ig,l))*sqrt(nu(ig,l)* & |
---|
| 1376 | zlev(ig,l)))/(r_aspect*zmax_sec(ig))) |
---|
| 1377 | ELSE IF ((zlev(ig,l+1)<zmax_sec(ig)) .AND. (zqla(ig, & |
---|
| 1378 | l-1)<1.E-10)) THEN |
---|
| 1379 | detr_star(ig, l) = -f0(ig)*f_star(ig, lmix(ig))/(rhobarz(ig, & |
---|
| 1380 | lmix(ig))*wmaxa(ig))*(rhobarz(ig,l+1)*sqrt(w_est(ig, & |
---|
| 1381 | l+1))*((zmax_sec(ig)-zlev(ig,l+1))/((zmax_sec(ig)-zlev(ig, & |
---|
| 1382 | lmix(ig)))))**2.-rhobarz(ig,l)*sqrt(w_est(ig, & |
---|
| 1383 | l))*((zmax_sec(ig)-zlev(ig,l))/((zmax_sec(ig)-zlev(ig,lmix(ig & |
---|
| 1384 | )))))**2.) |
---|
| 1385 | ELSE |
---|
| 1386 | detr_star(ig, l) = 0.002*f0(ig)*f_star(ig, l)* & |
---|
| 1387 | (zlev(ig,l+1)-zlev(ig,l)) |
---|
[878] | 1388 | |
---|
[1992] | 1389 | END IF |
---|
| 1390 | ELSE |
---|
| 1391 | detr_star(ig, l) = 0. |
---|
| 1392 | END IF |
---|
[878] | 1393 | |
---|
[1992] | 1394 | detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
---|
| 1395 | IF (nuage) THEN |
---|
| 1396 | entr_star(ig, l) = 0.4*detr_star(ig, l) |
---|
| 1397 | ELSE |
---|
| 1398 | entr_star(ig, l) = 0.4*detr_star(ig, l) |
---|
| 1399 | END IF |
---|
[878] | 1400 | |
---|
[1992] | 1401 | IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
---|
| 1402 | detr_star(ig, l) = f_star(ig, l) |
---|
| 1403 | ! entr_star(ig,l)=0. |
---|
| 1404 | END IF |
---|
[878] | 1405 | |
---|
[1992] | 1406 | IF ((l<lentr(ig))) THEN |
---|
| 1407 | entr_star(ig, l) = 0. |
---|
| 1408 | ! detr_star(ig,l)=0. |
---|
| 1409 | END IF |
---|
[878] | 1410 | |
---|
[1992] | 1411 | ! print*,'ok detr_star' |
---|
| 1412 | END IF |
---|
| 1413 | ! prise en compte du detrainement dans le calcul du flux |
---|
| 1414 | f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
| 1415 | entr_star(ig, l) - detr_star(ig, l) |
---|
| 1416 | ! test |
---|
| 1417 | ! if (f_star(ig,l+1).lt.0.) then |
---|
| 1418 | ! f_star(ig,l+1)=0. |
---|
| 1419 | ! entr_star(ig,l)=0. |
---|
| 1420 | ! detr_star(ig,l)=f_star(ig,l)+alim_star(ig,l) |
---|
| 1421 | ! endif |
---|
| 1422 | ! test sur le signe de f_star |
---|
| 1423 | IF (f_star(ig,l+1)>1.E-10) THEN |
---|
| 1424 | ! then |
---|
| 1425 | ! test |
---|
| 1426 | ! if (((f_star(ig,l+1)+detr_star(ig,l)).gt.1.e-10)) then |
---|
| 1427 | ! AM on melange Tl et qt du thermique |
---|
[5274] | 1428 | ! on rajoute un exc�s de T dans la couche alim |
---|
[1992] | 1429 | ! if (l.lt.lentr(ig)) then |
---|
| 1430 | ! ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ |
---|
| 1431 | ! s |
---|
| 1432 | ! (alim_star(ig,l)+entr_star(ig,l))*(zthl(ig,l)+dtheta(ig,l))) |
---|
| 1433 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1434 | ! else |
---|
| 1435 | ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+(alim_star(ig, & |
---|
| 1436 | l)+entr_star(ig,l))*zthl(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1437 | ! s /(f_star(ig,l+1)) |
---|
| 1438 | ! endif |
---|
[5274] | 1439 | ! on rajoute un exc�s de q dans la couche alim |
---|
[1992] | 1440 | ! if (l.lt.lentr(ig)) then |
---|
| 1441 | ! zqta(ig,l)=(f_star(ig,l)*zqta(ig,l-1)+ |
---|
| 1442 | ! s (alim_star(ig,l)+entr_star(ig,l))*(po(ig,l)+0.001)) |
---|
| 1443 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1444 | ! else |
---|
| 1445 | zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+(alim_star(ig, & |
---|
| 1446 | l)+entr_star(ig,l))*po(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1447 | ! s /(f_star(ig,l+1)) |
---|
| 1448 | ! endif |
---|
| 1449 | ! AM on en deduit thetav et ql du thermique |
---|
| 1450 | ! CR test |
---|
| 1451 | ! Tbef(ig)=ztla(ig,l)*zpspsk(ig,l) |
---|
| 1452 | tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
---|
| 1453 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1454 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
| 1455 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 1456 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1457 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 1458 | zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>1.E-10) |
---|
[878] | 1459 | |
---|
[1992] | 1460 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
| 1461 | qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
| 1462 | dt = 0.5*rlvcp*qlbef |
---|
| 1463 | ! write(17,*)'DT0=',DT |
---|
| 1464 | DO WHILE (abs(dt)>ddt0) |
---|
| 1465 | ! print*,'aie' |
---|
| 1466 | tbef(ig) = tbef(ig) + dt |
---|
| 1467 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1468 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
| 1469 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 1470 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1471 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 1472 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
[878] | 1473 | |
---|
[1992] | 1474 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1475 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 1476 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1477 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
| 1478 | num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
---|
| 1479 | denom = 1. + rlvcp*dqsat_dt |
---|
| 1480 | IF (denom<1.E-10) THEN |
---|
| 1481 | PRINT *, 'pb denom' |
---|
| 1482 | END IF |
---|
| 1483 | dt = num/denom |
---|
| 1484 | ! write(17,*)'DT=',DT |
---|
| 1485 | END DO |
---|
| 1486 | zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
| 1487 | zqla(ig, l) = max(0., qlbef) |
---|
| 1488 | ! zqla(ig,l)=0. |
---|
| 1489 | END IF |
---|
| 1490 | ! zqla(ig,l) = max(0.,zqta(ig,l)-qsatbef(ig)) |
---|
[878] | 1491 | |
---|
[1992] | 1492 | ! on ecrit de maniere conservative (sat ou non) |
---|
| 1493 | ! T = Tl +Lv/Cp ql |
---|
| 1494 | ! CR rq utilisation de humidite specifique ou rapport de melange? |
---|
| 1495 | ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
---|
| 1496 | ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
---|
| 1497 | ! on rajoute le calcul de zha pour diagnostiques (temp potentielle) |
---|
| 1498 | zha(ig, l) = ztva(ig, l) |
---|
| 1499 | ! if (l.lt.lentr(ig)) then |
---|
| 1500 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
| 1501 | ! s -zqla(ig,l))-zqla(ig,l)) + 0.1 |
---|
| 1502 | ! else |
---|
| 1503 | ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig, & |
---|
| 1504 | l))-zqla(ig,l)) |
---|
| 1505 | ! endif |
---|
| 1506 | ! ztva(ig,l) = ztla(ig,l)*zpspsk(ig,l)+RLvCp*zqla(ig,l) |
---|
| 1507 | ! s /(1.-retv*zqla(ig,l)) |
---|
| 1508 | ! ztva(ig,l) = ztva(ig,l)/zpspsk(ig,l) |
---|
| 1509 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
| 1510 | ! s /(1.-retv*zqta(ig,l)) |
---|
| 1511 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
| 1512 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
| 1513 | ! write(13,*)zqla(ig,l),zqla(ig,l)/(1.-retv*zqla(ig,l)) |
---|
| 1514 | ! on ecrit zqsat |
---|
| 1515 | zqsatth(ig, l) = qsatbef(ig) |
---|
| 1516 | ! enddo |
---|
| 1517 | ! DO ig=1,ngrid |
---|
| 1518 | ! if (zw2(ig,l).ge.1.e-10.and. |
---|
| 1519 | ! s f_star(ig,l)+entr_star(ig,l).gt.1.e-10) then |
---|
| 1520 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
| 1521 | ! consideree commence avec une vitesse nulle). |
---|
[878] | 1522 | |
---|
[1992] | 1523 | ! if (f_star(ig,l+1).gt.1.e-10) then |
---|
| 1524 | zw2(ig, l+1) = zw2(ig, l)* & ! s |
---|
| 1525 | ! ((f_star(ig,l)-detr_star(ig,l))**2) |
---|
| 1526 | ! s /f_star(ig,l+1)**2+ |
---|
| 1527 | ((f_star(ig,l))**2)/(f_star(ig,l+1)+detr_star(ig,l))**2 + & ! s |
---|
| 1528 | ! /(f_star(ig,l+1))**2+ |
---|
| 1529 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1530 | ! s *(f_star(ig,l)/f_star(ig,l+1))**2 |
---|
[878] | 1531 | |
---|
[1992] | 1532 | END IF |
---|
| 1533 | END IF |
---|
[878] | 1534 | |
---|
[1992] | 1535 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 1536 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 1537 | ig,l)) |
---|
| 1538 | zw2(ig, l+1) = 0. |
---|
| 1539 | ! print*,'linter=',linter(ig) |
---|
| 1540 | ! else if ((zw2(ig,l+1).lt.1.e-10).and.(zw2(ig,l+1).ge.0.)) then |
---|
| 1541 | ! linter(ig)=l+1 |
---|
| 1542 | ! print*,'linter=l',zw2(ig,l),zw2(ig,l+1) |
---|
| 1543 | ELSE |
---|
| 1544 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 1545 | ! wa_moy(ig,l+1)=zw2(ig,l+1) |
---|
| 1546 | END IF |
---|
| 1547 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 1548 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 1549 | lmix(ig) = l + 1 |
---|
| 1550 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 1551 | END IF |
---|
| 1552 | END DO |
---|
| 1553 | END DO |
---|
| 1554 | PRINT *, 'fin calcul zw2' |
---|
[878] | 1555 | |
---|
[1992] | 1556 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 1557 | DO ig = 1, ngrid |
---|
| 1558 | lmax(ig) = lentr(ig) |
---|
| 1559 | END DO |
---|
| 1560 | DO ig = 1, ngrid |
---|
| 1561 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 1562 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 1563 | lmax(ig) = l - 1 |
---|
| 1564 | END IF |
---|
| 1565 | END DO |
---|
| 1566 | END DO |
---|
| 1567 | ! pas de thermique si couche 1 stable |
---|
| 1568 | DO ig = 1, ngrid |
---|
| 1569 | IF (lmin(ig)>1) THEN |
---|
| 1570 | lmax(ig) = 1 |
---|
| 1571 | lmin(ig) = 1 |
---|
| 1572 | lentr(ig) = 1 |
---|
| 1573 | END IF |
---|
| 1574 | END DO |
---|
[878] | 1575 | |
---|
[1992] | 1576 | ! Determination de zw2 max |
---|
| 1577 | DO ig = 1, ngrid |
---|
| 1578 | wmax(ig) = 0. |
---|
| 1579 | END DO |
---|
[878] | 1580 | |
---|
[1992] | 1581 | DO l = 1, nlay |
---|
| 1582 | DO ig = 1, ngrid |
---|
| 1583 | IF (l<=lmax(ig)) THEN |
---|
| 1584 | IF (zw2(ig,l)<0.) THEN |
---|
| 1585 | PRINT *, 'pb2 zw2<0' |
---|
| 1586 | END IF |
---|
| 1587 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 1588 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 1589 | ELSE |
---|
| 1590 | zw2(ig, l) = 0. |
---|
| 1591 | END IF |
---|
| 1592 | END DO |
---|
| 1593 | END DO |
---|
[878] | 1594 | |
---|
[1992] | 1595 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 1596 | DO ig = 1, ngrid |
---|
| 1597 | zmax(ig) = 0. |
---|
| 1598 | zlevinter(ig) = zlev(ig, 1) |
---|
| 1599 | END DO |
---|
| 1600 | DO ig = 1, ngrid |
---|
| 1601 | ! calcul de zlevinter |
---|
| 1602 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 1603 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 1604 | ! pour le cas ou on prend tjs lmin=1 |
---|
| 1605 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 1606 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
---|
| 1607 | zmax0(ig) = zmax(ig) |
---|
| 1608 | WRITE (11, *) 'ig,lmax,linter', ig, lmax(ig), linter(ig) |
---|
| 1609 | WRITE (12, *) 'ig,zlevinter,zmax', ig, zmax(ig), zlevinter(ig) |
---|
| 1610 | END DO |
---|
[878] | 1611 | |
---|
[1992] | 1612 | ! Calcul de zmax_sec et wmax_sec |
---|
| 1613 | CALL fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, f0, & |
---|
| 1614 | zpspsk, alim, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, zmax_sec2, & |
---|
| 1615 | wmax_sec2) |
---|
[878] | 1616 | |
---|
[1992] | 1617 | PRINT *, 'avant fermeture' |
---|
| 1618 | ! Fermeture,determination de f |
---|
| 1619 | ! en lmax f=d-e |
---|
| 1620 | DO ig = 1, ngrid |
---|
| 1621 | ! entr_star(ig,lmax(ig))=0. |
---|
| 1622 | ! f_star(ig,lmax(ig)+1)=0. |
---|
| 1623 | ! detr_star(ig,lmax(ig))=f_star(ig,lmax(ig))+entr_star(ig,lmax(ig)) |
---|
| 1624 | ! s +alim_star(ig,lmax(ig)) |
---|
| 1625 | END DO |
---|
[878] | 1626 | |
---|
[1992] | 1627 | DO ig = 1, ngrid |
---|
| 1628 | alim_star2(ig) = 0. |
---|
| 1629 | END DO |
---|
| 1630 | ! calcul de entr_star_tot |
---|
| 1631 | DO ig = 1, ngrid |
---|
| 1632 | DO k = 1, lmix(ig) |
---|
| 1633 | entr_star_tot(ig) = entr_star_tot(ig) & ! s |
---|
| 1634 | ! +entr_star(ig,k) |
---|
| 1635 | +alim_star(ig, k) |
---|
| 1636 | ! s -detr_star(ig,k) |
---|
| 1637 | detr_star_tot(ig) = detr_star_tot(ig) & ! s |
---|
| 1638 | ! +alim_star(ig,k) |
---|
| 1639 | -detr_star(ig, k) + entr_star(ig, k) |
---|
| 1640 | END DO |
---|
| 1641 | END DO |
---|
[878] | 1642 | |
---|
[1992] | 1643 | DO ig = 1, ngrid |
---|
| 1644 | IF (alim_star_tot(ig)<1.E-10) THEN |
---|
| 1645 | f(ig) = 0. |
---|
| 1646 | ELSE |
---|
| 1647 | ! do k=lmin(ig),lentr(ig) |
---|
| 1648 | DO k = 1, lentr(ig) |
---|
| 1649 | alim_star2(ig) = alim_star2(ig) + alim_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 1650 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 1651 | END DO |
---|
| 1652 | IF ((zmax_sec(ig)>1.E-10) .AND. (1==1)) THEN |
---|
| 1653 | f(ig) = wmax_sec(ig)/(max(500.,zmax_sec(ig))*r_aspect*alim_star2(ig)) |
---|
| 1654 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax_sec(ig))*wmax_sec & |
---|
| 1655 | (ig)) |
---|
| 1656 | ELSE |
---|
| 1657 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*alim_star2(ig)) |
---|
| 1658 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax(ig))*wmax(ig)) |
---|
| 1659 | END IF |
---|
| 1660 | END IF |
---|
| 1661 | f0(ig) = f(ig) |
---|
| 1662 | END DO |
---|
| 1663 | PRINT *, 'apres fermeture' |
---|
| 1664 | ! Calcul de l'entrainement |
---|
| 1665 | DO ig = 1, ngrid |
---|
| 1666 | DO k = 1, klev |
---|
| 1667 | alim(ig, k) = f(ig)*alim_star(ig, k) |
---|
| 1668 | END DO |
---|
| 1669 | END DO |
---|
| 1670 | ! CR:test pour entrainer moins que la masse |
---|
| 1671 | ! do ig=1,ngrid |
---|
| 1672 | ! do l=1,lentr(ig) |
---|
| 1673 | ! if ((alim(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
---|
| 1674 | ! alim(ig,l+1)=alim(ig,l+1)+alim(ig,l) |
---|
| 1675 | ! s -0.9*masse(ig,l)/ptimestep |
---|
| 1676 | ! alim(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
| 1677 | ! endif |
---|
| 1678 | ! enddo |
---|
| 1679 | ! enddo |
---|
[5274] | 1680 | ! calcul du d�trainement |
---|
[1992] | 1681 | DO ig = 1, klon |
---|
| 1682 | DO k = 1, klev |
---|
| 1683 | detr(ig, k) = f(ig)*detr_star(ig, k) |
---|
| 1684 | IF (detr(ig,k)<0.) THEN |
---|
| 1685 | ! print*,'detr1<0!!!' |
---|
| 1686 | END IF |
---|
| 1687 | END DO |
---|
| 1688 | DO k = 1, klev |
---|
| 1689 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 1690 | IF (entr(ig,k)<0.) THEN |
---|
| 1691 | ! print*,'entr1<0!!!' |
---|
| 1692 | END IF |
---|
| 1693 | END DO |
---|
| 1694 | END DO |
---|
[878] | 1695 | |
---|
[1992] | 1696 | ! do ig=1,ngrid |
---|
| 1697 | ! do l=1,klev |
---|
| 1698 | ! if (((detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep).gt. |
---|
| 1699 | ! s (masse(ig,l))) then |
---|
| 1700 | ! print*,'d2+e2+a2>m2','ig=',ig,'l=',l,'lmax(ig)=',lmax(ig),'d+e+a=' |
---|
| 1701 | ! s,(detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep,'m=',masse(ig,l) |
---|
| 1702 | ! endif |
---|
| 1703 | ! enddo |
---|
| 1704 | ! enddo |
---|
| 1705 | ! Calcul des flux |
---|
[878] | 1706 | |
---|
[1992] | 1707 | DO ig = 1, ngrid |
---|
| 1708 | DO l = 1, lmax(ig) |
---|
| 1709 | ! do l=1,klev |
---|
| 1710 | ! fmc(ig,l+1)=f(ig)*f_star(ig,l+1) |
---|
| 1711 | fmc(ig, l+1) = fmc(ig, l) + alim(ig, l) + entr(ig, l) - detr(ig, l) |
---|
| 1712 | ! print*,'??!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
| 1713 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
| 1714 | ! s 'f+1=',fmc(ig,l+1) |
---|
| 1715 | IF (fmc(ig,l+1)<0.) THEN |
---|
| 1716 | PRINT *, 'fmc1<0', l + 1, lmax(ig), fmc(ig, l+1) |
---|
| 1717 | fmc(ig, l+1) = fmc(ig, l) |
---|
| 1718 | detr(ig, l) = alim(ig, l) + entr(ig, l) |
---|
| 1719 | ! fmc(ig,l+1)=0. |
---|
| 1720 | ! print*,'fmc1<0',l+1,lmax(ig),fmc(ig,l+1) |
---|
| 1721 | END IF |
---|
| 1722 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
---|
| 1723 | ! f_old=fmc(ig,l+1) |
---|
| 1724 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
| 1725 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l+1) |
---|
| 1726 | ! endif |
---|
[878] | 1727 | |
---|
[1992] | 1728 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
---|
| 1729 | ! f_old=fmc(ig,l+1) |
---|
| 1730 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
| 1731 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l) |
---|
| 1732 | ! endif |
---|
| 1733 | ! rajout du test sur alpha croissant |
---|
| 1734 | ! if test |
---|
| 1735 | ! if (1.eq.0) then |
---|
[878] | 1736 | |
---|
[1992] | 1737 | IF (l==klev) THEN |
---|
| 1738 | PRINT *, 'THERMCELL PB ig=', ig, ' l=', l |
---|
| 1739 | abort_message = 'THERMCELL PB' |
---|
[2311] | 1740 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 1741 | END IF |
---|
| 1742 | ! if ((zw2(ig,l+1).gt.1.e-10).and.(zw2(ig,l).gt.1.e-10).and. |
---|
| 1743 | ! s (l.ge.lentr(ig)).and. |
---|
| 1744 | IF ((zw2(ig,l+1)>1.E-10) .AND. (zw2(ig,l)>1.E-10) .AND. (l>=lentr(ig))) & |
---|
| 1745 | THEN |
---|
| 1746 | IF (((fmc(ig,l+1)/(rhobarz(ig,l+1)*zw2(ig,l+1)))>(fmc(ig,l)/ & |
---|
| 1747 | (rhobarz(ig,l)*zw2(ig,l))))) THEN |
---|
| 1748 | f_old = fmc(ig, l+1) |
---|
| 1749 | fmc(ig, l+1) = fmc(ig, l)*rhobarz(ig, l+1)*zw2(ig, l+1)/ & |
---|
| 1750 | (rhobarz(ig,l)*zw2(ig,l)) |
---|
| 1751 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
| 1752 | ! detr(ig,l)=(fmc(ig,l+1)-fmc(ig,l))/(0.4-1.) |
---|
| 1753 | ! entr(ig,l)=0.4*detr(ig,l) |
---|
| 1754 | ! entr(ig,l)=fmc(ig,l+1)-fmc(ig,l)+detr(ig,l) |
---|
| 1755 | END IF |
---|
| 1756 | END IF |
---|
| 1757 | IF ((fmc(ig,l+1)>fmc(ig,l)) .AND. (l>lentr(ig))) THEN |
---|
| 1758 | f_old = fmc(ig, l+1) |
---|
| 1759 | fmc(ig, l+1) = fmc(ig, l) |
---|
| 1760 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
| 1761 | END IF |
---|
| 1762 | IF (detr(ig,l)>fmc(ig,l)) THEN |
---|
| 1763 | detr(ig, l) = fmc(ig, l) |
---|
| 1764 | entr(ig, l) = fmc(ig, l+1) - alim(ig, l) |
---|
| 1765 | END IF |
---|
| 1766 | IF (fmc(ig,l+1)<0.) THEN |
---|
| 1767 | detr(ig, l) = detr(ig, l) + fmc(ig, l+1) |
---|
| 1768 | fmc(ig, l+1) = 0. |
---|
| 1769 | PRINT *, 'fmc2<0', l + 1, lmax(ig) |
---|
| 1770 | END IF |
---|
[878] | 1771 | |
---|
[1992] | 1772 | ! test pour ne pas avoir f=0 et d=e/=0 |
---|
| 1773 | ! if (fmc(ig,l+1).lt.1.e-10) then |
---|
| 1774 | ! detr(ig,l+1)=0. |
---|
| 1775 | ! entr(ig,l+1)=0. |
---|
| 1776 | ! zqla(ig,l+1)=0. |
---|
| 1777 | ! zw2(ig,l+1)=0. |
---|
| 1778 | ! lmax(ig)=l+1 |
---|
| 1779 | ! zmax(ig)=zlev(ig,lmax(ig)) |
---|
| 1780 | ! endif |
---|
| 1781 | IF (zw2(ig,l+1)>1.E-10) THEN |
---|
| 1782 | IF ((((fmc(ig,l+1))/(rhobarz(ig,l+1)*zw2(ig,l+1)))>1.)) THEN |
---|
| 1783 | f_old = fmc(ig, l+1) |
---|
| 1784 | fmc(ig, l+1) = rhobarz(ig, l+1)*zw2(ig, l+1) |
---|
| 1785 | zw2(ig, l+1) = 0. |
---|
| 1786 | zqla(ig, l+1) = 0. |
---|
| 1787 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
| 1788 | lmax(ig) = l + 1 |
---|
| 1789 | zmax(ig) = zlev(ig, lmax(ig)) |
---|
| 1790 | PRINT *, 'alpha>1', l + 1, lmax(ig) |
---|
| 1791 | END IF |
---|
| 1792 | END IF |
---|
| 1793 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 1794 | ! endif test |
---|
| 1795 | ! endif |
---|
| 1796 | END DO |
---|
| 1797 | END DO |
---|
| 1798 | DO ig = 1, ngrid |
---|
| 1799 | ! if (fmc(ig,lmax(ig)+1).ne.0.) then |
---|
| 1800 | fmc(ig, lmax(ig)+1) = 0. |
---|
| 1801 | entr(ig, lmax(ig)) = 0. |
---|
| 1802 | detr(ig, lmax(ig)) = fmc(ig, lmax(ig)) + entr(ig, lmax(ig)) + & |
---|
| 1803 | alim(ig, lmax(ig)) |
---|
| 1804 | ! endif |
---|
| 1805 | END DO |
---|
| 1806 | ! test sur le signe de fmc |
---|
| 1807 | DO ig = 1, ngrid |
---|
| 1808 | DO l = 1, klev + 1 |
---|
| 1809 | IF (fmc(ig,l)<0.) THEN |
---|
| 1810 | PRINT *, 'fm1<0!!!', 'ig=', ig, 'l=', l, 'a=', alim(ig, l-1), 'e=', & |
---|
| 1811 | entr(ig, l-1), 'f=', fmc(ig, l-1), 'd=', detr(ig, l-1), 'f+1=', & |
---|
| 1812 | fmc(ig, l) |
---|
| 1813 | END IF |
---|
| 1814 | END DO |
---|
| 1815 | END DO |
---|
| 1816 | ! test de verification |
---|
| 1817 | DO ig = 1, ngrid |
---|
| 1818 | DO l = 1, lmax(ig) |
---|
| 1819 | IF ((abs(fmc(ig,l+1)-fmc(ig,l)-alim(ig,l)-entr(ig,l)+ & |
---|
| 1820 | detr(ig,l)))>1.E-4) THEN |
---|
| 1821 | ! print*,'pbcm!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
| 1822 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
| 1823 | ! s 'f+1=',fmc(ig,l+1) |
---|
| 1824 | END IF |
---|
| 1825 | IF (detr(ig,l)<0.) THEN |
---|
| 1826 | PRINT *, 'detrdemi<0!!!' |
---|
| 1827 | END IF |
---|
| 1828 | END DO |
---|
| 1829 | END DO |
---|
[878] | 1830 | |
---|
[1992] | 1831 | ! RC |
---|
| 1832 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 1833 | DO ig = 1, ngrid |
---|
| 1834 | IF (lmix(ig)>1.) THEN |
---|
| 1835 | ! test |
---|
| 1836 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 1837 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 1838 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 1839 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
[878] | 1840 | |
---|
[1992] | 1841 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 1842 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 1843 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 1844 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 1845 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 1846 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 1847 | ELSE |
---|
| 1848 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 1849 | PRINT *, 'pb zmix' |
---|
| 1850 | END IF |
---|
| 1851 | ELSE |
---|
| 1852 | zmix(ig) = 0. |
---|
| 1853 | END IF |
---|
| 1854 | ! test |
---|
| 1855 | IF ((zmax(ig)-zmix(ig))<=0.) THEN |
---|
| 1856 | zmix(ig) = 0.9*zmax(ig) |
---|
| 1857 | ! print*,'pb zmix>zmax' |
---|
| 1858 | END IF |
---|
| 1859 | END DO |
---|
| 1860 | DO ig = 1, klon |
---|
| 1861 | zmix0(ig) = zmix(ig) |
---|
| 1862 | END DO |
---|
[878] | 1863 | |
---|
[1992] | 1864 | ! calcul du nouveau lmix correspondant |
---|
| 1865 | DO ig = 1, ngrid |
---|
| 1866 | DO l = 1, klev |
---|
| 1867 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 1868 | lmix(ig) = l |
---|
| 1869 | END IF |
---|
| 1870 | END DO |
---|
| 1871 | END DO |
---|
[878] | 1872 | |
---|
[1992] | 1873 | ! ne devrait pas arriver!!!!! |
---|
| 1874 | DO ig = 1, ngrid |
---|
| 1875 | DO l = 1, klev |
---|
| 1876 | IF (detr(ig,l)>(fmc(ig,l)+alim(ig,l))+entr(ig,l)) THEN |
---|
| 1877 | PRINT *, 'detr2>fmc2!!!', 'ig=', ig, 'l=', l, 'd=', detr(ig, l), & |
---|
| 1878 | 'f=', fmc(ig, l), 'lmax=', lmax(ig) |
---|
| 1879 | ! detr(ig,l)=fmc(ig,l)+alim(ig,l)+entr(ig,l) |
---|
| 1880 | ! entr(ig,l)=0. |
---|
| 1881 | ! fmc(ig,l+1)=0. |
---|
| 1882 | ! zw2(ig,l+1)=0. |
---|
| 1883 | ! zqla(ig,l+1)=0. |
---|
| 1884 | PRINT *, 'pb!fm=0 et f_star>0', l, lmax(ig) |
---|
| 1885 | ! lmax(ig)=l |
---|
| 1886 | END IF |
---|
| 1887 | END DO |
---|
| 1888 | END DO |
---|
| 1889 | DO ig = 1, ngrid |
---|
| 1890 | DO l = lmax(ig) + 1, klev + 1 |
---|
| 1891 | ! fmc(ig,l)=0. |
---|
| 1892 | ! detr(ig,l)=0. |
---|
| 1893 | ! entr(ig,l)=0. |
---|
| 1894 | ! zw2(ig,l)=0. |
---|
| 1895 | ! zqla(ig,l)=0. |
---|
| 1896 | END DO |
---|
| 1897 | END DO |
---|
[878] | 1898 | |
---|
[1992] | 1899 | ! Calcul du detrainement lors du premier passage |
---|
| 1900 | ! print*,'9 OK convect8' |
---|
| 1901 | ! print*,'WA1 ',wa_moy |
---|
[878] | 1902 | |
---|
[1992] | 1903 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
[878] | 1904 | |
---|
[1992] | 1905 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 1906 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
[5274] | 1907 | ! d'une couche est �gale � la hauteur de la couche alimentante. |
---|
[1992] | 1908 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 1909 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
[878] | 1910 | |
---|
[1992] | 1911 | DO l = 2, nlay |
---|
| 1912 | DO ig = 1, ngrid |
---|
| 1913 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
| 1914 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 1915 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 1916 | END IF |
---|
| 1917 | END DO |
---|
| 1918 | END DO |
---|
[878] | 1919 | |
---|
[1992] | 1920 | DO l = 2, nlay |
---|
| 1921 | DO ig = 1, ngrid |
---|
| 1922 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
| 1923 | ! if (idetr.eq.0) then |
---|
| 1924 | ! cette option est finalement en dur. |
---|
| 1925 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 1926 | PRINT *, 'pb l_mix*zlev<0' |
---|
| 1927 | END IF |
---|
| 1928 | ! CR: test: nouvelle def de lambda |
---|
| 1929 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 1930 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 1931 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
| 1932 | ELSE |
---|
| 1933 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 1934 | END IF |
---|
| 1935 | ! else if (idetr.eq.1) then |
---|
| 1936 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 1937 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 1938 | ! else if (idetr.eq.2) then |
---|
| 1939 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 1940 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 1941 | ! else if (idetr.eq.4) then |
---|
| 1942 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 1943 | ! s *wa_moy(ig,l) |
---|
| 1944 | ! endif |
---|
| 1945 | END IF |
---|
| 1946 | END DO |
---|
| 1947 | END DO |
---|
[878] | 1948 | |
---|
[1992] | 1949 | ! print*,'10 OK convect8' |
---|
| 1950 | ! print*,'WA2 ',wa_moy |
---|
[5274] | 1951 | ! cal1cul de la fraction de la maille concern�e par l'ascendance en tenant |
---|
[1992] | 1952 | ! compte de l'epluchage du thermique. |
---|
[878] | 1953 | |
---|
| 1954 | |
---|
[1992] | 1955 | DO l = 2, nlay |
---|
| 1956 | DO ig = 1, ngrid |
---|
| 1957 | IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
---|
| 1958 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 1959 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 1960 | ! test |
---|
| 1961 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 1962 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 1963 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 1964 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 1965 | ELSE |
---|
| 1966 | ! wa_moy(ig,l)=0. |
---|
| 1967 | fraca(ig, l) = 0. |
---|
| 1968 | fracc(ig, l) = 0. |
---|
| 1969 | fracd(ig, l) = 1. |
---|
| 1970 | END IF |
---|
| 1971 | END DO |
---|
| 1972 | END DO |
---|
| 1973 | ! CR: calcul de fracazmix |
---|
| 1974 | DO ig = 1, ngrid |
---|
| 1975 | IF (test(ig)==1) THEN |
---|
| 1976 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 1977 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 1978 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca( & |
---|
| 1979 | ig,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 1980 | END IF |
---|
| 1981 | END DO |
---|
[878] | 1982 | |
---|
[1992] | 1983 | DO l = 2, nlay |
---|
| 1984 | DO ig = 1, ngrid |
---|
| 1985 | IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
---|
| 1986 | IF (l>lmix(ig)) THEN |
---|
| 1987 | ! test |
---|
| 1988 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 1989 | ! print*,'pb xxx' |
---|
| 1990 | xxx(ig, l) = (lmax(ig)+1.-l)/(lmax(ig)+1.-lmix(ig)) |
---|
| 1991 | ELSE |
---|
| 1992 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 1993 | END IF |
---|
| 1994 | IF (idetr==0) THEN |
---|
| 1995 | fraca(ig, l) = fracazmix(ig) |
---|
| 1996 | ELSE IF (idetr==1) THEN |
---|
| 1997 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 1998 | ELSE IF (idetr==2) THEN |
---|
| 1999 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 2000 | ELSE |
---|
| 2001 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 2002 | END IF |
---|
| 2003 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 2004 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 2005 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 2006 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 2007 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 2008 | END IF |
---|
| 2009 | END IF |
---|
| 2010 | END DO |
---|
| 2011 | END DO |
---|
[878] | 2012 | |
---|
[1992] | 2013 | PRINT *, 'fin calcul fraca' |
---|
| 2014 | ! print*,'11 OK convect8' |
---|
| 2015 | ! print*,'Ea3 ',wa_moy |
---|
| 2016 | ! ------------------------------------------------------------------ |
---|
| 2017 | ! Calcul de fracd, wd |
---|
| 2018 | ! somme wa - wd = 0 |
---|
| 2019 | ! ------------------------------------------------------------------ |
---|
[878] | 2020 | |
---|
| 2021 | |
---|
[1992] | 2022 | DO ig = 1, ngrid |
---|
| 2023 | fm(ig, 1) = 0. |
---|
| 2024 | fm(ig, nlay+1) = 0. |
---|
| 2025 | END DO |
---|
[878] | 2026 | |
---|
[1992] | 2027 | DO l = 2, nlay |
---|
| 2028 | DO ig = 1, ngrid |
---|
| 2029 | IF (test(ig)==1) THEN |
---|
| 2030 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 2031 | ! CR:test |
---|
| 2032 | IF (alim(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) & |
---|
| 2033 | THEN |
---|
| 2034 | fm(ig, l) = fm(ig, l-1) |
---|
| 2035 | ! write(1,*)'ajustement fm, l',l |
---|
| 2036 | END IF |
---|
| 2037 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 2038 | ! RC |
---|
| 2039 | END IF |
---|
| 2040 | END DO |
---|
| 2041 | DO ig = 1, ngrid |
---|
| 2042 | IF (fracd(ig,l)<0.1 .AND. (test(ig)==1)) THEN |
---|
| 2043 | abort_message = 'fracd trop petit' |
---|
[2311] | 2044 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 2045 | ELSE |
---|
| 2046 | ! vitesse descendante "diagnostique" |
---|
| 2047 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 2048 | END IF |
---|
| 2049 | END DO |
---|
| 2050 | END DO |
---|
[878] | 2051 | |
---|
[1992] | 2052 | DO l = 1, nlay + 1 |
---|
| 2053 | DO ig = 1, ngrid |
---|
| 2054 | IF (test(ig)==0) THEN |
---|
| 2055 | fm(ig, l) = fmc(ig, l) |
---|
| 2056 | END IF |
---|
| 2057 | END DO |
---|
| 2058 | END DO |
---|
[878] | 2059 | |
---|
[1992] | 2060 | ! fin du first |
---|
| 2061 | DO l = 1, nlay |
---|
| 2062 | DO ig = 1, ngrid |
---|
| 2063 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 2064 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 2065 | END DO |
---|
| 2066 | END DO |
---|
[878] | 2067 | |
---|
[1992] | 2068 | ! print*,'12 OK convect8' |
---|
| 2069 | ! print*,'WA4 ',wa_moy |
---|
| 2070 | ! c------------------------------------------------------------------ |
---|
| 2071 | ! calcul du transport vertical |
---|
| 2072 | ! ------------------------------------------------------------------ |
---|
[878] | 2073 | |
---|
[1992] | 2074 | GO TO 4444 |
---|
| 2075 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 2076 | DO l = 2, nlay - 1 |
---|
| 2077 | DO ig = 1, ngrid |
---|
| 2078 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 2079 | ig,l+1)) THEN |
---|
| 2080 | PRINT *, 'WARN!!! FM>M ig=', ig, ' l=', l, ' FM=', & |
---|
| 2081 | fm(ig, l+1)*ptimestep, ' M=', masse(ig, l), masse(ig, l+1) |
---|
| 2082 | END IF |
---|
| 2083 | END DO |
---|
| 2084 | END DO |
---|
[878] | 2085 | |
---|
[1992] | 2086 | DO l = 1, nlay |
---|
| 2087 | DO ig = 1, ngrid |
---|
| 2088 | IF ((alim(ig,l)+entr(ig,l))*ptimestep>masse(ig,l)) THEN |
---|
| 2089 | PRINT *, 'WARN!!! E>M ig=', ig, ' l=', l, ' E==', & |
---|
| 2090 | (entr(ig,l)+alim(ig,l))*ptimestep, ' M=', masse(ig, l) |
---|
| 2091 | END IF |
---|
| 2092 | END DO |
---|
| 2093 | END DO |
---|
[878] | 2094 | |
---|
[1992] | 2095 | DO l = 1, nlay |
---|
| 2096 | DO ig = 1, ngrid |
---|
| 2097 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 2098 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 2099 | ! s ,' FM=',fm(ig,l) |
---|
| 2100 | END IF |
---|
| 2101 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 2102 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 2103 | ! s ,' M=',masse(ig,l) |
---|
| 2104 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 2105 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 2106 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 2107 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 2108 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 2109 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 2110 | END IF |
---|
| 2111 | IF (.NOT. alim(ig,l)>=0. .OR. .NOT. alim(ig,l)<=10.) THEN |
---|
| 2112 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 2113 | ! s ,' E=',entr(ig,l) |
---|
| 2114 | END IF |
---|
| 2115 | END DO |
---|
| 2116 | END DO |
---|
[878] | 2117 | |
---|
[1992] | 2118 | 4444 CONTINUE |
---|
[878] | 2119 | |
---|
[1992] | 2120 | ! CR:redefinition du entr |
---|
| 2121 | ! CR:test:on ne change pas la def du entr mais la def du fm |
---|
| 2122 | DO l = 1, nlay |
---|
| 2123 | DO ig = 1, ngrid |
---|
| 2124 | IF (test(ig)==1) THEN |
---|
| 2125 | detr(ig, l) = fm(ig, l) + alim(ig, l) - fm(ig, l+1) |
---|
| 2126 | IF (detr(ig,l)<0.) THEN |
---|
| 2127 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 2128 | fm(ig, l+1) = fm(ig, l) + alim(ig, l) |
---|
| 2129 | detr(ig, l) = 0. |
---|
| 2130 | ! write(11,*)'l,ig,entr',l,ig,entr(ig,l) |
---|
| 2131 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 2132 | END IF |
---|
| 2133 | END IF |
---|
| 2134 | END DO |
---|
| 2135 | END DO |
---|
| 2136 | ! RC |
---|
[878] | 2137 | |
---|
[1992] | 2138 | IF (w2di==1) THEN |
---|
| 2139 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 2140 | entr0 = entr0 + ptimestep*(alim+entr-entr0)/tho |
---|
| 2141 | ELSE |
---|
| 2142 | fm0 = fm |
---|
| 2143 | entr0 = alim + entr |
---|
| 2144 | detr0 = detr |
---|
| 2145 | alim0 = alim |
---|
| 2146 | ! zoa=zqta |
---|
| 2147 | ! entr0=alim |
---|
| 2148 | END IF |
---|
[878] | 2149 | |
---|
[1992] | 2150 | IF (1==1) THEN |
---|
| 2151 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
| 2152 | ! . ,zh,zdhadj,zha) |
---|
| 2153 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
| 2154 | ! . ,zo,pdoadj,zoa) |
---|
| 2155 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
| 2156 | zdthladj, zta) |
---|
| 2157 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
| 2158 | zoa) |
---|
| 2159 | ELSE |
---|
| 2160 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 2161 | zdhadj, zha) |
---|
| 2162 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 2163 | pdoadj, zoa) |
---|
| 2164 | END IF |
---|
[878] | 2165 | |
---|
[1992] | 2166 | IF (1==0) THEN |
---|
| 2167 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 2168 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 2169 | ELSE |
---|
| 2170 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 2171 | zua) |
---|
| 2172 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 2173 | zva) |
---|
| 2174 | END IF |
---|
[878] | 2175 | |
---|
[1992] | 2176 | ! Calcul des moments |
---|
| 2177 | ! do l=1,nlay |
---|
| 2178 | ! do ig=1,ngrid |
---|
| 2179 | ! zf=0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 2180 | ! zf2=zf/(1.-zf) |
---|
| 2181 | ! thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 2182 | ! wth2(ig,l)=zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 2183 | ! enddo |
---|
| 2184 | ! enddo |
---|
[878] | 2185 | |
---|
| 2186 | |
---|
| 2187 | |
---|
| 2188 | |
---|
| 2189 | |
---|
| 2190 | |
---|
[1992] | 2191 | ! print*,'13 OK convect8' |
---|
| 2192 | ! print*,'WA5 ',wa_moy |
---|
| 2193 | DO l = 1, nlay |
---|
| 2194 | DO ig = 1, ngrid |
---|
| 2195 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
| 2196 | pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
---|
| 2197 | END DO |
---|
| 2198 | END DO |
---|
[878] | 2199 | |
---|
| 2200 | |
---|
[1992] | 2201 | ! do l=1,nlay |
---|
| 2202 | ! do ig=1,ngrid |
---|
| 2203 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 2204 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 2205 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 2206 | ! endif |
---|
| 2207 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 2208 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 2209 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 2210 | ! endif |
---|
| 2211 | ! enddo |
---|
| 2212 | ! enddo |
---|
[878] | 2213 | |
---|
[1992] | 2214 | ! print*,'14 OK convect8' |
---|
| 2215 | ! ------------------------------------------------------------------ |
---|
| 2216 | ! Calculs pour les sorties |
---|
| 2217 | ! ------------------------------------------------------------------ |
---|
| 2218 | ! calcul de fraca pour les sorties |
---|
| 2219 | DO l = 2, klev |
---|
| 2220 | DO ig = 1, klon |
---|
| 2221 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 2222 | fraca(ig, l) = fm(ig, l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 2223 | ELSE |
---|
| 2224 | fraca(ig, l) = 0. |
---|
| 2225 | END IF |
---|
| 2226 | END DO |
---|
| 2227 | END DO |
---|
| 2228 | IF (sorties) THEN |
---|
| 2229 | DO l = 1, nlay |
---|
| 2230 | DO ig = 1, ngrid |
---|
| 2231 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 2232 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 2233 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 2234 | (1.-fracd(ig,l)) |
---|
| 2235 | END DO |
---|
| 2236 | END DO |
---|
| 2237 | ! CR calcul du niveau de condensation |
---|
| 2238 | ! initialisation |
---|
| 2239 | DO ig = 1, ngrid |
---|
| 2240 | nivcon(ig) = 0. |
---|
| 2241 | zcon(ig) = 0. |
---|
| 2242 | END DO |
---|
| 2243 | DO k = nlay, 1, -1 |
---|
| 2244 | DO ig = 1, ngrid |
---|
| 2245 | IF (zqla(ig,k)>1E-10) THEN |
---|
| 2246 | nivcon(ig) = k |
---|
| 2247 | zcon(ig) = zlev(ig, k) |
---|
| 2248 | END IF |
---|
| 2249 | ! if (zcon(ig).gt.1.e-10) then |
---|
| 2250 | ! nuage=.true. |
---|
| 2251 | ! else |
---|
| 2252 | ! nuage=.false. |
---|
| 2253 | ! endif |
---|
| 2254 | END DO |
---|
| 2255 | END DO |
---|
[878] | 2256 | |
---|
[1992] | 2257 | DO l = 1, nlay |
---|
| 2258 | DO ig = 1, ngrid |
---|
| 2259 | zf = fraca(ig, l) |
---|
| 2260 | zf2 = zf/(1.-zf) |
---|
| 2261 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
| 2262 | wth2(ig, l) = zf2*(zw2(ig,l))**2 |
---|
| 2263 | ! print*,'wth2=',wth2(ig,l) |
---|
| 2264 | wth3(ig, l) = zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l))*zw2(ig, l)* & |
---|
| 2265 | zw2(ig, l)*zw2(ig, l) |
---|
| 2266 | q2(ig, l) = zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 2267 | ! test: on calcul q2/po=ratqsc |
---|
| 2268 | ! if (nuage) then |
---|
| 2269 | ratqscth(ig, l) = sqrt(q2(ig,l))/(po(ig,l)*1000.) |
---|
| 2270 | ! else |
---|
| 2271 | ! ratqscth(ig,l)=0. |
---|
| 2272 | ! endif |
---|
| 2273 | END DO |
---|
| 2274 | END DO |
---|
| 2275 | ! calcul du ratqscdiff |
---|
| 2276 | sum = 0. |
---|
| 2277 | sumdiff = 0. |
---|
| 2278 | ratqsdiff(:, :) = 0. |
---|
| 2279 | DO ig = 1, ngrid |
---|
| 2280 | DO l = 1, lentr(ig) |
---|
| 2281 | sum = sum + alim_star(ig, l)*zqta(ig, l)*1000. |
---|
| 2282 | END DO |
---|
| 2283 | END DO |
---|
| 2284 | DO ig = 1, ngrid |
---|
| 2285 | DO l = 1, lentr(ig) |
---|
| 2286 | zf = fraca(ig, l) |
---|
| 2287 | zf2 = zf/(1.-zf) |
---|
| 2288 | sumdiff = sumdiff + alim_star(ig, l)*(zqta(ig,l)*1000.-sum)**2 |
---|
| 2289 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 2290 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 2291 | END DO |
---|
| 2292 | END DO |
---|
| 2293 | DO l = 1, klev |
---|
| 2294 | DO ig = 1, ngrid |
---|
| 2295 | ratqsdiff(ig, l) = sqrt(sumdiff)/(po(ig,l)*1000.) |
---|
| 2296 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 2297 | END DO |
---|
| 2298 | END DO |
---|
[878] | 2299 | |
---|
[1992] | 2300 | END IF |
---|
[878] | 2301 | |
---|
[1992] | 2302 | ! print*,'19 OK convect8' |
---|
| 2303 | RETURN |
---|
| 2304 | END SUBROUTINE thermcell_cld |
---|
[878] | 2305 | |
---|
[1992] | 2306 | SUBROUTINE thermcell_eau(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, & |
---|
| 2307 | pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
| 2308 | ! ,pu_therm,pv_therm |
---|
| 2309 | , r_aspect, l_mix, w2di, tho) |
---|
[878] | 2310 | |
---|
[5284] | 2311 | USE yoethf_mod_h |
---|
[5285] | 2312 | USE yomcst_mod_h |
---|
[1992] | 2313 | USE dimphy |
---|
| 2314 | IMPLICIT NONE |
---|
[878] | 2315 | |
---|
[1992] | 2316 | ! ======================================================================= |
---|
[878] | 2317 | |
---|
[1992] | 2318 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 2319 | ! de "thermiques" explicitement representes |
---|
[1403] | 2320 | |
---|
[5274] | 2321 | ! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
---|
[878] | 2322 | |
---|
[5274] | 2323 | ! le thermique est suppos� homog�ne et dissip� par m�lange avec |
---|
| 2324 | ! son environnement. la longueur l_mix contr�le l'efficacit� du |
---|
| 2325 | ! m�lange |
---|
[878] | 2326 | |
---|
[5274] | 2327 | ! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
---|
[1992] | 2328 | ! en compte: |
---|
| 2329 | ! 1. un flux de masse montant |
---|
| 2330 | ! 2. un flux de masse descendant |
---|
| 2331 | ! 3. un entrainement |
---|
| 2332 | ! 4. un detrainement |
---|
[878] | 2333 | |
---|
[1992] | 2334 | ! ======================================================================= |
---|
[878] | 2335 | |
---|
[1992] | 2336 | ! ----------------------------------------------------------------------- |
---|
| 2337 | ! declarations: |
---|
| 2338 | ! ------------- |
---|
[878] | 2339 | |
---|
[1992] | 2340 | include "FCTTRE.h" |
---|
[878] | 2341 | |
---|
[1992] | 2342 | ! arguments: |
---|
| 2343 | ! ---------- |
---|
[878] | 2344 | |
---|
[1992] | 2345 | INTEGER ngrid, nlay, w2di |
---|
| 2346 | REAL tho |
---|
| 2347 | REAL ptimestep, l_mix, r_aspect |
---|
| 2348 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 2349 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 2350 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 2351 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 2352 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 2353 | REAL pphi(ngrid, nlay) |
---|
[878] | 2354 | |
---|
[1992] | 2355 | INTEGER idetr |
---|
[878] | 2356 | |
---|
[1992] | 2357 | ! local: |
---|
| 2358 | ! ------ |
---|
[878] | 2359 | |
---|
[1992] | 2360 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 2361 | REAL zsortie1d(klon) |
---|
| 2362 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 2363 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 2364 | REAL linter(klon) |
---|
| 2365 | REAL zmix(klon), fracazmix(klon) |
---|
| 2366 | ! RC |
---|
| 2367 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
[878] | 2368 | |
---|
[1992] | 2369 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 2370 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 2371 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
| 2372 | REAL ztv(klon, klev) |
---|
| 2373 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 2374 | REAL zl(klon, klev) |
---|
| 2375 | REAL wh(klon, klev+1) |
---|
| 2376 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 2377 | REAL zla(klon, klev+1) |
---|
| 2378 | REAL zwa(klon, klev+1) |
---|
| 2379 | REAL zld(klon, klev+1) |
---|
| 2380 | REAL zwd(klon, klev+1) |
---|
| 2381 | REAL zsortie(klon, klev) |
---|
| 2382 | REAL zva(klon, klev) |
---|
| 2383 | REAL zua(klon, klev) |
---|
| 2384 | REAL zoa(klon, klev) |
---|
[878] | 2385 | |
---|
[1992] | 2386 | REAL zta(klon, klev) |
---|
| 2387 | REAL zha(klon, klev) |
---|
| 2388 | REAL wa_moy(klon, klev+1) |
---|
| 2389 | REAL fraca(klon, klev+1) |
---|
| 2390 | REAL fracc(klon, klev+1) |
---|
| 2391 | REAL zf, zf2 |
---|
| 2392 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 2393 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 2394 | |
---|
[1992] | 2395 | REAL count_time |
---|
| 2396 | INTEGER ialt |
---|
[878] | 2397 | |
---|
[1992] | 2398 | LOGICAL sorties |
---|
| 2399 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 2400 | REAL zpspsk(klon, klev) |
---|
[878] | 2401 | |
---|
[1992] | 2402 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 2403 | REAL wmax(klon), wmaxa(klon) |
---|
| 2404 | REAL wa(klon, klev, klev+1) |
---|
| 2405 | REAL wd(klon, klev+1) |
---|
| 2406 | REAL larg_part(klon, klev, klev+1) |
---|
| 2407 | REAL fracd(klon, klev+1) |
---|
| 2408 | REAL xxx(klon, klev+1) |
---|
| 2409 | REAL larg_cons(klon, klev+1) |
---|
| 2410 | REAL larg_detr(klon, klev+1) |
---|
| 2411 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 2412 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 2413 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 2414 | REAL fmc(klon, klev+1) |
---|
[878] | 2415 | |
---|
[1992] | 2416 | REAL zcor, zdelta, zcvm5, qlbef |
---|
| 2417 | REAL tbef(klon), qsatbef(klon) |
---|
| 2418 | REAL dqsat_dt, dt, num, denom |
---|
| 2419 | REAL reps, rlvcp, ddt0 |
---|
| 2420 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
[878] | 2421 | |
---|
[1992] | 2422 | PARAMETER (ddt0=.01) |
---|
[878] | 2423 | |
---|
[1992] | 2424 | ! CR:nouvelles variables |
---|
| 2425 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 2426 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 2427 | REAL f(klon), f0(klon) |
---|
| 2428 | REAL zlevinter(klon) |
---|
| 2429 | LOGICAL first |
---|
| 2430 | DATA first/.FALSE./ |
---|
| 2431 | SAVE first |
---|
| 2432 | !$OMP THREADPRIVATE(first) |
---|
[878] | 2433 | |
---|
[1992] | 2434 | ! RC |
---|
[878] | 2435 | |
---|
[1992] | 2436 | CHARACTER *2 str2 |
---|
| 2437 | CHARACTER *10 str10 |
---|
[878] | 2438 | |
---|
[1992] | 2439 | CHARACTER (LEN=20) :: modname = 'thermcell_eau' |
---|
| 2440 | CHARACTER (LEN=80) :: abort_message |
---|
[878] | 2441 | |
---|
[1992] | 2442 | LOGICAL vtest(klon), down |
---|
| 2443 | LOGICAL zsat(klon) |
---|
[878] | 2444 | |
---|
[1992] | 2445 | EXTERNAL scopy |
---|
[878] | 2446 | |
---|
[5501] | 2447 | INTEGER ll |
---|
[878] | 2448 | |
---|
| 2449 | |
---|
| 2450 | |
---|
[1992] | 2451 | ! ----------------------------------------------------------------------- |
---|
| 2452 | ! initialisation: |
---|
| 2453 | ! --------------- |
---|
[878] | 2454 | |
---|
[5501] | 2455 | idetr=3 |
---|
[1992] | 2456 | sorties = .TRUE. |
---|
| 2457 | IF (ngrid/=klon) THEN |
---|
| 2458 | PRINT * |
---|
| 2459 | PRINT *, 'STOP dans convadj' |
---|
| 2460 | PRINT *, 'ngrid =', ngrid |
---|
| 2461 | PRINT *, 'klon =', klon |
---|
| 2462 | END IF |
---|
[878] | 2463 | |
---|
[1992] | 2464 | ! Initialisation |
---|
| 2465 | rlvcp = rlvtt/rcpd |
---|
| 2466 | reps = rd/rv |
---|
[878] | 2467 | |
---|
[1992] | 2468 | ! ----------------------------------------------------------------------- |
---|
| 2469 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
| 2470 | ! --------------------------------------------------- |
---|
[878] | 2471 | |
---|
[1992] | 2472 | ! Pr Tprec=Tl calcul de qsat |
---|
| 2473 | ! Si qsat>qT T=Tl, q=qT |
---|
| 2474 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
| 2475 | ! On cherche DDT < DDT0 |
---|
[878] | 2476 | |
---|
[1992] | 2477 | ! defaut |
---|
| 2478 | DO ll = 1, nlay |
---|
| 2479 | DO ig = 1, ngrid |
---|
| 2480 | zo(ig, ll) = po(ig, ll) |
---|
| 2481 | zl(ig, ll) = 0. |
---|
| 2482 | zh(ig, ll) = pt(ig, ll) |
---|
| 2483 | END DO |
---|
| 2484 | END DO |
---|
| 2485 | DO ig = 1, ngrid |
---|
| 2486 | zsat(ig) = .FALSE. |
---|
| 2487 | END DO |
---|
[878] | 2488 | |
---|
| 2489 | |
---|
[1992] | 2490 | DO ll = 1, nlay |
---|
| 2491 | ! les points insatures sont definitifs |
---|
| 2492 | DO ig = 1, ngrid |
---|
| 2493 | tbef(ig) = pt(ig, ll) |
---|
| 2494 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2495 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
| 2496 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 2497 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2498 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 2499 | zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>0.00001) |
---|
| 2500 | END DO |
---|
[878] | 2501 | |
---|
[1992] | 2502 | DO ig = 1, ngrid |
---|
| 2503 | IF (zsat(ig)) THEN |
---|
| 2504 | qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
---|
| 2505 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
| 2506 | dt = 0.5*rlvcp*qlbef |
---|
| 2507 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
| 2508 | DO WHILE (dt>ddt0) |
---|
| 2509 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
| 2510 | tbef(ig) = tbef(ig) + dt |
---|
| 2511 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2512 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
| 2513 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 2514 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2515 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 2516 | ! on veut le signe de qlbef |
---|
| 2517 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
| 2518 | ! dqsat_dT |
---|
| 2519 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2520 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 2521 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2522 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
| 2523 | num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
---|
| 2524 | denom = 1. + rlvcp*dqsat_dt |
---|
| 2525 | dt = num/denom |
---|
| 2526 | END DO |
---|
| 2527 | ! on ecrit de maniere conservative (sat ou non) |
---|
| 2528 | zl(ig, ll) = max(0., qlbef) |
---|
| 2529 | ! T = Tl +Lv/Cp ql |
---|
| 2530 | zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
---|
| 2531 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
| 2532 | END IF |
---|
| 2533 | END DO |
---|
| 2534 | END DO |
---|
| 2535 | ! AM fin |
---|
[878] | 2536 | |
---|
[1992] | 2537 | ! ----------------------------------------------------------------------- |
---|
| 2538 | ! incrementation eventuelle de tendances precedentes: |
---|
| 2539 | ! --------------------------------------------------- |
---|
[878] | 2540 | |
---|
[1992] | 2541 | ! print*,'0 OK convect8' |
---|
[878] | 2542 | |
---|
[1992] | 2543 | DO l = 1, nlay |
---|
| 2544 | DO ig = 1, ngrid |
---|
| 2545 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 2546 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
| 2547 | zu(ig, l) = pu(ig, l) |
---|
| 2548 | zv(ig, l) = pv(ig, l) |
---|
| 2549 | ! zo(ig,l)=po(ig,l) |
---|
| 2550 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
| 2551 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
| 2552 | ! theta ! |
---|
[878] | 2553 | |
---|
[1992] | 2554 | ! T-> Theta |
---|
| 2555 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
| 2556 | ! AM Theta_v |
---|
| 2557 | ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
---|
| 2558 | ! AM Thetal |
---|
| 2559 | zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
[878] | 2560 | |
---|
[1992] | 2561 | END DO |
---|
| 2562 | END DO |
---|
[878] | 2563 | |
---|
[1992] | 2564 | ! print*,'1 OK convect8' |
---|
| 2565 | ! -------------------- |
---|
[878] | 2566 | |
---|
| 2567 | |
---|
[1992] | 2568 | ! + + + + + + + + + + + |
---|
[878] | 2569 | |
---|
| 2570 | |
---|
[1992] | 2571 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 2572 | ! wh,wt,wo ... |
---|
[878] | 2573 | |
---|
[1992] | 2574 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[878] | 2575 | |
---|
| 2576 | |
---|
[1992] | 2577 | ! -------------------- zlev(1) |
---|
| 2578 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[878] | 2579 | |
---|
| 2580 | |
---|
| 2581 | |
---|
[1992] | 2582 | ! ----------------------------------------------------------------------- |
---|
| 2583 | ! Calcul des altitudes des couches |
---|
| 2584 | ! ----------------------------------------------------------------------- |
---|
[878] | 2585 | |
---|
[1992] | 2586 | DO l = 2, nlay |
---|
| 2587 | DO ig = 1, ngrid |
---|
| 2588 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 2589 | END DO |
---|
| 2590 | END DO |
---|
| 2591 | DO ig = 1, ngrid |
---|
| 2592 | zlev(ig, 1) = 0. |
---|
| 2593 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 2594 | END DO |
---|
| 2595 | DO l = 1, nlay |
---|
| 2596 | DO ig = 1, ngrid |
---|
| 2597 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 2598 | END DO |
---|
| 2599 | END DO |
---|
| 2600 | |
---|
| 2601 | ! print*,'2 OK convect8' |
---|
| 2602 | ! ----------------------------------------------------------------------- |
---|
| 2603 | ! Calcul des densites |
---|
| 2604 | ! ----------------------------------------------------------------------- |
---|
| 2605 | |
---|
| 2606 | DO l = 1, nlay |
---|
| 2607 | DO ig = 1, ngrid |
---|
| 2608 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
| 2609 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
---|
| 2610 | END DO |
---|
| 2611 | END DO |
---|
| 2612 | |
---|
| 2613 | DO l = 2, nlay |
---|
| 2614 | DO ig = 1, ngrid |
---|
| 2615 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 2616 | END DO |
---|
| 2617 | END DO |
---|
| 2618 | |
---|
| 2619 | DO k = 1, nlay |
---|
| 2620 | DO l = 1, nlay + 1 |
---|
| 2621 | DO ig = 1, ngrid |
---|
| 2622 | wa(ig, k, l) = 0. |
---|
| 2623 | END DO |
---|
| 2624 | END DO |
---|
| 2625 | END DO |
---|
| 2626 | |
---|
| 2627 | ! print*,'3 OK convect8' |
---|
| 2628 | ! ------------------------------------------------------------------ |
---|
| 2629 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 2630 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
| 2631 | |
---|
| 2632 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 2633 | ! w2 est stoke dans wa |
---|
| 2634 | |
---|
| 2635 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 2636 | ! independants par couches que pour calculer l'entrainement |
---|
| 2637 | ! a la base et la hauteur max de l'ascendance. |
---|
| 2638 | |
---|
| 2639 | ! Indicages: |
---|
| 2640 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 2641 | ! une vitesse wa(k,l). |
---|
| 2642 | |
---|
| 2643 | ! -------------------- |
---|
| 2644 | |
---|
| 2645 | ! + + + + + + + + + + |
---|
| 2646 | |
---|
| 2647 | ! wa(k,l) ---- -------------------- l |
---|
| 2648 | ! /\ |
---|
| 2649 | ! /||\ + + + + + + + + + + |
---|
| 2650 | ! || |
---|
| 2651 | ! || -------------------- |
---|
| 2652 | ! || |
---|
| 2653 | ! || + + + + + + + + + + |
---|
| 2654 | ! || |
---|
| 2655 | ! || -------------------- |
---|
| 2656 | ! ||__ |
---|
| 2657 | ! |___ + + + + + + + + + + k |
---|
| 2658 | |
---|
| 2659 | ! -------------------- |
---|
| 2660 | |
---|
| 2661 | |
---|
| 2662 | |
---|
| 2663 | ! ------------------------------------------------------------------ |
---|
| 2664 | |
---|
| 2665 | ! CR: ponderation entrainement des couches instables |
---|
| 2666 | ! def des entr_star tels que entr=f*entr_star |
---|
| 2667 | DO l = 1, klev |
---|
| 2668 | DO ig = 1, ngrid |
---|
| 2669 | entr_star(ig, l) = 0. |
---|
| 2670 | END DO |
---|
| 2671 | END DO |
---|
| 2672 | ! determination de la longueur de la couche d entrainement |
---|
| 2673 | DO ig = 1, ngrid |
---|
| 2674 | lentr(ig) = 1 |
---|
| 2675 | END DO |
---|
| 2676 | |
---|
| 2677 | ! on ne considere que les premieres couches instables |
---|
| 2678 | DO k = nlay - 1, 1, -1 |
---|
| 2679 | DO ig = 1, ngrid |
---|
| 2680 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<ztv(ig,k+2)) THEN |
---|
| 2681 | lentr(ig) = k |
---|
| 2682 | END IF |
---|
| 2683 | END DO |
---|
| 2684 | END DO |
---|
| 2685 | |
---|
| 2686 | ! determination du lmin: couche d ou provient le thermique |
---|
| 2687 | DO ig = 1, ngrid |
---|
| 2688 | lmin(ig) = 1 |
---|
| 2689 | END DO |
---|
| 2690 | DO ig = 1, ngrid |
---|
| 2691 | DO l = nlay, 2, -1 |
---|
| 2692 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 2693 | lmin(ig) = l - 1 |
---|
| 2694 | END IF |
---|
| 2695 | END DO |
---|
| 2696 | END DO |
---|
| 2697 | |
---|
| 2698 | ! definition de l'entrainement des couches |
---|
| 2699 | DO l = 1, klev - 1 |
---|
| 2700 | DO ig = 1, ngrid |
---|
| 2701 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
| 2702 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 2703 | END IF |
---|
| 2704 | END DO |
---|
| 2705 | END DO |
---|
| 2706 | ! pas de thermique si couche 1 stable |
---|
| 2707 | DO ig = 1, ngrid |
---|
| 2708 | IF (lmin(ig)>1) THEN |
---|
| 2709 | DO l = 1, klev |
---|
| 2710 | entr_star(ig, l) = 0. |
---|
| 2711 | END DO |
---|
| 2712 | END IF |
---|
| 2713 | END DO |
---|
| 2714 | ! calcul de l entrainement total |
---|
| 2715 | DO ig = 1, ngrid |
---|
| 2716 | entr_star_tot(ig) = 0. |
---|
| 2717 | END DO |
---|
| 2718 | DO ig = 1, ngrid |
---|
| 2719 | DO k = 1, klev |
---|
| 2720 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 2721 | END DO |
---|
| 2722 | END DO |
---|
| 2723 | |
---|
| 2724 | DO k = 1, klev |
---|
| 2725 | DO ig = 1, ngrid |
---|
| 2726 | ztva(ig, k) = ztv(ig, k) |
---|
| 2727 | END DO |
---|
| 2728 | END DO |
---|
| 2729 | ! RC |
---|
| 2730 | ! AM:initialisations |
---|
| 2731 | DO k = 1, nlay |
---|
| 2732 | DO ig = 1, ngrid |
---|
| 2733 | ztva(ig, k) = ztv(ig, k) |
---|
| 2734 | ztla(ig, k) = zthl(ig, k) |
---|
| 2735 | zqla(ig, k) = 0. |
---|
| 2736 | zqta(ig, k) = po(ig, k) |
---|
| 2737 | zsat(ig) = .FALSE. |
---|
| 2738 | END DO |
---|
| 2739 | END DO |
---|
| 2740 | |
---|
| 2741 | ! print*,'7 OK convect8' |
---|
| 2742 | DO k = 1, klev + 1 |
---|
| 2743 | DO ig = 1, ngrid |
---|
| 2744 | zw2(ig, k) = 0. |
---|
| 2745 | fmc(ig, k) = 0. |
---|
| 2746 | ! CR |
---|
| 2747 | f_star(ig, k) = 0. |
---|
| 2748 | ! RC |
---|
| 2749 | larg_cons(ig, k) = 0. |
---|
| 2750 | larg_detr(ig, k) = 0. |
---|
| 2751 | wa_moy(ig, k) = 0. |
---|
| 2752 | END DO |
---|
| 2753 | END DO |
---|
| 2754 | |
---|
| 2755 | ! print*,'8 OK convect8' |
---|
| 2756 | DO ig = 1, ngrid |
---|
| 2757 | linter(ig) = 1. |
---|
| 2758 | lmaxa(ig) = 1 |
---|
| 2759 | lmix(ig) = 1 |
---|
| 2760 | wmaxa(ig) = 0. |
---|
| 2761 | END DO |
---|
| 2762 | |
---|
| 2763 | ! CR: |
---|
| 2764 | DO l = 1, nlay - 2 |
---|
| 2765 | DO ig = 1, ngrid |
---|
| 2766 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 2767 | zw2(ig,l)<1E-10) THEN |
---|
| 2768 | ! AM |
---|
| 2769 | ztla(ig, l) = zthl(ig, l) |
---|
| 2770 | zqta(ig, l) = po(ig, l) |
---|
| 2771 | zqla(ig, l) = zl(ig, l) |
---|
| 2772 | ! AM |
---|
| 2773 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 2774 | ! test:calcul de dteta |
---|
| 2775 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 2776 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 2777 | larg_detr(ig, l) = 0. |
---|
| 2778 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 2779 | l)>1.E-10)) THEN |
---|
| 2780 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 2781 | |
---|
| 2782 | ! AM on melange Tl et qt du thermique |
---|
| 2783 | ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+entr_star(ig,l)*zthl(ig,l))/ & |
---|
| 2784 | f_star(ig, l+1) |
---|
| 2785 | zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+entr_star(ig,l)*po(ig,l))/ & |
---|
| 2786 | f_star(ig, l+1) |
---|
| 2787 | |
---|
| 2788 | ! ztva(ig,l)=(f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l) |
---|
| 2789 | ! s *ztv(ig,l))/f_star(ig,l+1) |
---|
| 2790 | |
---|
| 2791 | ! AM on en deduit thetav et ql du thermique |
---|
| 2792 | tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
---|
| 2793 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2794 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
| 2795 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 2796 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2797 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 2798 | zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>0.00001) |
---|
| 2799 | END IF |
---|
| 2800 | END DO |
---|
| 2801 | DO ig = 1, ngrid |
---|
| 2802 | IF (zsat(ig)) THEN |
---|
| 2803 | qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
| 2804 | dt = 0.5*rlvcp*qlbef |
---|
| 2805 | DO WHILE (dt>ddt0) |
---|
| 2806 | tbef(ig) = tbef(ig) + dt |
---|
| 2807 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2808 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
| 2809 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 2810 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2811 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 2812 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
| 2813 | |
---|
| 2814 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2815 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 2816 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2817 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
| 2818 | num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
---|
| 2819 | denom = 1. + rlvcp*dqsat_dt |
---|
| 2820 | dt = num/denom |
---|
| 2821 | END DO |
---|
| 2822 | zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
| 2823 | END IF |
---|
| 2824 | ! on ecrit de maniere conservative (sat ou non) |
---|
| 2825 | ! T = Tl +Lv/Cp ql |
---|
| 2826 | ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
---|
| 2827 | ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
---|
| 2828 | ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig,l))-zqla(ig,l)) |
---|
| 2829 | |
---|
| 2830 | END DO |
---|
| 2831 | DO ig = 1, ngrid |
---|
| 2832 | IF (zw2(ig,l)>=1.E-10 .AND. f_star(ig,l)+entr_star(ig,l)>1.E-10) THEN |
---|
| 2833 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
| 2834 | ! consideree commence avec une vitesse nulle). |
---|
| 2835 | |
---|
| 2836 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 2837 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 2838 | END IF |
---|
| 2839 | ! determination de zmax continu par interpolation lineaire |
---|
| 2840 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 2841 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 2842 | ig,l)) |
---|
| 2843 | zw2(ig, l+1) = 0. |
---|
| 2844 | lmaxa(ig) = l |
---|
| 2845 | ELSE |
---|
| 2846 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 2847 | END IF |
---|
| 2848 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 2849 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 2850 | lmix(ig) = l + 1 |
---|
| 2851 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 2852 | END IF |
---|
| 2853 | END DO |
---|
| 2854 | END DO |
---|
| 2855 | |
---|
| 2856 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 2857 | DO ig = 1, ngrid |
---|
| 2858 | lmax(ig) = lentr(ig) |
---|
| 2859 | END DO |
---|
| 2860 | DO ig = 1, ngrid |
---|
| 2861 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 2862 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 2863 | lmax(ig) = l - 1 |
---|
| 2864 | END IF |
---|
| 2865 | END DO |
---|
| 2866 | END DO |
---|
| 2867 | ! pas de thermique si couche 1 stable |
---|
| 2868 | DO ig = 1, ngrid |
---|
| 2869 | IF (lmin(ig)>1) THEN |
---|
| 2870 | lmax(ig) = 1 |
---|
| 2871 | lmin(ig) = 1 |
---|
| 2872 | END IF |
---|
| 2873 | END DO |
---|
| 2874 | |
---|
| 2875 | ! Determination de zw2 max |
---|
| 2876 | DO ig = 1, ngrid |
---|
| 2877 | wmax(ig) = 0. |
---|
| 2878 | END DO |
---|
| 2879 | |
---|
| 2880 | DO l = 1, nlay |
---|
| 2881 | DO ig = 1, ngrid |
---|
| 2882 | IF (l<=lmax(ig)) THEN |
---|
| 2883 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 2884 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 2885 | ELSE |
---|
| 2886 | zw2(ig, l) = 0. |
---|
| 2887 | END IF |
---|
| 2888 | END DO |
---|
| 2889 | END DO |
---|
| 2890 | |
---|
| 2891 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 2892 | DO ig = 1, ngrid |
---|
| 2893 | zmax(ig) = 500. |
---|
| 2894 | zlevinter(ig) = zlev(ig, 1) |
---|
| 2895 | END DO |
---|
| 2896 | DO ig = 1, ngrid |
---|
| 2897 | ! calcul de zlevinter |
---|
| 2898 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 2899 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 2900 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 2901 | END DO |
---|
| 2902 | |
---|
| 2903 | ! Fermeture,determination de f |
---|
| 2904 | DO ig = 1, ngrid |
---|
| 2905 | entr_star2(ig) = 0. |
---|
| 2906 | END DO |
---|
| 2907 | DO ig = 1, ngrid |
---|
| 2908 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 2909 | f(ig) = 0. |
---|
| 2910 | ELSE |
---|
| 2911 | DO k = lmin(ig), lentr(ig) |
---|
| 2912 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 2913 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 2914 | END DO |
---|
| 2915 | ! Nouvelle fermeture |
---|
| 2916 | f(ig) = wmax(ig)/(zmax(ig)*r_aspect*entr_star2(ig))*entr_star_tot(ig) |
---|
| 2917 | ! test |
---|
| 2918 | IF (first) THEN |
---|
| 2919 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
---|
| 2920 | END IF |
---|
| 2921 | END IF |
---|
| 2922 | f0(ig) = f(ig) |
---|
| 2923 | first = .TRUE. |
---|
| 2924 | END DO |
---|
| 2925 | |
---|
| 2926 | ! Calcul de l'entrainement |
---|
| 2927 | DO k = 1, klev |
---|
| 2928 | DO ig = 1, ngrid |
---|
| 2929 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 2930 | END DO |
---|
| 2931 | END DO |
---|
| 2932 | ! Calcul des flux |
---|
| 2933 | DO ig = 1, ngrid |
---|
| 2934 | DO l = 1, lmax(ig) - 1 |
---|
| 2935 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 2936 | END DO |
---|
| 2937 | END DO |
---|
| 2938 | |
---|
| 2939 | ! RC |
---|
| 2940 | |
---|
| 2941 | |
---|
| 2942 | ! print*,'9 OK convect8' |
---|
| 2943 | ! print*,'WA1 ',wa_moy |
---|
| 2944 | |
---|
| 2945 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 2946 | |
---|
| 2947 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 2948 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
[5274] | 2949 | ! d'une couche est �gale � la hauteur de la couche alimentante. |
---|
[1992] | 2950 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 2951 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 2952 | |
---|
| 2953 | DO l = 2, nlay |
---|
| 2954 | DO ig = 1, ngrid |
---|
| 2955 | IF (l<=lmaxa(ig)) THEN |
---|
| 2956 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 2957 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 2958 | END IF |
---|
| 2959 | END DO |
---|
| 2960 | END DO |
---|
| 2961 | |
---|
| 2962 | DO l = 2, nlay |
---|
| 2963 | DO ig = 1, ngrid |
---|
| 2964 | IF (l<=lmaxa(ig)) THEN |
---|
| 2965 | ! if (idetr.eq.0) then |
---|
| 2966 | ! cette option est finalement en dur. |
---|
| 2967 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 2968 | ! else if (idetr.eq.1) then |
---|
| 2969 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 2970 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 2971 | ! else if (idetr.eq.2) then |
---|
| 2972 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 2973 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 2974 | ! else if (idetr.eq.4) then |
---|
| 2975 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 2976 | ! s *wa_moy(ig,l) |
---|
| 2977 | ! endif |
---|
| 2978 | END IF |
---|
| 2979 | END DO |
---|
| 2980 | END DO |
---|
| 2981 | |
---|
| 2982 | ! print*,'10 OK convect8' |
---|
| 2983 | ! print*,'WA2 ',wa_moy |
---|
[5274] | 2984 | ! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
---|
[1992] | 2985 | ! compte de l'epluchage du thermique. |
---|
| 2986 | |
---|
| 2987 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 2988 | DO ig = 1, ngrid |
---|
| 2989 | IF (lmix(ig)>1.) THEN |
---|
| 2990 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig))) & |
---|
| 2991 | **2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 2992 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 2993 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 2994 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))-zw2(ig,lmix(ig)+1))*((zlev( & |
---|
| 2995 | ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 2996 | ELSE |
---|
| 2997 | zmix(ig) = 0. |
---|
| 2998 | END IF |
---|
| 2999 | END DO |
---|
| 3000 | |
---|
| 3001 | ! calcul du nouveau lmix correspondant |
---|
| 3002 | DO ig = 1, ngrid |
---|
| 3003 | DO l = 1, klev |
---|
| 3004 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 3005 | lmix(ig) = l |
---|
| 3006 | END IF |
---|
| 3007 | END DO |
---|
| 3008 | END DO |
---|
| 3009 | |
---|
| 3010 | DO l = 2, nlay |
---|
| 3011 | DO ig = 1, ngrid |
---|
| 3012 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 3013 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 3014 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 3015 | ! test |
---|
| 3016 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 3017 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 3018 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 3019 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 3020 | ELSE |
---|
| 3021 | ! wa_moy(ig,l)=0. |
---|
| 3022 | fraca(ig, l) = 0. |
---|
| 3023 | fracc(ig, l) = 0. |
---|
| 3024 | fracd(ig, l) = 1. |
---|
| 3025 | END IF |
---|
| 3026 | END DO |
---|
| 3027 | END DO |
---|
| 3028 | ! CR: calcul de fracazmix |
---|
| 3029 | DO ig = 1, ngrid |
---|
| 3030 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 3031 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 3032 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 3033 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 3034 | END DO |
---|
| 3035 | |
---|
| 3036 | DO l = 2, nlay |
---|
| 3037 | DO ig = 1, ngrid |
---|
| 3038 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 3039 | IF (l>lmix(ig)) THEN |
---|
| 3040 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 3041 | IF (idetr==0) THEN |
---|
| 3042 | fraca(ig, l) = fracazmix(ig) |
---|
| 3043 | ELSE IF (idetr==1) THEN |
---|
| 3044 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 3045 | ELSE IF (idetr==2) THEN |
---|
| 3046 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 3047 | ELSE |
---|
| 3048 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 3049 | END IF |
---|
| 3050 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 3051 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 3052 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 3053 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 3054 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 3055 | END IF |
---|
| 3056 | END IF |
---|
| 3057 | END DO |
---|
| 3058 | END DO |
---|
| 3059 | |
---|
| 3060 | ! print*,'11 OK convect8' |
---|
| 3061 | ! print*,'Ea3 ',wa_moy |
---|
| 3062 | ! ------------------------------------------------------------------ |
---|
| 3063 | ! Calcul de fracd, wd |
---|
| 3064 | ! somme wa - wd = 0 |
---|
| 3065 | ! ------------------------------------------------------------------ |
---|
| 3066 | |
---|
| 3067 | |
---|
| 3068 | DO ig = 1, ngrid |
---|
| 3069 | fm(ig, 1) = 0. |
---|
| 3070 | fm(ig, nlay+1) = 0. |
---|
| 3071 | END DO |
---|
| 3072 | |
---|
| 3073 | DO l = 2, nlay |
---|
| 3074 | DO ig = 1, ngrid |
---|
| 3075 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 3076 | ! CR:test |
---|
| 3077 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 3078 | fm(ig, l) = fm(ig, l-1) |
---|
| 3079 | ! write(1,*)'ajustement fm, l',l |
---|
| 3080 | END IF |
---|
| 3081 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 3082 | ! RC |
---|
| 3083 | END DO |
---|
| 3084 | DO ig = 1, ngrid |
---|
| 3085 | IF (fracd(ig,l)<0.1) THEN |
---|
| 3086 | abort_message = 'fracd trop petit' |
---|
[2311] | 3087 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 3088 | ELSE |
---|
| 3089 | ! vitesse descendante "diagnostique" |
---|
| 3090 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 3091 | END IF |
---|
| 3092 | END DO |
---|
| 3093 | END DO |
---|
| 3094 | |
---|
| 3095 | DO l = 1, nlay |
---|
| 3096 | DO ig = 1, ngrid |
---|
| 3097 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 3098 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 3099 | END DO |
---|
| 3100 | END DO |
---|
| 3101 | |
---|
| 3102 | ! print*,'12 OK convect8' |
---|
| 3103 | ! print*,'WA4 ',wa_moy |
---|
| 3104 | ! c------------------------------------------------------------------ |
---|
| 3105 | ! calcul du transport vertical |
---|
| 3106 | ! ------------------------------------------------------------------ |
---|
| 3107 | |
---|
| 3108 | GO TO 4444 |
---|
| 3109 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 3110 | DO l = 2, nlay - 1 |
---|
| 3111 | DO ig = 1, ngrid |
---|
| 3112 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 3113 | ig,l+1)) THEN |
---|
| 3114 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 3115 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 3116 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 3117 | END IF |
---|
| 3118 | END DO |
---|
| 3119 | END DO |
---|
| 3120 | |
---|
| 3121 | DO l = 1, nlay |
---|
| 3122 | DO ig = 1, ngrid |
---|
| 3123 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 3124 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 3125 | ! s ,entr(ig,l)*ptimestep |
---|
| 3126 | ! s ,' M=',masse(ig,l) |
---|
| 3127 | END IF |
---|
| 3128 | END DO |
---|
| 3129 | END DO |
---|
| 3130 | |
---|
| 3131 | DO l = 1, nlay |
---|
| 3132 | DO ig = 1, ngrid |
---|
| 3133 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 3134 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 3135 | ! s ,' FM=',fm(ig,l) |
---|
| 3136 | END IF |
---|
| 3137 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 3138 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 3139 | ! s ,' M=',masse(ig,l) |
---|
| 3140 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 3141 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 3142 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 3143 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 3144 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 3145 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 3146 | END IF |
---|
| 3147 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 3148 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 3149 | ! s ,' E=',entr(ig,l) |
---|
| 3150 | END IF |
---|
| 3151 | END DO |
---|
| 3152 | END DO |
---|
| 3153 | |
---|
| 3154 | 4444 CONTINUE |
---|
| 3155 | |
---|
| 3156 | IF (w2di==1) THEN |
---|
| 3157 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 3158 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 3159 | ELSE |
---|
| 3160 | fm0 = fm |
---|
| 3161 | entr0 = entr |
---|
| 3162 | END IF |
---|
| 3163 | |
---|
| 3164 | IF (1==1) THEN |
---|
| 3165 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
| 3166 | ! . ,zh,zdhadj,zha) |
---|
| 3167 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
| 3168 | ! . ,zo,pdoadj,zoa) |
---|
| 3169 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
| 3170 | zdthladj, zta) |
---|
| 3171 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
| 3172 | zoa) |
---|
| 3173 | ELSE |
---|
| 3174 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 3175 | zdhadj, zha) |
---|
| 3176 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 3177 | pdoadj, zoa) |
---|
| 3178 | END IF |
---|
| 3179 | |
---|
| 3180 | IF (1==0) THEN |
---|
| 3181 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 3182 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 3183 | ELSE |
---|
| 3184 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 3185 | zua) |
---|
| 3186 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 3187 | zva) |
---|
| 3188 | END IF |
---|
| 3189 | |
---|
| 3190 | DO l = 1, nlay |
---|
| 3191 | DO ig = 1, ngrid |
---|
| 3192 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 3193 | zf2 = zf/(1.-zf) |
---|
| 3194 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 3195 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 3196 | END DO |
---|
| 3197 | END DO |
---|
| 3198 | |
---|
| 3199 | |
---|
| 3200 | |
---|
| 3201 | ! print*,'13 OK convect8' |
---|
| 3202 | ! print*,'WA5 ',wa_moy |
---|
| 3203 | DO l = 1, nlay |
---|
| 3204 | DO ig = 1, ngrid |
---|
| 3205 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
| 3206 | pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
---|
| 3207 | END DO |
---|
| 3208 | END DO |
---|
| 3209 | |
---|
| 3210 | |
---|
| 3211 | ! do l=1,nlay |
---|
| 3212 | ! do ig=1,ngrid |
---|
| 3213 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 3214 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 3215 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 3216 | ! endif |
---|
| 3217 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 3218 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 3219 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 3220 | ! endif |
---|
| 3221 | ! enddo |
---|
| 3222 | ! enddo |
---|
| 3223 | |
---|
| 3224 | ! print*,'14 OK convect8' |
---|
| 3225 | ! ------------------------------------------------------------------ |
---|
| 3226 | ! Calculs pour les sorties |
---|
| 3227 | ! ------------------------------------------------------------------ |
---|
| 3228 | |
---|
| 3229 | RETURN |
---|
| 3230 | END SUBROUTINE thermcell_eau |
---|
| 3231 | |
---|
| 3232 | SUBROUTINE thermcell(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, pt, & |
---|
| 3233 | po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
| 3234 | ! ,pu_therm,pv_therm |
---|
| 3235 | , r_aspect, l_mix, w2di, tho) |
---|
| 3236 | |
---|
[5285] | 3237 | USE yomcst_mod_h |
---|
[1992] | 3238 | USE dimphy |
---|
| 3239 | IMPLICIT NONE |
---|
| 3240 | |
---|
| 3241 | ! ======================================================================= |
---|
| 3242 | |
---|
| 3243 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 3244 | ! de "thermiques" explicitement representes |
---|
| 3245 | |
---|
[5274] | 3246 | ! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
---|
[1992] | 3247 | |
---|
[5274] | 3248 | ! le thermique est suppos� homog�ne et dissip� par m�lange avec |
---|
| 3249 | ! son environnement. la longueur l_mix contr�le l'efficacit� du |
---|
| 3250 | ! m�lange |
---|
[1992] | 3251 | |
---|
[5274] | 3252 | ! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
---|
[1992] | 3253 | ! en compte: |
---|
| 3254 | ! 1. un flux de masse montant |
---|
| 3255 | ! 2. un flux de masse descendant |
---|
| 3256 | ! 3. un entrainement |
---|
| 3257 | ! 4. un detrainement |
---|
| 3258 | |
---|
| 3259 | ! ======================================================================= |
---|
| 3260 | |
---|
| 3261 | ! ----------------------------------------------------------------------- |
---|
| 3262 | ! declarations: |
---|
| 3263 | ! ------------- |
---|
| 3264 | |
---|
| 3265 | |
---|
| 3266 | ! arguments: |
---|
| 3267 | ! ---------- |
---|
| 3268 | |
---|
| 3269 | INTEGER ngrid, nlay, w2di |
---|
| 3270 | REAL tho |
---|
| 3271 | REAL ptimestep, l_mix, r_aspect |
---|
| 3272 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 3273 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 3274 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 3275 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 3276 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 3277 | REAL pphi(ngrid, nlay) |
---|
| 3278 | |
---|
| 3279 | INTEGER idetr |
---|
| 3280 | |
---|
| 3281 | ! local: |
---|
| 3282 | ! ------ |
---|
| 3283 | |
---|
| 3284 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 3285 | REAL zsortie1d(klon) |
---|
| 3286 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 3287 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 3288 | REAL linter(klon) |
---|
| 3289 | REAL zmix(klon), fracazmix(klon) |
---|
| 3290 | ! RC |
---|
| 3291 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
| 3292 | |
---|
| 3293 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 3294 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 3295 | REAL ztv(klon, klev) |
---|
| 3296 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 3297 | REAL wh(klon, klev+1) |
---|
| 3298 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 3299 | REAL zla(klon, klev+1) |
---|
| 3300 | REAL zwa(klon, klev+1) |
---|
| 3301 | REAL zld(klon, klev+1) |
---|
| 3302 | REAL zwd(klon, klev+1) |
---|
| 3303 | REAL zsortie(klon, klev) |
---|
| 3304 | REAL zva(klon, klev) |
---|
| 3305 | REAL zua(klon, klev) |
---|
| 3306 | REAL zoa(klon, klev) |
---|
| 3307 | |
---|
| 3308 | REAL zha(klon, klev) |
---|
| 3309 | REAL wa_moy(klon, klev+1) |
---|
| 3310 | REAL fraca(klon, klev+1) |
---|
| 3311 | REAL fracc(klon, klev+1) |
---|
| 3312 | REAL zf, zf2 |
---|
| 3313 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 3314 | ! common/comtherm/thetath2,wth2 |
---|
| 3315 | |
---|
| 3316 | REAL count_time |
---|
| 3317 | INTEGER ialt |
---|
| 3318 | |
---|
| 3319 | LOGICAL sorties |
---|
| 3320 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 3321 | REAL zpspsk(klon, klev) |
---|
| 3322 | |
---|
| 3323 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 3324 | REAL wmax(klon), wmaxa(klon) |
---|
| 3325 | REAL wa(klon, klev, klev+1) |
---|
| 3326 | REAL wd(klon, klev+1) |
---|
| 3327 | REAL larg_part(klon, klev, klev+1) |
---|
| 3328 | REAL fracd(klon, klev+1) |
---|
| 3329 | REAL xxx(klon, klev+1) |
---|
| 3330 | REAL larg_cons(klon, klev+1) |
---|
| 3331 | REAL larg_detr(klon, klev+1) |
---|
| 3332 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 3333 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 3334 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 3335 | REAL fmc(klon, klev+1) |
---|
| 3336 | |
---|
| 3337 | ! CR:nouvelles variables |
---|
| 3338 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 3339 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 3340 | REAL f(klon), f0(klon) |
---|
| 3341 | REAL zlevinter(klon) |
---|
| 3342 | LOGICAL first |
---|
| 3343 | DATA first/.FALSE./ |
---|
| 3344 | SAVE first |
---|
| 3345 | !$OMP THREADPRIVATE(first) |
---|
| 3346 | ! RC |
---|
| 3347 | |
---|
| 3348 | CHARACTER *2 str2 |
---|
| 3349 | CHARACTER *10 str10 |
---|
| 3350 | |
---|
| 3351 | CHARACTER (LEN=20) :: modname = 'thermcell' |
---|
| 3352 | CHARACTER (LEN=80) :: abort_message |
---|
| 3353 | |
---|
| 3354 | LOGICAL vtest(klon), down |
---|
| 3355 | |
---|
| 3356 | EXTERNAL scopy |
---|
| 3357 | |
---|
[5501] | 3358 | INTEGER ll |
---|
[1992] | 3359 | |
---|
| 3360 | |
---|
| 3361 | ! ----------------------------------------------------------------------- |
---|
| 3362 | ! initialisation: |
---|
| 3363 | ! --------------- |
---|
| 3364 | |
---|
[5501] | 3365 | idetr=3 |
---|
[1992] | 3366 | sorties = .TRUE. |
---|
| 3367 | IF (ngrid/=klon) THEN |
---|
| 3368 | PRINT * |
---|
| 3369 | PRINT *, 'STOP dans convadj' |
---|
| 3370 | PRINT *, 'ngrid =', ngrid |
---|
| 3371 | PRINT *, 'klon =', klon |
---|
| 3372 | END IF |
---|
| 3373 | |
---|
| 3374 | ! ----------------------------------------------------------------------- |
---|
| 3375 | ! incrementation eventuelle de tendances precedentes: |
---|
| 3376 | ! --------------------------------------------------- |
---|
| 3377 | |
---|
| 3378 | ! print*,'0 OK convect8' |
---|
| 3379 | |
---|
| 3380 | DO l = 1, nlay |
---|
| 3381 | DO ig = 1, ngrid |
---|
| 3382 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 3383 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 3384 | zu(ig, l) = pu(ig, l) |
---|
| 3385 | zv(ig, l) = pv(ig, l) |
---|
| 3386 | zo(ig, l) = po(ig, l) |
---|
| 3387 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 3388 | END DO |
---|
| 3389 | END DO |
---|
| 3390 | |
---|
| 3391 | ! print*,'1 OK convect8' |
---|
| 3392 | ! -------------------- |
---|
| 3393 | |
---|
| 3394 | |
---|
| 3395 | ! + + + + + + + + + + + |
---|
| 3396 | |
---|
| 3397 | |
---|
| 3398 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 3399 | ! wh,wt,wo ... |
---|
| 3400 | |
---|
| 3401 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 3402 | |
---|
| 3403 | |
---|
| 3404 | ! -------------------- zlev(1) |
---|
| 3405 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 3406 | |
---|
| 3407 | |
---|
| 3408 | |
---|
| 3409 | ! ----------------------------------------------------------------------- |
---|
| 3410 | ! Calcul des altitudes des couches |
---|
| 3411 | ! ----------------------------------------------------------------------- |
---|
| 3412 | |
---|
| 3413 | DO l = 2, nlay |
---|
| 3414 | DO ig = 1, ngrid |
---|
| 3415 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 3416 | END DO |
---|
| 3417 | END DO |
---|
| 3418 | DO ig = 1, ngrid |
---|
| 3419 | zlev(ig, 1) = 0. |
---|
| 3420 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 3421 | END DO |
---|
| 3422 | DO l = 1, nlay |
---|
| 3423 | DO ig = 1, ngrid |
---|
| 3424 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 3425 | END DO |
---|
| 3426 | END DO |
---|
| 3427 | |
---|
| 3428 | ! print*,'2 OK convect8' |
---|
| 3429 | ! ----------------------------------------------------------------------- |
---|
| 3430 | ! Calcul des densites |
---|
| 3431 | ! ----------------------------------------------------------------------- |
---|
| 3432 | |
---|
| 3433 | DO l = 1, nlay |
---|
| 3434 | DO ig = 1, ngrid |
---|
| 3435 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 3436 | END DO |
---|
| 3437 | END DO |
---|
| 3438 | |
---|
| 3439 | DO l = 2, nlay |
---|
| 3440 | DO ig = 1, ngrid |
---|
| 3441 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 3442 | END DO |
---|
| 3443 | END DO |
---|
| 3444 | |
---|
| 3445 | DO k = 1, nlay |
---|
| 3446 | DO l = 1, nlay + 1 |
---|
| 3447 | DO ig = 1, ngrid |
---|
| 3448 | wa(ig, k, l) = 0. |
---|
| 3449 | END DO |
---|
| 3450 | END DO |
---|
| 3451 | END DO |
---|
| 3452 | |
---|
| 3453 | ! print*,'3 OK convect8' |
---|
| 3454 | ! ------------------------------------------------------------------ |
---|
| 3455 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 3456 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
| 3457 | |
---|
| 3458 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 3459 | ! w2 est stoke dans wa |
---|
| 3460 | |
---|
| 3461 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 3462 | ! independants par couches que pour calculer l'entrainement |
---|
| 3463 | ! a la base et la hauteur max de l'ascendance. |
---|
| 3464 | |
---|
| 3465 | ! Indicages: |
---|
| 3466 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 3467 | ! une vitesse wa(k,l). |
---|
| 3468 | |
---|
| 3469 | ! -------------------- |
---|
| 3470 | |
---|
| 3471 | ! + + + + + + + + + + |
---|
| 3472 | |
---|
| 3473 | ! wa(k,l) ---- -------------------- l |
---|
| 3474 | ! /\ |
---|
| 3475 | ! /||\ + + + + + + + + + + |
---|
| 3476 | ! || |
---|
| 3477 | ! || -------------------- |
---|
| 3478 | ! || |
---|
| 3479 | ! || + + + + + + + + + + |
---|
| 3480 | ! || |
---|
| 3481 | ! || -------------------- |
---|
| 3482 | ! ||__ |
---|
| 3483 | ! |___ + + + + + + + + + + k |
---|
| 3484 | |
---|
| 3485 | ! -------------------- |
---|
| 3486 | |
---|
| 3487 | |
---|
| 3488 | |
---|
| 3489 | ! ------------------------------------------------------------------ |
---|
| 3490 | |
---|
| 3491 | ! CR: ponderation entrainement des couches instables |
---|
| 3492 | ! def des entr_star tels que entr=f*entr_star |
---|
| 3493 | DO l = 1, klev |
---|
| 3494 | DO ig = 1, ngrid |
---|
| 3495 | entr_star(ig, l) = 0. |
---|
| 3496 | END DO |
---|
| 3497 | END DO |
---|
| 3498 | ! determination de la longueur de la couche d entrainement |
---|
| 3499 | DO ig = 1, ngrid |
---|
| 3500 | lentr(ig) = 1 |
---|
| 3501 | END DO |
---|
| 3502 | |
---|
| 3503 | ! on ne considere que les premieres couches instables |
---|
| 3504 | DO k = nlay - 2, 1, -1 |
---|
| 3505 | DO ig = 1, ngrid |
---|
| 3506 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 3507 | lentr(ig) = k |
---|
| 3508 | END IF |
---|
| 3509 | END DO |
---|
| 3510 | END DO |
---|
| 3511 | |
---|
| 3512 | ! determination du lmin: couche d ou provient le thermique |
---|
| 3513 | DO ig = 1, ngrid |
---|
| 3514 | lmin(ig) = 1 |
---|
| 3515 | END DO |
---|
| 3516 | DO ig = 1, ngrid |
---|
| 3517 | DO l = nlay, 2, -1 |
---|
| 3518 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 3519 | lmin(ig) = l - 1 |
---|
| 3520 | END IF |
---|
| 3521 | END DO |
---|
| 3522 | END DO |
---|
| 3523 | |
---|
| 3524 | ! definition de l'entrainement des couches |
---|
| 3525 | DO l = 1, klev - 1 |
---|
| 3526 | DO ig = 1, ngrid |
---|
| 3527 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
| 3528 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 3529 | END IF |
---|
| 3530 | END DO |
---|
| 3531 | END DO |
---|
| 3532 | ! pas de thermique si couches 1->5 stables |
---|
| 3533 | DO ig = 1, ngrid |
---|
| 3534 | IF (lmin(ig)>5) THEN |
---|
| 3535 | DO l = 1, klev |
---|
| 3536 | entr_star(ig, l) = 0. |
---|
| 3537 | END DO |
---|
| 3538 | END IF |
---|
| 3539 | END DO |
---|
| 3540 | ! calcul de l entrainement total |
---|
| 3541 | DO ig = 1, ngrid |
---|
| 3542 | entr_star_tot(ig) = 0. |
---|
| 3543 | END DO |
---|
| 3544 | DO ig = 1, ngrid |
---|
| 3545 | DO k = 1, klev |
---|
| 3546 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 3547 | END DO |
---|
| 3548 | END DO |
---|
| 3549 | |
---|
| 3550 | PRINT *, 'fin calcul entr_star' |
---|
| 3551 | DO k = 1, klev |
---|
| 3552 | DO ig = 1, ngrid |
---|
| 3553 | ztva(ig, k) = ztv(ig, k) |
---|
| 3554 | END DO |
---|
| 3555 | END DO |
---|
| 3556 | ! RC |
---|
| 3557 | ! print*,'7 OK convect8' |
---|
| 3558 | DO k = 1, klev + 1 |
---|
| 3559 | DO ig = 1, ngrid |
---|
| 3560 | zw2(ig, k) = 0. |
---|
| 3561 | fmc(ig, k) = 0. |
---|
| 3562 | ! CR |
---|
| 3563 | f_star(ig, k) = 0. |
---|
| 3564 | ! RC |
---|
| 3565 | larg_cons(ig, k) = 0. |
---|
| 3566 | larg_detr(ig, k) = 0. |
---|
| 3567 | wa_moy(ig, k) = 0. |
---|
| 3568 | END DO |
---|
| 3569 | END DO |
---|
| 3570 | |
---|
| 3571 | ! print*,'8 OK convect8' |
---|
| 3572 | DO ig = 1, ngrid |
---|
| 3573 | linter(ig) = 1. |
---|
| 3574 | lmaxa(ig) = 1 |
---|
| 3575 | lmix(ig) = 1 |
---|
| 3576 | wmaxa(ig) = 0. |
---|
| 3577 | END DO |
---|
| 3578 | |
---|
| 3579 | ! CR: |
---|
| 3580 | DO l = 1, nlay - 2 |
---|
| 3581 | DO ig = 1, ngrid |
---|
| 3582 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 3583 | zw2(ig,l)<1E-10) THEN |
---|
| 3584 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 3585 | ! test:calcul de dteta |
---|
| 3586 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 3587 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 3588 | larg_detr(ig, l) = 0. |
---|
| 3589 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 3590 | l)>1.E-10)) THEN |
---|
| 3591 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 3592 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
| 3593 | f_star(ig, l+1) |
---|
| 3594 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 3595 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 3596 | END IF |
---|
| 3597 | ! determination de zmax continu par interpolation lineaire |
---|
| 3598 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 3599 | ! test |
---|
| 3600 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
| 3601 | PRINT *, 'pb linter' |
---|
| 3602 | END IF |
---|
| 3603 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 3604 | ig,l)) |
---|
| 3605 | zw2(ig, l+1) = 0. |
---|
| 3606 | lmaxa(ig) = l |
---|
| 3607 | ELSE |
---|
| 3608 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 3609 | PRINT *, 'pb1 zw2<0' |
---|
| 3610 | END IF |
---|
| 3611 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 3612 | END IF |
---|
| 3613 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 3614 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 3615 | lmix(ig) = l + 1 |
---|
| 3616 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 3617 | END IF |
---|
| 3618 | END DO |
---|
| 3619 | END DO |
---|
| 3620 | PRINT *, 'fin calcul zw2' |
---|
| 3621 | |
---|
| 3622 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 3623 | DO ig = 1, ngrid |
---|
| 3624 | lmax(ig) = lentr(ig) |
---|
| 3625 | END DO |
---|
| 3626 | DO ig = 1, ngrid |
---|
| 3627 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 3628 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 3629 | lmax(ig) = l - 1 |
---|
| 3630 | END IF |
---|
| 3631 | END DO |
---|
| 3632 | END DO |
---|
| 3633 | ! pas de thermique si couches 1->5 stables |
---|
| 3634 | DO ig = 1, ngrid |
---|
| 3635 | IF (lmin(ig)>5) THEN |
---|
| 3636 | lmax(ig) = 1 |
---|
| 3637 | lmin(ig) = 1 |
---|
| 3638 | END IF |
---|
| 3639 | END DO |
---|
| 3640 | |
---|
| 3641 | ! Determination de zw2 max |
---|
| 3642 | DO ig = 1, ngrid |
---|
| 3643 | wmax(ig) = 0. |
---|
| 3644 | END DO |
---|
| 3645 | |
---|
| 3646 | DO l = 1, nlay |
---|
| 3647 | DO ig = 1, ngrid |
---|
| 3648 | IF (l<=lmax(ig)) THEN |
---|
| 3649 | IF (zw2(ig,l)<0.) THEN |
---|
| 3650 | PRINT *, 'pb2 zw2<0' |
---|
| 3651 | END IF |
---|
| 3652 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 3653 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 3654 | ELSE |
---|
| 3655 | zw2(ig, l) = 0. |
---|
| 3656 | END IF |
---|
| 3657 | END DO |
---|
| 3658 | END DO |
---|
| 3659 | |
---|
| 3660 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 3661 | DO ig = 1, ngrid |
---|
| 3662 | zmax(ig) = 0. |
---|
| 3663 | zlevinter(ig) = zlev(ig, 1) |
---|
| 3664 | END DO |
---|
| 3665 | DO ig = 1, ngrid |
---|
| 3666 | ! calcul de zlevinter |
---|
| 3667 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 3668 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 3669 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 3670 | END DO |
---|
| 3671 | |
---|
| 3672 | PRINT *, 'avant fermeture' |
---|
| 3673 | ! Fermeture,determination de f |
---|
| 3674 | DO ig = 1, ngrid |
---|
| 3675 | entr_star2(ig) = 0. |
---|
| 3676 | END DO |
---|
| 3677 | DO ig = 1, ngrid |
---|
| 3678 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 3679 | f(ig) = 0. |
---|
| 3680 | ELSE |
---|
| 3681 | DO k = lmin(ig), lentr(ig) |
---|
| 3682 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 3683 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 3684 | END DO |
---|
| 3685 | ! Nouvelle fermeture |
---|
| 3686 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
---|
| 3687 | entr_star_tot(ig) |
---|
| 3688 | ! test |
---|
| 3689 | ! if (first) then |
---|
| 3690 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
| 3691 | ! s *wmax(ig)) |
---|
| 3692 | ! endif |
---|
| 3693 | END IF |
---|
| 3694 | ! f0(ig)=f(ig) |
---|
| 3695 | ! first=.true. |
---|
| 3696 | END DO |
---|
| 3697 | PRINT *, 'apres fermeture' |
---|
| 3698 | |
---|
| 3699 | ! Calcul de l'entrainement |
---|
| 3700 | DO k = 1, klev |
---|
| 3701 | DO ig = 1, ngrid |
---|
| 3702 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 3703 | END DO |
---|
| 3704 | END DO |
---|
| 3705 | ! Calcul des flux |
---|
| 3706 | DO ig = 1, ngrid |
---|
| 3707 | DO l = 1, lmax(ig) - 1 |
---|
| 3708 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 3709 | END DO |
---|
| 3710 | END DO |
---|
| 3711 | |
---|
| 3712 | ! RC |
---|
| 3713 | |
---|
| 3714 | |
---|
| 3715 | ! print*,'9 OK convect8' |
---|
| 3716 | ! print*,'WA1 ',wa_moy |
---|
| 3717 | |
---|
| 3718 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 3719 | |
---|
| 3720 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 3721 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
[5274] | 3722 | ! d'une couche est �gale � la hauteur de la couche alimentante. |
---|
[1992] | 3723 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 3724 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 3725 | |
---|
| 3726 | DO l = 2, nlay |
---|
| 3727 | DO ig = 1, ngrid |
---|
| 3728 | IF (l<=lmaxa(ig)) THEN |
---|
| 3729 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 3730 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 3731 | END IF |
---|
| 3732 | END DO |
---|
| 3733 | END DO |
---|
| 3734 | |
---|
| 3735 | DO l = 2, nlay |
---|
| 3736 | DO ig = 1, ngrid |
---|
| 3737 | IF (l<=lmaxa(ig)) THEN |
---|
| 3738 | ! if (idetr.eq.0) then |
---|
| 3739 | ! cette option est finalement en dur. |
---|
| 3740 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 3741 | PRINT *, 'pb l_mix*zlev<0' |
---|
| 3742 | END IF |
---|
| 3743 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 3744 | ! else if (idetr.eq.1) then |
---|
| 3745 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 3746 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 3747 | ! else if (idetr.eq.2) then |
---|
| 3748 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 3749 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 3750 | ! else if (idetr.eq.4) then |
---|
| 3751 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 3752 | ! s *wa_moy(ig,l) |
---|
| 3753 | ! endif |
---|
| 3754 | END IF |
---|
| 3755 | END DO |
---|
| 3756 | END DO |
---|
| 3757 | |
---|
| 3758 | ! print*,'10 OK convect8' |
---|
| 3759 | ! print*,'WA2 ',wa_moy |
---|
[5274] | 3760 | ! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
---|
[1992] | 3761 | ! compte de l'epluchage du thermique. |
---|
| 3762 | |
---|
| 3763 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 3764 | DO ig = 1, ngrid |
---|
| 3765 | IF (lmix(ig)>1.) THEN |
---|
| 3766 | ! test |
---|
| 3767 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 3768 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 3769 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 3770 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
| 3771 | |
---|
| 3772 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 3773 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 3774 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 3775 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 3776 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 3777 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 3778 | ELSE |
---|
| 3779 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 3780 | PRINT *, 'pb zmix' |
---|
| 3781 | END IF |
---|
| 3782 | ELSE |
---|
| 3783 | zmix(ig) = 0. |
---|
| 3784 | END IF |
---|
| 3785 | ! test |
---|
| 3786 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
| 3787 | zmix(ig) = 0.99*zmax(ig) |
---|
| 3788 | ! print*,'pb zmix>zmax' |
---|
| 3789 | END IF |
---|
| 3790 | END DO |
---|
| 3791 | |
---|
| 3792 | ! calcul du nouveau lmix correspondant |
---|
| 3793 | DO ig = 1, ngrid |
---|
| 3794 | DO l = 1, klev |
---|
| 3795 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 3796 | lmix(ig) = l |
---|
| 3797 | END IF |
---|
| 3798 | END DO |
---|
| 3799 | END DO |
---|
| 3800 | |
---|
| 3801 | DO l = 2, nlay |
---|
| 3802 | DO ig = 1, ngrid |
---|
| 3803 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 3804 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 3805 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 3806 | ! test |
---|
| 3807 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 3808 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 3809 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 3810 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 3811 | ELSE |
---|
| 3812 | ! wa_moy(ig,l)=0. |
---|
| 3813 | fraca(ig, l) = 0. |
---|
| 3814 | fracc(ig, l) = 0. |
---|
| 3815 | fracd(ig, l) = 1. |
---|
| 3816 | END IF |
---|
| 3817 | END DO |
---|
| 3818 | END DO |
---|
| 3819 | ! CR: calcul de fracazmix |
---|
| 3820 | DO ig = 1, ngrid |
---|
| 3821 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 3822 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 3823 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 3824 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 3825 | END DO |
---|
| 3826 | |
---|
| 3827 | DO l = 2, nlay |
---|
| 3828 | DO ig = 1, ngrid |
---|
| 3829 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 3830 | IF (l>lmix(ig)) THEN |
---|
| 3831 | ! test |
---|
| 3832 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 3833 | ! print*,'pb xxx' |
---|
| 3834 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 3835 | ELSE |
---|
| 3836 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 3837 | END IF |
---|
| 3838 | IF (idetr==0) THEN |
---|
| 3839 | fraca(ig, l) = fracazmix(ig) |
---|
| 3840 | ELSE IF (idetr==1) THEN |
---|
| 3841 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 3842 | ELSE IF (idetr==2) THEN |
---|
| 3843 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 3844 | ELSE |
---|
| 3845 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 3846 | END IF |
---|
| 3847 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 3848 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 3849 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 3850 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 3851 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 3852 | END IF |
---|
| 3853 | END IF |
---|
| 3854 | END DO |
---|
| 3855 | END DO |
---|
| 3856 | |
---|
| 3857 | PRINT *, 'fin calcul fraca' |
---|
| 3858 | ! print*,'11 OK convect8' |
---|
| 3859 | ! print*,'Ea3 ',wa_moy |
---|
| 3860 | ! ------------------------------------------------------------------ |
---|
| 3861 | ! Calcul de fracd, wd |
---|
| 3862 | ! somme wa - wd = 0 |
---|
| 3863 | ! ------------------------------------------------------------------ |
---|
| 3864 | |
---|
| 3865 | |
---|
| 3866 | DO ig = 1, ngrid |
---|
| 3867 | fm(ig, 1) = 0. |
---|
| 3868 | fm(ig, nlay+1) = 0. |
---|
| 3869 | END DO |
---|
| 3870 | |
---|
| 3871 | DO l = 2, nlay |
---|
| 3872 | DO ig = 1, ngrid |
---|
| 3873 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 3874 | ! CR:test |
---|
| 3875 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 3876 | fm(ig, l) = fm(ig, l-1) |
---|
| 3877 | ! write(1,*)'ajustement fm, l',l |
---|
| 3878 | END IF |
---|
| 3879 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 3880 | ! RC |
---|
| 3881 | END DO |
---|
| 3882 | DO ig = 1, ngrid |
---|
| 3883 | IF (fracd(ig,l)<0.1) THEN |
---|
| 3884 | abort_message = 'fracd trop petit' |
---|
[2311] | 3885 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 3886 | ELSE |
---|
| 3887 | ! vitesse descendante "diagnostique" |
---|
| 3888 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 3889 | END IF |
---|
| 3890 | END DO |
---|
| 3891 | END DO |
---|
| 3892 | |
---|
| 3893 | DO l = 1, nlay |
---|
| 3894 | DO ig = 1, ngrid |
---|
| 3895 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 3896 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 3897 | END DO |
---|
| 3898 | END DO |
---|
| 3899 | |
---|
| 3900 | ! print*,'12 OK convect8' |
---|
| 3901 | ! print*,'WA4 ',wa_moy |
---|
| 3902 | ! c------------------------------------------------------------------ |
---|
| 3903 | ! calcul du transport vertical |
---|
| 3904 | ! ------------------------------------------------------------------ |
---|
| 3905 | |
---|
| 3906 | GO TO 4444 |
---|
| 3907 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 3908 | DO l = 2, nlay - 1 |
---|
| 3909 | DO ig = 1, ngrid |
---|
| 3910 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 3911 | ig,l+1)) THEN |
---|
| 3912 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 3913 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 3914 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 3915 | END IF |
---|
| 3916 | END DO |
---|
| 3917 | END DO |
---|
| 3918 | |
---|
| 3919 | DO l = 1, nlay |
---|
| 3920 | DO ig = 1, ngrid |
---|
| 3921 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 3922 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 3923 | ! s ,entr(ig,l)*ptimestep |
---|
| 3924 | ! s ,' M=',masse(ig,l) |
---|
| 3925 | END IF |
---|
| 3926 | END DO |
---|
| 3927 | END DO |
---|
| 3928 | |
---|
| 3929 | DO l = 1, nlay |
---|
| 3930 | DO ig = 1, ngrid |
---|
| 3931 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 3932 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 3933 | ! s ,' FM=',fm(ig,l) |
---|
| 3934 | END IF |
---|
| 3935 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 3936 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 3937 | ! s ,' M=',masse(ig,l) |
---|
| 3938 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 3939 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 3940 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 3941 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 3942 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 3943 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 3944 | END IF |
---|
| 3945 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 3946 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 3947 | ! s ,' E=',entr(ig,l) |
---|
| 3948 | END IF |
---|
| 3949 | END DO |
---|
| 3950 | END DO |
---|
| 3951 | |
---|
| 3952 | 4444 CONTINUE |
---|
| 3953 | |
---|
| 3954 | ! CR:redefinition du entr |
---|
| 3955 | DO l = 1, nlay |
---|
| 3956 | DO ig = 1, ngrid |
---|
| 3957 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 3958 | IF (detr(ig,l)<0.) THEN |
---|
| 3959 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
| 3960 | detr(ig, l) = 0. |
---|
| 3961 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 3962 | END IF |
---|
| 3963 | END DO |
---|
| 3964 | END DO |
---|
| 3965 | ! RC |
---|
| 3966 | IF (w2di==1) THEN |
---|
| 3967 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 3968 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 3969 | ELSE |
---|
| 3970 | fm0 = fm |
---|
| 3971 | entr0 = entr |
---|
| 3972 | END IF |
---|
| 3973 | |
---|
| 3974 | IF (1==1) THEN |
---|
| 3975 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 3976 | zha) |
---|
| 3977 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 3978 | zoa) |
---|
| 3979 | ELSE |
---|
| 3980 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 3981 | zdhadj, zha) |
---|
| 3982 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 3983 | pdoadj, zoa) |
---|
| 3984 | END IF |
---|
| 3985 | |
---|
| 3986 | IF (1==0) THEN |
---|
| 3987 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 3988 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 3989 | ELSE |
---|
| 3990 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 3991 | zua) |
---|
| 3992 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 3993 | zva) |
---|
| 3994 | END IF |
---|
| 3995 | |
---|
| 3996 | DO l = 1, nlay |
---|
| 3997 | DO ig = 1, ngrid |
---|
| 3998 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 3999 | zf2 = zf/(1.-zf) |
---|
| 4000 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 4001 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 4002 | END DO |
---|
| 4003 | END DO |
---|
| 4004 | |
---|
| 4005 | |
---|
| 4006 | |
---|
| 4007 | ! print*,'13 OK convect8' |
---|
| 4008 | ! print*,'WA5 ',wa_moy |
---|
| 4009 | DO l = 1, nlay |
---|
| 4010 | DO ig = 1, ngrid |
---|
| 4011 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 4012 | END DO |
---|
| 4013 | END DO |
---|
| 4014 | |
---|
| 4015 | |
---|
| 4016 | ! do l=1,nlay |
---|
| 4017 | ! do ig=1,ngrid |
---|
| 4018 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 4019 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 4020 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 4021 | ! endif |
---|
| 4022 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 4023 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 4024 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 4025 | ! endif |
---|
| 4026 | ! enddo |
---|
| 4027 | ! enddo |
---|
| 4028 | |
---|
| 4029 | ! print*,'14 OK convect8' |
---|
| 4030 | ! ------------------------------------------------------------------ |
---|
| 4031 | ! Calculs pour les sorties |
---|
| 4032 | ! ------------------------------------------------------------------ |
---|
| 4033 | |
---|
| 4034 | IF (sorties) THEN |
---|
| 4035 | DO l = 1, nlay |
---|
| 4036 | DO ig = 1, ngrid |
---|
| 4037 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 4038 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 4039 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 4040 | (1.-fracd(ig,l)) |
---|
| 4041 | END DO |
---|
| 4042 | END DO |
---|
| 4043 | |
---|
| 4044 | END IF |
---|
[878] | 4045 | |
---|
[1992] | 4046 | RETURN |
---|
| 4047 | END SUBROUTINE thermcell |
---|
[878] | 4048 | |
---|
[1992] | 4049 | SUBROUTINE dqthermcell(ngrid, nlay, ptimestep, fm, entr, masse, q, dq, qa) |
---|
[5285] | 4050 | USE yomcst_mod_h |
---|
[1992] | 4051 | USE dimphy |
---|
| 4052 | IMPLICIT NONE |
---|
[878] | 4053 | |
---|
[1992] | 4054 | ! ======================================================================= |
---|
[878] | 4055 | |
---|
[1992] | 4056 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4057 | ! de "thermiques" explicitement representes |
---|
| 4058 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
[878] | 4059 | |
---|
[1992] | 4060 | ! ======================================================================= |
---|
[878] | 4061 | |
---|
[1992] | 4062 | INTEGER ngrid, nlay |
---|
[878] | 4063 | |
---|
[1992] | 4064 | REAL ptimestep |
---|
| 4065 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
| 4066 | REAL entr(ngrid, nlay) |
---|
| 4067 | REAL q(ngrid, nlay) |
---|
| 4068 | REAL dq(ngrid, nlay) |
---|
[878] | 4069 | |
---|
[1992] | 4070 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
---|
[878] | 4071 | |
---|
[1992] | 4072 | INTEGER ig, k |
---|
[878] | 4073 | |
---|
[1992] | 4074 | ! calcul du detrainement |
---|
[878] | 4075 | |
---|
[1992] | 4076 | DO k = 1, nlay |
---|
| 4077 | DO ig = 1, ngrid |
---|
| 4078 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
| 4079 | ! test |
---|
| 4080 | IF (detr(ig,k)<0.) THEN |
---|
| 4081 | entr(ig, k) = entr(ig, k) - detr(ig, k) |
---|
| 4082 | detr(ig, k) = 0. |
---|
| 4083 | ! print*,'detr2<0!!!','ig=',ig,'k=',k,'f=',fm(ig,k), |
---|
| 4084 | ! s 'f+1=',fm(ig,k+1),'e=',entr(ig,k),'d=',detr(ig,k) |
---|
| 4085 | END IF |
---|
| 4086 | IF (fm(ig,k+1)<0.) THEN |
---|
| 4087 | ! print*,'fm2<0!!!' |
---|
| 4088 | END IF |
---|
| 4089 | IF (entr(ig,k)<0.) THEN |
---|
| 4090 | ! print*,'entr2<0!!!' |
---|
| 4091 | END IF |
---|
| 4092 | END DO |
---|
| 4093 | END DO |
---|
[878] | 4094 | |
---|
[1992] | 4095 | ! calcul de la valeur dans les ascendances |
---|
| 4096 | DO ig = 1, ngrid |
---|
| 4097 | qa(ig, 1) = q(ig, 1) |
---|
| 4098 | END DO |
---|
[878] | 4099 | |
---|
[1992] | 4100 | DO k = 2, nlay |
---|
| 4101 | DO ig = 1, ngrid |
---|
| 4102 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
| 4103 | qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+entr(ig,k)*q(ig,k))/ & |
---|
| 4104 | (fm(ig,k+1)+detr(ig,k)) |
---|
| 4105 | ELSE |
---|
| 4106 | qa(ig, k) = q(ig, k) |
---|
| 4107 | END IF |
---|
| 4108 | IF (qa(ig,k)<0.) THEN |
---|
| 4109 | ! print*,'qa<0!!!' |
---|
| 4110 | END IF |
---|
| 4111 | IF (q(ig,k)<0.) THEN |
---|
| 4112 | ! print*,'q<0!!!' |
---|
| 4113 | END IF |
---|
| 4114 | END DO |
---|
| 4115 | END DO |
---|
[878] | 4116 | |
---|
[1992] | 4117 | DO k = 2, nlay |
---|
| 4118 | DO ig = 1, ngrid |
---|
| 4119 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
| 4120 | wqd(ig, k) = fm(ig, k)*q(ig, k) |
---|
| 4121 | IF (wqd(ig,k)<0.) THEN |
---|
| 4122 | ! print*,'wqd<0!!!' |
---|
| 4123 | END IF |
---|
| 4124 | END DO |
---|
| 4125 | END DO |
---|
| 4126 | DO ig = 1, ngrid |
---|
| 4127 | wqd(ig, 1) = 0. |
---|
| 4128 | wqd(ig, nlay+1) = 0. |
---|
| 4129 | END DO |
---|
[878] | 4130 | |
---|
[1992] | 4131 | DO k = 1, nlay |
---|
| 4132 | DO ig = 1, ngrid |
---|
| 4133 | dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*q(ig,k)-wqd(ig,k)+wqd(ig,k+ & |
---|
| 4134 | 1))/masse(ig, k) |
---|
| 4135 | ! if (dq(ig,k).lt.0.) then |
---|
| 4136 | ! print*,'dq<0!!!' |
---|
| 4137 | ! endif |
---|
| 4138 | END DO |
---|
| 4139 | END DO |
---|
[878] | 4140 | |
---|
[1992] | 4141 | RETURN |
---|
| 4142 | END SUBROUTINE dqthermcell |
---|
| 4143 | SUBROUTINE dvthermcell(ngrid, nlay, ptimestep, fm, entr, masse, fraca, larga, & |
---|
| 4144 | u, v, du, dv, ua, va) |
---|
| 4145 | USE dimphy |
---|
| 4146 | IMPLICIT NONE |
---|
[878] | 4147 | |
---|
[1992] | 4148 | ! ======================================================================= |
---|
[878] | 4149 | |
---|
[1992] | 4150 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4151 | ! de "thermiques" explicitement representes |
---|
| 4152 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
[878] | 4153 | |
---|
[1992] | 4154 | ! ======================================================================= |
---|
[878] | 4155 | |
---|
[1992] | 4156 | INTEGER ngrid, nlay |
---|
[878] | 4157 | |
---|
[1992] | 4158 | REAL ptimestep |
---|
| 4159 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
| 4160 | REAL fraca(ngrid, nlay+1) |
---|
| 4161 | REAL larga(ngrid) |
---|
| 4162 | REAL entr(ngrid, nlay) |
---|
| 4163 | REAL u(ngrid, nlay) |
---|
| 4164 | REAL ua(ngrid, nlay) |
---|
| 4165 | REAL du(ngrid, nlay) |
---|
| 4166 | REAL v(ngrid, nlay) |
---|
| 4167 | REAL va(ngrid, nlay) |
---|
| 4168 | REAL dv(ngrid, nlay) |
---|
[878] | 4169 | |
---|
[1992] | 4170 | REAL qa(klon, klev), detr(klon, klev) |
---|
| 4171 | REAL wvd(klon, klev+1), wud(klon, klev+1) |
---|
| 4172 | REAL gamma0, gamma(klon, klev+1) |
---|
| 4173 | REAL dua, dva |
---|
| 4174 | INTEGER iter |
---|
[878] | 4175 | |
---|
[1992] | 4176 | INTEGER ig, k |
---|
[878] | 4177 | |
---|
[1992] | 4178 | ! calcul du detrainement |
---|
[878] | 4179 | |
---|
[1992] | 4180 | DO k = 1, nlay |
---|
| 4181 | DO ig = 1, ngrid |
---|
| 4182 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
| 4183 | END DO |
---|
| 4184 | END DO |
---|
[878] | 4185 | |
---|
[1992] | 4186 | ! calcul de la valeur dans les ascendances |
---|
| 4187 | DO ig = 1, ngrid |
---|
| 4188 | ua(ig, 1) = u(ig, 1) |
---|
| 4189 | va(ig, 1) = v(ig, 1) |
---|
| 4190 | END DO |
---|
[878] | 4191 | |
---|
[1992] | 4192 | DO k = 2, nlay |
---|
| 4193 | DO ig = 1, ngrid |
---|
| 4194 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
[5274] | 4195 | ! On it�re sur la valeur du coeff de freinage. |
---|
[1992] | 4196 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 4197 | gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
---|
| 4198 | k)))*0.5/larga(ig) |
---|
| 4199 | ! gamma0=0. |
---|
[5274] | 4200 | ! la premi�re fois on multiplie le coefficient de freinage |
---|
[1992] | 4201 | ! par le module du vent dans la couche en dessous. |
---|
| 4202 | dua = ua(ig, k-1) - u(ig, k-1) |
---|
| 4203 | dva = va(ig, k-1) - v(ig, k-1) |
---|
| 4204 | DO iter = 1, 5 |
---|
| 4205 | gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
---|
| 4206 | ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(entr(ig,k)+gamma(ig, & |
---|
| 4207 | k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
---|
| 4208 | va(ig, k) = (fm(ig,k)*va(ig,k-1)+(entr(ig,k)+gamma(ig, & |
---|
| 4209 | k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
---|
| 4210 | ! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
| 4211 | dua = ua(ig, k) - u(ig, k) |
---|
| 4212 | dva = va(ig, k) - v(ig, k) |
---|
| 4213 | END DO |
---|
| 4214 | ELSE |
---|
| 4215 | ua(ig, k) = u(ig, k) |
---|
| 4216 | va(ig, k) = v(ig, k) |
---|
| 4217 | gamma(ig, k) = 0. |
---|
| 4218 | END IF |
---|
| 4219 | END DO |
---|
| 4220 | END DO |
---|
[878] | 4221 | |
---|
[1992] | 4222 | DO k = 2, nlay |
---|
| 4223 | DO ig = 1, ngrid |
---|
| 4224 | wud(ig, k) = fm(ig, k)*u(ig, k) |
---|
| 4225 | wvd(ig, k) = fm(ig, k)*v(ig, k) |
---|
| 4226 | END DO |
---|
| 4227 | END DO |
---|
| 4228 | DO ig = 1, ngrid |
---|
| 4229 | wud(ig, 1) = 0. |
---|
| 4230 | wud(ig, nlay+1) = 0. |
---|
| 4231 | wvd(ig, 1) = 0. |
---|
| 4232 | wvd(ig, nlay+1) = 0. |
---|
| 4233 | END DO |
---|
[878] | 4234 | |
---|
[1992] | 4235 | DO k = 1, nlay |
---|
| 4236 | DO ig = 1, ngrid |
---|
| 4237 | du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
| 4238 | k))*u(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
---|
| 4239 | dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
| 4240 | k))*v(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
---|
| 4241 | END DO |
---|
| 4242 | END DO |
---|
[878] | 4243 | |
---|
[1992] | 4244 | RETURN |
---|
| 4245 | END SUBROUTINE dvthermcell |
---|
| 4246 | SUBROUTINE dqthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, frac, q, dq, & |
---|
| 4247 | qa) |
---|
| 4248 | USE dimphy |
---|
| 4249 | IMPLICIT NONE |
---|
[878] | 4250 | |
---|
[1992] | 4251 | ! ======================================================================= |
---|
[878] | 4252 | |
---|
[1992] | 4253 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4254 | ! de "thermiques" explicitement representes |
---|
| 4255 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
[878] | 4256 | |
---|
[1992] | 4257 | ! ======================================================================= |
---|
[878] | 4258 | |
---|
[1992] | 4259 | INTEGER ngrid, nlay |
---|
[878] | 4260 | |
---|
[1992] | 4261 | REAL ptimestep |
---|
| 4262 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
| 4263 | REAL entr(ngrid, nlay), frac(ngrid, nlay) |
---|
| 4264 | REAL q(ngrid, nlay) |
---|
| 4265 | REAL dq(ngrid, nlay) |
---|
[878] | 4266 | |
---|
[1992] | 4267 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
---|
| 4268 | REAL qe(klon, klev), zf, zf2 |
---|
[878] | 4269 | |
---|
[1992] | 4270 | INTEGER ig, k |
---|
[878] | 4271 | |
---|
[1992] | 4272 | ! calcul du detrainement |
---|
[878] | 4273 | |
---|
[1992] | 4274 | DO k = 1, nlay |
---|
| 4275 | DO ig = 1, ngrid |
---|
| 4276 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
| 4277 | END DO |
---|
| 4278 | END DO |
---|
[878] | 4279 | |
---|
[1992] | 4280 | ! calcul de la valeur dans les ascendances |
---|
| 4281 | DO ig = 1, ngrid |
---|
| 4282 | qa(ig, 1) = q(ig, 1) |
---|
| 4283 | qe(ig, 1) = q(ig, 1) |
---|
| 4284 | END DO |
---|
[878] | 4285 | |
---|
[1992] | 4286 | DO k = 2, nlay |
---|
| 4287 | DO ig = 1, ngrid |
---|
| 4288 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
| 4289 | zf = 0.5*(frac(ig,k)+frac(ig,k+1)) |
---|
| 4290 | zf2 = 1./(1.-zf) |
---|
| 4291 | qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+zf2*entr(ig,k)*q(ig,k))/ & |
---|
| 4292 | (fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2) |
---|
| 4293 | qe(ig, k) = (q(ig,k)-zf*qa(ig,k))*zf2 |
---|
| 4294 | ELSE |
---|
| 4295 | qa(ig, k) = q(ig, k) |
---|
| 4296 | qe(ig, k) = q(ig, k) |
---|
| 4297 | END IF |
---|
| 4298 | END DO |
---|
| 4299 | END DO |
---|
[878] | 4300 | |
---|
[1992] | 4301 | DO k = 2, nlay |
---|
| 4302 | DO ig = 1, ngrid |
---|
| 4303 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
| 4304 | wqd(ig, k) = fm(ig, k)*qe(ig, k) |
---|
| 4305 | END DO |
---|
| 4306 | END DO |
---|
| 4307 | DO ig = 1, ngrid |
---|
| 4308 | wqd(ig, 1) = 0. |
---|
| 4309 | wqd(ig, nlay+1) = 0. |
---|
| 4310 | END DO |
---|
[878] | 4311 | |
---|
[1992] | 4312 | DO k = 1, nlay |
---|
| 4313 | DO ig = 1, ngrid |
---|
| 4314 | dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*qe(ig,k)-wqd(ig,k)+wqd(ig,k & |
---|
| 4315 | +1))/masse(ig, k) |
---|
| 4316 | END DO |
---|
| 4317 | END DO |
---|
[878] | 4318 | |
---|
[1992] | 4319 | RETURN |
---|
| 4320 | END SUBROUTINE dqthermcell2 |
---|
| 4321 | SUBROUTINE dvthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, fraca, & |
---|
| 4322 | larga, u, v, du, dv, ua, va) |
---|
| 4323 | USE dimphy |
---|
| 4324 | IMPLICIT NONE |
---|
[878] | 4325 | |
---|
[1992] | 4326 | ! ======================================================================= |
---|
[878] | 4327 | |
---|
[1992] | 4328 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4329 | ! de "thermiques" explicitement representes |
---|
| 4330 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
[878] | 4331 | |
---|
[1992] | 4332 | ! ======================================================================= |
---|
[878] | 4333 | |
---|
[1992] | 4334 | INTEGER ngrid, nlay |
---|
[878] | 4335 | |
---|
[1992] | 4336 | REAL ptimestep |
---|
| 4337 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
| 4338 | REAL fraca(ngrid, nlay+1) |
---|
| 4339 | REAL larga(ngrid) |
---|
| 4340 | REAL entr(ngrid, nlay) |
---|
| 4341 | REAL u(ngrid, nlay) |
---|
| 4342 | REAL ua(ngrid, nlay) |
---|
| 4343 | REAL du(ngrid, nlay) |
---|
| 4344 | REAL v(ngrid, nlay) |
---|
| 4345 | REAL va(ngrid, nlay) |
---|
| 4346 | REAL dv(ngrid, nlay) |
---|
[878] | 4347 | |
---|
[1992] | 4348 | REAL qa(klon, klev), detr(klon, klev), zf, zf2 |
---|
| 4349 | REAL wvd(klon, klev+1), wud(klon, klev+1) |
---|
| 4350 | REAL gamma0, gamma(klon, klev+1) |
---|
| 4351 | REAL ue(klon, klev), ve(klon, klev) |
---|
| 4352 | REAL dua, dva |
---|
| 4353 | INTEGER iter |
---|
[878] | 4354 | |
---|
[1992] | 4355 | INTEGER ig, k |
---|
[878] | 4356 | |
---|
[1992] | 4357 | ! calcul du detrainement |
---|
[878] | 4358 | |
---|
[1992] | 4359 | DO k = 1, nlay |
---|
| 4360 | DO ig = 1, ngrid |
---|
| 4361 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
| 4362 | END DO |
---|
| 4363 | END DO |
---|
[878] | 4364 | |
---|
[1992] | 4365 | ! calcul de la valeur dans les ascendances |
---|
| 4366 | DO ig = 1, ngrid |
---|
| 4367 | ua(ig, 1) = u(ig, 1) |
---|
| 4368 | va(ig, 1) = v(ig, 1) |
---|
| 4369 | ue(ig, 1) = u(ig, 1) |
---|
| 4370 | ve(ig, 1) = v(ig, 1) |
---|
| 4371 | END DO |
---|
[878] | 4372 | |
---|
[1992] | 4373 | DO k = 2, nlay |
---|
| 4374 | DO ig = 1, ngrid |
---|
| 4375 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
[5274] | 4376 | ! On it�re sur la valeur du coeff de freinage. |
---|
[1992] | 4377 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 4378 | gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
---|
| 4379 | k)))*0.5/larga(ig)*1. |
---|
| 4380 | ! s *0.5 |
---|
| 4381 | ! gamma0=0. |
---|
| 4382 | zf = 0.5*(fraca(ig,k)+fraca(ig,k+1)) |
---|
| 4383 | zf = 0. |
---|
| 4384 | zf2 = 1./(1.-zf) |
---|
[5274] | 4385 | ! la premi�re fois on multiplie le coefficient de freinage |
---|
[1992] | 4386 | ! par le module du vent dans la couche en dessous. |
---|
| 4387 | dua = ua(ig, k-1) - u(ig, k-1) |
---|
| 4388 | dva = va(ig, k-1) - v(ig, k-1) |
---|
| 4389 | DO iter = 1, 5 |
---|
| 4390 | ! On choisit une relaxation lineaire. |
---|
| 4391 | gamma(ig, k) = gamma0 |
---|
| 4392 | ! On choisit une relaxation quadratique. |
---|
| 4393 | gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
---|
| 4394 | ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
---|
| 4395 | k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
---|
| 4396 | ) |
---|
| 4397 | va(ig, k) = (fm(ig,k)*va(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
---|
| 4398 | k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
---|
| 4399 | ) |
---|
| 4400 | ! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
| 4401 | dua = ua(ig, k) - u(ig, k) |
---|
| 4402 | dva = va(ig, k) - v(ig, k) |
---|
| 4403 | ue(ig, k) = (u(ig,k)-zf*ua(ig,k))*zf2 |
---|
| 4404 | ve(ig, k) = (v(ig,k)-zf*va(ig,k))*zf2 |
---|
| 4405 | END DO |
---|
| 4406 | ELSE |
---|
| 4407 | ua(ig, k) = u(ig, k) |
---|
| 4408 | va(ig, k) = v(ig, k) |
---|
| 4409 | ue(ig, k) = u(ig, k) |
---|
| 4410 | ve(ig, k) = v(ig, k) |
---|
| 4411 | gamma(ig, k) = 0. |
---|
| 4412 | END IF |
---|
| 4413 | END DO |
---|
| 4414 | END DO |
---|
[878] | 4415 | |
---|
[1992] | 4416 | DO k = 2, nlay |
---|
| 4417 | DO ig = 1, ngrid |
---|
| 4418 | wud(ig, k) = fm(ig, k)*ue(ig, k) |
---|
| 4419 | wvd(ig, k) = fm(ig, k)*ve(ig, k) |
---|
| 4420 | END DO |
---|
| 4421 | END DO |
---|
| 4422 | DO ig = 1, ngrid |
---|
| 4423 | wud(ig, 1) = 0. |
---|
| 4424 | wud(ig, nlay+1) = 0. |
---|
| 4425 | wvd(ig, 1) = 0. |
---|
| 4426 | wvd(ig, nlay+1) = 0. |
---|
| 4427 | END DO |
---|
[878] | 4428 | |
---|
[1992] | 4429 | DO k = 1, nlay |
---|
| 4430 | DO ig = 1, ngrid |
---|
| 4431 | du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
| 4432 | k))*ue(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
---|
| 4433 | dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
| 4434 | k))*ve(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
---|
| 4435 | END DO |
---|
| 4436 | END DO |
---|
[878] | 4437 | |
---|
[1992] | 4438 | RETURN |
---|
| 4439 | END SUBROUTINE dvthermcell2 |
---|
| 4440 | SUBROUTINE thermcell_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
| 4441 | pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
| 4442 | ! ,pu_therm,pv_therm |
---|
| 4443 | , r_aspect, l_mix, w2di, tho) |
---|
[878] | 4444 | |
---|
[1992] | 4445 | USE dimphy |
---|
[5285] | 4446 | USE yomcst_mod_h |
---|
[1992] | 4447 | IMPLICIT NONE |
---|
[878] | 4448 | |
---|
[1992] | 4449 | ! ======================================================================= |
---|
[878] | 4450 | |
---|
[1992] | 4451 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4452 | ! de "thermiques" explicitement representes |
---|
[878] | 4453 | |
---|
[5274] | 4454 | ! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
---|
[878] | 4455 | |
---|
[5274] | 4456 | ! le thermique est suppos� homog�ne et dissip� par m�lange avec |
---|
| 4457 | ! son environnement. la longueur l_mix contr�le l'efficacit� du |
---|
| 4458 | ! m�lange |
---|
[878] | 4459 | |
---|
[5274] | 4460 | ! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
---|
[1992] | 4461 | ! en compte: |
---|
| 4462 | ! 1. un flux de masse montant |
---|
| 4463 | ! 2. un flux de masse descendant |
---|
| 4464 | ! 3. un entrainement |
---|
| 4465 | ! 4. un detrainement |
---|
[878] | 4466 | |
---|
[1992] | 4467 | ! ======================================================================= |
---|
[878] | 4468 | |
---|
[1992] | 4469 | ! ----------------------------------------------------------------------- |
---|
| 4470 | ! declarations: |
---|
| 4471 | ! ------------- |
---|
[1403] | 4472 | |
---|
[878] | 4473 | |
---|
[1992] | 4474 | ! arguments: |
---|
| 4475 | ! ---------- |
---|
[878] | 4476 | |
---|
[1992] | 4477 | INTEGER ngrid, nlay, w2di |
---|
| 4478 | REAL tho |
---|
| 4479 | REAL ptimestep, l_mix, r_aspect |
---|
| 4480 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 4481 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 4482 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 4483 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 4484 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 4485 | REAL pphi(ngrid, nlay) |
---|
[878] | 4486 | |
---|
[1992] | 4487 | INTEGER idetr |
---|
[878] | 4488 | |
---|
[1992] | 4489 | ! local: |
---|
| 4490 | ! ------ |
---|
[878] | 4491 | |
---|
[1992] | 4492 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 4493 | REAL zsortie1d(klon) |
---|
| 4494 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 4495 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 4496 | REAL linter(klon) |
---|
| 4497 | REAL zmix(klon), fracazmix(klon) |
---|
| 4498 | ! RC |
---|
| 4499 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
[878] | 4500 | |
---|
[1992] | 4501 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 4502 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 4503 | REAL ztv(klon, klev) |
---|
| 4504 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 4505 | REAL wh(klon, klev+1) |
---|
| 4506 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 4507 | REAL zla(klon, klev+1) |
---|
| 4508 | REAL zwa(klon, klev+1) |
---|
| 4509 | REAL zld(klon, klev+1) |
---|
| 4510 | REAL zwd(klon, klev+1) |
---|
| 4511 | REAL zsortie(klon, klev) |
---|
| 4512 | REAL zva(klon, klev) |
---|
| 4513 | REAL zua(klon, klev) |
---|
| 4514 | REAL zoa(klon, klev) |
---|
[878] | 4515 | |
---|
[1992] | 4516 | REAL zha(klon, klev) |
---|
| 4517 | REAL wa_moy(klon, klev+1) |
---|
| 4518 | REAL fraca(klon, klev+1) |
---|
| 4519 | REAL fracc(klon, klev+1) |
---|
| 4520 | REAL zf, zf2 |
---|
| 4521 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 4522 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 4523 | |
---|
[1992] | 4524 | REAL count_time |
---|
| 4525 | INTEGER ialt |
---|
[878] | 4526 | |
---|
[1992] | 4527 | LOGICAL sorties |
---|
| 4528 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 4529 | REAL zpspsk(klon, klev) |
---|
[878] | 4530 | |
---|
[1992] | 4531 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 4532 | REAL wmax(klon), wmaxa(klon) |
---|
| 4533 | REAL wa(klon, klev, klev+1) |
---|
| 4534 | REAL wd(klon, klev+1) |
---|
| 4535 | REAL larg_part(klon, klev, klev+1) |
---|
| 4536 | REAL fracd(klon, klev+1) |
---|
| 4537 | REAL xxx(klon, klev+1) |
---|
| 4538 | REAL larg_cons(klon, klev+1) |
---|
| 4539 | REAL larg_detr(klon, klev+1) |
---|
| 4540 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 4541 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 4542 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 4543 | REAL fmc(klon, klev+1) |
---|
[878] | 4544 | |
---|
[1992] | 4545 | ! CR:nouvelles variables |
---|
| 4546 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 4547 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 4548 | REAL f(klon), f0(klon) |
---|
| 4549 | REAL zlevinter(klon) |
---|
[878] | 4550 | |
---|
[1992] | 4551 | CHARACTER *2 str2 |
---|
| 4552 | CHARACTER *10 str10 |
---|
[878] | 4553 | |
---|
[1992] | 4554 | CHARACTER (LEN=20) :: modname = 'thermcell_sec' |
---|
| 4555 | CHARACTER (LEN=80) :: abort_message |
---|
[878] | 4556 | |
---|
[1992] | 4557 | LOGICAL vtest(klon), down |
---|
[878] | 4558 | |
---|
[1992] | 4559 | EXTERNAL scopy |
---|
[878] | 4560 | |
---|
[5501] | 4561 | INTEGER ll |
---|
[878] | 4562 | |
---|
| 4563 | |
---|
[1992] | 4564 | ! ----------------------------------------------------------------------- |
---|
| 4565 | ! initialisation: |
---|
| 4566 | ! --------------- |
---|
[878] | 4567 | |
---|
[5501] | 4568 | idetr=3 |
---|
[1992] | 4569 | sorties = .TRUE. |
---|
| 4570 | IF (ngrid/=klon) THEN |
---|
| 4571 | PRINT * |
---|
| 4572 | PRINT *, 'STOP dans convadj' |
---|
| 4573 | PRINT *, 'ngrid =', ngrid |
---|
| 4574 | PRINT *, 'klon =', klon |
---|
| 4575 | END IF |
---|
[878] | 4576 | |
---|
[1992] | 4577 | ! ----------------------------------------------------------------------- |
---|
| 4578 | ! incrementation eventuelle de tendances precedentes: |
---|
| 4579 | ! --------------------------------------------------- |
---|
[878] | 4580 | |
---|
[1992] | 4581 | ! print*,'0 OK convect8' |
---|
[878] | 4582 | |
---|
[5501] | 4583 | idetr=3 |
---|
[1992] | 4584 | DO l = 1, nlay |
---|
| 4585 | DO ig = 1, ngrid |
---|
| 4586 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 4587 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 4588 | zu(ig, l) = pu(ig, l) |
---|
| 4589 | zv(ig, l) = pv(ig, l) |
---|
| 4590 | zo(ig, l) = po(ig, l) |
---|
| 4591 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 4592 | END DO |
---|
| 4593 | END DO |
---|
[878] | 4594 | |
---|
[1992] | 4595 | ! print*,'1 OK convect8' |
---|
| 4596 | ! -------------------- |
---|
[878] | 4597 | |
---|
| 4598 | |
---|
[1992] | 4599 | ! + + + + + + + + + + + |
---|
[878] | 4600 | |
---|
| 4601 | |
---|
[1992] | 4602 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 4603 | ! wh,wt,wo ... |
---|
[878] | 4604 | |
---|
[1992] | 4605 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[878] | 4606 | |
---|
| 4607 | |
---|
[1992] | 4608 | ! -------------------- zlev(1) |
---|
| 4609 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[878] | 4610 | |
---|
| 4611 | |
---|
| 4612 | |
---|
[1992] | 4613 | ! ----------------------------------------------------------------------- |
---|
| 4614 | ! Calcul des altitudes des couches |
---|
| 4615 | ! ----------------------------------------------------------------------- |
---|
[878] | 4616 | |
---|
[1992] | 4617 | DO l = 2, nlay |
---|
| 4618 | DO ig = 1, ngrid |
---|
| 4619 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 4620 | END DO |
---|
| 4621 | END DO |
---|
| 4622 | DO ig = 1, ngrid |
---|
| 4623 | zlev(ig, 1) = 0. |
---|
| 4624 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 4625 | END DO |
---|
| 4626 | DO l = 1, nlay |
---|
| 4627 | DO ig = 1, ngrid |
---|
| 4628 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 4629 | END DO |
---|
| 4630 | END DO |
---|
[878] | 4631 | |
---|
[1992] | 4632 | ! print*,'2 OK convect8' |
---|
| 4633 | ! ----------------------------------------------------------------------- |
---|
| 4634 | ! Calcul des densites |
---|
| 4635 | ! ----------------------------------------------------------------------- |
---|
[878] | 4636 | |
---|
[1992] | 4637 | DO l = 1, nlay |
---|
| 4638 | DO ig = 1, ngrid |
---|
| 4639 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 4640 | END DO |
---|
| 4641 | END DO |
---|
[878] | 4642 | |
---|
[1992] | 4643 | DO l = 2, nlay |
---|
| 4644 | DO ig = 1, ngrid |
---|
| 4645 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 4646 | END DO |
---|
| 4647 | END DO |
---|
[878] | 4648 | |
---|
[1992] | 4649 | DO k = 1, nlay |
---|
| 4650 | DO l = 1, nlay + 1 |
---|
| 4651 | DO ig = 1, ngrid |
---|
| 4652 | wa(ig, k, l) = 0. |
---|
| 4653 | END DO |
---|
| 4654 | END DO |
---|
| 4655 | END DO |
---|
[878] | 4656 | |
---|
[1992] | 4657 | ! print*,'3 OK convect8' |
---|
| 4658 | ! ------------------------------------------------------------------ |
---|
| 4659 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 4660 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
[878] | 4661 | |
---|
[1992] | 4662 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 4663 | ! w2 est stoke dans wa |
---|
[878] | 4664 | |
---|
[1992] | 4665 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 4666 | ! independants par couches que pour calculer l'entrainement |
---|
| 4667 | ! a la base et la hauteur max de l'ascendance. |
---|
[878] | 4668 | |
---|
[1992] | 4669 | ! Indicages: |
---|
| 4670 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 4671 | ! une vitesse wa(k,l). |
---|
[878] | 4672 | |
---|
[1992] | 4673 | ! -------------------- |
---|
[878] | 4674 | |
---|
[1992] | 4675 | ! + + + + + + + + + + |
---|
[878] | 4676 | |
---|
[1992] | 4677 | ! wa(k,l) ---- -------------------- l |
---|
| 4678 | ! /\ |
---|
| 4679 | ! /||\ + + + + + + + + + + |
---|
| 4680 | ! || |
---|
| 4681 | ! || -------------------- |
---|
| 4682 | ! || |
---|
| 4683 | ! || + + + + + + + + + + |
---|
| 4684 | ! || |
---|
| 4685 | ! || -------------------- |
---|
| 4686 | ! ||__ |
---|
| 4687 | ! |___ + + + + + + + + + + k |
---|
[878] | 4688 | |
---|
[1992] | 4689 | ! -------------------- |
---|
[878] | 4690 | |
---|
| 4691 | |
---|
| 4692 | |
---|
[1992] | 4693 | ! ------------------------------------------------------------------ |
---|
| 4694 | |
---|
| 4695 | ! CR: ponderation entrainement des couches instables |
---|
| 4696 | ! def des entr_star tels que entr=f*entr_star |
---|
| 4697 | DO l = 1, klev |
---|
| 4698 | DO ig = 1, ngrid |
---|
| 4699 | entr_star(ig, l) = 0. |
---|
| 4700 | END DO |
---|
| 4701 | END DO |
---|
| 4702 | ! determination de la longueur de la couche d entrainement |
---|
| 4703 | DO ig = 1, ngrid |
---|
| 4704 | lentr(ig) = 1 |
---|
| 4705 | END DO |
---|
| 4706 | |
---|
| 4707 | ! on ne considere que les premieres couches instables |
---|
| 4708 | DO k = nlay - 2, 1, -1 |
---|
| 4709 | DO ig = 1, ngrid |
---|
| 4710 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 4711 | lentr(ig) = k |
---|
| 4712 | END IF |
---|
| 4713 | END DO |
---|
| 4714 | END DO |
---|
| 4715 | |
---|
| 4716 | ! determination du lmin: couche d ou provient le thermique |
---|
| 4717 | DO ig = 1, ngrid |
---|
| 4718 | lmin(ig) = 1 |
---|
| 4719 | END DO |
---|
| 4720 | DO ig = 1, ngrid |
---|
| 4721 | DO l = nlay, 2, -1 |
---|
| 4722 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 4723 | lmin(ig) = l - 1 |
---|
| 4724 | END IF |
---|
| 4725 | END DO |
---|
| 4726 | END DO |
---|
| 4727 | |
---|
| 4728 | ! definition de l'entrainement des couches |
---|
| 4729 | DO l = 1, klev - 1 |
---|
| 4730 | DO ig = 1, ngrid |
---|
| 4731 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
| 4732 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))** & ! s |
---|
| 4733 | ! (zlev(ig,l+1)-zlev(ig,l)) |
---|
| 4734 | sqrt(zlev(ig,l+1)) |
---|
| 4735 | END IF |
---|
| 4736 | END DO |
---|
| 4737 | END DO |
---|
| 4738 | ! pas de thermique si couche 1 stable |
---|
| 4739 | DO ig = 1, ngrid |
---|
| 4740 | IF (lmin(ig)>1) THEN |
---|
| 4741 | DO l = 1, klev |
---|
| 4742 | entr_star(ig, l) = 0. |
---|
| 4743 | END DO |
---|
| 4744 | END IF |
---|
| 4745 | END DO |
---|
| 4746 | ! calcul de l entrainement total |
---|
| 4747 | DO ig = 1, ngrid |
---|
| 4748 | entr_star_tot(ig) = 0. |
---|
| 4749 | END DO |
---|
| 4750 | DO ig = 1, ngrid |
---|
| 4751 | DO k = 1, klev |
---|
| 4752 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 4753 | END DO |
---|
| 4754 | END DO |
---|
| 4755 | |
---|
| 4756 | ! print*,'fin calcul entr_star' |
---|
| 4757 | DO k = 1, klev |
---|
| 4758 | DO ig = 1, ngrid |
---|
| 4759 | ztva(ig, k) = ztv(ig, k) |
---|
| 4760 | END DO |
---|
| 4761 | END DO |
---|
| 4762 | ! RC |
---|
| 4763 | ! print*,'7 OK convect8' |
---|
| 4764 | DO k = 1, klev + 1 |
---|
| 4765 | DO ig = 1, ngrid |
---|
| 4766 | zw2(ig, k) = 0. |
---|
| 4767 | fmc(ig, k) = 0. |
---|
| 4768 | ! CR |
---|
| 4769 | f_star(ig, k) = 0. |
---|
| 4770 | ! RC |
---|
| 4771 | larg_cons(ig, k) = 0. |
---|
| 4772 | larg_detr(ig, k) = 0. |
---|
| 4773 | wa_moy(ig, k) = 0. |
---|
| 4774 | END DO |
---|
| 4775 | END DO |
---|
| 4776 | |
---|
| 4777 | ! print*,'8 OK convect8' |
---|
| 4778 | DO ig = 1, ngrid |
---|
| 4779 | linter(ig) = 1. |
---|
| 4780 | lmaxa(ig) = 1 |
---|
| 4781 | lmix(ig) = 1 |
---|
| 4782 | wmaxa(ig) = 0. |
---|
| 4783 | END DO |
---|
| 4784 | |
---|
| 4785 | ! CR: |
---|
| 4786 | DO l = 1, nlay - 2 |
---|
| 4787 | DO ig = 1, ngrid |
---|
| 4788 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 4789 | zw2(ig,l)<1E-10) THEN |
---|
| 4790 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 4791 | ! test:calcul de dteta |
---|
| 4792 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 4793 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 4794 | larg_detr(ig, l) = 0. |
---|
| 4795 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 4796 | l)>1.E-10)) THEN |
---|
| 4797 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 4798 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
| 4799 | f_star(ig, l+1) |
---|
| 4800 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 4801 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 4802 | END IF |
---|
| 4803 | ! determination de zmax continu par interpolation lineaire |
---|
| 4804 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 4805 | ! test |
---|
| 4806 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
| 4807 | ! print*,'pb linter' |
---|
| 4808 | END IF |
---|
| 4809 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 4810 | ig,l)) |
---|
| 4811 | zw2(ig, l+1) = 0. |
---|
| 4812 | lmaxa(ig) = l |
---|
| 4813 | ELSE |
---|
| 4814 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 4815 | ! print*,'pb1 zw2<0' |
---|
| 4816 | END IF |
---|
| 4817 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 4818 | END IF |
---|
| 4819 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 4820 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 4821 | lmix(ig) = l + 1 |
---|
| 4822 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 4823 | END IF |
---|
| 4824 | END DO |
---|
| 4825 | END DO |
---|
| 4826 | ! print*,'fin calcul zw2' |
---|
| 4827 | |
---|
| 4828 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 4829 | DO ig = 1, ngrid |
---|
| 4830 | lmax(ig) = lentr(ig) |
---|
| 4831 | END DO |
---|
| 4832 | DO ig = 1, ngrid |
---|
| 4833 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 4834 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 4835 | lmax(ig) = l - 1 |
---|
| 4836 | END IF |
---|
| 4837 | END DO |
---|
| 4838 | END DO |
---|
| 4839 | ! pas de thermique si couche 1 stable |
---|
| 4840 | DO ig = 1, ngrid |
---|
| 4841 | IF (lmin(ig)>1) THEN |
---|
| 4842 | lmax(ig) = 1 |
---|
| 4843 | lmin(ig) = 1 |
---|
| 4844 | END IF |
---|
| 4845 | END DO |
---|
| 4846 | |
---|
| 4847 | ! Determination de zw2 max |
---|
| 4848 | DO ig = 1, ngrid |
---|
| 4849 | wmax(ig) = 0. |
---|
| 4850 | END DO |
---|
| 4851 | |
---|
| 4852 | DO l = 1, nlay |
---|
| 4853 | DO ig = 1, ngrid |
---|
| 4854 | IF (l<=lmax(ig)) THEN |
---|
| 4855 | IF (zw2(ig,l)<0.) THEN |
---|
| 4856 | ! print*,'pb2 zw2<0' |
---|
| 4857 | END IF |
---|
| 4858 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 4859 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 4860 | ELSE |
---|
| 4861 | zw2(ig, l) = 0. |
---|
| 4862 | END IF |
---|
| 4863 | END DO |
---|
| 4864 | END DO |
---|
| 4865 | |
---|
| 4866 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 4867 | DO ig = 1, ngrid |
---|
| 4868 | zmax(ig) = 0. |
---|
| 4869 | zlevinter(ig) = zlev(ig, 1) |
---|
| 4870 | END DO |
---|
| 4871 | DO ig = 1, ngrid |
---|
| 4872 | ! calcul de zlevinter |
---|
| 4873 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 4874 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 4875 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 4876 | END DO |
---|
| 4877 | |
---|
| 4878 | ! print*,'avant fermeture' |
---|
| 4879 | ! Fermeture,determination de f |
---|
| 4880 | DO ig = 1, ngrid |
---|
| 4881 | entr_star2(ig) = 0. |
---|
| 4882 | END DO |
---|
| 4883 | DO ig = 1, ngrid |
---|
| 4884 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 4885 | f(ig) = 0. |
---|
| 4886 | ELSE |
---|
| 4887 | DO k = lmin(ig), lentr(ig) |
---|
| 4888 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 4889 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 4890 | END DO |
---|
| 4891 | ! Nouvelle fermeture |
---|
| 4892 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
---|
| 4893 | entr_star_tot(ig) |
---|
| 4894 | ! test |
---|
| 4895 | ! if (first) then |
---|
| 4896 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
| 4897 | ! s *wmax(ig)) |
---|
| 4898 | ! endif |
---|
| 4899 | END IF |
---|
| 4900 | ! f0(ig)=f(ig) |
---|
| 4901 | ! first=.true. |
---|
| 4902 | END DO |
---|
| 4903 | ! print*,'apres fermeture' |
---|
| 4904 | |
---|
| 4905 | ! Calcul de l'entrainement |
---|
| 4906 | DO k = 1, klev |
---|
| 4907 | DO ig = 1, ngrid |
---|
| 4908 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 4909 | END DO |
---|
| 4910 | END DO |
---|
| 4911 | ! CR:test pour entrainer moins que la masse |
---|
| 4912 | DO ig = 1, ngrid |
---|
| 4913 | DO l = 1, lentr(ig) |
---|
| 4914 | IF ((entr(ig,l)*ptimestep)>(0.9*masse(ig,l))) THEN |
---|
| 4915 | entr(ig, l+1) = entr(ig, l+1) + entr(ig, l) - & |
---|
| 4916 | 0.9*masse(ig, l)/ptimestep |
---|
| 4917 | entr(ig, l) = 0.9*masse(ig, l)/ptimestep |
---|
| 4918 | END IF |
---|
| 4919 | END DO |
---|
| 4920 | END DO |
---|
| 4921 | ! CR: fin test |
---|
| 4922 | ! Calcul des flux |
---|
| 4923 | DO ig = 1, ngrid |
---|
| 4924 | DO l = 1, lmax(ig) - 1 |
---|
| 4925 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 4926 | END DO |
---|
| 4927 | END DO |
---|
| 4928 | |
---|
| 4929 | ! RC |
---|
| 4930 | |
---|
| 4931 | |
---|
| 4932 | ! print*,'9 OK convect8' |
---|
| 4933 | ! print*,'WA1 ',wa_moy |
---|
| 4934 | |
---|
| 4935 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 4936 | |
---|
| 4937 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 4938 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
[5274] | 4939 | ! d'une couche est �gale � la hauteur de la couche alimentante. |
---|
[1992] | 4940 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 4941 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 4942 | |
---|
| 4943 | DO l = 2, nlay |
---|
| 4944 | DO ig = 1, ngrid |
---|
| 4945 | IF (l<=lmaxa(ig)) THEN |
---|
| 4946 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 4947 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 4948 | END IF |
---|
| 4949 | END DO |
---|
| 4950 | END DO |
---|
| 4951 | |
---|
| 4952 | DO l = 2, nlay |
---|
| 4953 | DO ig = 1, ngrid |
---|
| 4954 | IF (l<=lmaxa(ig)) THEN |
---|
| 4955 | ! if (idetr.eq.0) then |
---|
| 4956 | ! cette option est finalement en dur. |
---|
| 4957 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 4958 | ! print*,'pb l_mix*zlev<0' |
---|
| 4959 | END IF |
---|
| 4960 | ! CR: test: nouvelle def de lambda |
---|
| 4961 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 4962 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 4963 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
| 4964 | ELSE |
---|
| 4965 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 4966 | END IF |
---|
| 4967 | ! RC |
---|
| 4968 | ! else if (idetr.eq.1) then |
---|
| 4969 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 4970 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 4971 | ! else if (idetr.eq.2) then |
---|
| 4972 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 4973 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 4974 | ! else if (idetr.eq.4) then |
---|
| 4975 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 4976 | ! s *wa_moy(ig,l) |
---|
| 4977 | ! endif |
---|
| 4978 | END IF |
---|
| 4979 | END DO |
---|
| 4980 | END DO |
---|
| 4981 | |
---|
| 4982 | ! print*,'10 OK convect8' |
---|
| 4983 | ! print*,'WA2 ',wa_moy |
---|
[5274] | 4984 | ! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
---|
[1992] | 4985 | ! compte de l'epluchage du thermique. |
---|
| 4986 | |
---|
| 4987 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 4988 | DO ig = 1, ngrid |
---|
| 4989 | IF (lmix(ig)>1.) THEN |
---|
| 4990 | ! test |
---|
| 4991 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 4992 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 4993 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 4994 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
| 4995 | |
---|
| 4996 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 4997 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 4998 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 4999 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 5000 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 5001 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 5002 | ELSE |
---|
| 5003 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 5004 | ! print*,'pb zmix' |
---|
| 5005 | END IF |
---|
| 5006 | ELSE |
---|
| 5007 | zmix(ig) = 0. |
---|
| 5008 | END IF |
---|
| 5009 | ! test |
---|
| 5010 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
| 5011 | zmix(ig) = 0.99*zmax(ig) |
---|
| 5012 | ! print*,'pb zmix>zmax' |
---|
| 5013 | END IF |
---|
| 5014 | END DO |
---|
| 5015 | |
---|
| 5016 | ! calcul du nouveau lmix correspondant |
---|
| 5017 | DO ig = 1, ngrid |
---|
| 5018 | DO l = 1, klev |
---|
| 5019 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 5020 | lmix(ig) = l |
---|
| 5021 | END IF |
---|
| 5022 | END DO |
---|
| 5023 | END DO |
---|
| 5024 | |
---|
| 5025 | DO l = 2, nlay |
---|
| 5026 | DO ig = 1, ngrid |
---|
| 5027 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 5028 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 5029 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 5030 | ! test |
---|
| 5031 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 5032 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 5033 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 5034 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 5035 | ELSE |
---|
| 5036 | ! wa_moy(ig,l)=0. |
---|
| 5037 | fraca(ig, l) = 0. |
---|
| 5038 | fracc(ig, l) = 0. |
---|
| 5039 | fracd(ig, l) = 1. |
---|
| 5040 | END IF |
---|
| 5041 | END DO |
---|
| 5042 | END DO |
---|
| 5043 | ! CR: calcul de fracazmix |
---|
| 5044 | DO ig = 1, ngrid |
---|
| 5045 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 5046 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 5047 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 5048 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 5049 | END DO |
---|
| 5050 | |
---|
| 5051 | DO l = 2, nlay |
---|
| 5052 | DO ig = 1, ngrid |
---|
| 5053 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 5054 | IF (l>lmix(ig)) THEN |
---|
| 5055 | ! test |
---|
| 5056 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 5057 | ! print*,'pb xxx' |
---|
| 5058 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 5059 | ELSE |
---|
| 5060 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 5061 | END IF |
---|
| 5062 | IF (idetr==0) THEN |
---|
| 5063 | fraca(ig, l) = fracazmix(ig) |
---|
| 5064 | ELSE IF (idetr==1) THEN |
---|
| 5065 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 5066 | ELSE IF (idetr==2) THEN |
---|
| 5067 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 5068 | ELSE |
---|
| 5069 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 5070 | END IF |
---|
| 5071 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 5072 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 5073 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 5074 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 5075 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 5076 | END IF |
---|
| 5077 | END IF |
---|
| 5078 | END DO |
---|
| 5079 | END DO |
---|
| 5080 | |
---|
| 5081 | ! print*,'fin calcul fraca' |
---|
| 5082 | ! print*,'11 OK convect8' |
---|
| 5083 | ! print*,'Ea3 ',wa_moy |
---|
| 5084 | ! ------------------------------------------------------------------ |
---|
| 5085 | ! Calcul de fracd, wd |
---|
| 5086 | ! somme wa - wd = 0 |
---|
| 5087 | ! ------------------------------------------------------------------ |
---|
| 5088 | |
---|
| 5089 | |
---|
| 5090 | DO ig = 1, ngrid |
---|
| 5091 | fm(ig, 1) = 0. |
---|
| 5092 | fm(ig, nlay+1) = 0. |
---|
| 5093 | END DO |
---|
| 5094 | |
---|
| 5095 | DO l = 2, nlay |
---|
| 5096 | DO ig = 1, ngrid |
---|
| 5097 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 5098 | ! CR:test |
---|
| 5099 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 5100 | fm(ig, l) = fm(ig, l-1) |
---|
| 5101 | ! write(1,*)'ajustement fm, l',l |
---|
| 5102 | END IF |
---|
| 5103 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 5104 | ! RC |
---|
| 5105 | END DO |
---|
| 5106 | DO ig = 1, ngrid |
---|
| 5107 | IF (fracd(ig,l)<0.1) THEN |
---|
| 5108 | abort_message = 'fracd trop petit' |
---|
[2311] | 5109 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 5110 | ELSE |
---|
| 5111 | ! vitesse descendante "diagnostique" |
---|
| 5112 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 5113 | END IF |
---|
| 5114 | END DO |
---|
| 5115 | END DO |
---|
| 5116 | |
---|
| 5117 | DO l = 1, nlay |
---|
| 5118 | DO ig = 1, ngrid |
---|
| 5119 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 5120 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 5121 | END DO |
---|
| 5122 | END DO |
---|
| 5123 | |
---|
| 5124 | ! print*,'12 OK convect8' |
---|
| 5125 | ! print*,'WA4 ',wa_moy |
---|
| 5126 | ! c------------------------------------------------------------------ |
---|
| 5127 | ! calcul du transport vertical |
---|
| 5128 | ! ------------------------------------------------------------------ |
---|
| 5129 | |
---|
| 5130 | GO TO 4444 |
---|
| 5131 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 5132 | DO l = 2, nlay - 1 |
---|
| 5133 | DO ig = 1, ngrid |
---|
| 5134 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 5135 | ig,l+1)) THEN |
---|
| 5136 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 5137 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 5138 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 5139 | END IF |
---|
| 5140 | END DO |
---|
| 5141 | END DO |
---|
| 5142 | |
---|
| 5143 | DO l = 1, nlay |
---|
| 5144 | DO ig = 1, ngrid |
---|
| 5145 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 5146 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 5147 | ! s ,entr(ig,l)*ptimestep |
---|
| 5148 | ! s ,' M=',masse(ig,l) |
---|
| 5149 | END IF |
---|
| 5150 | END DO |
---|
| 5151 | END DO |
---|
| 5152 | |
---|
| 5153 | DO l = 1, nlay |
---|
| 5154 | DO ig = 1, ngrid |
---|
| 5155 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 5156 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 5157 | ! s ,' FM=',fm(ig,l) |
---|
| 5158 | END IF |
---|
| 5159 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 5160 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 5161 | ! s ,' M=',masse(ig,l) |
---|
| 5162 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 5163 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 5164 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 5165 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 5166 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 5167 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 5168 | END IF |
---|
| 5169 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 5170 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 5171 | ! s ,' E=',entr(ig,l) |
---|
| 5172 | END IF |
---|
| 5173 | END DO |
---|
| 5174 | END DO |
---|
| 5175 | |
---|
| 5176 | 4444 CONTINUE |
---|
| 5177 | |
---|
| 5178 | ! CR:redefinition du entr |
---|
| 5179 | DO l = 1, nlay |
---|
| 5180 | DO ig = 1, ngrid |
---|
| 5181 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 5182 | IF (detr(ig,l)<0.) THEN |
---|
| 5183 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
| 5184 | detr(ig, l) = 0. |
---|
| 5185 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 5186 | END IF |
---|
| 5187 | END DO |
---|
| 5188 | END DO |
---|
| 5189 | ! RC |
---|
| 5190 | IF (w2di==1) THEN |
---|
| 5191 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 5192 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 5193 | ELSE |
---|
| 5194 | fm0 = fm |
---|
| 5195 | entr0 = entr |
---|
| 5196 | END IF |
---|
| 5197 | |
---|
| 5198 | IF (1==1) THEN |
---|
| 5199 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 5200 | zha) |
---|
| 5201 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 5202 | zoa) |
---|
| 5203 | ELSE |
---|
| 5204 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 5205 | zdhadj, zha) |
---|
| 5206 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 5207 | pdoadj, zoa) |
---|
| 5208 | END IF |
---|
| 5209 | |
---|
| 5210 | IF (1==0) THEN |
---|
| 5211 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 5212 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 5213 | ELSE |
---|
| 5214 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 5215 | zua) |
---|
| 5216 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 5217 | zva) |
---|
| 5218 | END IF |
---|
| 5219 | |
---|
| 5220 | DO l = 1, nlay |
---|
| 5221 | DO ig = 1, ngrid |
---|
| 5222 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 5223 | zf2 = zf/(1.-zf) |
---|
| 5224 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 5225 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 5226 | END DO |
---|
| 5227 | END DO |
---|
| 5228 | |
---|
| 5229 | |
---|
| 5230 | |
---|
| 5231 | ! print*,'13 OK convect8' |
---|
| 5232 | ! print*,'WA5 ',wa_moy |
---|
| 5233 | DO l = 1, nlay |
---|
| 5234 | DO ig = 1, ngrid |
---|
| 5235 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 5236 | END DO |
---|
| 5237 | END DO |
---|
| 5238 | |
---|
| 5239 | |
---|
| 5240 | ! do l=1,nlay |
---|
| 5241 | ! do ig=1,ngrid |
---|
| 5242 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 5243 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 5244 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 5245 | ! endif |
---|
| 5246 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 5247 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 5248 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 5249 | ! endif |
---|
| 5250 | ! enddo |
---|
| 5251 | ! enddo |
---|
| 5252 | |
---|
| 5253 | ! print*,'14 OK convect8' |
---|
| 5254 | ! ------------------------------------------------------------------ |
---|
| 5255 | ! Calculs pour les sorties |
---|
| 5256 | ! ------------------------------------------------------------------ |
---|
| 5257 | |
---|
| 5258 | RETURN |
---|
| 5259 | END SUBROUTINE thermcell_sec |
---|
| 5260 | |
---|
[4590] | 5261 | SUBROUTINE calcul_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, pu, & |
---|
| 5262 | pv, pt, po, zmax, wmax, zw2, lmix & ! s |
---|
| 5263 | ! ,pu_therm,pv_therm |
---|
| 5264 | , r_aspect, l_mix, w2di, tho) |
---|
| 5265 | |
---|
[5285] | 5266 | USE yomcst_mod_h |
---|
[4590] | 5267 | USE dimphy |
---|
| 5268 | IMPLICIT NONE |
---|
| 5269 | |
---|
| 5270 | ! ======================================================================= |
---|
| 5271 | |
---|
| 5272 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 5273 | ! de "thermiques" explicitement representes |
---|
| 5274 | |
---|
[5274] | 5275 | ! R��criture � partir d'un listing papier � Habas, le 14/02/00 |
---|
[4590] | 5276 | |
---|
[5274] | 5277 | ! le thermique est suppos� homog�ne et dissip� par m�lange avec |
---|
| 5278 | ! son environnement. la longueur l_mix contr�le l'efficacit� du |
---|
| 5279 | ! m�lange |
---|
[4590] | 5280 | |
---|
[5274] | 5281 | ! Le calcul du transport des diff�rentes esp�ces se fait en prenant |
---|
[4590] | 5282 | ! en compte: |
---|
| 5283 | ! 1. un flux de masse montant |
---|
| 5284 | ! 2. un flux de masse descendant |
---|
| 5285 | ! 3. un entrainement |
---|
| 5286 | ! 4. un detrainement |
---|
| 5287 | |
---|
| 5288 | ! ======================================================================= |
---|
| 5289 | |
---|
| 5290 | ! ----------------------------------------------------------------------- |
---|
| 5291 | ! declarations: |
---|
| 5292 | ! ------------- |
---|
| 5293 | |
---|
| 5294 | |
---|
| 5295 | ! arguments: |
---|
| 5296 | ! ---------- |
---|
| 5297 | |
---|
| 5298 | INTEGER ngrid, nlay, w2di |
---|
| 5299 | REAL tho |
---|
| 5300 | REAL ptimestep, l_mix, r_aspect |
---|
| 5301 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 5302 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 5303 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 5304 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 5305 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 5306 | REAL pphi(ngrid, nlay) |
---|
| 5307 | |
---|
| 5308 | INTEGER idetr |
---|
| 5309 | ! local: |
---|
| 5310 | ! ------ |
---|
| 5311 | |
---|
| 5312 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 5313 | REAL zsortie1d(klon) |
---|
| 5314 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 5315 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 5316 | REAL linter(klon) |
---|
| 5317 | REAL zmix(klon), fracazmix(klon) |
---|
| 5318 | ! RC |
---|
| 5319 | REAL zmax(klon), zw, zw2(klon, klev+1), ztva(klon, klev) |
---|
| 5320 | |
---|
| 5321 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 5322 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 5323 | REAL ztv(klon, klev) |
---|
| 5324 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 5325 | REAL wh(klon, klev+1) |
---|
| 5326 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 5327 | REAL zla(klon, klev+1) |
---|
| 5328 | REAL zwa(klon, klev+1) |
---|
| 5329 | REAL zld(klon, klev+1) |
---|
| 5330 | ! real zwd(klon,klev+1) |
---|
| 5331 | REAL zsortie(klon, klev) |
---|
| 5332 | REAL zva(klon, klev) |
---|
| 5333 | REAL zua(klon, klev) |
---|
| 5334 | REAL zoa(klon, klev) |
---|
| 5335 | |
---|
| 5336 | REAL zha(klon, klev) |
---|
| 5337 | REAL wa_moy(klon, klev+1) |
---|
| 5338 | REAL fraca(klon, klev+1) |
---|
| 5339 | REAL fracc(klon, klev+1) |
---|
| 5340 | REAL zf, zf2 |
---|
| 5341 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 5342 | ! common/comtherm/thetath2,wth2 |
---|
| 5343 | |
---|
| 5344 | REAL count_time |
---|
| 5345 | |
---|
| 5346 | LOGICAL sorties |
---|
| 5347 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 5348 | REAL zpspsk(klon, klev) |
---|
| 5349 | |
---|
| 5350 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 5351 | REAL wmax(klon), wmaxa(klon) |
---|
| 5352 | REAL wa(klon, klev, klev+1) |
---|
| 5353 | REAL wd(klon, klev+1) |
---|
| 5354 | REAL larg_part(klon, klev, klev+1) |
---|
| 5355 | REAL fracd(klon, klev+1) |
---|
| 5356 | REAL xxx(klon, klev+1) |
---|
| 5357 | REAL larg_cons(klon, klev+1) |
---|
| 5358 | REAL larg_detr(klon, klev+1) |
---|
| 5359 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 5360 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 5361 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 5362 | REAL fmc(klon, klev+1) |
---|
| 5363 | |
---|
| 5364 | ! CR:nouvelles variables |
---|
| 5365 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 5366 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 5367 | REAL zalim(klon) |
---|
| 5368 | INTEGER lalim(klon) |
---|
| 5369 | REAL norme(klon) |
---|
| 5370 | REAL f(klon), f0(klon) |
---|
| 5371 | REAL zlevinter(klon) |
---|
| 5372 | LOGICAL therm |
---|
| 5373 | LOGICAL first |
---|
| 5374 | DATA first/.FALSE./ |
---|
| 5375 | SAVE first |
---|
| 5376 | !$OMP THREADPRIVATE(first) |
---|
| 5377 | ! RC |
---|
| 5378 | |
---|
| 5379 | CHARACTER *2 str2 |
---|
| 5380 | CHARACTER *10 str10 |
---|
| 5381 | |
---|
| 5382 | CHARACTER (LEN=20) :: modname = 'calcul_sec' |
---|
| 5383 | CHARACTER (LEN=80) :: abort_message |
---|
| 5384 | |
---|
| 5385 | |
---|
| 5386 | ! LOGICAL vtest(klon),down |
---|
| 5387 | |
---|
| 5388 | EXTERNAL scopy |
---|
| 5389 | |
---|
| 5390 | |
---|
| 5391 | |
---|
| 5392 | ! ----------------------------------------------------------------------- |
---|
| 5393 | ! initialisation: |
---|
| 5394 | ! --------------- |
---|
| 5395 | |
---|
[5501] | 5396 | idetr=3 |
---|
[4590] | 5397 | sorties = .TRUE. |
---|
| 5398 | IF (ngrid/=klon) THEN |
---|
| 5399 | PRINT * |
---|
| 5400 | PRINT *, 'STOP dans convadj' |
---|
| 5401 | PRINT *, 'ngrid =', ngrid |
---|
| 5402 | PRINT *, 'klon =', klon |
---|
| 5403 | END IF |
---|
| 5404 | |
---|
| 5405 | ! ----------------------------------------------------------------------- |
---|
| 5406 | ! incrementation eventuelle de tendances precedentes: |
---|
| 5407 | ! --------------------------------------------------- |
---|
| 5408 | |
---|
| 5409 | ! print*,'0 OK convect8' |
---|
| 5410 | |
---|
| 5411 | DO l = 1, nlay |
---|
| 5412 | DO ig = 1, ngrid |
---|
| 5413 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 5414 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 5415 | zu(ig, l) = pu(ig, l) |
---|
| 5416 | zv(ig, l) = pv(ig, l) |
---|
| 5417 | zo(ig, l) = po(ig, l) |
---|
| 5418 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 5419 | END DO |
---|
| 5420 | END DO |
---|
| 5421 | |
---|
| 5422 | ! print*,'1 OK convect8' |
---|
| 5423 | ! -------------------- |
---|
| 5424 | |
---|
| 5425 | |
---|
| 5426 | ! + + + + + + + + + + + |
---|
| 5427 | |
---|
| 5428 | |
---|
| 5429 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 5430 | ! wh,wt,wo ... |
---|
| 5431 | |
---|
| 5432 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 5433 | |
---|
| 5434 | |
---|
| 5435 | ! -------------------- zlev(1) |
---|
| 5436 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 5437 | |
---|
| 5438 | |
---|
| 5439 | |
---|
| 5440 | ! ----------------------------------------------------------------------- |
---|
| 5441 | ! Calcul des altitudes des couches |
---|
| 5442 | ! ----------------------------------------------------------------------- |
---|
| 5443 | |
---|
| 5444 | DO l = 2, nlay |
---|
| 5445 | DO ig = 1, ngrid |
---|
| 5446 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 5447 | END DO |
---|
| 5448 | END DO |
---|
| 5449 | DO ig = 1, ngrid |
---|
| 5450 | zlev(ig, 1) = 0. |
---|
| 5451 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 5452 | END DO |
---|
| 5453 | DO l = 1, nlay |
---|
| 5454 | DO ig = 1, ngrid |
---|
| 5455 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 5456 | END DO |
---|
| 5457 | END DO |
---|
| 5458 | |
---|
| 5459 | ! print*,'2 OK convect8' |
---|
| 5460 | ! ----------------------------------------------------------------------- |
---|
| 5461 | ! Calcul des densites |
---|
| 5462 | ! ----------------------------------------------------------------------- |
---|
| 5463 | |
---|
| 5464 | DO l = 1, nlay |
---|
| 5465 | DO ig = 1, ngrid |
---|
| 5466 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 5467 | END DO |
---|
| 5468 | END DO |
---|
| 5469 | |
---|
| 5470 | DO l = 2, nlay |
---|
| 5471 | DO ig = 1, ngrid |
---|
| 5472 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 5473 | END DO |
---|
| 5474 | END DO |
---|
| 5475 | |
---|
| 5476 | DO k = 1, nlay |
---|
| 5477 | DO l = 1, nlay + 1 |
---|
| 5478 | DO ig = 1, ngrid |
---|
| 5479 | wa(ig, k, l) = 0. |
---|
| 5480 | END DO |
---|
| 5481 | END DO |
---|
| 5482 | END DO |
---|
| 5483 | |
---|
| 5484 | ! print*,'3 OK convect8' |
---|
| 5485 | ! ------------------------------------------------------------------ |
---|
| 5486 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 5487 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
| 5488 | |
---|
| 5489 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 5490 | ! w2 est stoke dans wa |
---|
| 5491 | |
---|
| 5492 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 5493 | ! independants par couches que pour calculer l'entrainement |
---|
| 5494 | ! a la base et la hauteur max de l'ascendance. |
---|
| 5495 | |
---|
| 5496 | ! Indicages: |
---|
| 5497 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 5498 | ! une vitesse wa(k,l). |
---|
| 5499 | |
---|
| 5500 | ! -------------------- |
---|
| 5501 | |
---|
| 5502 | ! + + + + + + + + + + |
---|
| 5503 | |
---|
| 5504 | ! wa(k,l) ---- -------------------- l |
---|
| 5505 | ! /\ |
---|
| 5506 | ! /||\ + + + + + + + + + + |
---|
| 5507 | ! || |
---|
| 5508 | ! || -------------------- |
---|
| 5509 | ! || |
---|
| 5510 | ! || + + + + + + + + + + |
---|
| 5511 | ! || |
---|
| 5512 | ! || -------------------- |
---|
| 5513 | ! ||__ |
---|
| 5514 | ! |___ + + + + + + + + + + k |
---|
| 5515 | |
---|
| 5516 | ! -------------------- |
---|
| 5517 | |
---|
| 5518 | |
---|
| 5519 | |
---|
| 5520 | ! ------------------------------------------------------------------ |
---|
| 5521 | |
---|
| 5522 | ! CR: ponderation entrainement des couches instables |
---|
| 5523 | ! def des entr_star tels que entr=f*entr_star |
---|
| 5524 | DO l = 1, klev |
---|
| 5525 | DO ig = 1, ngrid |
---|
| 5526 | entr_star(ig, l) = 0. |
---|
| 5527 | END DO |
---|
| 5528 | END DO |
---|
| 5529 | ! determination de la longueur de la couche d entrainement |
---|
| 5530 | DO ig = 1, ngrid |
---|
| 5531 | lentr(ig) = 1 |
---|
| 5532 | END DO |
---|
| 5533 | |
---|
| 5534 | ! on ne considere que les premieres couches instables |
---|
| 5535 | therm = .FALSE. |
---|
| 5536 | DO k = nlay - 2, 1, -1 |
---|
| 5537 | DO ig = 1, ngrid |
---|
| 5538 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 5539 | lentr(ig) = k + 1 |
---|
| 5540 | therm = .TRUE. |
---|
| 5541 | END IF |
---|
| 5542 | END DO |
---|
| 5543 | END DO |
---|
| 5544 | ! limitation de la valeur du lentr |
---|
| 5545 | ! do ig=1,ngrid |
---|
| 5546 | ! lentr(ig)=min(5,lentr(ig)) |
---|
| 5547 | ! enddo |
---|
| 5548 | ! determination du lmin: couche d ou provient le thermique |
---|
| 5549 | DO ig = 1, ngrid |
---|
| 5550 | lmin(ig) = 1 |
---|
| 5551 | END DO |
---|
| 5552 | DO ig = 1, ngrid |
---|
| 5553 | DO l = nlay, 2, -1 |
---|
| 5554 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 5555 | lmin(ig) = l - 1 |
---|
| 5556 | END IF |
---|
| 5557 | END DO |
---|
| 5558 | END DO |
---|
| 5559 | ! initialisations |
---|
| 5560 | DO ig = 1, ngrid |
---|
| 5561 | zalim(ig) = 0. |
---|
| 5562 | norme(ig) = 0. |
---|
| 5563 | lalim(ig) = 1 |
---|
| 5564 | END DO |
---|
| 5565 | DO k = 1, klev - 1 |
---|
| 5566 | DO ig = 1, ngrid |
---|
| 5567 | zalim(ig) = zalim(ig) + zlev(ig, k)*max(0., (ztv(ig,k)-ztv(ig, & |
---|
| 5568 | k+1))/(zlev(ig,k+1)-zlev(ig,k))) |
---|
| 5569 | ! s *(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 5570 | norme(ig) = norme(ig) + max(0., (ztv(ig,k)-ztv(ig,k+1))/(zlev(ig, & |
---|
| 5571 | k+1)-zlev(ig,k))) |
---|
| 5572 | ! s *(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 5573 | END DO |
---|
| 5574 | END DO |
---|
| 5575 | DO ig = 1, ngrid |
---|
| 5576 | IF (norme(ig)>1.E-10) THEN |
---|
| 5577 | zalim(ig) = max(10.*zalim(ig)/norme(ig), zlev(ig,2)) |
---|
| 5578 | ! zalim(ig)=min(zalim(ig),zlev(ig,lentr(ig))) |
---|
| 5579 | END IF |
---|
| 5580 | END DO |
---|
[5274] | 5581 | ! d�termination du lalim correspondant |
---|
[4590] | 5582 | DO k = 1, klev - 1 |
---|
| 5583 | DO ig = 1, ngrid |
---|
| 5584 | IF ((zalim(ig)>zlev(ig,k)) .AND. (zalim(ig)<=zlev(ig,k+1))) THEN |
---|
| 5585 | lalim(ig) = k |
---|
| 5586 | END IF |
---|
| 5587 | END DO |
---|
| 5588 | END DO |
---|
| 5589 | |
---|
| 5590 | ! definition de l'entrainement des couches |
---|
| 5591 | DO l = 1, klev - 1 |
---|
| 5592 | DO ig = 1, ngrid |
---|
| 5593 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
| 5594 | entr_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
---|
| 5595 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 5596 | *sqrt(zlev(ig,l+1)) |
---|
| 5597 | ! autre def |
---|
| 5598 | ! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
| 5599 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
| 5600 | END IF |
---|
| 5601 | END DO |
---|
| 5602 | END DO |
---|
| 5603 | ! nouveau test |
---|
| 5604 | ! if (therm) then |
---|
| 5605 | DO l = 1, klev - 1 |
---|
| 5606 | DO ig = 1, ngrid |
---|
| 5607 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lalim(ig) .AND. & |
---|
| 5608 | zalim(ig)>1.E-10) THEN |
---|
| 5609 | ! if (l.le.lentr(ig)) then |
---|
| 5610 | ! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
| 5611 | ! s /zalim(ig)))**(3./2.) |
---|
| 5612 | ! write(10,*)zlev(ig,l),entr_star(ig,l) |
---|
| 5613 | END IF |
---|
| 5614 | END DO |
---|
| 5615 | END DO |
---|
| 5616 | ! endif |
---|
| 5617 | ! pas de thermique si couche 1 stable |
---|
| 5618 | DO ig = 1, ngrid |
---|
| 5619 | IF (lmin(ig)>5) THEN |
---|
| 5620 | DO l = 1, klev |
---|
| 5621 | entr_star(ig, l) = 0. |
---|
| 5622 | END DO |
---|
| 5623 | END IF |
---|
| 5624 | END DO |
---|
| 5625 | ! calcul de l entrainement total |
---|
| 5626 | DO ig = 1, ngrid |
---|
| 5627 | entr_star_tot(ig) = 0. |
---|
| 5628 | END DO |
---|
| 5629 | DO ig = 1, ngrid |
---|
| 5630 | DO k = 1, klev |
---|
| 5631 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 5632 | END DO |
---|
| 5633 | END DO |
---|
| 5634 | ! Calcul entrainement normalise |
---|
| 5635 | DO ig = 1, ngrid |
---|
| 5636 | IF (entr_star_tot(ig)>1.E-10) THEN |
---|
| 5637 | ! do l=1,lentr(ig) |
---|
| 5638 | DO l = 1, klev |
---|
| 5639 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
| 5640 | entr_star(ig, l) = entr_star(ig, l)/entr_star_tot(ig) |
---|
| 5641 | END DO |
---|
| 5642 | END IF |
---|
| 5643 | END DO |
---|
| 5644 | |
---|
| 5645 | ! print*,'fin calcul entr_star' |
---|
| 5646 | DO k = 1, klev |
---|
| 5647 | DO ig = 1, ngrid |
---|
| 5648 | ztva(ig, k) = ztv(ig, k) |
---|
| 5649 | END DO |
---|
| 5650 | END DO |
---|
| 5651 | ! RC |
---|
| 5652 | ! print*,'7 OK convect8' |
---|
| 5653 | DO k = 1, klev + 1 |
---|
| 5654 | DO ig = 1, ngrid |
---|
| 5655 | zw2(ig, k) = 0. |
---|
| 5656 | fmc(ig, k) = 0. |
---|
| 5657 | ! CR |
---|
| 5658 | f_star(ig, k) = 0. |
---|
| 5659 | ! RC |
---|
| 5660 | larg_cons(ig, k) = 0. |
---|
| 5661 | larg_detr(ig, k) = 0. |
---|
| 5662 | wa_moy(ig, k) = 0. |
---|
| 5663 | END DO |
---|
| 5664 | END DO |
---|
| 5665 | |
---|
| 5666 | ! print*,'8 OK convect8' |
---|
| 5667 | DO ig = 1, ngrid |
---|
| 5668 | linter(ig) = 1. |
---|
| 5669 | lmaxa(ig) = 1 |
---|
| 5670 | lmix(ig) = 1 |
---|
| 5671 | wmaxa(ig) = 0. |
---|
| 5672 | END DO |
---|
| 5673 | |
---|
| 5674 | ! CR: |
---|
| 5675 | DO l = 1, nlay - 2 |
---|
| 5676 | DO ig = 1, ngrid |
---|
| 5677 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 5678 | zw2(ig,l)<1E-10) THEN |
---|
| 5679 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 5680 | ! test:calcul de dteta |
---|
| 5681 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 5682 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 5683 | larg_detr(ig, l) = 0. |
---|
| 5684 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 5685 | l)>1.E-10)) THEN |
---|
| 5686 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 5687 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
| 5688 | f_star(ig, l+1) |
---|
| 5689 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 5690 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 5691 | END IF |
---|
| 5692 | ! determination de zmax continu par interpolation lineaire |
---|
| 5693 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 5694 | ! test |
---|
| 5695 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
| 5696 | ! print*,'pb linter' |
---|
| 5697 | END IF |
---|
| 5698 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 5699 | ig,l)) |
---|
| 5700 | zw2(ig, l+1) = 0. |
---|
| 5701 | lmaxa(ig) = l |
---|
| 5702 | ELSE |
---|
| 5703 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 5704 | ! print*,'pb1 zw2<0' |
---|
| 5705 | END IF |
---|
| 5706 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 5707 | END IF |
---|
| 5708 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 5709 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 5710 | lmix(ig) = l + 1 |
---|
| 5711 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 5712 | END IF |
---|
| 5713 | END DO |
---|
| 5714 | END DO |
---|
| 5715 | ! print*,'fin calcul zw2' |
---|
| 5716 | |
---|
| 5717 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 5718 | DO ig = 1, ngrid |
---|
| 5719 | lmax(ig) = lentr(ig) |
---|
| 5720 | ! lmax(ig)=lalim(ig) |
---|
| 5721 | END DO |
---|
| 5722 | DO ig = 1, ngrid |
---|
| 5723 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 5724 | ! do l=nlay,lalim(ig)+1,-1 |
---|
| 5725 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 5726 | lmax(ig) = l - 1 |
---|
| 5727 | END IF |
---|
| 5728 | END DO |
---|
| 5729 | END DO |
---|
| 5730 | ! pas de thermique si couche 1 stable |
---|
| 5731 | DO ig = 1, ngrid |
---|
| 5732 | IF (lmin(ig)>5) THEN |
---|
| 5733 | lmax(ig) = 1 |
---|
| 5734 | lmin(ig) = 1 |
---|
| 5735 | lentr(ig) = 1 |
---|
| 5736 | lalim(ig) = 1 |
---|
| 5737 | END IF |
---|
| 5738 | END DO |
---|
| 5739 | |
---|
| 5740 | ! Determination de zw2 max |
---|
| 5741 | DO ig = 1, ngrid |
---|
| 5742 | wmax(ig) = 0. |
---|
| 5743 | END DO |
---|
| 5744 | |
---|
| 5745 | DO l = 1, nlay |
---|
| 5746 | DO ig = 1, ngrid |
---|
| 5747 | IF (l<=lmax(ig)) THEN |
---|
| 5748 | IF (zw2(ig,l)<0.) THEN |
---|
| 5749 | ! print*,'pb2 zw2<0' |
---|
| 5750 | END IF |
---|
| 5751 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 5752 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 5753 | ELSE |
---|
| 5754 | zw2(ig, l) = 0. |
---|
| 5755 | END IF |
---|
| 5756 | END DO |
---|
| 5757 | END DO |
---|
| 5758 | |
---|
| 5759 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 5760 | DO ig = 1, ngrid |
---|
| 5761 | zmax(ig) = 0. |
---|
| 5762 | zlevinter(ig) = zlev(ig, 1) |
---|
| 5763 | END DO |
---|
| 5764 | DO ig = 1, ngrid |
---|
| 5765 | ! calcul de zlevinter |
---|
| 5766 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 5767 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 5768 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 5769 | END DO |
---|
| 5770 | DO ig = 1, ngrid |
---|
| 5771 | ! write(8,*)zmax(ig),lmax(ig),lentr(ig),lmin(ig) |
---|
| 5772 | END DO |
---|
[5274] | 5773 | ! on stope apr�s les calculs de zmax et wmax |
---|
[4590] | 5774 | RETURN |
---|
| 5775 | |
---|
| 5776 | ! print*,'avant fermeture' |
---|
| 5777 | ! Fermeture,determination de f |
---|
[5274] | 5778 | ! Attention! entrainement normalis� ou pas? |
---|
[4590] | 5779 | DO ig = 1, ngrid |
---|
| 5780 | entr_star2(ig) = 0. |
---|
| 5781 | END DO |
---|
| 5782 | DO ig = 1, ngrid |
---|
| 5783 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 5784 | f(ig) = 0. |
---|
| 5785 | ELSE |
---|
| 5786 | DO k = lmin(ig), lentr(ig) |
---|
| 5787 | ! do k=lmin(ig),lalim(ig) |
---|
| 5788 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 5789 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 5790 | END DO |
---|
| 5791 | ! Nouvelle fermeture |
---|
| 5792 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig)) |
---|
| 5793 | ! s *entr_star_tot(ig) |
---|
| 5794 | ! test |
---|
| 5795 | ! if (first) then |
---|
| 5796 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
---|
| 5797 | ! endif |
---|
| 5798 | END IF |
---|
| 5799 | f0(ig) = f(ig) |
---|
| 5800 | ! first=.true. |
---|
| 5801 | END DO |
---|
| 5802 | ! print*,'apres fermeture' |
---|
[5274] | 5803 | ! on stoppe apr�s la fermeture |
---|
[4590] | 5804 | RETURN |
---|
| 5805 | ! Calcul de l'entrainement |
---|
| 5806 | DO k = 1, klev |
---|
| 5807 | DO ig = 1, ngrid |
---|
| 5808 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 5809 | END DO |
---|
| 5810 | END DO |
---|
[5274] | 5811 | ! on stoppe apr�s le calcul de entr |
---|
[4590] | 5812 | ! RETURN |
---|
| 5813 | ! CR:test pour entrainer moins que la masse |
---|
| 5814 | ! do ig=1,ngrid |
---|
| 5815 | ! do l=1,lentr(ig) |
---|
| 5816 | ! if ((entr(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
---|
| 5817 | ! entr(ig,l+1)=entr(ig,l+1)+entr(ig,l) |
---|
| 5818 | ! s -0.9*masse(ig,l)/ptimestep |
---|
| 5819 | ! entr(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
| 5820 | ! endif |
---|
| 5821 | ! enddo |
---|
| 5822 | ! enddo |
---|
| 5823 | ! CR: fin test |
---|
| 5824 | ! Calcul des flux |
---|
| 5825 | DO ig = 1, ngrid |
---|
| 5826 | DO l = 1, lmax(ig) - 1 |
---|
| 5827 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 5828 | END DO |
---|
| 5829 | END DO |
---|
| 5830 | |
---|
| 5831 | ! RC |
---|
| 5832 | |
---|
| 5833 | |
---|
| 5834 | ! print*,'9 OK convect8' |
---|
| 5835 | ! print*,'WA1 ',wa_moy |
---|
| 5836 | |
---|
| 5837 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 5838 | |
---|
| 5839 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 5840 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
[5274] | 5841 | ! d'une couche est �gale � la hauteur de la couche alimentante. |
---|
[4590] | 5842 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 5843 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 5844 | |
---|
| 5845 | DO l = 2, nlay |
---|
| 5846 | DO ig = 1, ngrid |
---|
| 5847 | IF (l<=lmaxa(ig)) THEN |
---|
| 5848 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 5849 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 5850 | END IF |
---|
| 5851 | END DO |
---|
| 5852 | END DO |
---|
| 5853 | |
---|
| 5854 | DO l = 2, nlay |
---|
| 5855 | DO ig = 1, ngrid |
---|
| 5856 | IF (l<=lmaxa(ig)) THEN |
---|
| 5857 | ! if (idetr.eq.0) then |
---|
| 5858 | ! cette option est finalement en dur. |
---|
| 5859 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 5860 | ! print*,'pb l_mix*zlev<0' |
---|
| 5861 | END IF |
---|
| 5862 | ! CR: test: nouvelle def de lambda |
---|
| 5863 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 5864 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 5865 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
| 5866 | ELSE |
---|
| 5867 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 5868 | END IF |
---|
| 5869 | ! RC |
---|
| 5870 | ! else if (idetr.eq.1) then |
---|
| 5871 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 5872 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 5873 | ! else if (idetr.eq.2) then |
---|
| 5874 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 5875 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 5876 | ! else if (idetr.eq.4) then |
---|
| 5877 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 5878 | ! s *wa_moy(ig,l) |
---|
| 5879 | ! endif |
---|
| 5880 | END IF |
---|
| 5881 | END DO |
---|
| 5882 | END DO |
---|
| 5883 | |
---|
| 5884 | ! print*,'10 OK convect8' |
---|
| 5885 | ! print*,'WA2 ',wa_moy |
---|
[5274] | 5886 | ! calcul de la fraction de la maille concern�e par l'ascendance en tenant |
---|
[4590] | 5887 | ! compte de l'epluchage du thermique. |
---|
| 5888 | |
---|
| 5889 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 5890 | DO ig = 1, ngrid |
---|
| 5891 | IF (lmix(ig)>1.) THEN |
---|
| 5892 | ! test |
---|
| 5893 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 5894 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 5895 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 5896 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
| 5897 | |
---|
| 5898 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 5899 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 5900 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 5901 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 5902 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 5903 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 5904 | ELSE |
---|
| 5905 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 5906 | ! print*,'pb zmix' |
---|
| 5907 | END IF |
---|
| 5908 | ELSE |
---|
| 5909 | zmix(ig) = 0. |
---|
| 5910 | END IF |
---|
| 5911 | ! test |
---|
| 5912 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
| 5913 | zmix(ig) = 0.99*zmax(ig) |
---|
| 5914 | ! print*,'pb zmix>zmax' |
---|
| 5915 | END IF |
---|
| 5916 | END DO |
---|
| 5917 | |
---|
| 5918 | ! calcul du nouveau lmix correspondant |
---|
| 5919 | DO ig = 1, ngrid |
---|
| 5920 | DO l = 1, klev |
---|
| 5921 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 5922 | lmix(ig) = l |
---|
| 5923 | END IF |
---|
| 5924 | END DO |
---|
| 5925 | END DO |
---|
| 5926 | |
---|
| 5927 | DO l = 2, nlay |
---|
| 5928 | DO ig = 1, ngrid |
---|
| 5929 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 5930 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 5931 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 5932 | ! test |
---|
| 5933 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 5934 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 5935 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 5936 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 5937 | ELSE |
---|
| 5938 | ! wa_moy(ig,l)=0. |
---|
| 5939 | fraca(ig, l) = 0. |
---|
| 5940 | fracc(ig, l) = 0. |
---|
| 5941 | fracd(ig, l) = 1. |
---|
| 5942 | END IF |
---|
| 5943 | END DO |
---|
| 5944 | END DO |
---|
| 5945 | ! CR: calcul de fracazmix |
---|
| 5946 | DO ig = 1, ngrid |
---|
| 5947 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 5948 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 5949 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 5950 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 5951 | END DO |
---|
| 5952 | |
---|
| 5953 | DO l = 2, nlay |
---|
| 5954 | DO ig = 1, ngrid |
---|
| 5955 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 5956 | IF (l>lmix(ig)) THEN |
---|
| 5957 | ! test |
---|
| 5958 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 5959 | ! print*,'pb xxx' |
---|
| 5960 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 5961 | ELSE |
---|
| 5962 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 5963 | END IF |
---|
| 5964 | IF (idetr==0) THEN |
---|
| 5965 | fraca(ig, l) = fracazmix(ig) |
---|
| 5966 | ELSE IF (idetr==1) THEN |
---|
| 5967 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 5968 | ELSE IF (idetr==2) THEN |
---|
| 5969 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 5970 | ELSE |
---|
| 5971 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 5972 | END IF |
---|
| 5973 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 5974 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 5975 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 5976 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 5977 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 5978 | END IF |
---|
| 5979 | END IF |
---|
| 5980 | END DO |
---|
| 5981 | END DO |
---|
| 5982 | |
---|
| 5983 | ! print*,'fin calcul fraca' |
---|
| 5984 | ! print*,'11 OK convect8' |
---|
| 5985 | ! print*,'Ea3 ',wa_moy |
---|
| 5986 | ! ------------------------------------------------------------------ |
---|
| 5987 | ! Calcul de fracd, wd |
---|
| 5988 | ! somme wa - wd = 0 |
---|
| 5989 | ! ------------------------------------------------------------------ |
---|
| 5990 | |
---|
| 5991 | |
---|
| 5992 | DO ig = 1, ngrid |
---|
| 5993 | fm(ig, 1) = 0. |
---|
| 5994 | fm(ig, nlay+1) = 0. |
---|
| 5995 | END DO |
---|
| 5996 | |
---|
| 5997 | DO l = 2, nlay |
---|
| 5998 | DO ig = 1, ngrid |
---|
| 5999 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 6000 | ! CR:test |
---|
| 6001 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 6002 | fm(ig, l) = fm(ig, l-1) |
---|
| 6003 | ! write(1,*)'ajustement fm, l',l |
---|
| 6004 | END IF |
---|
| 6005 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 6006 | ! RC |
---|
| 6007 | END DO |
---|
| 6008 | DO ig = 1, ngrid |
---|
| 6009 | IF (fracd(ig,l)<0.1) THEN |
---|
| 6010 | abort_message = 'fracd trop petit' |
---|
| 6011 | CALL abort_physic(modname, abort_message, 1) |
---|
| 6012 | |
---|
| 6013 | ELSE |
---|
| 6014 | ! vitesse descendante "diagnostique" |
---|
| 6015 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 6016 | END IF |
---|
| 6017 | END DO |
---|
| 6018 | END DO |
---|
| 6019 | |
---|
| 6020 | DO l = 1, nlay |
---|
| 6021 | DO ig = 1, ngrid |
---|
| 6022 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 6023 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 6024 | END DO |
---|
| 6025 | END DO |
---|
| 6026 | |
---|
| 6027 | ! print*,'12 OK convect8' |
---|
| 6028 | ! print*,'WA4 ',wa_moy |
---|
| 6029 | ! c------------------------------------------------------------------ |
---|
| 6030 | ! calcul du transport vertical |
---|
| 6031 | ! ------------------------------------------------------------------ |
---|
| 6032 | |
---|
| 6033 | GO TO 4444 |
---|
| 6034 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 6035 | DO l = 2, nlay - 1 |
---|
| 6036 | DO ig = 1, ngrid |
---|
| 6037 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 6038 | ig,l+1)) THEN |
---|
| 6039 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 6040 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 6041 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 6042 | END IF |
---|
| 6043 | END DO |
---|
| 6044 | END DO |
---|
| 6045 | |
---|
| 6046 | DO l = 1, nlay |
---|
| 6047 | DO ig = 1, ngrid |
---|
| 6048 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 6049 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 6050 | ! s ,entr(ig,l)*ptimestep |
---|
| 6051 | ! s ,' M=',masse(ig,l) |
---|
| 6052 | END IF |
---|
| 6053 | END DO |
---|
| 6054 | END DO |
---|
| 6055 | |
---|
| 6056 | DO l = 1, nlay |
---|
| 6057 | DO ig = 1, ngrid |
---|
| 6058 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 6059 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 6060 | ! s ,' FM=',fm(ig,l) |
---|
| 6061 | END IF |
---|
| 6062 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 6063 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 6064 | ! s ,' M=',masse(ig,l) |
---|
| 6065 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 6066 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 6067 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 6068 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 6069 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 6070 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 6071 | END IF |
---|
| 6072 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 6073 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 6074 | ! s ,' E=',entr(ig,l) |
---|
| 6075 | END IF |
---|
| 6076 | END DO |
---|
| 6077 | END DO |
---|
| 6078 | |
---|
| 6079 | 4444 CONTINUE |
---|
| 6080 | |
---|
| 6081 | ! CR:redefinition du entr |
---|
| 6082 | DO l = 1, nlay |
---|
| 6083 | DO ig = 1, ngrid |
---|
| 6084 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 6085 | IF (detr(ig,l)<0.) THEN |
---|
| 6086 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 6087 | fm(ig, l+1) = fm(ig, l) + entr(ig, l) |
---|
| 6088 | detr(ig, l) = 0. |
---|
| 6089 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 6090 | END IF |
---|
| 6091 | END DO |
---|
| 6092 | END DO |
---|
| 6093 | ! RC |
---|
| 6094 | IF (w2di==1) THEN |
---|
| 6095 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 6096 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 6097 | ELSE |
---|
| 6098 | fm0 = fm |
---|
| 6099 | entr0 = entr |
---|
| 6100 | END IF |
---|
| 6101 | |
---|
| 6102 | IF (1==1) THEN |
---|
| 6103 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 6104 | zha) |
---|
| 6105 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 6106 | zoa) |
---|
| 6107 | ELSE |
---|
| 6108 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 6109 | zdhadj, zha) |
---|
| 6110 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 6111 | pdoadj, zoa) |
---|
| 6112 | END IF |
---|
| 6113 | |
---|
| 6114 | IF (1==0) THEN |
---|
| 6115 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 6116 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 6117 | ELSE |
---|
| 6118 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 6119 | zua) |
---|
| 6120 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 6121 | zva) |
---|
| 6122 | END IF |
---|
| 6123 | |
---|
| 6124 | DO l = 1, nlay |
---|
| 6125 | DO ig = 1, ngrid |
---|
| 6126 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 6127 | zf2 = zf/(1.-zf) |
---|
| 6128 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 6129 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 6130 | END DO |
---|
| 6131 | END DO |
---|
| 6132 | |
---|
| 6133 | |
---|
| 6134 | |
---|
| 6135 | ! print*,'13 OK convect8' |
---|
| 6136 | ! print*,'WA5 ',wa_moy |
---|
| 6137 | DO l = 1, nlay |
---|
| 6138 | DO ig = 1, ngrid |
---|
| 6139 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 6140 | END DO |
---|
| 6141 | END DO |
---|
| 6142 | |
---|
| 6143 | |
---|
| 6144 | ! do l=1,nlay |
---|
| 6145 | ! do ig=1,ngrid |
---|
| 6146 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 6147 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 6148 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 6149 | ! endif |
---|
| 6150 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 6151 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 6152 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 6153 | ! endif |
---|
| 6154 | ! enddo |
---|
| 6155 | ! enddo |
---|
| 6156 | |
---|
| 6157 | ! print*,'14 OK convect8' |
---|
| 6158 | ! ------------------------------------------------------------------ |
---|
| 6159 | ! Calculs pour les sorties |
---|
| 6160 | ! ------------------------------------------------------------------ |
---|
| 6161 | |
---|
| 6162 | IF (sorties) THEN |
---|
| 6163 | DO l = 1, nlay |
---|
| 6164 | DO ig = 1, ngrid |
---|
| 6165 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 6166 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 6167 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 6168 | (1.-fracd(ig,l)) |
---|
| 6169 | END DO |
---|
| 6170 | END DO |
---|
| 6171 | |
---|
| 6172 | ! deja fait |
---|
| 6173 | ! do l=1,nlay |
---|
| 6174 | ! do ig=1,ngrid |
---|
| 6175 | ! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
---|
| 6176 | ! if (detr(ig,l).lt.0.) then |
---|
| 6177 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 6178 | ! detr(ig,l)=0. |
---|
| 6179 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 6180 | ! endif |
---|
| 6181 | ! enddo |
---|
| 6182 | ! enddo |
---|
| 6183 | |
---|
| 6184 | ! print*,'15 OK convect8' |
---|
| 6185 | |
---|
| 6186 | |
---|
| 6187 | END IF |
---|
| 6188 | |
---|
| 6189 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
| 6190 | |
---|
| 6191 | ! print*,'19 OK convect8' |
---|
| 6192 | RETURN |
---|
| 6193 | END SUBROUTINE calcul_sec |
---|
| 6194 | |
---|
| 6195 | SUBROUTINE fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, & |
---|
| 6196 | f0, zpspsk, alim_star, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, & |
---|
| 6197 | zmax, wmax) |
---|
| 6198 | |
---|
| 6199 | USE dimphy |
---|
[5285] | 6200 | USE yomcst_mod_h |
---|
[5274] | 6201 | IMPLICIT NONE |
---|
[4590] | 6202 | |
---|
| 6203 | |
---|
[5274] | 6204 | |
---|
[4590] | 6205 | INTEGER ngrid, nlay |
---|
| 6206 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 6207 | REAL pphi(ngrid, nlay) |
---|
| 6208 | REAL zlev(klon, klev+1) |
---|
| 6209 | REAL alim_star(klon, klev) |
---|
| 6210 | REAL f0(klon) |
---|
| 6211 | INTEGER lentr(klon) |
---|
| 6212 | INTEGER lmin(klon) |
---|
| 6213 | REAL zmax(klon) |
---|
| 6214 | REAL wmax(klon) |
---|
| 6215 | REAL nu_min |
---|
| 6216 | REAL nu_max |
---|
| 6217 | REAL r_aspect |
---|
| 6218 | REAL rhobarz(klon, klev+1) |
---|
| 6219 | REAL zh(klon, klev) |
---|
| 6220 | REAL zo(klon, klev) |
---|
| 6221 | REAL zpspsk(klon, klev) |
---|
| 6222 | |
---|
| 6223 | INTEGER ig, l |
---|
| 6224 | |
---|
| 6225 | REAL f_star(klon, klev+1) |
---|
| 6226 | REAL detr_star(klon, klev) |
---|
| 6227 | REAL entr_star(klon, klev) |
---|
| 6228 | REAL zw2(klon, klev+1) |
---|
| 6229 | REAL linter(klon) |
---|
| 6230 | INTEGER lmix(klon) |
---|
| 6231 | INTEGER lmax(klon) |
---|
| 6232 | REAL zlevinter(klon) |
---|
| 6233 | REAL wa_moy(klon, klev+1) |
---|
| 6234 | REAL wmaxa(klon) |
---|
| 6235 | REAL ztv(klon, klev) |
---|
| 6236 | REAL ztva(klon, klev) |
---|
| 6237 | REAL nu(klon, klev) |
---|
| 6238 | ! real zmax0_sec(klon) |
---|
| 6239 | ! save zmax0_sec |
---|
| 6240 | REAL, SAVE, ALLOCATABLE :: zmax0_sec(:) |
---|
| 6241 | !$OMP THREADPRIVATE(zmax0_sec) |
---|
| 6242 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 6243 | !$OMP THREADPRIVATE(first) |
---|
| 6244 | |
---|
| 6245 | IF (first) THEN |
---|
| 6246 | ALLOCATE (zmax0_sec(klon)) |
---|
| 6247 | first = .FALSE. |
---|
| 6248 | END IF |
---|
| 6249 | |
---|
| 6250 | DO l = 1, nlay |
---|
| 6251 | DO ig = 1, ngrid |
---|
| 6252 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
| 6253 | ztv(ig, l) = ztv(ig, l)*(1.+retv*zo(ig,l)) |
---|
| 6254 | END DO |
---|
| 6255 | END DO |
---|
| 6256 | DO l = 1, nlay - 2 |
---|
| 6257 | DO ig = 1, ngrid |
---|
| 6258 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
---|
| 6259 | zw2(ig,l)<1E-10) THEN |
---|
| 6260 | f_star(ig, l+1) = alim_star(ig, l) |
---|
| 6261 | ! test:calcul de dteta |
---|
| 6262 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 6263 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 6264 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
---|
| 6265 | l))>1.E-10) THEN |
---|
| 6266 | ! estimation du detrainement a partir de la geometrie du pas |
---|
| 6267 | ! precedent |
---|
| 6268 | ! tests sur la definition du detr |
---|
| 6269 | nu(ig, l) = (nu_min+nu_max)/2.*(1.-(nu_max-nu_min)/(nu_max+nu_min)* & |
---|
| 6270 | tanh((((ztva(ig,l-1)-ztv(ig,l))/ztv(ig,l))/0.0005))) |
---|
| 6271 | |
---|
| 6272 | detr_star(ig, l) = rhobarz(ig, l)*sqrt(zw2(ig,l))/ & |
---|
| 6273 | (r_aspect*zmax0_sec(ig))* & ! s |
---|
| 6274 | ! /(r_aspect*zmax0(ig))* |
---|
| 6275 | (sqrt(nu(ig,l)*zlev(ig,l+1)/sqrt(zw2(ig,l)))-sqrt(nu(ig,l)*zlev(ig, & |
---|
| 6276 | l)/sqrt(zw2(ig,l)))) |
---|
| 6277 | detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
---|
| 6278 | IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
---|
| 6279 | detr_star(ig, l) = f_star(ig, l) |
---|
| 6280 | END IF |
---|
| 6281 | entr_star(ig, l) = 0.9*detr_star(ig, l) |
---|
| 6282 | IF ((l<lentr(ig))) THEN |
---|
| 6283 | entr_star(ig, l) = 0. |
---|
| 6284 | ! detr_star(ig,l)=0. |
---|
| 6285 | END IF |
---|
| 6286 | ! print*,'ok detr_star' |
---|
| 6287 | ! prise en compte du detrainement dans le calcul du flux |
---|
| 6288 | f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
| 6289 | entr_star(ig, l) - detr_star(ig, l) |
---|
| 6290 | ! test sur le signe de f_star |
---|
| 6291 | IF ((f_star(ig,l+1)+detr_star(ig,l))>1.E-10) THEN |
---|
| 6292 | ! AM on melange Tl et qt du thermique |
---|
| 6293 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+(entr_star(ig, & |
---|
| 6294 | l)+alim_star(ig,l))*ztv(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 6295 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/(f_star(ig, & |
---|
| 6296 | l+1)+detr_star(ig,l)))**2 + 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, & |
---|
| 6297 | l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 6298 | END IF |
---|
| 6299 | END IF |
---|
| 6300 | |
---|
| 6301 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 6302 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 6303 | ig,l)) |
---|
| 6304 | zw2(ig, l+1) = 0. |
---|
| 6305 | ! print*,'linter=',linter(ig) |
---|
| 6306 | ELSE |
---|
| 6307 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 6308 | END IF |
---|
| 6309 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 6310 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 6311 | lmix(ig) = l + 1 |
---|
| 6312 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 6313 | END IF |
---|
| 6314 | END DO |
---|
| 6315 | END DO |
---|
| 6316 | ! print*,'fin calcul zw2' |
---|
| 6317 | |
---|
| 6318 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 6319 | DO ig = 1, ngrid |
---|
| 6320 | lmax(ig) = lentr(ig) |
---|
| 6321 | END DO |
---|
| 6322 | DO ig = 1, ngrid |
---|
| 6323 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 6324 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 6325 | lmax(ig) = l - 1 |
---|
| 6326 | END IF |
---|
| 6327 | END DO |
---|
| 6328 | END DO |
---|
| 6329 | ! pas de thermique si couche 1 stable |
---|
| 6330 | DO ig = 1, ngrid |
---|
| 6331 | IF (lmin(ig)>1) THEN |
---|
| 6332 | lmax(ig) = 1 |
---|
| 6333 | lmin(ig) = 1 |
---|
| 6334 | lentr(ig) = 1 |
---|
| 6335 | END IF |
---|
| 6336 | END DO |
---|
| 6337 | |
---|
| 6338 | ! Determination de zw2 max |
---|
| 6339 | DO ig = 1, ngrid |
---|
| 6340 | wmax(ig) = 0. |
---|
| 6341 | END DO |
---|
| 6342 | |
---|
| 6343 | DO l = 1, nlay |
---|
| 6344 | DO ig = 1, ngrid |
---|
| 6345 | IF (l<=lmax(ig)) THEN |
---|
| 6346 | IF (zw2(ig,l)<0.) THEN |
---|
| 6347 | ! print*,'pb2 zw2<0' |
---|
| 6348 | END IF |
---|
| 6349 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 6350 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 6351 | ELSE |
---|
| 6352 | zw2(ig, l) = 0. |
---|
| 6353 | END IF |
---|
| 6354 | END DO |
---|
| 6355 | END DO |
---|
| 6356 | |
---|
| 6357 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 6358 | DO ig = 1, ngrid |
---|
| 6359 | zmax(ig) = 0. |
---|
| 6360 | zlevinter(ig) = zlev(ig, 1) |
---|
| 6361 | END DO |
---|
| 6362 | DO ig = 1, ngrid |
---|
| 6363 | ! calcul de zlevinter |
---|
| 6364 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 6365 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 6366 | ! pour le cas ou on prend tjs lmin=1 |
---|
| 6367 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 6368 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
---|
| 6369 | zmax0_sec(ig) = zmax(ig) |
---|
| 6370 | END DO |
---|
| 6371 | |
---|
| 6372 | RETURN |
---|
| 6373 | END SUBROUTINE fermeture_seche |
---|
| 6374 | |
---|
| 6375 | END MODULE lmdz_thermcell_old |
---|